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HAEFLIGER’S APPROACH FOR SPHERICAL KNOTS MODULO
IMMERSIONS

NEETI GAUNIYAL

(communicated by Dev P. Sinha)

Abstract
We show that for the spaces of spherical embeddings mod-

ulo immersions Emb(Sn, Sn+q) and long embeddings modulo
immersions Emb∂(D

n, Dn+q), the set of connected components
is isomorphic to πn+1(SG, SGq) for q ⩾ 3. As a consequence, we
show that all the terms of the long exact sequence of the triad
(SG;SO, SGq) have a geometric meaning relating to spherical
embeddings and immersions.

1. Introduction

The spaces of embeddings modulo immersions in recent years attracted a lot of
attention [1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 24]. In particular, it was shown in [5, 7, 20]
that there is a natural little disks operad action on the spaces of (framed) disk embed-
dings modulo immersions. Also, for codimension at least 3, there are several delooping
results on such spaces by means of smoothing theory [20] and the Goodwillie–Weiss
functor calculus on manifolds [4, 16]. Furthermore, the rational homotopy and homol-
ogy of such spaces were studied in [1, 2, 3, 9, 10], and in case of spherical embeddings,
the explicit computations were done in [24]. The advantage of these spaces over the
usual embedding spaces is mainly the easier description of their rational homology
and homotopy as well as deloopings. The main objective of this paper is to study
the set of isotopy classes of spherical and disk embeddings modulo immersions by
extending Haefliger’s work [13] on isotopy classes of (framed) spherical embeddings
of codimension at least 3. Also, we establish a natural connection between our and
Haefliger’s results in terms of long exact sequences.

We let Emb(Sn, Sn+q) be the space of smooth embeddings Sn ↪→ Sn+q and let
Imm(Sn, Sn+q) be the space of smooth immersions Sn ↬ Sn+q. We define the space
of spherical embeddings modulo immersions Emb(Sn, Sn+q) as the homotopy fiber of
Emb(Sn, Sn+q) ↪→ Imm(Sn, Sn+q) over the trivial inclusion id : Sn ⊂ Sn+q. An ele-
ment in this space is represented by a pair (f, α), where f : Sn ↪→ Sn+q is a smooth
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embedding together with a regular homotopy α : [0, 1]→ Imm(Sn, Sn+q), between f
and the trivial inclusion Sn ⊂ Sn+q. Moreover, Emb∂(D

n, Dn+q) denotes the space of
disk embeddings Dn ↪→ Dn+q with the fixed behavior near the boundary, and we sim-
ilarly define Emb∂(D

n, Dn+q) as the space of disk embeddings modulo immersions.
For framed spherical/disk embeddings, we consider the spaces

Embfr(Sn, Sn+q), Emb
fr
(Sn, Sn+q), Embfr∂ (Dn, Dn+q) and Emb

fr

∂ (Dn, Dn+q)

in the same manner. Throughout the paper for spherical embeddings we assume that
the framing respects the natural orientation: if one takes the orientation of Sn and
completes it with the orientation of the normal bundle induced by the framing, one
obtains the standard orientation of the ambient sphere Sn+q. For disk embeddings
the framing is standard near the boundary.

In [13, Theorems 3.4 and 5.7], Haefliger has shown that for q ⩾ 3, the group of
isotopy classes of (framed) spherical embeddings of Sn in Sn+q can be represented in
terms of the homotopy group of a triad i.e.,

Cqn := π0Emb(S
n, Sn+q) = πn+1(SG;SO, SGq) and

FCqn := π0Emb
fr(Sn, Sn+q) = π̃n+1(SG;SO, SGq).

We recall these homotopy groups and isomorphisms later in Section 2.

1.1. Main results
Let FCqn denote the group of isotopy classes of “framed disked embeddings”, which

we discuss in more detail in Section 3.

Theorem 1.1. For q ⩾ 3,

FCqn = π0Emb(S
n, Sn+q) = π0Emb∂(D

n, Dn+q)

= π0Emb
fr
(Sn, Sn+q) = π0Emb

fr

∂ (Dn, Dn+q) = πn+1(SG, SGq).

