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A DEGREE FORMULA FOR
EQUIVARIANT COHOMOLOGY RINGS

MARK BLUMSTEIN and JEANNE DUFLOT

(communicated by Nicholas J. Kuhn)

Abstract
This paper generalizes a result of Lynn on the “degree” of an

equivariant cohomology ring H∗
G(X). The degree of a graded

module is a certain coefficient of its Poincaré series, and is
closely related to multiplicity. In the present paper, we study
these commutative algebraic invariants for equivariant cohomol-
ogy rings. The main theorem is an additivity formula for degree:

deg(H∗
G(X)) =

∑
[A,c]∈Q′

max(G,X)

1

|WG(A, c)|
deg(H∗

CG(A,c)(c)).

We also show how this formula relates to the additivity formula
from commutative algebra, demonstrating both the algebraic
and geometric character of the degree invariant.

1. Introduction

In the 1950’s and 60’s equivariant cohomology developed in many arenas: Cartan’s
theory of equivariant differential forms, representation theory, and Atiyah’s K-theory,
to name a few. However, the commutative algebraic properties of the Borel equiv-
ariant cohomology ring H∗

G(X) associated to the action of a group G on a space
X, weren’t well understood until 1971 when Quillen published The Spectrum of an
Equivariant Cohomology Ring: I/II [16, 17]. Quillen explored the Krull dimension,
prime spectrum, and localization of the equivariant cohomology ring H∗

G(X), where
G is a compact Lie group, X is a G-space satisfying certain hypotheses, and coho-
mology coefficients are taken in a field k of characteristic p. He showed that tucked
away in each of these commutative algebraic constructs is a great deal of informa-
tion about the topology and geometry of the G-action on X. Building on Quillen’s
insights, many authors have researched commutative algebraic invariants of equivari-
ant cohomology rings. For example, more recent research includes [6, 7], where the
concepts of localization and primary decomposition are explored. Symonds [19] stud-
ied Castelnuovo–Mumford regularity and the article of Lynn [11] is a direct precursor
for this paper. For torus or elementary abelian group actions, the Cohen–Macaulay
property from commutative algebra was studied in [9, 1, 2]. This is by no means an
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exhaustive list of references, but shows how the study of commutative-algebraic con-
cepts and invariants in algebraic topology, begun by Quillen, continues to the present
day.

The present paper answers a problem posed by Lynn [11] about a certain algebraic
invariant called the degree. The degree of a finitely generated graded module M over a
positively graded ring S, finitely generated as an algebra over S0, with S0 an Artinian
ring, is defined in terms of the Poincaré series of M (PS(M)):

deg(M)
.
= lim

t→1
(1− t)dimS(M)PS(M);

here “dimS(M)” is the Krull dimension of the S-module M . The study of degree is
ubiquitous in commutative algebra and algebraic geometry; indeed, for a “standard”
graded algebra R-in other words, if R is a finitely generated graded algebra over a
field, generated by elements of graded degree 1 – the degree of a finitely generated
graded R-module M is equal to its Samuel multiplicity. Now, equivariant cohomology
rings are usually not generated by elements in a single graded degree, and the degree
of M is not always an integer, but there is still a relationship between the degree and
an analog of the Samuel multiplicity for graded modules over graded rings: for an
exposition of the precise relationship between degree and this analog of the Samuel
multiplicity in graded rings, see the preprint of the first author [4].

As far as the authors know, the first study of degree in algebraic topology was done
by Maiorana [12, 13] (Maiorana called the invariant “c(M)”, rather than “degree”;
here, we follow the nomenclature of [3]). In particular, the paper [13] contains some
interesting calculations of degree in equivariant cohomology, presenting applications
of the degree in algebraic topology which, again as far as the authors know, haven’t
yet been fully explored, and will be the subject of future research.

Equivariant cohomology rings are complicated graded rings, in general. In the case
where X = {pt} is a one point space, and G is a finite group, the equivariant cohomol-
ogy is the cohomology ring of the group G, which may be defined in a purely algebraic
way, and many texts and journal papers have been written on computational exam-
ples. Quillen’s theorems in [16, 17] tells us that the complexity of this cohomology
ring (recall coefficients are taken in a field k of characteristic p) is directly linked to
the poset of elementary abelian p-subgroups of G, and much has been made of this
since then. On the other hand, if the group G is very nice; for example, if G is a torus
or an elementary abelian p-group, but X is not a point, Quillen’s theorems tells us
that the complexity of the equivariant cohomology ring is linked to the cohomology
structure of fixed-point sets XB of the subgroups B of G. Again, much has been made
of this by many different authors.

The degree formula proven in this paper is (without explaining now the meaning
of the various terms, which come directly from Quillen’s work)

Theorem 1.1. deg(H∗
G(X)) =

∑
[A,c]∈Q′

max(G,X)
1

|WG(A,c)| deg(H
∗
CG(A,c)(c)).

This degree formula falls in line with Quillen’s type of results, presenting a way
to “compute” the degree from subgroups of the group G associated to elementary
p-abelian subgroups of G and fixed point sets of these elementary abelian subgroups,
reducing the calculation of degree for an arbitrary groupG to calculations to hopefully
simpler types of groups acting on spaces in a simpler way: central extensions of an
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elementary abelian group A, with A acting trivially on a connected space. This paper
does not actually present the study of any sample computations for these sorts of
actions; we hope to return to this study in future work. However, see the paper of
Lynn [11] for an example when X is a point.

Returning to our introduction of the ideas presented in this paper, given any
compact Lie group G, one may smoothly embed it into a unitary group U . For a
given prime p, define the space S to be the space of all diagonal matrices of order p
in U . The resulting quotient F

.
= U/S is a smooth G-manifold (known in some circles

as Quillen’s magic space!). Lynn derives her additivity formula, which is the additivity
formula (1) above, in the case X = {pt}, by cleverly using geometric properties of the
orbits of G on certain sub-manifolds of F . These orbits carve up the space in just
the right way (Theorems 5.1 and 7.1 of [11]) so that on the algebraic side, the degree
invariant adds over the components. For this reason, we refer to Lynn’s additivity
formula as “geometric”.

On the other hand, if one appeals only to commutative algebra, there is a different
additivity formula for the degree of a graded S-module M , which we will call the
“algebraic” additivity formula. Specifically,

deg(M) =
∑

p∈D(M)

ℓS[p]
(M[p]) · deg(S/p), (1)

where D(M) is the set of minimal primes p such that dimS(S/p) = dimS(M). Here,
dimA(X) is the Krull dimension of the A-module X, ℓA(X) is the length, in the
algebraic sense, of the A-module X, and Y[p] is the graded localization of Y at a
graded prime ideal p.

Lynn concludes her paper asking how to relate this “algebraic” formula (2) to her
version of the “geometric” formula (1). The main theorem (5.5) – additivity formula
(1) – of the present paper makes this connection precise, while also significantly
generalizing Lynn’s result. This theorem is proven for a compact Lie group G acting
on a topological space X which is either compact or has finite mod p cohomological
dimension.

While Quillen’s theorems say that the sums on the right side of (1) and (2) have
essentially the same index sets, we show that the geometric additivity formula (1) is
term-by-term equal with the algebraic additivity formula (2) stated above. In fact,
the proof of our additivity formula (1) uses the algebraic additivity formula (2) twice.
Thus, the connection between commutative algebra and geometry is built into our
methodology.

