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TWO THEOREMS ON COHOMOLOGICAL PAIRINGS

AMBRUS PÁL and TOMER M. SCHLANK

(communicated by Daniel C. Isaksen)

Abstract
We give a new, elegant description of the Tate duality pairing

as a Brauer–Manin pairing for associated embedding problems
and prove a new theorem on the cup product.

1. Introduction

The aim of this paper to prove two theorems on cohomological pairings which are
crucial ingredients in the companion paper [6], but we think are quite interesting on
their own, too. The first such result is fairly simple to state.

Definition 1.1. Let M be a finite abelian group and let

1 // M // Ω // Π // 1 (1.1.1)

be an exact sequence in the category of prodiscrete groups. Suppose A is a discrete
Π-module and let H2(Ω, A)0 denote the kernel of the restriction map:

H2(Ω, A) −→ H2(M,A).

Moreover let

δ : H2(Ω, A)0 −→ H1(Π,Hom(M,A)) = H1(Π, H1(M,A))

be the homomorphism furnished by the Hochschild–Serre spectral sequence:

Hp(Π, Hq(M,A)) ⇒ Hp+q(Ω, A),

where we equipM with its Π-module structure induced by the exact sequence (1.1.1).
For every pair of sections s1, s2 : Π → Ω of the exact sequence (1.1.1) the 1-cochain
in C1(Π,M) given by the rule g 7→ s1(g)s2(g)

−1 is actually a cocycle. Now suppose
[s1 − s2] ∈ H1(Π,M) is the cohomology class represented by this cocycle. Finally let

∪ : H1(Π,M)×H1(Π,Hom(M,A)) −→ H2(Π, A)

be the cup product induced by the evaluation map M ⊗Hom(M,A) → A.

As a consequence to our first main result (Theorem 2.3) we will deduce the follow-
ing
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Corollary 1.2. For every c ∈ H2(Ω, A)0 and for every pair of sections s1, s2 of the
exact sequence (6.6.1) we have:

s∗1(c)− s∗2(c) = [s1 − s2] ∪ δ(c) ∈ H2(Π, A).

Now let F be an arbitrary field. Fix a separable closure F of F and denote by
Γ = Gal(F |F ) the absolute Galois group of F . An embedding problem E over F is a
diagram:

Γ

ψ

��
G1

ϕ // G2,

(1.2.1)

where G1, G2 are finite groups, ϕ and ψ are group homomorphisms, the map ϕ is
surjective, and ψ is assumed to be continuous with respect to the Krull topology
on Γ and the discrete topology on G2. We say that the embedding problem E is
solvable if there is a continuous homomorphism ψ̃ : Γ → G1 which makes the diagram
above commutative. We will call such a homomorphism ψ̃ a solution of E. Then we
let Ker(E) = Ker(ϕ). We will say that two solutions of E are conjugate if they are
conjugate by an element of Ker(E). Conjugacy is clearly an equivalence relation. Let
Sol(E) denote the set of equivalence classes of this relation. Note that in the subject
of field arithmetic it is common to define a solution to an embedding problem to
be a surjective continuous homomorphism ψ̃ : Γ → G1, and to refer to our notion of
solution as a weak solution. In this paper we will not impose the surjectivity condition.

Assume now that F is a global field. In this case there is an obvious family of
obstructions to the solvability of E which we will call local obstructions. Let |F |
denote the set of all places of F and for every x ∈ |F | let Fx denote the completion
of F with respect to x. Fix a separable closure F x of Fx and let Γx = Gal(F |F )
denote the absolute Galois group of Fx. The choice of an F -embedding ηx : F → F x
induces an injective homomorphism ιx : Γx → Γ whose conjugacy class is actually
independent of these choices. Let E be an embedding problem over F . Then for every
x ∈ |F | we define the embedding problem Ex over Fx associated to (E, x) to be the
diagram:

Γx

ιx◦ψ
��

G1
ϕ // G2.

Clearly the embedding problem Ex is solvable if the problem E is; this is the local
obstruction we mentioned above. For every non-archimedean x ∈ |F | let ux : Γx → Ẑ
denote the homomorphism onto the Galois group of the maximal unramified extension
of Fx in F x. We say that a continuous homomorphism h : Γx → G is unramified if x
is non-archimedean and h factors through ux.

Clearly a solution conjugate to an unramified solution is also unramified. Let
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Solun(Ex) be the set of conjugacy classes of all solutions of Ex which are unram-
ified in the sense above. Let SolA(E) denote the set:

SolA(E) =
{ ∏
x∈|F |

hx|hx ∈ Solun(Ex) for almost all x ∈ |F |
}
⊆

∏
x∈|F |

Sol(Ex).

Similarly by an adèlic solution of the embedding problem E we mean an expres-
sion

∏
x∈|F | hx such that hx is a solution of the embedding problem Ex for every

x ∈ |F | which is unramified for almost all x. For each x ∈ |F | let rx : Sol(E) → Sol(Ex)

denote the map furnished by the rule ψ̃ 7→ ιx ◦ ψ̃. Then image of the map

r =
∏
x∈|F |

rx : Sol(E) →
∏
x∈|F |

Sol(Ex)

lies in SolA(E). In order to study the image of Sol(E) in SolA(E) under the map r we
will define the Brauer group Br(E) of the embedding problem E (see Definition 2.2)
and a pairing:

⟨·, ·⟩ : SolA(E)× Br(E) → Q/Z

(see Definition 3.6) such that r(Sol(E)) is annihilated by this pairing (see Lemma 3.5).
(This idea can be found already in the paper [10].) Moreover we will also define two
subgroups Br1(E) and B(E) of Br(E) (see Definition 3.2) analogous to the algebraic
Brauer group and the Brauer group of locally constant elements of algebraic varieties,
respectively, playing an important role in our main results. Let Ker(E)ab denote
the abelianization of Ker(E). Note that the natural action of G1 on Ker(E)ab via
conjugation factors through G2 hence Ker(E)ab is naturally equipped with a Γ-action.
Let Ker(E)∨ab denote its dual as a Γ-module. We will show that the group Br(E) sits
in an exact sequence:

0 → H1(Γ,Ker(E)∨ab)
jE−→Br(E) → H2

(
Ker(E),

⊕
p ̸=char(F )

Qp/Zp
)Γ

→ H2(Γ,Ker(E)∨ab)

(see Lemma 3.1) and we will identify the subgroups Br1(E) and B(E) with the image
of the group H1(Γ,Ker(E)∨ab) and its Tate–Shafarevich subgroup X1(F,Ker(E)∨ab)
under the map jE, respectively (see Definition 3.2 and Proposition 3.4).