The result is an immediate corollary of Theorems 3.1 and 4.3, and Lemma 4.1.
Alternatively, this result can be obtained using smoothing theory, as a consequence

of [14, Section 6] and [20, Theorem 1.1]. There is even a stronger result:

πiEmb∂(D
n, Dn+q) = πn+i+1(SGn+q, SGq) for i ⩽ 2q − 5,

which follows from the work of Lashof [17], Millett [19, Theorem 2.3] and Sakai [20,
Theorem 1.1 and Remark 2.3]. Moreover, for i ⩽ q − 3,

πn+i+1(SGn+q, SGq) = πn+i+1(SG, SGq),

see Lemma 6.3. However, our goal is to review Haefliger’s construction and give a
geometric meaning to πn+1(SG, SGq) i.e., πn+1(SG, SGq) = FCqn.

Another main result that does not immediately follow from smoothing theory is
to geometrically interpret both of the long exact sequences associated with the triad
(SG;SO, SGq) considered by Haefliger [13, Sections 4.4 and 5.9]. Let Imq

n and FImq
n

denote the group of regular homotopy classes of immersions Sn ↬ Sn+q and framed
immersions Sn ↬ Sn+q, respectively. It is natural to ask which (framed) spherical
immersions can be realized as (framed) embeddings, or when two (framed) spherical
embeddings are equivalent as (framed) immersions. Answers to these questions are
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encoded by the lower exact sequences in (1) and (2) of Theorem 1.2, in which FCqn
naturally fits.

Theorem 1.2. For q ⩾ 3, the two long exact sequences of the triad (SG;SO, SGq)
are isomorphic to the corresponding geometric long exact sequences:

// πn+1(SG, SGq) // πn+1(SG;SO, SGq) // πn(SO, SOq) // πn(SG, SGq) //

// FCqn // Cqn // Imq
n

// FCqn−1
//

(1)

and

// πn+1(SG, SGq) // π̃n+1(SG;SO, SGq) // πn(SO) // πn(SG, SGq) //

// FCqn // FCqn // FImq
n

// FCqn−1
// .

(2)

Note that the upper sequences in (1) and (2) are the long exact sequences of the
homotopy groups of pairs (SG/SGq, SO/SOq) and (SG/SGq, SO), respectively, see
Remarks 2.3 and 2.5.

1.2. Outline of the paper
The paper is organized as follows: we give a quick review of Haefliger’s result [13]

for (framed) spherical embeddings Sn ↪→ Sn+q in Section 2. In Section 3, we define the
group FCqn and show that FCqn = πn+1(SG, SGq). We prove Theorems 1.1 and 1.2
in Section 4 and Section 5, respectively. We recall some computations and prove a
few applications of Theorem 1.1 in Section 6. Throughout the paper we work in the
smooth category and assume q ⩾ 3.

1.3. Terminology
Let Dn be the standard unit disk in Rn, and {e1 . . . , en} denote the natural basis

of Rn. Let Sn = ∂Dn+1 be the unit sphere such that

Sn = Dn
− ∪Dn

+ with Dn
− = {x ∈ Sn|x1 ⩽ 0} and Dn

+ = {x ∈ Sn|x1 ⩾ 0}.

According to Haefliger [13], the suspension of a map f : Dn → Dn is given by the map
S(f) : Dn+1 → Dn+1 sending the arc of circle going from en+1, by x ∈ Dn, to −en+1

on the arc of circle from en+1, by f(x), to −en+1. The suspension Sn+1 → Sn+1 of a
map Sn → Sn is defined in the same way.

Abusing terminology, the suspension of an embedding Sn
f
↪−→ Sn+q is the composi-

tion Sn
f
↪−→ Sn+q ⊂ Sn+q+1. For the suspension of a framed embedding Sn ↪→ Sn+q,

the framing is completed by adding the standard vector en+q+2 as the last vector.
We often say suspension for an iterated suspension defined inductively. For example,

when we say Sn ↪→ Sn+N is the suspension of a framed embedding Sn
f
↪−→ Sn+q for

N > q, we mean that it is defined as the composition Sn
f
↪−→ Sn+q ⊂ Sn+N and the

framing is obtained by adding vectors {en+q+2, . . . , en+N+1} to the initial framing.
We define the suspension of a (framed) disk embedding similarly.
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2. Embeddings of Sn in Sn+q

Haefliger [13] proved that the group of concordance classes of embeddings of Sn

in Sn+q is isomorphic to πn+1(SG;SO, SGq) for q ⩾ 3.