By contrast, the key tool in Lynn’s proof of the special case of (1), where X is a
point, is the Gysin sequence of differential topology, which depends fundamentally
on the existence of a Riemannian metric on a smooth manifold. Thus, Lynn’s results
leading to her proof of the special case of (1) are stated only in the category of smooth
G-manifolds. Because our methods of proof rely mainly on commutative algebra, we
were able to get away from some of the more complicated geometric/topological
arguments Lynn resorts to. Consequently, the hypotheses of our results are far less
restrictive (no smoothness assumptions) and agree with the hypotheses of Quillen’s
theorems.
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2. Summary of Quillen’s results

Most of the results of this section can be found in Quillen [16]. For any compact Lie
group G, there exists a “universal principal bundle” for G, denoted EG → BG. (See
Milnor for a construction [15].) Recall that G acts freely on EG and EG/G ∼= BG.

If X is a topological space on which G acts continuously (a “G-space”), G acts
diagonally on EG×X, and one can consider the associated fiber bundle: EG×G X

.
=

(EG×X)/G. Then, the equivariant cohomology ring is defined by

H∗
G(X)

.
= H∗(EG×G X).

The coefficient ring isn’t noted always, but generally we’ll consider coefficients in a
field whose characteristic divides the order of G, if G is finite.

For our purposes, H∗ represents singular cohomology, and the product is cup
product. In Quillen’s formulation [16] he uses sheaf cohomology, but we don’t lose any
of the fundamental properties by switching to singular cohomology (this is explained
on pg. 1163 in [19].)

If G and G′ are compact Lie groups with X a G-space and X ′ a G′-space, consider
a pair of maps (u, f) : (G,X) → (G′, X ′) such that u is a Lie group homomorphism,
and f a continuous map that is u-equivariant, i.e. f(gx) = u(g)f(x) for all g ∈ G and
all x ∈ X. These are the morphisms in the category of pairs (X,G), withX a G-space,
that we are considering. With respect to such morphisms, equivariant cohomology is
contravariantly functorial [16]. In particular, if Y ⊆ X, H is a subgroup of G and u
and f are inclusion mappings, then the induced map H∗

G(X) → H∗
H(Y ) is called the

restriction map and usually denoted resGH . Also, if h ∈ G, consider the automorphism
(ch, µh) : (G,X) → (G,X), where ch is defined for each g ∈ G by ch(g)

.
= hgh−1 and

µh is defined for each x ∈ X by µh(x) = hx. We will call the map on equivariant
cohomology induces by such a map an “inner automorphism”. In [16], one finds the
proof of

Lemma 2.1. Inner automorphisms act trivially on equivariant cohomology: If X is
a G-space, then for every h ∈ G, (ch, µh)

∗ : H∗
G(X) → H∗

G(X) is the identity map.

2.1. Commutative algebra of equivariant cohomology rings
Quillen laid the foundation for the study of the commutative algebra of equivariant

cohomology rings. The theorems of Quillen’s papers [16, 17] that we need here are
presented below. The two main theorems relate the prime spectrum of H∗

G(X) to the
elementary abelian groups which appear as subgroups of G, and have fixed points
when acting on X.

Standard properties of cup product say that, in general, the graded ring H∗
G(X)

.
=

⊕i⩾0H
i
G(X) will not be a commutative ring – although when the characteristic of

the coefficient ring is 2, we do get commutativity of the product. In order to directly
apply results from commutative algebra, we make the following definition for any
commutative coefficient ring k: If char(k) is odd or 0, HG(X, k)

.
= ⊕i⩾0H

2i
G (X, k) is

the even degree part of H∗
G(X). If char(k) = 2 then HG(X, k)

.
= H∗

G(X, k). Of course,
HG(X) is always a commutative graded ring.

The following results allow for the study of geometric and commutative algebraic
properties of equivariant cohomology rings; coefficients will always be taken in a
field k.
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Theorem 2.2 ([16] Corollary 2.2). Let G be a compact Lie group, X be a G-space
and suppose that H∗(X) is a finitely generated k-vector space. Then, H∗

G(X) is a
finitely generated graded k-algebra.

It’s not hard to see that this implies

Corollary 2.3. With the hypotheses of Theorem 2.2, HG(X) is a finitely generated
commutative graded k-algebra. In particular, H0

G(X) is a finite dimensional algebra
over k and is thus an Artinian ring.

Another “finite generation” result we shall use is

Theorem 2.4 ([16] Corollary 2.3). If (u, f) : (G,X) → (G′, X ′) is a morphism such
that u is injective and H∗(X) is a finitely generated k-module, then the ring homomor-
phism (u, f)∗ : H∗

G′(X ′) → H∗
G(X) is finite; i.e. with respect to this homomorphism,

H∗
G(X) is a finitely generated H∗

G′(X ′)-module.
Also, H∗

G(X) and HG(X) are finitely generated graded modules over the commu-
tative ring HG′(X ′), with respect to the same ring homomorphism (u, f)∗, restricted
to HG′(X ′).

When relating the equivariant cohomology ring of a subgroup G to that of a larger
group G′, the theorem above allows us to take advantage of the theory of integral
extensions from commutative algebra. A more thorough explanation of the theory of
integral extensions can be found in [8]. For a subring R of S, an element s ∈ S is
said to be integral over R if it is the root of a monic polynomial with coefficients in
R. We say that S is integral over R if every element of S is integral over R. When
f : R → S is a ring homomorphism, we say that S is integral over R (with respect to
f) when S is integral over its subring f(R).

Given a ring homomorphism f : R → S where S is a finitely generated R-module
with respect to f , a standard result from commutative algebra says that S must
also be integral over R. In the case of equivariant cohomology rings, if a morphism
(u, f) : (G,X) → (G′, X ′) is such that u is injective and H∗(X) is a finitely generated
k-module (where k is the coefficient field), we see thatHG(X) is integral overHG′(X ′)
(with respect to (u, f)∗). For this paper, the fact we need about integral extensions
is:

• “Lying over”: For an integral extension f : R → S, for every p ∈ Spec(R) con-
taining ker f , there exists a q ∈ Spec(S) such that f−1(q) = p.

2.2. Main theorems of Quillen
Quillen’s main theorems hold in the following setting, which we assume for the

remainder of the paper: G is a compact Lie group which acts continuously on a
space X. We also require that X is Hausdorff, and that X is either compact, or is
paracompact with finite mod-p cohomological dimension (see [16] for a definition.)
Finally, all cohomology is taken with coefficients in the prime field k

.
= Fp for p a

prime number, which is fixed throughout the following discussion, and H∗(X) is a
finite dimensional k-vector space.

Recall that an elementary abelian p-subgroup of G is a subgroup A of G such that
A is isomorphic to a direct product of a finite number r of cyclic groups Z/pZ. The
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number of factors r is called the rank of A. Since p will be taken as a fixed prime
number throughout we often omit the reference to p.