Definition 1.3. Let F be again an arbitrary field with absolute Galois group Γ and
let E be an embedding problem given by the diagram (1.2.1). Let Γ(E) denote the
fibre product group:

Γ(E) = {(a, b) ∈ G1 × Γ|ϕ(a) = ψ(b)} ⩽ G1 × Γ.

Then Γ(E) sits in the exact sequence:

1 // Ker(E)
iE // Γ(E)

πE // Γ // 1, (1.3.1)

where the map iE is given by the rule a 7→ (a, 1), and the homomorphism πE is the
restriction onto Γ(E) of the projection of G1 × Γ onto the second factor. The group
Γ(E) also inherits a topology from the product topology on G1 × Γ which makes
Γ(E) a profinite group and (1.3.1) an exact sequence in the category of Hausdorff
topological groups in the sense that Ker(E) is a closed normal subgroup, it is the
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kernel of the continuous surjective homomorphism πE, and Γ is equipped with the
quotient topology.

Note that discrete Γ-modules are actually the abelian sheaves on a site, so they
form an abelian category. Let M be a discrete finite abelian Γ-module. For every
embedding problem E over F such that Ker(E) =M and the set SolA(E) is non-
empty let cE ∈ H2(F,M) = H2(F,Ker(E)) denote the class of the extension (1.3.1).
Note that cE ∈ X2(F,M) since we assumed that SolA(E) is non-empty. Conversely
for every c ∈ X2(F,M) there is an embedding problem E as above such that c = cE.
Let

b : X1(F,M∨)×X2(F,M) → Q/Z (1.3.2)

be the unique pairing such that b(b, cE) = ⟨h, b⟩ for every b ∈ X1(F,M∨), for every
h ∈ SolA(E), and embedding problem E as above. The pairing b is well-defined.
Assume now that char(F ) does not divide the order of M and let

τ : X1(F,M∨)×X2(F,M) −→ Q/Z

denote the Tate duality pairing. Our second main theorem gives an elegant description
of the Tate duality pairing in terms of the Brauer–Manin pairing:

Theorem 1.4. We have b = −τ .

In the paper [2] Harari and Szamuely gave a geometric interpretation of the dual-
ity pairing. Our result offers another geometric interpretation by relating it to the
Brauer–Manin pairing.

Contents 1.5. In the second chapter we prove a theorem on the cup product in topol-
ogy which we use to deduce a similar statement (Corollary 1.2) in group cohomology.
We will define the Brauer group of embedding problems and study its structure and
introduce the analogue of the Manin pairing in the third chapter. We compare the
Tate duality pairing with the Brauer–Manin paring in the fourth chapter.

Acknowledgments

The first author was partially supported by the EPSRC grants P19164 and P36794.
The second author was partially supported by ISF1588/18 and BSF2018389.

2. A topological theorem on the cup product

Definition 2.1. In this chapter all topological spaces are Hausdorff and locally con-
tractible. For every topological space T and abelian group A let AT denote the con-
stant sheaf A on T . Let p : X → Y be a fibre bundle with a connected fibre F . Let
r : Y → X and s : Y → X be sections of the fibration p. Let p♮ denote the derived
left adjoint of the pull-back functor p∗ from the category of complexes of sheaves
on Y to category of complexes of sheaves on X. (The adjoint p♮ exists because
p∗ commutes with arbitrary limits, since we assumed p to be a fibre bundle, and
so we may apply Freyd’s adjoint functor theorem.) By functoriality both r and s
induces maps rh, sh ∈ [ZY , p♮(ZX)] in the derived category of complexes of sheaves
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on Y . Let deg ∈ [p♮(ZX),ZY ] denote the map from p♮(ZX) onto its 0-th homology.
(The latter is ZY because we assumed that the fibres are connected.) Since both r
and s are sections, the compositions of rh, sh with deg are both the identity map
in [ZY ,ZY ]. Let τ>0(p♮(ZX)) be the fibre of the map deg in the derived category
and let

τ>0(p♮(ZX))
f0 // p♮(ZX)

deg // ZY // τ>0(p♮(ZX))[1]

be the corresponding distinguished triangle. Therefore their difference

rh − sh ∈ [ZY , p♮(ZX)]

is the image of a map [r − s] ∈ [ZY , τ>0(p♮(ZX))] such that rh − sh = f0 ◦ [r − s].
This map is unique since [ZY ,ZY [−1]] is zero. Let B be the first homology of the
complex τ>0(p♮(ZX)), let h1 : τ>0(p♮(ZX)) → B[1] be the Postnikov truncation, and
consider the distinguished triangle:

τ>1(p♮(ZX))
f1 // τ>0(p♮(ZX))

h1 // B[1] // τ>1(p♮(ZX))[1].

Let ∆(r, s) ∈ [ZY ,B[1]] = H1(Y,B) denote h1 ◦ [r − s].

Definition 2.2. For every y ∈ Y let Xy = p−1(y) be the fibre of p over y and let
iy : Xy → X denote the inclusion map. Let A be a locally constant sheaf of abelian
groups on the base Y and let H2(X, p∗(A))0 denote the intersection of the kernels of
the maps:

i∗x : H
2(X, p∗(A)) −→ H2(Xy, p

∗(A)|Xy
)

for every y ∈ Y . Note that

H2(X, p∗(A))0 =
⋂
y∈S

ker(i∗y),

where S ⊆ Y is any set such that for every connected component C ⊆ Y there is a
y ∈ C ∩ S. Note that H2(X, p∗(A))0 is the kernel of the edge homomorphism:

ϵ : H2(X, p∗(A)) −→ H0(Y,R2p∗(p
∗(A)))

furnished by the Leray spectral sequence:

Hp(Y,Rqp∗(p
∗(A))) ⇒ Hp+q(X, p∗(A)).