2.1. The group Cqn
Cqn := {concordance classes of smooth embeddings Sn ↪→ Sn+q}.

Theorem 2.1 ([13, Theorem 1.2]). Two concordant embeddings of Sn in Sn+q are
isotopic when q ⩾ 3, i.e. Cqn = π0Emb(S

n, Sn+q), the set of connected components of
the space of embeddings of Sn in Sn+q.

Furthermore, the equality π0Emb(S
n, Sn+q) = π0Emb∂(D

n, Dn+q) equips Cqn with
an additive multiplication, and the existence of inverses is guaranteed, as we consider
concordance classes. Hence, Cqn is an abelian group.

Lemma 2.2 ([13, Section 1]). An embedding Sn ↪→ Sn+q is concordant to the trivial
one if and only if it is slice, in other words, if it can be extended to an embedding
Dn+1 ↪→ Dn+q+1.

2.2. The group πn+1(SG;SO, SGq)
Let SGq be the space of degree one maps Sq−1 → Sq−1, SG = ∪SGq under sus-

pension, and SO = ∪SOq, where SOq is the special orthogonal group.
An element in πn+1(SG;SO, SGq) is represented by a continuous based map

ϕ : Dn+1 → SG i.e., for x ∈ Dn+1, ϕ(x) : SN−1 → SN−1, for some large N , such that
ϕ(Dn

−) ⊂ SON and ϕ(Dn
+) ⊂ SGq. Note that the equator Sn−1 = ∂Dn

− = ∂Dn
+ goes

to SO ∩ SGq = SOq, and ϕ(∗) = id for the base-point ∗ = e2 ∈ Sn−1.1 Abusing nota-
tion, we also view ϕ as a map ϕ : Dn+1 × SN−1 → SN−1, and sometimes for ϕ(x) we
write ϕx = ϕ(x,−) : SN−1 → SN−1.

Two such maps ϕ : Dn+1 × SN−1 → SN−1 and ϕ′ : Dn+1 × SN ′−1 → SN
′−1 rep-

resent the same element in πn+1(SG;SO, SGq) if there exists a choice of homotopy
ϕt : D

n+1 × SM−1 → SM−1 for some M ⩾ N,N ′ and t ∈ [0, 1], satisfying the above
conditions and such that for any x ∈ Dn+1, the maps

ϕ0(x,−), ϕ1(x,−) : SM−1 → SM−1

are suspensions of

ϕ(x,−) and ϕ′(x,−),

respectively. The product operation of any two elements in πn+1(SG;SO, SGq) is
defined point-wise.

1Haefliger in [13] does not consider the base-point condition, but it is immediate that adding it
yields the same homotopy group, since SOq = SO ∩ SGq is connected.
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Remark 2.3. Recall that the upper long exact sequence in (1) is the long exact
sequence of the pair (SG/SGq, SO/SOq). Indeed, Milgram [18, Section 1] interpreted
the group πn+1(SG;SO, SGq) as

πn

(
hofib(SO/SOq → SG/SGq) ≃ hofib(SGq/SOq → SG/SO)

)
.2

One way to see this interpretation is that the group πn+1(SG;SO, SGq) is obviously
isomorphic to πn(SO ×hSG SGq, SOq), where SO ×hSG SGq is the homotopy pullback
of SO → SG← SGq.

2.3. The isomorphism ψ : Cqn → πn+1(SG;SO, SGq)

Although these two groups look completely different, there is a natural map between
them. To see the relation, Haefliger considers representatives in Cqn to be framed
embeddings of Dn+1 with different boundary conditions on Dn

− ⊂ Sn = ∂Dn+1 and
Dn

+ ⊂ Sn = ∂Dn+1. Framing will be crucial to relate such embeddings to our target
πn+1(SG;SO, SGq) by means of Pontryagin–Thom type construction [13, Section 3].

An embedding f : Sn ↪→ Sn+q is called a special embedding if f |Dn
−
= id and

f(int Dn
+) ⊂ int Dn+q

+ . We can always extend f : Sn ↪→ Sn+q to a disk embedding
f̄ : Dn+1 ↪→ Dn+N+1, for some N large enough (in fact N > n+ 2). We refer the
obtained pair (f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) as a disked embedding . Any
element in Cqn can be represented by a special disked embedding (f, f̄) together with
some framing on f̄ defined as follows:

• Fix the base-point ∗ = e2 ∈ Sn−1 = Dn
− ∩Dn

+ and endow it with the framing
{en+2, . . . , en+q+1}.