Given a pair (G,X) which satisfy the conditions above, we denote Quillen’s cat-
egory of pairs by Q(G,X). Objects of this category are pairs (A, c) where A is an
elementary abelian p-subgroup of G, XA ̸= ∅, and c is a connected component of XA.
If (A, c) and (A′, c′) are objects in Q(G,X), then there is a morphism between them
if there exists an element g ∈ G such that gAg−1 ⩽ A′ and c′ ⊆ gc.

If there exists a morphism (A, c) → (A′, c′) in Q(G,X), we say that (A, c) is
subconjugate to (A′, c′) or (A, c) ≲ (A′, c′). We define conjugate objects, denoted
(A, c) ∼ (A′, c′), to be two objects that are isomorphic in Q(G,X); isomorphism is
an equivalence relation on Q(G,X) and the equivalence class of (A, c) is denoted by
[A, c].

By definition, an element (A, c) ∈ Q(G,X) is a maximal element of Q(G,X) if and
only if any morphism with source (A, c) is an isomorphism. As Quillen [17] notes,
(A, c) is a maximal element of Q(G,X) if and only if A is a maximal elementary
abelian subgroup of Gx for every x ∈ c.

Definition 2.5. For a G-space X,

Q′(G,X)
.
= {[A, c] : (A, c) ∈ Q(G,X), (A, c) is a maximal element of Q(G,X)}.

Within Q′(G,X), we are often interested in objects corresponding to elementary
abelian subgroups whose rank is largest, so we define

Q′
max(G,X)

.
= {[A, c] ∈ Q′(G,X) : rk(A) ⩾ rk(B), ∀ [B, d] ∈ Q′(G,X)}.

We refer the reader to [14] for an example where Q′
max(G,X) is distinct from

Q′(G,X); in this case, G = GLn(Z/p) for n ⩾ 4.

Definition 2.6. Let (A, c) ∈ Q(G,X), and pick a point x0 ∈ c. We define pA,c as the
kernel of the following composition

HG(X)
resGA−−−→ HA(x0) → HA(x0)/

√
0.

Since HA/
√
0 is a polynomial ring, using the well-known computation of H∗

A, we
see that pA,c ∈ Spec(HG(X)).

Theorem 2.7 ([17] Proposition 11.2). For a G-space X,

• p(A,c) ⊇ p(A′,c′) if and only if (A, c) ≲ (A′, c′). Also, p(A,c) = p(A′,c′) if and only
if (A, c) ∼ (A′, c′).

• The correspondence [A, c] 7→ p(A,c) defines a bijective function between the ele-
ments of Q′(G,X) and the set of minimal prime ideals in HG(X).

As a corollary,

Theorem 2.8 ([16]). For a G-space X, the Krull dimension of HG(X) equals the
maximal rank of an elementary abelian p-subgroup such that XA ̸= ∅.

For example, in the case where X is a point, Quillen’s theorem says that Krull
dimension of HG equals the maximal rank of an elementary abelian p-group in G.
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2.3. Quillen’s magic space F
For any compact Lie group G, there exists a (not unique) unitary group U and a

closed embedding of G into U . Given a compact Lie group G, we often begin by fixing
such an embedding. Then, define S to be the set of diagonal matrices of order p in
U , where p is a fixed prime. Observe that U is equipped with both a left G-action
and a right S-action.

The topological space F
.
= U/S then has a natural G-action: if g ∈ G and uS ∈ F ,

then the action of G on F is defined by g · (uS) .
= guS. Quillen showed how the

product space X × F can be used to encode information about how G acts on X.
In fact, Quillen used the following result to prove the two main theorems of the
last section (2.8, 2.7), and we make use of this result in the next section. Recall

that a sequence of modules A
h // B

f
//

g
// C is called an equalizer sequence when

0 −→ A
h−→ B

f−g−−−→ C is an exact sequence.

Lemma 2.9 ([16], Lemma 6.5 and preceding discussion). The following is an equal-
izer sequence of HG(X)-modules:

H∗
G(X) → H∗

G(X × F ) ⇒ H∗
G(X × F × F );

defined by applying the equivariant cohomology functor to the sequence

X × F × F
π13

//
π12 // X × F

π1 // X,

where π is the projection map onto the indicated components.
Quillen then shows there is an isomorphism of HG(X)-modules

H∗
G(X × F ) ∼= H∗

G(X)⊗k H∗(F ).

Here, if r ∈ HG(X), x⊗ y ∈ H∗
G(X)⊗k H∗(F ), then the HG(X)-module structure is

defined by r(x⊗ y)
.
= (rx)⊗ y.

3. Summary of Duflot’s localization results

The material developed in this section is leveraged to prove the main theorem of
this paper (Theorem 5.5). We do not present the details of proofs here, but we do
give some discussion.

Definition 3.1. Let G be a group, X a G-space, and let (A, c) ∈ Q(G,X).

• NG(A, c)
.
= {g ∈ G : gAg−1 = A} ∩ {g ∈ G : gc = c}

• CG(A, c)
.
= {g ∈ G : ga = ag, ∀a ∈ A} ∩ {g ∈ G : gc = c}

• WG(A, c)
.
= NG(A, c)/CG(A, c)

In the case that X is just a point, we omit the c’s from the notation, e.g. NG(A)
instead of NG(A, c).

If Z is any G-space and (A, c) ∈ Q(G,Z), then NG(A, c) acts on ZA, because
NG(A, c) ⊆ NG(A); of course, NG(A, c) acts on c as well. We will also need the fol-
lowing notation: if Y ⊆ Z, then G · Y .

= {g · y | y ∈ Y } is the indicated G-subspace
of Z.
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Recall some definitions from graded commutative algebra: if L is a Z-graded com-
mutative ring, M is a graded A-module and S is a multiplicatively closed subset
consisting entirely of homogeneous elements of L, then the abelian group S−1M has
a grading in the usual way: the homogeneous elements of S−1M of degree j are
the elements m/s where m ∈ M is homogeneous and j = deg(m)− deg(s). With this
definition, S−1L is a graded ring, and S−1M is a graded S−1L-module.

Definition 3.2. Let p be a graded prime ideal in L, and M a graded L-module.

• M[p] is the localization S−1M where S is the set of homogeneous elements of L
not in p. We will say that M[p] is the graded localization of M at p.

• M(p) is the ungraded (or “concentrated in degree zero”) module consisting of
the elements of M[p] of degree zero.

• Mp is the ungraded module S̃−1M where S̃ is the set of all elements of L not
in p.

We won’t use the second notion of localization in the list above, which is that used
in algebraic geometry [10], in this paper. We’ll say that the third type of localization
above is “ordinary” localization.

The main result of [6] is:

Theorem 3.3 ([6] Theorem 3.2). Suppose that [A, c] ∈ Q′(G,X). Then there is an
isomorphism of HG(X)[p(A,c)]-modules

H∗
G(X)[p(A,c)]

(resGCG(A,c))[p(A,c)]−−−−−−−−−−−−−→ H∗
CG(A,c)(c)

WG(A,c)
[p(A,c)]

.

Remark 3.4. In the original paper [6], it was not clear whether the localization was
ordinary localization or graded localization. In [7], Duflot clarifies this, and we’ve
added the brackets here to indicate graded localization.