So the higher edge homomorphism of this spectral sequence is a homomorphism:

δ : H2(X, p∗(A))0 −→ H1(Y,R1p∗(p
∗(A))) = H1(Y,Hom(B,A)),

where we used that there is a natural isomorphism:

R1p∗(p
∗(A)) = Hom(B,A).

Let

∪ : H1(Y,B)×H1(Y,Hom(B,A)) −→ H2(Y,A)

be the cup product furnished by the evaluation map:

B ⊗Hom(B,A) −→ A.
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Note that every section s of p induces a homomorphism:

s∗ : Hi(X, p∗(A)) −→ Hi(Y, s∗(p∗(A))) = Hi(Y,A) (∀i ∈ N).

Theorem 2.3. For every c ∈ H2(X, p∗(A))0 and for every pair of sections r, s of the
fibration p we have:

r∗(c)− s∗(c) = ∆(r, s) ∪ δ(c) ∈ H2(Y,A).

Proof. For every topological space T and complexes of sheaves C,D and E on T let

m(C,D, E) : [C,D]× [D, E ] −→ [C, E ]

denote the map given by the rule (f, g) 7→ f ◦ g. Moreover for every f ∈ [C,D] let

f◦ : [D, E ] −→ [C, E ]

denote the map given by the rule g 7→ f ◦ g, and similarly for every g ∈ [D, E ] let

◦g : [C,D] −→ [C, E ]

denote the map given by the rule f 7→ f ◦ g. Then we have the following commutative
diagram:

[ZY ,B[1]]× [B[1],A[2]]

h1◦
��

m(ZY ,B[1],A[2])

,,
[ZY , τ>0(p♮(ZX))]× [τ>0(p♮(ZX)),A[2]]

◦h1

OO

◦f0
��

m(ZY ,τ>0(p♮(ZX)),A[2]) // [ZY ,A[2]].

[ZY , p♮(ZX)]× [p♮(ZX),A[2]]

f0◦

OO

m(ZY ,p♮(ZX),A[2])

22

For every section t : Y → X of p let th ∈ [ZY , p♮(ZX)] be the map induced by t,
similarly to the notation we introduced in Definition 2.1. Note that under the iden-
tification [p♮(ZX),A[2]] = H2(X,A), for every section t : Y → X as above and each
c ∈ H2(X,A) we have th ◦ c = t∗(c). Therefore

r∗(c)− s∗(c) = rh ◦ c− sh ◦ c = (rh − sh) ◦ c = [r − s] ◦ (f0 ◦ c)

by the commutativity of the diagram above. Note that

[B[1],A[2]] = [B,A[1]] = H1(Y,Hom(B,A)),

and under this identification δ(c) ∈ [B[1],A[2]] is such that h1 ◦ δ(c) = f0 ◦ c. Indeed

[τ>1(p♮(ZX)),A[2])] = H0(Y,R2p∗(p
∗(A))

and under this identification

(f1 ◦ f0)◦ : [p♮(ZX),A[2])] −→ [τ>1(p♮(ZX)),A[2])]

is the edge homomorphism ϵ in Definition 2.2. In particular the kernel of (f1 ◦ f0)◦ is
H2(X,A)0. The second distinguished triangle in Definition 2.1 induces a long exact
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sequence:

[τ>1(p♮(ZX))[1],A[2])]

��
[B[1],A[2]]

h1◦ // [τ>0(p♮(ZX)),A[2])]
f1◦ // [τ>1(p♮(ZX)),A[2])].

Since

[τ>1(p♮(ZX))[1],A[2])] = [τ>1(p♮(ZX)),A[1])] = 0,

there is a unique homomorphism:

∂ : H2(X,A)0 −→ [B[1],A[2]] = H1(Y,Hom(B,A))

such that the diagram

H2(X,A)0

∂

��

f0◦|H2(X,A)0

((
[B[1],A[2]]

h1◦ // [τ>0(p♮(ZX)),A[2])]

is commutative. The map ∂ is actually the higher edge homomorphism δ in Defini-
tion 2.2. Now the relation h1 ◦ δ(c) = f0 ◦ c is clear. Now [ZY ,B[1]] = H1(Y,B) and
[ZY ,B[2]] = H2(Y,B), and under these identifications m(ZY ,B[1],A[2]) is the cup
product:

∪ : H1(Y,B)×H1(Y,Hom(B,A)) −→ H2(Y,A)

in Definition 2.2 above. So by using the commutativity of the diagram above again
we get that

[r − s] ◦ (f0 ◦ c) = ∆(r, s) ◦ δ(c) = ∆(r, s) ∪ δ(c),

and the theorem follows.

Proof of Corollary 1.2. We may assume that Π is actually finite by applying the
usual limit argument. The proof will be based on giving topological interpretation to
both sides of the equation. The homomorphism Ω → Π furnishes a Serre-fibration of
classifying spaces p : BΩ → BΠ with fibre BM . The sections s1, s2 induce sections
of the fibration p which we will denote by the same symbols by abuse of notation.
Let B denote the locally constant sheaf on BΠ corresponding to the Π-module A.
Then H1(Ω,M) = H1(BΩ,B) and the cohomology classes denoted by [s1 − s2] in
Definitions 2.1 and 1.1 correspond to each other. There is a locally constant sheaf
A on BΠ corresponding to the Π-module A. Note that H2(Ω, A) = H2(BΩ,A), and
also H2(Ω, A)0 = H2(BΩ,A)0, where we use the notation of Definition 2.2 for the
fibration p. Moreover H1(Ω, A) = H2(BΩ,A), and the edge homomorphisms

H2(Ω, A)0 −→ H1(Π,Hom(M,A)) and H2(BΩ,A)0 −→ H1(BΠ,Hom(B,A))

correspond to each other under these identifications. Consequently the cohomology
classes denoted by δ(c) in Definitions 2.2 and 1.1 also correspond to each other. The
claim now follows immediately from Theorem 2.3.
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3. The Brauer group and the Manin pairing of embedding
problems

Definition 3.1. Via the homomorphism πE we may consider every discrete Γ-module
M a discrete Γ(E)-module, too, which will be denoted also by M by slight abuse of
notation. For every abelian group M let M ct denote the quotient of M by its torsion.
Let Br(E) denote the cokernel of the homomorphism

π∗
E : H2(Γ, F

∗
) → H2(Γ(E), F

∗
).