• Extend the framing from ∗ = e2 to Dn
+ inside Dn+q

+ . Since ∗ ↪→ Dn
+ is a homo-

topy equivalence, this extension is unique up to homotopy. Take the suspension
of this framing in Dn+N+1 by adding {en+q+2, . . . , en+N+1} as last vectors.

• Extend the obtained framing from Dn
+ to the entire disk Dn+1 inside Dn+N+1.

Again this framing is defined uniquely up to homotopy.

Note that even though the knot f is trivial on Dn
−, the extended framing can be

non-trivial. Moreover, the framing on f̄ |Dn
−
inside Dn+N+1 might not be a suspension,

while the framing on f̄ |Dn
+
inside Dn+N+1 is the suspension of a framing inside Dn+q

+ .

We refer this boundary condition on the framing defined on f̄ as Type I (in Sec-
tions 2.4 and 3, we will also consider framing with Type II and Type III boundary con-
ditions). Hence, any embedding f : Sn ↪→ Sn+q representing an element in Cqn can be
considered as a special disked embedding (f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1)
with Type I framing , i.e., f̄ |Sn=∂Dn+1 = f is a special knot, and the framing on f̄
has boundary condition defined as above.

2The spaces are equivalent because they describe the total homotopy fiber of the square

BSOq BSGq

BSO BSG .
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Any two special disked embeddings (f0, f̄0) : (S
n, Dn+1) ↪→ (Sn+q, Dn+N0+1) and

(f1, f̄1) : (S
n, Dn+1) ↪→ (Sn+q, Dn+N1+1) with Type I framing are concordant if there

exists an embedding F : Dn+1 × [0, 1] ↪→ Dn+N+1 × [0, 1] forN ⩾ max{N0, N1}, such
that F |Dn+1×i = f̄i for i = 0, 1, F |Dn

−×[0,1] = id and F |Dn
+×[0,1] ⊂ Dn+q

+ × [0, 1]. Fur-

thermore, the framing on F |Dn
+×[0,1] and F |Dn+1×i, i = 0, 1, is given by suspension

of a framing inside Dn+q
+ × [0, 1] and Dn+Ni+1 × i, respectively. Similarly, we define

the isotopy relation to be a level-preserving concordance. All the following groups are
isomorphic for q ⩾ 3:

Cqn ={concordance/isotopy classes of embeddings Sn ↪→ Sn+q}
↕

{concordance/isotopy classes of special embeddings Sn ↪→ Sn+q}
↕

{concordance/isotopy classes of special disked embeddings
(Sn, Dn+1) ↪→ (Sn+q, Dn+N+1)}

↕
{concordance/isotopy classes of special disked embeddings
(Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) with Type I framing}.

Furthermore, as a consequence of the tubular neighborhood theorem, one can
choose a representative f in Cqn such that f(Sn) is contained in a subspace of Sn+q

which can be identified with Sn ×Dq. Thus, we can consider a special knot to be
f : Sn ↪→ Sn ×Dq such that f |Dn

−
is the natural inclusion Dn

− ↪→ Dn
− × 0 and f(int

Dn
+) ⊂ int(Dn

+ ×Dq), together with a disk extension f̄ : Dn+1 ↪→ Dn+1 × DN with
a similarly defined framing of Type I. The homomorphism

ψ : Cqn → πn+1(SG;SO, SGq)

is then defined as follows.

Theorem 2.4. Given an element α ∈ Cqn represented by a special disked embedding
(f, f̄) : (Sn, Dn+1) ↪→ (Sn ×Dq, Dn+1 ×DN ) with Type I framing, a specified map
ϕ : Dn+1 × SN−1 → SN−1 represents ψ(α) ∈ πn+1(SG;SO, SGq) if there exists an
extension ϕ̄ : Dn+1 ×DN → DN i.e., ϕ̄|Dn+1×SN−1 = ϕ such that:

(i) ϕ̄ is regular on 0 ∈ DN and ϕ̄−1(0) = f̄(Dn+1) as framed submanifolds,

(ii) ϕ̄x ∈ SON for x ∈ Dn
−,

(iii) ϕ̄x is the suspension of a map Dq → Dq for x ∈ Dn
+.

The homomorphism ψ : Cqn → πn+1(SG;SO, SGq) is well defined [13, Theorem 2.3]
and is an isomorphism for q ⩾ 3 [13, Theorem 3.4].