Let’s discuss this result a bit, giving an outline of the proof. Our outline focuses
on results we will need in the final section of the paper, and we do not give proofs.
Suppose that an embedding of G into a unitary group U is fixed, and F is the G-space
U/S as before.

First,NG(A, c) acts on c and hence on c× F i and on c× (FA)i diagonally. Further-
more, these actions induce actions of WG(A, c) on H∗

CG(A,c)(Z), whether Z is c, c× F i

or c× (FA)i: for any n ∈ NG(A, c), we have the equivariant conjugation map on the
pair (CG(A, c), Z) → (CG(A, c), Z) which is the pair g 7→ ngn−1 and z 7→ n · z. Refer
to this map as n, and the induced ring automorphism on equivariant cohomology
as n∗ : H∗

CG(A,c)(Z) → H∗
CG(A,c)(Z). Recall that inner automorphisms act trivially

on equivariant cohomology, therefore if n ∈ CG(A, c) then n∗ = id on H∗
CG(A,c)(Z).

Therefore, WG(A, c) has a well-defined action on H∗
CG(A,c)(Z).

Now, for each of the spaces Z in the paragraph above, there are equivariant maps
θ : (CG(A, c), Z) → (G,X): for the groups involved, we use inclusions, and for the
spaces, if Z = c, we use inclusion c → X, while for Z = c× F i or Z = c× (FA)i, θ is
the inclusion Z → X ×−, followed by projection onto the first factor. We point out
that all of the induced maps on equivariant cohomology θ∗ : H∗

G(X) → H∗
CG(A,c)(Z)

have the property that, for every (homogeneous) x ∈ H∗
G(X), y ∈ H∗

CG(A,c)(Z) and
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every w ∈ WG(A, c), θ∗(x)(w · y) = w · (θ∗(x)y); in other words, the automorphisms
induced by the elements of WG(A, c) on H∗

CG(A,c)(Z) are HG(X)-module maps. Note

that this implies the image of θ∗ lands in the invariant subring H∗
CG(A,c)(Z)W since

every w ∈ W induces a ring automorphism preserving the multiplicative identity 1 of
the ring:

θ∗(x) = θ∗(x)(w · 1) = w · θ∗(x).

To see this, look at the commutative diagrams below; n is always the map sending
g 7→ ngn−1, z 7→ nz, for every n ∈ NG(A, c):

(G,X)
n // (G,X)

(CG(a, c), Z)

θ

OO

n // (CG(A, c), Z).

θ

OO

Thus there is a commutative diagram

H∗
G(X)

θ∗

��

H∗
G(X)

n∗
oo

θ∗

��

H∗
CG(A,c)(Z) H∗

CG(A,c)(Z).
n∗
oo

Now, Lemma 2.1 implies that the upper ring homomorphism n∗ on H∗
G(X) is the

identity map, so commutativity implies that

n∗(θ∗(x)y) = n∗(θ∗(x))n∗(y) = θ∗(n∗(x))n∗(y) = θ∗(x)n∗(y),

which is our point: by definition, if w is represented by n ∈ NG(A, c), w·? .
= n∗(?).

Duflot passes a problem about H∗
G(X) to the space H∗

G(X × F ) using Quillen’s
equalizer sequence 2.9; first, the following two results are proved:

Lemma 3.5 ([6] pg. 98, 99). Suppose that X is a G-space and (A, c) ∈ Q(G,X); note
that the subgroup NG(A, c) of G acts on c× FA (diagonally).

i. The set of components of c× (FA)i, π0(c× (FA)i), is a finite set. The action
of NG(A, c) on c× (FA)i induces an action of NG(A, c) on π0(c× (FA)i) such
that if d is a component of c× (FA)i, then for every g ∈ CG(A, c), g · d = d.
Therefore, WG(A, c) acts on the set of components of c× (FA)i.

ii. WG(A, c) acts freely on the set of components of c× (FA)i, i = 1, 2.

Although the corollary below is stated in [6], we’ll provide details about why it
follows from 3.5 later in this paper, in 5.3.

Corollary 3.6 ([6] Lemma 3.5). If (A, c) ∈ Q(G,X), then Hq
CG(A,c)(c× (FA)i) is a

free k[WG(A, c)]-module for all i ⩾ 1 and all q ⩾ 0.

Now, Duflot’s proof of her localization theorem uses results about the following
sequence of homomorphisms of graded rings, for a pair [A, c] ∈ Q′(G,X):

H∗
G(X)

1○−→ H∗
G(G · (c× FA))

2○−→ H∗
NG(A,c)(c× FA)

3○−→ H∗
CG(A,c)(c× FA)WG(A,c)

(⋆)
The sequence of facts from [6] that we will need concerning these maps are as follows.
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Lemma 3.7 ([6] Lemma 3.4). For [A, c] ∈ Q′(G,X), there is an isomorphism (the
map 2○ in (⋆) above)

H∗
G(G · (c× FA)) ∼= H∗

NG(A,c)(c× FA)

Lemma 3.8 ([6] Lemma 3.6). For (A, c) ∈ Q(G,X), there is an isomorphism (the
map 3○ in (⋆) above)

H∗
NG(A,c)(c× FA) ∼= H∗

CG(A,c)(c× FA)WG(A,c).

Finally, one takes graded localizations at minimal primes and obtains

Theorem 3.9 ([6] pg. 100). Fix an [A, c] ∈ Q′(G,X) with corresponding minimal
prime p(A,c)

.
= p. The following diagram is commutative, each of the vertical arrows

are graded isomorphisms of R[p] = HG(X)[p]-modules, and the first and last rows are
equalizer sequences.

H∗
G(X)[p] // H∗

G(X × F )[p]

1○

��

//
// H∗

G(X × F 2)[p]

��

H∗
G(G · (c× FA))[p]

2○

��

//
// H∗

G(G · (c× (FA)2))[p]

��

H∗
NG(A,c)(c× FA)[p]

3○
��

//
// H∗

NG(A,c)(G · (c× (FA)2))[p]

��

H∗
CG(A,c)(c× FA)

WG(A,c)
[p]

//
// H∗

CG(A,c)(G · (c× (FA)2))
WG(A,c)
[p]

H∗
CG(A,c)(c)

WG(A,c)
[p]

// H∗
CG(A,c)(c× F )

WG(A,c)
[p]

4○

OO

//
// H∗

CG(A,c)(G · (c× F 2))
WG(A,c)
[p]

OO

Note that, before localizing, all modules in the diagram are R
.
= HG(X)-modules,

using restriction maps. Taking the claims of this theorem for granted, Duflot’s local-
ization result is obtained from this diagram since each square is commutative and all
of the vertical arrows are isomorphisms. The crucial vertical arrow 1○ comes from
a restriction map, but is only an isomorphism after graded (or ungraded) localiza-
tion at p ⊆ HG(X); the details are explained in Lemma 3.3 of [6] (which we have
not included here). Similarly, the bijectivity of the arrow 4○, which comes from a
restriction map, is also an application of Lemma 3.3 of [6] in a different case.

The exactness of the first and final rows of Duflot’s diagram 3.9 come from Lem-
ma 2.9. Specifically, apply the result to the pairs (G,X) and (CG(A, c), c) respectively,
to get the equalizer sequences:

H∗
G(X) → H∗

G(X × F ) ⇒ H∗
G(X × F 2),

and

H∗
CG(A,c)(c) → H∗

CG(A,c)(c× F ) ⇒ H∗
CG(A,c)(c× F 2).