For every finite discrete abelian Γ-module M let M∨ denote the dual of M :

M∨ = Hom(M,F
∗
).

Assume now that F is either a local or a global field and continue to use the
notation which we introduced above.

Lemma 3.1. We have the following short exact sequence:

0 → H1(Γ,Ker(E)∨ab)
jE−→Br(E) → H2(Ker(E),

⊕
p ̸=char(F )

Qp/Zp)Γ → H2(Γ,Ker(E)∨ab),

where we equip
⊕

p ̸=char(F ) Qp/Zp with the trivial Ker(E)-action.

Proof. This is Lemma 2.3 in [6].

Assume now that F is a global field. Note that for every x ∈ |F | the following
diagram:

H2(Γ, F
∗
)

ι∗x //

π∗
E

��

H2(Γx, F
∗
)

(ηx)∗ //

π∗
Ex

��

H2(Γx, F
∗
x)

π∗
Ex

��
H2(Γ(E), F

∗
)
(idG1

×ιx)∗// H2(Γx(Ex), F
∗
)

(ηx)∗ // H2(Γx(Ex), F
∗
x)

is commutative, where the maps on the left are restriction maps in group cohomology,
and hence it gives rise to a map:

jx : Br(E) −→ Br(Ex).

Definition 3.2. Let B(E) denote the intersection:

B(E) =
⋂
x∈|F |

Ker(jx) ⩽ Br(E).

Let Br1(E) denote the kernel of the homomorphism:

Br(E) −→ H2(Ker(E),
⊕

p ̸=char(F )

Qp/Zp)Γ.

Lemma 3.2. The group B(E) is a subgroup of Br1(E).

Proof. This is Lemma 2.5 of [6].
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Notation 3.3. For every k ∈ N and for finite discrete Γ-module M let Xk(F,M)
denote the subgroup:

Xk(F,M) = Ker

 ∏
x∈|F |

ι∗x : H
k(Γ,M) → Hk(Γx,M)

 ⩽ Hk(Γ,M).

Proposition 3.4. We have:

B(E) = X1(F,Ker(E)∨ab).

Proof. This is Proposition 2.8 of [6].

Notation 3.5. Let F be again an arbitrary field with absolute Galois group Γ and
let E be an embedding problem given by the diagram (1.2.1). Note that the map
which assigns to every solution h of E the homomorphism

s(h) : Γ → Γ(E) ⊆ G1 × Γ

given by the rule g 7→ (h(g), g) is a bijection between the solutions of E and continuous
sections of the exact sequence (1.3.1). This bijection induces a bijection between
Sol(E) and the conjugacy classes of sections of (1.3.1). We will always identify these
two pairs of sets under these bijections.

Assume now that F is a global field and let E be as above. For every x ∈ |F | let

invx : Br(Fx) = H2(Γx, F
∗
x) → Q/Z

denote the canonical invariant of the Brauer group Br(Fx) of the local field Fx. Let
Inf denote the inflation map in group cohomology, as usual.

Lemma 3.3. For every c ∈ H2(Γ(E), F
∗
) and for every adèlic solution

∏
x∈|F | hx of

E the image of c under the composition:

H2(Γ(E), F
∗
)

(idG1
×ιx)∗

��
H2(Γx(Ex), F

∗
)

(ηx)∗ // H2(Γx(Ex), F
∗
x)

s(hx)
∗
// H2(Γx, F

∗
x)

invx // Q/Z

is zero for almost all x ∈ |F |.

Proof. This is Lemma 3.3 of [6].

Note that for every x ∈ |F | and hx as above the map s(hx)
∗ only depends on the

conjugacy class of hx, therefore the pairing:

(·, ·) : SolA(E)×H2(Γ(E), F
∗
) → Q/Z

given by the rule ∏
x∈|F |

hx, c

 =
∑
x∈|F |

invx(s(hx)
∗((ηx)∗((idG1 × ιx)

∗(c))))

is well-defined, because all but finitely many of the summands are zero by the lemma
above.
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Lemma 3.4. The image of group H2(Γ, F
∗
) with respect to the homomorphism π∗

E

is annihilated by the pairing (·, ·).

Proof. This is Lemma 3.4 of [6].

Definition 3.6. By the lemma above we have a pairing:

⟨·, ·⟩ : SolA(E)× Br(E) → Q/Z

such that for every h ∈ SolA(E) and c ∈ H2(Γ(E), F
∗
) we have:

(h, c) = ⟨h, σE(c)⟩,

where σE : H2(Γ(E), F
∗
) → Br(E) is the tautological surjection. For every subset

X ⊆ Br(E) let SolXA (E) denote the set:

SolXA (E) = {h ∈ SolA(E)|⟨h, c⟩ = 0 (∀c ∈ X)}.

In the special case when X = Br(E),Br1(E) or B(E) we will use the shorter super-
scripts Br,Br1 and B, respectively. Clearly we have the inclusions:

SolBr
A (E) ⊆ SolBr1

A (E) ⊆ SolBA(E) ⊆ SolA(E).

Lemma 3.5. We have r(Sol(E)) ⊆ SolBr
A (E).

Proof. This is Lemma 3.6 of [6].

Definition 3.7. Let E be an embedding problem over F such that the set SolA(E)

is non-empty and let b be an element of B(E). Choose a b′ ∈ H2(Γ(E), F
∗
) such

that σE(b
′) = b. By definition for every x ∈ |F | there is a bx ∈ H2(Γx, F

∗
x) such that

(ηx)∗(idG1 × ιx)
∗(b′) = π∗

Ex
(bx). Therefore for every solution hx of Ex we have:

s(hx)
∗((ηx)∗((idG1

× ιx)
∗(b′))) = s(hx)

∗(π∗
Ex

(bx)) = bx,

and hence the value of

bE(b) = ⟨h, b⟩ =
∑
x∈|F |

invx(bx)

does not depend on the choice of the adèlic solution h =
∏
x∈|F | hx of E. Let

bE : B(E) = X1(F,Ker(E)∨ab) → Q/Z

denote the function defined by the formula above.