In the proof of well-definedness of ψ [13, Theorem 2.3], Haefliger shows the exis-
tence of such a map ϕ̄ as follows. Define ϕ̄− : Dn

− ×DN → DN uniquely as a lin-

ear map such that (ϕ̄−)x ∈ SON for x ∈ Dn
− and ϕ̄−1

− (0) = f(Dn
−), as framed sub-

manifolds. Using obstruction theory [13, Lemma 2.4] the restriction ϕ̄−|Sn−1×Dq

can be extended to ϕ̄−|Dn
+×Dq with the given framing on f(Dn

+). Then we define

ϕ̄+ : Dn
+ ×DN → DN to be the (N − q)-suspension of ϕ̄− : Dn

+ ×Dq → Dq. By using
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[13, Lemma 2.4] again, we extend

ϕ̄− ∪ ϕ̄+ : Sn ×DN → DN to a map ϕ̄ : Dn+1 ×DN → DN

verifying (i)− (iii) above. To show ψ is well defined, he uses the same argument
invoking [13, Lemma 2.4] twice in order to construct a homotopy between two maps
ϕ0, ϕ1 : D

n+1 × SN−1 → SN−1 corresponding to two concordant embeddings

(f0, f̄0), (f1, f̄1) : (S
n, Dn+1) ↪→ (Sn ×Dq, Dn+1 ×DN ).

To prove the isomorphism [13, Theorem 3.4], Haefliger interprets the target group
πn+1(SG;SO, SGq) in terms of cobordisms (we refer to this as a Pontryagin–Thom
type construction). An element of πn+1(SG;SO, SGq) represented by a map as in
Subsection 2.2, ϕ : Dn+1 × SN−1 → SN−1, which is regular on e1, corresponds to a
framed (n+ 1)-submanifold V = ϕ−1(e1) ⊂ Dn+1 × SN−1 with two parts of bound-
ary:

• V ∩ (Dn
− × SN−1) is the graph of some map g : Dn

− → SN−1 with the framing
at points (x, g(x)) lying inside x× SN−1 and orthonormal. Indeed, for x ∈ Dn

−,
the map ϕx : S

N−1 → SN−1 is linear and therefore the preimage of e1 is just a
point.

• V ∩ (Dn
+ × SN−1) is the suspension of a framed submanifold in Dn

+ × Sq−1,
since for any x ∈ Dn

+, the map ϕx : S
N−1 → SN−1 is the suspension of a map

Sq−1 → Sq−1.

Thus, πn+1(SG;SO, SGq) can be described as the group of cobordisms of framed
(n+ 1)-manifolds with such boundary conditions.

He then considers ϕ̄ which exists by [13, Theorem 2.3]. Note that one can always
slightly change ϕ̄ : Dn+1 ×DN → DN so that ϕ̄−1(∂DN ) ⊂ Dn+1 × ∂DN . The preim-
age ϕ̄−1(I) ⊂ Dn+1 ×DN of the segment I joining 0 and e1 within DN is a framed
(n+ 2)-manifold W with corners (ϕ̄ is chosen to be transversal to I). In particular,
∂W has the following strata:

• a free face given by the framed disk f̄(Dn+1) = ϕ̄−1(0),

• ∂W ∩ (Dn+1 × SN−1) = ϕ̄−1(e1) = V ,

• ∂W ∩ (Dn
− ×DN ) is the radial extension of V ∩ (Dn

− × SN−1),

• ∂W ∩ (Dn
+ ×DN ) is the (N − q)-fold suspension of a framed submanifold in

Dn
+ ×Dq.

As a result, he restates the homomorphism defined in Theorem 2.4 as follows.
Given an element α ∈ Cqn represented by a special disked embedding

(f, f̄) : (Sn, Dn+1) ↪→ (Sn ×Dq, Dn+1 ×DN )

with Type I framing, a framed submanifold V ⊂ Dn+1 × SN−1 as defined above
represents ψ(α) ∈ πn+1(SG;SO, SGq) if there exists a choice of framed submanifold
W ⊂ Dn+1 ×DN with the boundary strata as given above.