Since localization is exact, and taking invariants is left exact, we get exactness of



A DEGREE FORMULA FOR EQUIVARIANT COHOMOLOGY RINGS 355

the top and bottom rows of Duflot’s diagram 3.9, and conclude that H∗
G(X)[p] ∼=

H∗
CG(A,c)(c)

WG(A,c)
[p] .

4. The degree of an equivariant cohomology ring

In this section we state the definition of the degree of a graded module, and state
relevant results. This means that there will be two different usages of “degree”: the
degree of a homogeneous element in a graded ring, and the degree of the ring itself.
The usages are clearly distinguished by context.

Suppose L is a Z-graded Noetherian ring; we denote the category of finitely-
generated graded L-modules by grmod(L).

In this paper, all of our graded rings will be of one of two types:

I. A positively graded Noetherian ring R (Ri = 0 for i < 0), with R0 an Artinian
ring that is a finitely generated k-algebra: thus R0 must be finite dimensional
as a vector space over k.

II. A graded localization of a positively graded ring of type I at a graded prime
ideal.

We use an asterisk to denote a usual definition in non-graded algebra, adapted
for the graded category; this is fairly standard notation – e.g., it is used in [5].
For example, if M ∈ grmod(L) is a graded L-module, we denote its graded Krull
dimension by ∗dimL(M), i.e. this is the longest chain of graded prime ideals in L
containing the L-annihilator of M . For the type of rings that interest us, it turns
out that graded and ungraded measures are directly comparable; for some measures
this is well-known, in other cases we will refer to [4] for discussion and proofs. We
choose to use the *-notation in any case, as it is often practical to work only with
homogeneous elements.

From now on, we will use R to denote a general ring of type I.

Definition 4.1. For M ∈ grmod(R), the Poincaré series of M may be defined by

PM (t) =
∑
i

vdimk(Mi)t
i,

where vdimk(V ) is the vector space dimension of the vector space V over k.

The Poincaré series may also be computed using length, rather than vector space
dimension. To see this, if M ∈ grmod(R), since R0 is an Artinian ring and Mj is a
finitely generated R0-module, Mj is an Artinian R0-module. Thus the length of Mj

as an R0-module, with the usual definition of length, is defined. Now, the claim is
that ℓR0

(Mj) = vdimk(Mj). This follows since, for every maximal ideal m0 of R0,
R0/m0 is isomorphic to the field k. Therefore,

PM (t) =
∑
i

vdimk(Mi)t
i =

∑
i

ℓR0
(Mi)t

i.

Recall that, since R is of type I, ∗dimR(M) = dimR(M) and ∗dimR(M) is the
order of the pole of PM (t) at t = 1 ([4] contains an account of this, but these facts
are well-known and hold for any positively graded Noetherian ring whose elements in
degree zero form an Artinian ring).
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Definition 4.2. If R is of type I, M ∈ grmod(R),M ̸= 0 and D(M) = ∗dimR(M),
then

degR(M)
.
= lim

t→1
(1− t)D(M)PM (t)

is a well-defined, strictly positive, rational number. For convenience, let degR(0) = 0.

Given M ∈ grmod(R), M ̸= 0, we can read off the degree of a module directly from
the Poincaré series if we expand it as a Laurent series about t = 1:

PR(t) =
deg(M)

(1− t)D(M)
+ “higher order terms”.

The degree of M can be regarded as a species of non-integer multiplicity associated
to M . As noted in the Introduction, this rational number is called c(M) in [12]; as
far as we know, this is the first reference that discusses this numerical invariant for
equivariant cohomology. However, we use the terminology “degree”, as used in [3].
The reference [20] uses “degree” to refer to the integer invariant of local algebra
also called “multiplicity”. The first author’s preprint [4] exposits the concept of a
“Samuel multiplicity” associated to certain ideals in a graded ring, and makes precise
the relationship between the degree and this Samuel multiplicity. We don’t make
this more precise here, because making all the definitions necessary to state the
relationship would add to the length of this paper and is not used anywhere here;
instead we refer the reader to [4].

We may make the following definitions:

Definition 4.3. Let L be a Z-graded ring.

• A nonzero graded L-module M is a *simple L-module if and only if the only
graded L-submodules of M are 0 and M .

• A *composition series for a graded L-module M is a sequence of graded sub-
modules of M of the form

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for each i, Mi+1/Mi is a *simple L-module. The *length of this *com-
position series is defined to be n.

The expected properties of *composition series hold and we may talk about the
*length of an L-module M (denoted ∗ℓL(M)). One can see that ∗ℓL adds over short
exact sequences of graded L-modules; another straightforward lemma is:

Lemma 4.4. Let L be a Z-graded ring with L0 is a finite dimensional vector space
over a field k. (This implies that L0 is an Artinian ring.) Suppose that M is a graded
L-module and V is a graded finite dimensional vector space over k, consider M ⊗k V
as a graded L-module defined by r · (m⊗ v)

.
= (r ·m)⊗ v for r ∈ L (with the usual

grading on the tensor product). If ∗ℓL(M) is finite, so is ∗ℓL(M ⊗k V ); in fact,
∗ℓL(M ⊗k V ) = ∗ℓL(M)t, where t is the (total) dimension of V as a vector space
over k.

For comparisons to ungraded concepts and further discussion, we refer to [4]; to
give some context to results proved here, a sample fact from [4] is
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Lemma 4.5 (Theorem 4.10 of [4]). Let R be of type I, and let p be a minimal prime
for M ∈ grmod(R). Then, p is graded and ∗ℓR[p]

(M[p]) = ℓRp
(Mp) < ∞.

The following theorem gives an expected additivity formula for degree, where the
sum is indexed by the minimal primes of maximal dimension. This theorem just states
the behavior expected of some multiplicity-type numerical invariants, and its proof
is similar to corresponding statements for other sorts of multiplicities. For example,
see [18] for what Serre calls Samuel multiplicity for local rings; [20] gives an account
of some other types of multiplicity. The main theorem of this paper (5.5) places this
“algebraic” additivity formula in a geometric context when applied to equivariant
cohomology rings.

Theorem 4.6 (see, e.g., [4] Theorem 6.7). Suppose R is of type I. Let M ∈ grmod(R),
and D(M) be defined as the set of prime ideals p in R, necessarily minimal primes
for M and graded, such that ∗dimR(R/p) = ∗dimR(M). Then,

deg(M) =
∑

p∈D(M)

∗ℓR[p]
(M[p]) · deg(R/p).

4.1. Degree decomposition of Lynn
This short section serves simply to give a snapshot of Lynn’s results [11]. Her main

result is a geometric additivity formula for the degree of an equivariant cohomology
ring in the case where X is taken to be a point. This work was the inspiration for
our more general additivity formula (Theorem 5.5); however, we do not use any of
Lynn’s results in this paper.