4. The Tate duality pairing and the Brauer–Manin pairing

Definition 4.1. By a continuous (or discrete) module over a pro-finite group ∆ we
mean a ∆-module M such that the action of ∆ is continuous with respect to the
discrete topology onM . For every pro-finite group ∆ let M(∆), C(∆), C+(∆), C−(∆),
and C±(∆) denote the category of continuous ∆-modules, the category of complexes
of continuous ∆-modules, the category of complexes in C(∆) bounded from above, the
category of complexes in C(∆) bounded from below, and the category of complexes
in C(∆) which are either bounded from above or below, respectively. For every object
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C of C(∆) let Hn(C) denote the n-th homology group of C. When ∆ is the absolute
Galois group Γ = Gal(F |F ) of a field F , for every complex C

· · · C−1
oo C−1

oo C0
oo C1

oo · · ·oo

in C(∆) let C∨ denote the dual complex:

· · · Hom(C1, F
∗
)oo Hom(C0, F

∗
)oo Hom(C−1, F

∗
)oo · · ·oo ,

where Hom denotes the group of continuous group homomorphisms (and we equip

F
∗
with the discrete topology).

Definition 4.2. Note that for every pro-finite group ∆ the category M(∆) has
enough injectives, so right exact functors from M(∆) has derived functors. For every
complex C in C±(∆) let Hi(∆, C) denote its hypercohomology with respect to the
functor of ∆-invariants. Similarly for any object C in C±(∆) let Extn∆(C, ·) denote
the n-th derived functor of HomC(∆)(C, ·). When ∆ = Γ = Gal(F |F ), as above, we
will use the notation Hi(F,C) for Hi(Γ, C). When F is a global field let

HiΠ(F,C) =
∏
x∈|F |

Hi(Fx, C),

where for every x ∈ |F | we consider C as an object of C(Γx) via the embedding
ιx : Γx → Γ, and we interpret Hi(Fx, C) accordingly. For every such x there is a pull-
back map i∗x : Hi(F,C) → Hi(Fx, C). Let

Xi(F,C) = Ker
( ∏
x∈|F |

ι∗x : Hi(F,C) → HiΠ(F,C)
)
.

Theorem 4.3. Let F be a global field and let C be a complex in C±(Γ) such that
Hn(C) is finite for every n and not divisible by the characteristic of F . Then there is
a perfect pairing

⟨·, ·⟩ : Xi(F,C)×X3−i(F,C∨) −→ Q/Z.

Proof. This is exactly Theorem 3.5.9 from [4], when F is a number field. The function
field case can be proved exactly the same way. It is also important to note that this
pairing specializes to the usual Poitou–Tate pairing for Γ-modules, i.e. for complexes
concentrated in degree zero.

Definition 4.4. Let E be an embedding problem over an arbitrary field F given by
the diagram (1.2.1). Let E∗ denote the contractible simplicial set freely generated by
G1. At the level of sets Ei = Gi+1

1 . The diagonal right-action of G1 on each Ei induces
a free right action of G1 on E∗, and therefore a free right action of Ker(E) on E∗,
too. Then we have a left action of G2 on E∗/Ker(E) and thus by pulling back with
respect to ϕ a left action of Γ on E∗/Ker(E). Let B(E)∗ denote this simplicial object
in the category of Γ-sets. Let ZB(E)∗ denote the complex where ZB(E)n is the free
abelian group generated by B(E)n and the differential is the usual alternating sum.
Equipped with the induced Γ-action this complex is an object of C+(Γ).
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Definition 4.5. As a simplicial set B(E)∗ is weakly equivalent to the Eilenberg–
MacLane space BKer(E), and hence

Hn(ZB(E)∗) ∼= Hn(Ker(E),Z).

Let deg ∈ [ZB(E)∗,Z] denote the map from ZB(E)∗ onto its 0-th homology, let
τ>0(ZB(E)∗) be the fibre of the map deg in the derived category, and let

τ>0(ZB(E)∗)
f0 // ZB(E)∗

deg // Z // τ>0(ZB(E)∗)[1]

be the corresponding distinguished triangle. By construction

Hn(τ>0(ZB(E)∗)) ∼=
{
Hn(Ker(E),Z), if n ̸= 0,
0, if n = 0.

In particular when Ker(E) is abelian we have

H1(τ>0(ZB(E)∗)) ∼= H1(Ker(E),Z) ∼= Ker(E).

Let h1 : τ>0(ZB(E)∗) → Ker(E)[1] be the Postnikov truncation in this case.

Definition 4.6. Let

π∗
E : C(Γ) → C(Γ(E))

denote the functor which we get by pulling back with respect to the surjective homo-
morphism πE : Γ(E) → Γ. For any object M of M(Γ(E)) let πE!(M) denote the
Ker(E)-coinvariants of M , that is, the quotient of M by the subgroup generated by
the set:

{x− γ(x)|x ∈M,γ ∈ Ker(E)}.

Since the latter is a Γ(E)-submodule, there is a natural action of Γ on πE!(M), and
hence we get a functor πE : M(Γ(E)) → M(Γ) which in turn induces a functor:

πE! : C(Γ(E)) −→ C(Γ).

It can be easily seen that this functor is the left adjoint of π∗
E.

Definition 4.7. Let ZE∗ denote the chain complex of the contractible simplicial set
E∗. For every object C of C(Γ(E)) we may take (the total complex of) the tensor
product C ⊗ ZE∗ in the category of complexes of Z-modules and equip it with the
diagonal Γ(E)-action; this makes C ⊗ ZE∗ an object of C(Γ(E)). Let LπE!(C) denote
πE!(C ⊗ ZE∗). As we will shortly see, the functor LπE! is the left derived functor
of πE! in a suitable interpretation, although the latter is not defined in the sense of
classical homological algebra, as M(Γ(E)) does not have enough projectives.

Lemma 4.1. There is an isomorphism:

LπE!(Z) ∼= ZB(E)∗.