According to [13, Argument 3.5], to show surjectivity he applies surgery to con-
structW satisfying ∂W ∩ (Dn+1 × SN−1) = V for a given V . For injectivity, he shows
if [(f, f̄)] maps to the trivial element [V ] of πn+1(SG;SO, SGq), then the correspond-
ing W can be modified using surgery so that it is embedded in Dn+1 ×Dq. In partic-
ular, the free face f̄(Dn+1) of W is inside Dn+1 ×Dq ∼= Dn+q+1, and therefore the
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corresponding f = f̄ |∂Dn+1 is slice i.e., concordant to the trivial embedding of Sn in
Sn+q, by Lemma 2.2.

2.4. Framed embeddings of Sn in Sn+q

Let us recall that we always consider framed embeddings with a framing pre-
serving the natural orientation. For q ⩾ 3, Haefliger expressed the group FCqn of
concordance classes of framed embeddings of Sn in Sn+q as π̃n+1(SG;SO, SGq). An
element in π̃n+1(SG;SO, SGq) is represented by a continuous map ϕ : Dn+1 → SG
i.e., for x ∈ Dn+1, ϕ(x) : SN−1 → SN−1, for some large N , such that ϕ(Dn

−) ⊂ SO,
ϕ(Dn

+) ⊂ SGq and ϕ(∂Dn
− = ∂Dn

+) = id. Again, abusing notation we also view ϕ as
a map ϕ : Dn+1 × SN−1 → SN−1 and sometimes write ϕx for ϕ(x).

Remark 2.5. It is easy to see that the group π̃n+1(SG;SO, SGq) is isomorphic to

πn

(
(SO ×hSG SGq)≃hofib(SO→SG/SGq)

)
. Moreover, the upper long exact sequence

in (2) is the long exact sequence of the pair (SG/SGq, SO).

Remark 2.6 ([13, Section 5.1]). Two concordant framed embeddings of Sn in Sn+q are

isotopic when q ⩾ 3 and therefore, FCqn=π0Emb
fr(Sn, Sn+q)=π0Emb

fr
∂ (Dn, Dn+q).

Lemma 2.7 ([13, Section 5]). A framed embedding Sn ↪→ Sn+q is concordant to the
trivial one if and only if it is slice i.e., if it can be extended along with the framing to
an embedding Dn+1 ↪→ Dn+q+1.

2.4.1. The isomorphism ψ̃ : FCqn → π̃n+1(SG;SO, SGq)

The natural map ψ̃ between the two groups is defined as in the “non-framed” case.
Firstly, an element in FCqn can be represented by a special framed knot f : Sn ↪→ Sn+q

which is the natural inclusion on Dn
− with trivial framing {en+2, . . . , en+q+1}, and

f(int Dn
+) ⊂ int(Dn+q

+ ) with some non-trivial framing. Such a framed knot is assigned
a special disked embedding (f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) along with a fram-
ing as follows. We extend f : Sn ↪→ Sn+q to a disk embedding f̄ : Dn+1 ↪→ Dn+N+1 for
N large enough. For the framing on f̄(Dn+1), which is defined uniquely up to homo-
topy, we first suspend the framing on Dn

+ inside Dn+q
+ to a framing inside Dn+N+1

by adding vectors {en+q+2, . . . , en+N+1}. Then we extend the obtained framing to
the entire disk Dn+1 inside Dn+N+1. Note that the framing on f̄ |Dn

−
may now be

non-trivial (and does not have to be a suspension), while the framing on f̄ |Dn
+
is the

suspension of the framing on Dn
+ inside Dn+q

+ . But we still obtain a trivial framing
on the equator Sn−1 = Dn

− ∩Dn
+. Such boundary condition on the framing defined

on f̄ is referred as Type II . Therefore, a representative in FCqn can be considered
to be a special disked embedding (f, f̄) with Type II framing . For q ⩾ 3, the
following groups are isomorphic:

FCqn ={concordance/isotopy classes of framed embeddings Sn ↪→ Sn+q}
↕

{concordance/isotopy classes of special framed embeddings Sn ↪→ Sn+q}
↕

{concordance/isotopy classes of special disked embeddings
(Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) with Type II framing}.
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Using the tubular neighborhood theorem, we can transform any special framed
knot f : Sn ↪→ Sn+q into f : Sn ↪→ Sn ×Dq, equipped with a framed disk extension
f̄ : Dn+1 ↪→ Dn+1 ×DN . Thus, an element in FCqn can be represented by a pair
(f, f̄) : (Sn, Dn+1) ↪→ (Sn ×Dq, Dn+1 ×DN ) with a framing of Type II. We define
the homomorphism ψ̃ : FCqn → π̃n+1(SG;SO, SGq) exactly as in Theorem 2.4 by

adding to condition (ii) that ϕ̄x = id when x ∈ Sn−1. For q ⩾ 3, ψ̃ is an isomorphism
[13, Theorem 5.7]. This result is stated without proof because the argument follows
the same lines as in the “non-framed” case. Note that Lemma 2.7 is used in the proof
of injectivity of ψ̃ in the same way as Lemma 2.2 is necessary for injectivity of ψ.