As noted in the introduction, Lynn’s methods rely on the smoothness of the G-
space X. In order to prove her main theorem, she uses Gysin-type sequences to prove

Theorem 4.7 ([11] Theorem 4.21). Let G be a compact Lie group, and let X be a
smooth, compact G-manifold. Let Z = ∪n

i=1Zi, where the Zi’s are closed, G-invariant,
disjoint submanifolds of X such that νZi

(the normal bundle) is orientable for all i.
Assume that dim(H∗

G(X)) = dim(H∗
G(Zi)) for all i, and if z ̸∈ Z, then we require

dim(H∗
Gz

) < dim(H∗
G(Zi)) for all i. Then,

deg(H∗
G(X)) =

n∑
i=1

deg(H∗
G(Zi)).

Embedding G in a unitary group U , and taking F = U/S as usual, Lynn shows
that for any [A, c] ∈ Q′

max(G,X) the sub-space G · (c× FA) satisfies the hypotheses
required of Zi in the above theorem, so deduces:

Corollary 4.8. For X a compact, smooth manifold with G a compact Lie group act-
ing smoothly on X, deg(H∗

G(X)) =
∑

[A,c]∈Q′
max(G,X) deg(H

∗
G(G · (c× FA))

Lynn argues by descent, which simply means using 2.9, and taking X to be a point,
to derive the following additivity formula for degree.

Theorem 4.9 ([11], Theorem 8.5). Let G be a compact Lie group, and let Q′
max(G)

be the set of conjugacy classes of maximal rank elementary abelian p-groups of G.
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Then,

deg(H∗
G) =

∑
[A]∈Q′

max(G)

1

|WG(A)|
deg(H∗

CG(A)).

As noted in the introduction, she doesn’t prove such a formula for equivariant
cohomology H∗

G(X) where X is any G-space, and in any case, one would only expect
her methods to generalize in the case of a smooth G-space X.

5. Main theorem on degree

As usual, we assume that G is compact Lie, and it acts continuously on the Haus-
dorff space X, which is compact or paracompact with finite mod-p cohomological
dimension. Fix a prime p, and take k = Fp to be the field of coefficients for cohomol-
ogy.

Before we start, we make the simple observation that the set of primes forH∗
G(X) as

an HG(X)-module is the set of prime ideals in HG(X), since AnnHG(X)H
∗
G(X) = {0}.

We will make use of Duflot’s localization result 3.3, so let’s look a little more closely
at the ring H∗

CG(A,c)(c) for a given pair (A, c) ∈ Q(G,X). A first observation is that

H∗
CG(A,c)(c) may be thought of as a module in the category grmod(HCG(A,c)(c)), or as

a module in grmod(HG(X)). Its structure as a finitely generated, graded module over
HG(X) comes from the restriction map resGC : H∗

G(X) → H∗
CG(A,c)(c) - an application

of Theorem 2.4. The following lemma relates the minimal primes of H∗
CG(A,c)(c) as a

module over these two rings.

Lemma 5.1. Let [A, c] ∈ Q′(G,X). Let R = HG(X), S = HCG(A,c)(c), and make S-
modules into R-modules via the restriction map resGC : R → S, so that H∗

CG(A,c)(c) is

an element of grmod(R) and grmod(S). Then,

i. Q′(CG(A, c), c) = {[A, c]}.
ii. pC

.
= ker

(
HCG(A,c)(c) → HA/

√
0
)
is the unique minimal prime for H∗

CG(A,c)(c)
as an S-module.

iii. (resGC)
−1
(
pC
)
= p, where p

.
= ker

(
HG(X) → HA/

√
0
)
.

iv. p is the unique minimal prime for H∗
CG(A,c)(c) as an R-module.

v. ∗ℓS[pC ]

(
H∗

CG(A,c)(c)[pC ]

)
< ∞ and ∗ℓR[p]

(
H∗

CG(A,c)(c)[p]

)
< ∞; also,

deg
(
H∗

CG(A,c)(c)
)
= ∗ℓS[pC ]

(
H∗

CG(A,c)(c)[pC ]

)
deg(S/pC)

= ∗ℓR[p]

(
H∗

CG(A,c)(c)[p]

)
deg(R/p).

Proof. Write C
.
= CG(A, c). Of course A ⊆ C since A is abelian. Since A acts trivially

on c, we see that, for every x ∈ c, A ⊆ Cx ⊆ Gx. We know that A is a maximal
elementary abelian subgroup of Gx, so A is a maximal elementary abelian subgroup of
Cx as well. Thus [A, c] ∈ Q′(C, c). On the other hand, suppose that [B, d] ∈ Q′(C, c).
Then, B is a maximal elementary abelian subgroup of Cx for every x ∈ d, which is
a component of cB . Let D be the subgroup of C generated by A and B. Then, D is
an elementary abelian subgroup of C, by definition of C. Suppose that x ∈ d ⊆ cB .
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Since A fixes x and B fixes x, so does D, so that D ⊆ Cx. By maximality of B in Cx,
B = D, so that A ⊆ B, and by maximality of A in Gx, A = B, so cB = c and d = c.
Thus, (A, c) = (B, d) as pairs. This proves i), and ii) follows from 2.7.

To see iii), note that the following diagram is commutative, where pt is any point
in c:

(G,X) (CG(A, c), c)? _oo

(A, pt)
� ?

OO

+ �

88

By functoriality, there is a commutative diagram:

HG(X)
resGC //

π◦resGA
��

HCG(A,c)(c)

π◦resCAww

HA(pt)/
√
0

Now, p is a minimal prime in HG(X) by 2.7, so by commutativity of the above
diagram, p = resGC

−1(pC).

To see iv), as noted above, p is a minimal prime for HG(X) and thus for H∗
G(X) as

an R-module. Let’s show that p is a minimal prime for H∗
CG(A,c)(c) as an R-module.

We need to show that p is minimal over

AnnR(H
∗
CG(A,c)(c))

.
=
{
r ∈ R : resGC(r) · x = 0, for all x ∈ H∗

CG(A,c)(c)
}
.

But H∗
CG(A,c)(c) is a unital ring, so AnnR(H

∗
CG(A,c)(c)) = ker(resGC), and by commu-

tativity of the diagram ker(resGC) ⊆ p. Since p is minimal in R, it must be minimal
over AnnR(H

∗
CG(A,c)(c)) and thus is a minimal prime for H∗

CG(A,c)(c) as an R-module.

Finally, we need to show that p is the unique minimal prime for H∗
CG(A,c)(c) as

an R-module. Since we know that resGC : R → S is an integral extension, we may use
“lying over”. Let q ⊆ R be another minimal prime for H∗

CG(A,c)(c) as an R-module;

“lying over” implies there exists a q̃ ∈ Spec(S) such that (resGC)
−1(q̃) = q. But, pC

is the only minimal prime in Spec(S), so pC ⊆ q̃. Thus, (resGC)
−1(pC) ⊆ (resGC)

−1(q̃)
which implies that p ⊆ q, but by assumption q is minimal, and therefore p = q.

For the last proof, set N
.
= H∗

CG(A,c)(c). Parts ii) and iv) of this lemma show that

p is a minimal prime for N as an R-module and pC is a minimal prime for N as
an S-module. Using 4.5, N[p] is a *Artinian R[p]-module, and N[pC ] is a *Artinian
S[pC ]-module, which proves the claim on finite *length.