Proof. Clearly Z⊗ ZE∗ ∼= ZE∗ and πE!(ZE∗) ∼= ZB(E)∗.

Definition 4.8. Let ∆ be any pro-finite group, as above, and for any pair M,N
of continuous ∆-modules let Hom∆(M,N) denote the group of ∆-module homo-
morphisms from M to N . Now let A = {An}n∈Z, B = {Bn}n∈Z be two complexes
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in C(∆). Let Hom∆(A,B) = {Homn
∆(A,B)}n∈Z be the equivariant mapping complex

from A to B, where

Homn
∆(A,B) =

∏
i∈Z

Hom∆(Ai, Bi−n),

and the differential

d : Homn
∆(A,B) −→ Homn+1

∆ (A,B)

for any f =
∏
i∈Z fi ∈

∏
i∈Z Hom∆(Ai, Bi−n) is given by

d(f)i = fi−1 ◦ dAi + (−1)ndBi−n ◦ fi,

where dAi : Ai → Ai−1 and dBi : Bi → Bi−1 are differentials of A and B, respectively.
We denote the kernel of d by Zn(A,B) ⊆ Homn

∆(A,B). Note that Zn(A,B) consists
of exactly those elements of Homn

∆(A,B) which are maps of complexes of degree n
from A to B.

Lemma 4.2. There are natural isomorphisms:

ExtnΓ(LπE!
(C), D) ∼= ExtnΓ(E)(C, π

∗
E(D)) (∀n ∈ N),

for every C in C(Γ(E)) and D in C(Γ).

Proof. This isomorphism can be explained as an instance of Quillen adjunctions
between model categories, or ∞-adjunctions between (∞, 1)-categories. However we

will give a simple direct proof. Let D̃ be an resolution of D by injective Γ-modules.
The groups ExtnΓ(LπE!

(C), D) are the homologies of HomΓ(LπE!
(C), D̃). Then we

have:

HomΓ(LπE!
(C), D̃) ∼= HomΓ(πE!

(C ⊗ ZE∗), D̃) ∼= HomΓ(E)(C ⊗ ZE∗, π
∗
E(D̃)),

where we used the definition of LπE!
in the first isomorphism, and the fact that πE!

is the left adjoint of π∗
E in the second. Moreover

HomΓ(E)(C ⊗ ZE∗, π
∗
E(D̃)) ∼= HomΓ(E)(C,Hom(ZE∗, π

∗
E(D̃))),

where Hom(·, ·) denotes the internal Hom in the category of Γ(E)-complexes. (Explic-
itly Hom(·, ·) is the mapping complex of the underlying Z-complexes which we equip
with a continuous Γ-action via conjugation.) In order to conclude it is enough to note

that Hom(ZE∗, π
∗
E(D̃)) is an injective resolution of π∗

E(D).

Lemma 4.3. There are natural isomorphisms:

Hn(Γ(E), F
∗
) ∼= Hn(Γ,ZB(E)∨∗ ) (∀n ∈ N).

Proof. By the uniqueness of n-th derived functors we have:

Hn(Γ(E), F
∗
)
def
= Hn(Γ(E), π∗

E(F
∗
)) ∼= ExtnΓ(E)(Z, π∗

E(F
∗
)),

as there is a natural isomorphism Hn(∆, C) ∼= Extn∆(Z, C) (where C is an object of
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C(∆) and ∆ is any pro-finite group). By Lemma 4.2 we have:

ExtnΓ(E)(Z, π∗
E(F

∗
)) ∼= ExtnΓ(LπE!

(Z), F ∗
).

Note that there is a spectral sequence:

ExtpΓ(Z,Ext
q(LπE!

(Z), F ∗
)) ⇒ Extp+qΓ (LπE!

(Z), F ∗
),

where Ext∗(LπE!
(Z), ·) is the derived functor of Hom(LπE!

(Z), ·). Since F ∗
is divisible,

this sequence degenerates, and hence we have an isomorphism:

ExtnΓ(LπE!
(Z), F ∗

) ∼= ExtnΓ(Z,LπE!
(Z)∨),

while by Lemma 4.1 and by the uniqueness of n-th derived functors we have:

ExtnΓ(Z,LπE!
(Z)∨) ∼= ExtnΓ(Z,ZB(E)∨∗ )

∼= Hn(Γ,ZB(E)∨∗ ).

Lemma 4.4. Assume that F is either a global or a local field. Then we have:

Br(E) ∼= H2(Γ, τ>0(ZB(E)∗)
∨).

Proof. The distinguished triangle:

τ>0(ZB(E)∗)
f0 // ZB(E)∗

deg // Z // τ>0(ZB(E)∗)[1]

gives rise to another distinguished triangle:

F
∗ // ZB(E)∨∗ // τ>0(ZB(E)∗)

∨ // F
∗
[1]

by taking duals. Since H3(Γ, F
∗
) = 0 (see Proposition 15 of [9] on page 93 when F

is a local field, and see Corollary 4.21 of [5], page 80 when F is a global field), the
associated cohomological long exact sequence looks like:

H2(Γ, F
∗
) → H2(Γ,ZB(E)∨∗ ) → H2(Γ, τ>0(ZB(E)∗)

∨) → 0.

The first map is the composition:

H2(Γ, F
∗
) ∼= Ext2Γ(Z, F

∗
) → Ext2Γ(ZB(E)∗, F

∗
) ∼= H2(Γ,ZB(E)∨∗ ),

where the middle map is induced by the degree map deg: ZB(E)∗ → Z. The derived
adjunction LπE!

⊣ π∗ give rise to a co-unit map: LπE!
(π∗(Z)) → Z which, under the

identification in Lemma 4.1, is deg. Using Lemma 4.3 the first map of the sequence
above can be viewed as a homomorphism:

H2(Γ, F
∗
) = H2(Γ, F

∗
) → H2(Γ,ZB(E)∨∗ ) = H2(Γ(E), F

∗
).

As this map is induced by the co-unit, it is the pull-back map (with respect to the
surjection Γ(E) → Γ). The cokernel of the latter is Br(E) by definition, so the claim
follows.

Corollary 4.9. Assume that F is a global field. Then we have:

B(E) ∼= X2(F, τ>0(ZB(E)∗)
∨).