3. Framed disked embeddings

We now define a new group of concordance classes of special disked embeddings
with a Type III framing. Namely, this time we require the framing to be triv-
ial along Dn

−. To be precise, we consider special disked embeddings of the form
(f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) where the framing on f̄ comes with the follow-
ing boundary condition: f̄ |Dn

−
has trivial framing, while the framing on f̄ |Dn

+
inside

Dn+N+1 is obtained as the suspension of a framing inside Dn+q
+ .

FCqn := {concordance classes of special disked embeddings

(f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) with Type III framing}.

Note that since the codimension condition q ⩾ 3 is satisfied, concordance and iso-
topy relations coincide for special disked embeddings with all three boundary restric-
tions on framing.

3.1. The group πn+1(SG, SGq)
An element in πn+1(SG, SGq) is represented by a continuous map ϕ : Dn+1 → SG

such that ϕ|Dn
−
= id and ϕ(Dn

+) ⊂ SGq.
This representation is equivalent to the usual definition of a relative homotopy

group i.e., πn+1(SG; ∗, SGq) = πn+1(SG, SGq), since D
n
− can be collapsed to get the

base-point in the relative group.

3.2. The isomorphism ξ : FCqn → πn+1(SG, SGq)
Following the same argument as in Subsection 2.3, when an element in FCqn is rep-

resented by a special disked embedding (f, f̄) : (Sn, Dn+1) ↪→ (Sn ×Dq, Dn+1 ×DN )
with Type III framing, there is a natural homomorphism ξ : FCqn → πn+1(SG, SGq)
defined as in Theorem 2.4 by replacing condition (ii) with ϕ̄x = id for x ∈ Dn

−. By
Haefliger’s surgery construction [13, Argument 3.5] that proves [13, Theorem 3.4],
we conclude:

Theorem 3.1. The homomorphism ξ : FCqn → πn+1(SG, SGq) is an isomorphism
for q ⩾ 3.

The sliceness Lemma 3.4 is used to prove injectivity of ξ, similarly to the cases
of ψ and ψ̃. Note that Theorem 3.1 can be deduced from the proof of Theorem 1.2
given in Section 5. In particular, with ψ and η as isomorphisms in (5), ξ is also an
isomorphism by the five lemma.
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As a review, the following tables point to the main difference among all the groups
we discussed in the three cases. In terms of special disked embeddings with different
boundary conditions on framing of f̄ :

Cqn trivial framing at the base-point ∗ (Type I)

FCqn trivial framing at the equator Sn−1 (Type II)

FCqn trivial framing at Dn
− (Type III)

The corresponding homotopy groups differ as follows:

πn+1(SG;SO, SGq) ϕ(∗) = id
π̃n+1(SG;SO, SGq) ϕ(Sn−1) = id
πn+1(SG, SGq) ϕ(Dn

−) = id

Remark-Definition 3.2. Consider a disked embedding

(f, f̄) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1)

which is not necessarily special, i.e., without a fixed behavior at Dn
−. Assume both f

and f̄ are framed embeddings such that framing on f̄(Dn+1) insideDn+N+1 is defined
by extending the suspension of the framing of f(Sn) ⊂ Sn+q. We call such a pair
(f, f̄) a framed disked embedding . The concordance classes of such embeddings
are the same as those of special ones with Type III framing representing elements in
FCqn. It is because given any framed disked embedding, we can always isotope it, so
that near the base-point ∗ ∈ ∂Dn

− = Sn−1 it is the identity inclusion with the trivial
framing. Then we can reparametrize the sphere so that the small neighborhood of
∗ is Dn

− and the rest is Dn
+. As a result, we get a special disked embedding (f, f̄)

with Type III framing. Therefore, we can describe FCqn as the group of concordance
classes of framed disked embeddings (f, f̄).