To prove the claim on degree, we use the algebraic additivity formula for degree,
Theorem 4.6. Since we’ve shown in parts ii) and iv), that p is the unique minimal
prime for N as an R-module, and pC is the unique minimal prime for N as an S-
module, there is only one summand in the algebraic additivity formula for degree,
whether we consider N as an R-module or an S-module. Therefore, thinking of N
as an R-module, deg(N) = ∗ℓR[p]

(N[p]) deg(R/p); similarly the algebraic additivity

formula applied to N as an S-module gives deg(N) = ∗ℓS[pC ]
(N[pC ]) deg(S/p

C).
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We state the following theorem in a general algebraic setting, and will demonstrate
an application (Theorem 5.3) to the cohomology ring H∗

CG(A,c)(c)
WG(A,c).

Theorem 5.2. Let L be a Z-graded k-algebra for a field k (concentrated in degree 0)
and let P be a graded L-module. Suppose the following:

• P is a direct sum of graded L-submodules indexed by a finite set π0: that is,
P = ⊕c∈π0Pc.

• W is a finite group which acts as a group of graded L-module automorphisms
on P .

• W acts freely on the set π0 and this action is compatible with the W -action on
P and the direct sum decomposition: to be precise, for any x ∈ Pc, w · x ∈ Pw·c.

Then,

i. Let c1, . . . , ct ∈ π0 be a set of representatives for the orbits of W on π0. Note that
t = |π0|/|W |. For each j from 1 to t, define P [j] = ⊕w∈WPwcj . Then, P [j] is a
graded submodule of P with respect to both L and k[W ]. Also, P = ⊕t

j=1P [j].
Here, k[W ] is regarded as a graded ring concentrated in degree 0.

ii. P is a free k[W ]-module.

iii. PW is isomorphic as a graded L-module to ⊕t
j=1Pcj .

iv. If P is a *Artinian L-module, then so is PW and,

∗ℓL(P ) = |W | ∗ ℓL(PW ).

Proof. For ease of notation, we assume that the direct sum decomposition is an
internal direct sum decomposition, except in item iii).

Property i) is more or less by definition, using the hypotheses: since the action of
W on π0 is free, Pwcj ∩ Pw̃cj = {0} if w ̸= w̃, so P [j] is a direct sum of graded L-
submodules, as desired. P [j] is a k[W ]-module by hypothesis, and its definition. Using
the given decomposition P = ⊕cPc along with the fact that we’ve picked c1, . . . , ct as
representatives for the orbits under W (and hence P [j] ∩ P [i] = 0 for i ̸= j) gives us
the decomposition by orbits: P = ⊕t

j=1P [j].
Property ii) is straightforward, but we give details: let Ed be a k-vector space

basis for the degree d homogeneous component of Pcj . We claim that Ed is a k[W ]-
basis for the degree d component of P [j]. By picking a k-basis for every homogeneous
component, and every j, we get a k[W ]-basis consisting of homogeneous elements for
P = ⊕t

j=1P [j] (note that the basis may not be finite).
Writing out the details to see how the hypotheses are used, let x ∈ P [j]d, and write

x =
∑

w∈W xw, xw ∈ Pw·cj . By hypothesis, w−1xw ∈ Pw−1wcj = Pcj for each w. Use

the vector space basis of Pcj to write w−1xw =
∑

e∈Ed
αe(w)e where αe(w) ∈ k for

every e ∈ Ed and equal to 0 for almost all e. Thus, x =
∑

w xw =
∑

w

∑
e αe(w)we,

which is in the k[W ]-span of the Ed. For linear independence, suppose
∑

e ξee = 0 for
ξe ∈ k[W ]; again ξe = 0 for almost all e. For each e, write ξe as a linear combination∑

w∈W αe(w)w, αe(w) ∈ k for every e. Then,∑
e

ξee =
∑
e

∑
w

αe(w)we =
∑
w

(∑
e

αe(w)we

)
.

Now for each w ∈ W , w · E .
= {w · e | e ∈ Ed} is contained in Pwcj , and w · E is a
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vector space basis for the degree d homogeneous component of Pwcj because w is
a graded automorphism of P . Therefore

∑
e αe(w)w · e = 0, for every w, using the

direct sum decomposition; in turn, αe(w) = 0, for every w and every e, so ξe = 0 for
every e.

For property iii), define θj : Pcj → P [j] by x 7→
∑

w∈W w · x. Since each w acts as a
graded L-module homomorphism, θj is a graded L-module homomorphism. Further,
θj is injective since P [j] is direct sum.

We claim that the image of θj is P [j]W ; in this case, the result is obtained since
invariants distribute over direct sums of k[W ]-modules, i.e. ⊕jθj is an isomorphism
from ⊕t

j=1Pcj to PW . It’s straightforward to see that the image of θj is contained in

P [j]W . On the other hand, let x ∈ P [j]W , and write x uniquely as
∑

w∈W xw, where
xw ∈ Pwcj for every w. Now, for every g ∈ W , gx =

∑
w∈W gxw =

∑
w∈W xw = x.

Since gxw ∈ Pgwcj , using the direct sum property, if 1 is the identity in the group W ,
wx1 = xw for every w and θj(x1) =

∑
w∈W wx1 = x.

For iv), as expected, *length is additive over short exact sequences of L-modules
and thus over direct sums. Of course, for each w and each cj , ∗ℓL(Pcj) = ∗ℓL(Pwcj )
since W acts as a group of L-automorphisms. Thus,

∗ℓL(P ) =

t∑
j=1

∑
w∈W

∗ℓL(Pwcj ) = |W |
t∑

j=1

∗ℓL(Pcj ) = |W | ∗ ℓL(PW ).

In the following theorem, we’ve fixed an embedding of G in a unitary group U , and
F

.
= U/S is the G-space described previously; if (A, c) ∈ Q(G,X), we’ve also already

explained how we are considering H∗
CG(A,c)(c× FA) as a graded HG(X)-module.

Theorem 5.3. Let [A, c] ∈ Q′(G,X) and p
.
= p(A,c).

i. Let π0 be the set of connected components of c× FA. Then,

(a) H∗
CG(A,c)(c× FA) is a free k[WG(A, c)]-module.

(b) If ci, 1 ⩽ i ⩽ t, are the representatives for the orbits of WG(A, c) acting on
the set of components of c× FA, then

H∗
CG(A,c)(c× FA)WG(A,c) ∼= ⊕t

i=1H
∗
CG(A,c)(ci),

as graded HG(X)-modules.

ii. In addition,

∗ℓHG(X)[p]

(
H∗

CG(A,c)(c× FA)
WG(A,c)
[p]

)
=

1

|WG(A, c)|
∗ ℓHG(X)[p]

(
H∗

CG(A,c)(c× FA)[p]

)
.

Proof. Set R
.
= HG(X), W

.
= WG(A, c). Lemma 3.5 tells us that W acts freely on

the set π0 of connected components of c× FA, and that this set of components is a
finite set. Quillen shows that W is a finite group [17].