Proof. This follows from Lemma 4.4 applied to F and all its completions.



TWO THEOREMS ON COHOMOLOGICAL PAIRINGS 15

Remark 4.10. The Postnikov truncation

h1 : τ>0(ZB(E)∗) → Ker(E)[1]

furnishes an isomorphism:

X1(F, τ>0(ZB(E)∗)) −→ X1(F,Ker(E)[1]) ∼= X2(F,Ker(E)).

Definition 4.11. Let s : Γ → Γ(E) be a continuous section of the homomorphism
πE : Γ(E) → Γ. The identity map id ∈ Ext0Γ(LπE!

(Z),LπE!
(Z)) via the isomorphism:

Ext0Γ(LπE!
(Z),LπE!

(Z)) ∼= Ext0Γ(E)(Z, π∗
E(LπE!

(Z)))

furnished by Lemma 4.2 furnishes an element idE ∈ Ext0Γ(E)(Z, π∗
E(LπE!

(Z))). By
pulling back with respect to s we get an element:

s∗(idE) ∈ Ext0Γ(s
∗(Z), s∗(π∗

E(LπE!(Z)))).

Since s∗ ◦ π∗
E = id∗Γ = id and s∗(Z) ∼= Z, we get an element:

[s] ∈ Ext0Γ(Z,LπE!(Z)) ∼= H0(Γ,ZB(E)∗)

(using Lemma 4.1), which we will call the classifying element of the section s. Note
that the map

H0(Γ,ZB(E)∗) −→ H0(Γ,Z) ∼= Z

induced by deg sends [s] to 1.

Note that each element in b ∈ H2(Γ(E), F
∗
) can be considered as an element of

H2(Γ,ZB(E)∨∗ ) via the isomorphism in Lemma 4.3. Let

∪ : H2(Γ,ZB(E)∨∗ )×H0(Γ,ZB(E)∗) → H2(Γ, F
∗
)

be the cup product induced by the natural bilinear pairing:

ZB(E)∨∗ × ZB(E)∗ −→ F
∗

of complexes.

Lemma 4.5. We have:

b ∪ [s] = s∗(b) ∈ H2(Γ, F
∗
)

for every b ∈ H2(Γ(E), F
∗
) and continuous section s of πE.

Proof. This claim follows at once from comparing the cup product above with the
Yoneda pairing:

Ext0Γ(Z,ZB(E)∗)× Ext2Γ(ZB(E)∗, F
∗
) → Ext2Γ(Z, F

∗
)

via the isomorphisms

H0(Γ,ZB(E)∗) ∼= Ext0Γ(Z,ZB(E)∗), H2(Γ,ZB(E)∨∗ )
∼= Ext2Γ(ZB(E)∗, F

∗
),

H2(Γ, F
∗
) ∼= Ext0Γ(Z, F

∗
).

We leave the details to the reader.
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Definition 4.12. Let M be a discrete finite abelian Γ-module. For every embedding
problem E over F such that Ker(E) =M and the set SolA(E) is non-empty, let
cE ∈ H2(F,M) = H2(F,Ker(E)) denote the class of the extension (1.3.1). Note that
cE ∈ X2(F,M) since we assumed that SolA(E) is non-empty. Conversely for every
c ∈ X2(F,M) there is an embedding problem E as above such that c = cE. Let

b : X1(F,M∨)×X2(F,M) → Q/Z (4.12.1)

be the unique pairing such that b(b, cE) = bE(b) for every b ∈ X1(F,M∨) and embed-
ding problem E as above. Since for every b ∈ X1(F,M∨) the value of bE(b) only
depends on the isomorphism class of the embedding problem E, the pairing b is
well-defined. Assume now that char(F ) does not divide the order of M and let

τ : X1(F,M∨)×X2(F,M) −→ Q/Z

denote the Tate duality pairing.

Theorem 4.13. We have b = −τ .
We think that this theorem is very interesting on its own, since it gives an elegant

description of the Tate duality pairing. It will proved in the rest of this section. We
will continue to use the notation which we have introduced so far. Let E an embedding
problem of the type considered in Definition 4.12. Consider the cohomological long
exact sequence:

H0(F,ZB(E)∗)
deg // H0(F,Z) ∂ // H1(F, τ>0(ZB(E)∗))

corresponding to the distinguished triangle:

τ>0(ZB(E)∗)
f0 // ZB(E)∗

deg // Z // τ>0(ZB(E)∗)[1],

and set δ = ∂(1) ∈ X1(F, τ>0(ZB(E)∗)).

Lemma 4.6. The image of the classifying element cE ∈ X2(F,Ker(E)) under the
isomorphism

X2(F,Ker(E)) ∼= X1(F, τ>0(ZB(E)∗))

in Remark 4.10 is the δ above.

Proof. This is just a direct computation involving the representing cocycles. The
details are left to the reader.

Let

⟨·, ·⟩ : X1(F, τ>0(ZB(E)∗))×X2(F, τ>0(ZB(E)∗)
∨) −→ Q/Z

be the perfect pairing in Theorem 4.3. Now let b ∈ X2(F, τ>0(ZB(E)∗)
∨) be arbi-

trary. Since H3(F, F
∗
) = 0, the map

H2(F,ZB(E)∨∗ ) → H2(F, τ>0(ZB(E)∗)
∨)

is onto, and thus b can be lifted to an element b ∈ H2(F,ZB(E)∨∗ ), and we can take
the localisation map to obtain

bx
def
= ι∗x(b) ∈ H2(Fx,ZB(E)∨∗ ).

Recall that we assumed that SolA(E) is non-empty, so for every x ∈ |F | let hx be
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a solution of Ex such that hx is unramified for almost all x. Let sx denote the
section s(hx) corresponding to hx for every x ∈ |F |. Finally let ∪ denote the cup
product introduced after Definition 4.11 (over any field, including all completions
of F ).

Proposition 4.14. We have the equality:

⟨δ, b⟩ = −
∑
x∈|F |

invx([sx] ∪ bx) ∈ Q/Z.

By Lemma 4.5 the right hand side is −bE(b). On the other hand the isomor-
phisms:

X1(F,Ker(E)∨) ∼= X2(F, τ>0(ZB(E)∗)
∨),X2(F,Ker(E)) ∼= X1(F, τ>0(ZB(E)∗))

in Corollary 4.9 and Remark 4.10 respect the pairing in the sense that the resulting
diagram:

X1(F,Ker(E)∨)×X2(F,Ker(E))

�� ��

⟨·,·⟩ // Q/Z

X2(F, τ>0(ZB(E)∨∗ )×X1(F, τ>0(ZB(E)∗))
⟨·,·⟩ // Q/Z

is commutative. Therefore by Lemma 4.6 the left hand side is τ(cE, b). So Theo-
rem 4.13 follows from Proposition 4.14, and hence we only have to prove the lat-
ter.

Definition 4.15. For every pro-finite group ∆ and open normal subgroup U ⩽ ∆ let
E(∆/U) denote the standard (bar) resolution complex by free Z[∆/U ]-modules of Z,
equipped with the tautological ∆-action. Note that since E(∆/U) is quasi-isomorphic
to Z, any map of degree i between E(∆/U) and another complex C in C(∆) gives rise
to a hypercohomology class in Hi(∆, C). For every g ∈ Zi(E(∆/U), C) let [g] denote
the class in Hi(∆, C) represented by g.

Notation 4.16. Now let ∆′ be another pro-finite group, let U ′ ⩽ ∆′ be an open
normal subgroup, and let ϕ : ∆′ → ∆ be a continuous homomorphism such that
ϕ(U ′) ⊆ U . Then ϕ induces a homomorphism ∆′/U ′ → ∆/U , which induces a map
E(∆′/U ′) → E(∆/U) of complexes, which furnishes a homomorphism

ϕ∗ : Homi
∆(E(∆/U), C) → Homi

∆′(E(∆′/U ′), C)

compatible with the pull-back map on cohomology. We will drop ϕ∗ from the notation
when ϕ is the identity map on ∆.

Definition 4.17. Now let A = {An}n∈Z, B = {Bn}n∈Z and C = {Cn}n∈Z be three
complexes in C(∆) such that there is a pairing:

m : A⊗B −→ C.

Let U and E(∆/U) be as above, and let

c : E(∆/U) −→ E(∆/U)⊗ E(∆/U)

denote the Alexander–Whitney map (see formula (1.4) of [1] on page 108). Now
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consider the composition:

Hom∗
∆(E(∆/U), A)×Hom∗

∆(E(∆/U), B)

��
Hom∗

∆(E(∆/U)⊗ E(∆/U), A⊗B)

��
Hom∗

∆(E(∆/U), A⊗B)

��
Hom∗

∆(E(∆/U), C),

where the first map is furnished by the functorial property of tensor products, the
second is induced by the co-multiplication c, and the third map is induced by the
multiplication m. Let ∪ denote the resulting pairing of complexes:

Hom∗
∆(E(∆/U), A)×Hom∗

∆(E(∆/U), B) −→ Hom∗
∆(E(∆/U), C).

Note the induced map on the cohomology is the exterior cup product.

Proof of Proposition 4.14. In order to prove the statement we shall use an explicit
description of the pairing

⟨·, ·⟩ : X1(F, τ>0(ZB(E)∗))×X2(F, τ>0(ZB(E)∗)
∨) −→ Q/Z

similar to the one given by Milne in §I.4 of [5]. Let c ∈ ZB(E)0 be such that deg(c)= 1.
Denote by U ◁ Γ the stabiliser of c. Let g ∈ Hom0

Γ(E(Γ/U),ZB(E)∗) be such that
g0(σ) = σc for σ ∈ Γ/U and gi = 0 for i ̸= 0. Note that [deg ◦g] represents 1∈H0(F,Z)
and so

α = dg ∈ Z1(E(Γ/U), τ>0(ZB(E)∗))

represents

δ = ∂(1) ∈ H1(F, τ>0(ZB(E)∗)).

Shrink U enough so that one can represent b by a map

β ∈ Z2 (E(Γ/U), τ>0(ZB(E)∗)
∨) ,

and b by

β ∈ Z2(E(Γ/U),ZB(E)∨∗ ).

Now set

ϵ = g ∪ β ∈ Hom2
Γ(E(Γ/U), F

∗
).

Note that dϵ = dg ∪ β = α ∪ β. Set gx = ι∗x(g) for every x ∈ |F |. For every place x
we can take a small enough Ux ◁ Γx such that we can represent gx in the group
Hom0

Γ(E(Γx/Ux),ZB(E)∗) (that is, we have Ux ⊆ Γx ∩ U), and we can represent
[sx] ∈ H0(Fx,ZB(E)∗) by an fx ∈ Z0(E(Γx/Ux),ZB(E)∗). Set hx = gx − fx. Then

dhx = dgx − dfx = αx,

where αx = ι∗x(α) (for every x ∈ |F |). Since deg(hx) = 0 we see that hx actually lies
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in Hom0
Γ(E(Γx/Ux), τ>0(ZB(E)∗)). Hence we can cup it with

βx = ι∗x(β) ∈ Z1(E(Γx/Ux), τ>0(ZB(E)∗)
∨)

and get an element in Hom1
Γ(E(Γx/Ux), F

∗
x). We then observe that

d(hx ∪ βx) = dhx ∪ βx = αx ∪ βx = dϵx,

where ϵx = ι∗x(ϵ) (for every x ∈ |F |), and so we can define

cx = [hx ∪ βx − ϵx] ∈ H2(Fx, F
∗
x).

Our generalisation for Milne’s formula is the following expression for the pairing:

⟨δ, b⟩ =
∑
x∈|F |

invx(cx) ∈ Q/Z.

Now by naturality

hx ∪ βx = hx ∪ βx,

where the first cup is computed in τ>0(ZB(E)∗), τ>0(ZB(E)∗)
∨ and the second in

ZB(E)∗,ZB(E)∨∗ . We then get

cx = [hx ∪ βx − ϵx] = [hx ∪ βx − gx ∪ βx] = [hx ∪ βx − gx ∪ βx]
= [−fx ∪ βx] = −[sx] ∪ bx,

because bx = [βx] (for every x ∈ |F |).
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