Using Lemma 3.5, each d ∈ π0 is a CG(A, c)-space, so that H∗
CG(A,c)(c× FA) =

⊕d∈π0
H∗

CG(A,c)(d); this is an isomorphism of graded R-modules. Now, the action of W

on Hq
CG(A,c)(c× FA), for any q, comes from the natural geometric action of NG(A, c)

on c× FA (see the discussion on page 4) and thus takes components to components, so
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for every x ∈ Hq
CG(A,c)(d), and every n ∈ NG(A, c), n∗(x) ∈ Hq

CG(A,c)(n · d). Thus, the
same is true for the W -action on cohomology; the discussion on pages 4 and 5 tells us
that this W -action on cohomology gives compatibility with the R-module structure
on Hq

CG(A,c)(c× FA). Putting this together, we see that the hypotheses required

for conclusions i), ii), and iii) of Theorem 5.2 are true, for L = R, W = WG(A, c),
P = H∗

CG(A,c)(c× FA) and π0 as in this theorem. Therefore, i.a) and i.b) are true.
Finally, using 2.7, p is a minimal prime in R, so, using 4.5, the graded localization

of H∗
CG(A,c)(c× FA) at the minimal prime p is a *Artinian R[p]-module. Now, note

that W acts on H∗
CG(A,c)(c× FA)[p] via the formula w · (a/b) = (w · a)/b. This is

well-defined since W acts as a group of R-module isomorphisms (see the discussion on
pages 4 and 5) and the denominators all come from R. Since we’ve already verified the
hypotheses of Theorem 5.2 for L = R, P = H∗

CG(A,c)(c× FA), and these verifications
are well-behaved with respect to localization, the hypotheses of Theorem 5.2 are
also true for L = R[p] and P = H∗

CG(A,c)(c× FA)[p] ; applying part iv) of 5.2 to the
localized set-up, we are done.

Theorem 5.4. Let R = HG(X). Suppose that [A, c] ∈ Q′(G,X) and p
.
= p(A,c). Then,

∗ℓR[p]
(H∗

G(X)[p]) =
1

|WG(A, c)|
∗ ℓR[p]

(H∗
CG(A,c)(c)[p]).

Proof. Using (2.7) we know that p is a minimal prime ideal in R.
In this computation abbreviate CG(A, c) to C, WG(A, c) to W . Note the following

facts.

1) We use Lemma 2.9, computing H∗
G(X × F ) ∼= H∗

G(X)⊗k H∗(F ), where the R-
module structure is given by r(a⊗ v)

.
= ra⊗ v. Therefore, when we localize,

H∗
G(X × F )[p] ∼= H∗

G(X)[p] ⊗k H∗(F )

as R[p]-modules.
Now, F is a finite dimensional compact manifold, so H∗(F ) is a finite dimen-
sional graded vector space over k, let’s say it has dimension m; thus, using
Lemma 4.4,

∗ℓR[p]
(H∗

G(X × F )[p]) = ∗ℓR[p]
(H∗

G(X)[p]) ·m.

2) Refer back to the diagram of Theorem 3.9; that theorem asserts that

H∗
G(X × F )[p] ∼= H∗

C(c× FA)W[p]

as R[p]-modules.

3) Using Theorem 5.3,

∗ℓR[p]

(
H∗

C(c× FA)W[p]

)
=

1

|W |
∗ ℓR[p]

(
H∗

C(c× FA)[p]
)
.

4) By referring again to the diagram of Theorem 3.9, the fourth vertical arrow
gives an isomorphism:

H∗
C(c× FA)[p] ∼= H∗

C(c× F )[p]

as R[p]-modules.
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5) Again using Lemma 2.9 and the properties of localization for the case of the
pair (C, c), H∗

C(c× F )[p] ∼= H∗
C(c)[p] ⊗k H∗(F ) as graded R[p]-modules.

Putting these five results together gives us the following computation:

∗ℓR[p]
(H∗

G(X)[p])
(1)
=

1

m
∗ ℓR[p]

(H∗
G(X × F )[p])

(2)
=

1

m
∗ ℓR[p]

(H∗
C(c× FA)W[p]))

(3)
=

1

m

1

|W |
∗ ℓR[p]

(H∗
C(c× FA)[p])

(4)
=

1

m

1

|W |
∗ ℓR[p]

(H∗
C(c× F )[p])

(5)
=

1

m

1

|W |
·m · ∗ℓR[p]

(H∗
C(c)[p])

=
1

|W |
∗ ℓR[p]

(H∗
C(c)[p]).

We are now in position to prove our main result of the paper.

Theorem 5.5. Suppose X is a G-space. Then,

deg(H∗
G(X)) =

∑
[A,c]∈Q′

max(G,X)

1

|WG(A, c)|
deg(H∗

CG(A,c)(c)).

Furthermore, recall the algebraic additivity formula for degree (Theorem 4.6) for a
graded module M ∈ grmod(R):

deg(M) =
∑

p∈D(M)

∗ℓR[p]
(M[p]) · deg(R/p).

Then, for M = H∗
G(X), and R = HG(X), the index sets of the two additivity formu-

lae are in 1–1 correspondence and the summands are equal term-by-term under this
correspondence. Thus, the result can be understood as a “geometric” interpretation of
the algebraic additivity formula.

Proof. We use the following notation: M = H∗
G(X), R = HG(X), N = H∗

CG(A,c)(c),

and S = HCG(A,c)(c).
Let’s apply the algebraic additivity formula to M as an R-module (Theorem 4.6)

deg(M)=
∑

p∈D(M)

∗ℓR[p]
(M[p]) · deg(R/p).

Recall that D(M)
.
= {q ∈ Spec(R) : ∗ dim(R/q) = ∗ dimR(M)}. By Quillen’s Theo-

rem 2.7, there is a bijective correspondence between D(M) and Q′
max(G,X).

Now, the *length factor in each summand of the degree formula may be re-written
using the previous theorem (5.4):

∗ℓR[p]
(M[p]) =

1

|W |
∗ ℓR[p]

(N[p]).

Let [A, c] be any element of Q′
max(G,X), and consider the corresponding primes

p
.
= ker

(
resGA : H∗

G(X) → HA/
√
0
)
, and pC

.
= ker

(
resGA : H∗

CG(A,c)(c) → HA/
√
0
)
.
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In Lemma 5.1, we compared the sum formula for the degree of N given its R and
S-module structures. In particular, we showed that, in either case, the additivity
formula for the degree of N has only one summand, which may be computed using
either module structure:

deg(N) = ∗ℓS[pC ]

(
N[pC ]

)
deg(S/pC)

= ∗ℓR[p]

(
N[p]

)
deg(R/p).

We therefore have the computation:

deg(M) =
∑

p∈D(M)

∗ℓR[p]
(M[p]) · deg(R/p)

=
∑

[A,c]∈Q′
max(G,X)

1

|WG(A, c)|
∗ ℓR[p]

(N[p]) deg(R/p)

=
∑

[A,c]∈Q′
max(G,X)

1

|WG(A, c)|
∗ ℓS[pC ]

(N[pC ]) deg(S/p
C)

=
∑

[A,c]∈Q′
max(G,X)

1

|WG(A, c)|
deg(N).

Finally, we pass on an open problem, posed by the referee. For which other classes of
groups, whether actual groups or homotopical groups such as fusion systems, does the
main theorem hold? Probably, such a generalization is best stated and studied using
the mechanisms developed around Lannes’ T -functor, in the category of unstable
algebras over the Steenrod algebra.
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