Thus, all the groups Cqn, FC
q
n and FCqn can be described as groups of concordance

classes of “non-special” embeddings:

Cqn embeddings Sn ↪→ Sn+q

FCqn framed embeddings Sn ↪→ Sn+q

FCqn framed disked embeddings
(Sn, Dn+1) ↪→ (Sn+q, Dn+N+1)

Note that special disked embeddings with framing of Type I or Type II are not
framed disked embeddings because for latter we require the framing on f̄ to be the
suspension on entire boundary ∂Dn+1 = Sn, see the definition above.

3.3. Sliceness
In this subsection, we study an interesting property of sliceness for framed disked

embeddings representing elements in the group FCqn.

Definition 3.3. A framed disked embedding (f, α) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1)
is slice if there exists a framed embeddingH : Dn+2 ↪→ Dn+N ′+2 whereN ′ ⩾ N , such
that H|(∂−Dn+2=Dn+1

− ) = α and H|∂+Dn+2 is the suspension of a framed embedding

inside Dn+q+1 i.e., H(∂+D
n+2) ⊂ Dn+q+1 ⊂ ∂+Dn+N ′+2 = Dn+N+1.
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The trivial element in FCqn is given by the equivalence class of the trivial framed
disked embedding (id, id) : (Sn, Dn+1) ⊂ (Sn+q, Dn+N+1) i.e., the trivial pair with
the trivial framing.

Lemma 3.4. A framed disked embedding (f, α) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) rep-
resenting an element in FCqn is concordant to the trivial element

(id, id) : (Sn, Dn+1) ⊂ (Sn+q, Dn+N+1),

if and only if (f, α) is slice.

Proof. Let F : Dn+1 × [0, 1] ↪→ Dn+N ′+1 × [0, 1], where N ′ ⩾ N be a concordance
between (f, α) and (id, id). Since at t = 1 we have a trivial framing, we attach a
half disk 1

2D
n+N ′+2 along the trivial embedding such that it extends Dn+1 to the

disk Dn+2, see Figure 1. Since F takes the boundary inside Sn+q × [0, 1], therefore
attaching this half disk gives the sliceness of the framed knot Sn ↪→ Sn+q i.e., a
framed extension Dn+1 ↪→ Dn+q+1. As a consequence, we get a framed embedding
H : Dn+2 ↪→ Dn+N ′+2, which on one part of ∂Dn+2 gives α and on the other, an
embedding to Dn+q+1. Therefore, (f, α) is slice.

Figure 1: Attaching a half disk Dn+N ′+2 to Dn+N ′+1 at t = 1.

Figure 2: Removing a small half disk Dn+N ′+2 going inside.

The converse is easy to prove by reversing the above argument. We remove a small
half disk 1

2D
n+N ′+2 around a point in Dn+q+1 ⊂ Dn+N ′+2, see Figure 2, such that

the resulting space acts as a concordance between (f, α) and (id, id).

4. Embeddings modulo immersions as special disked embed-
dings

Let Dn+∞ := ∪NDn+N . By a smooth embedding Dn ↪→ Dn+∞, we understand
Dn ↪→ Dn+N for some N large enough. Set

Embfr∂ (Dn, Dn+∞) :=
⋃
N

Embfr∂ (Dn, Dn+N ),
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Immfr
∂ (Dn, Dn+∞) :=

⋃
N

Immfr
∂ (Dn, Dn+N ).

Similarly, we consider SDEqn to be the space of special disked embeddings
(f, α) : (Sn, Dn+1) ↪→ (Sn+q, Dn+1+∞) with Type III framing. By construction,
π0SDE

q
n = FCqn.

We claim that the space SDEqn has the same set of connected components as
the space of embeddings modulo immersions i.e.,FCqn = π0Emb∂(D

n, Dn+q). First
we prove the following lemma which gives different geometric interpretations of the
group π0Emb∂(D

n, Dn+q).

Lemma 4.1. For q ⩾ 3,

π0Emb(S
n, Sn+q) = π0Emb∂(D

n, Dn+q) = π0Emb(S
n,Rn+q)

= π0Emb
fr
(Sn, Sn+q) = π0Emb

fr

∂ (Dn, Dn+q) = π0Emb
fr
(Sn,Rn+q).

(3)

Proof. Let us first prove the “non-framed” case

π0Emb(S
n, Sn+q) = π0Emb(S

n,Rn+q).

Consider the following diagram, where the horizontal lines are fiber sequences:

Emb(Sn,Rn+q) Emb(Sn,Rn+q) Imm(Sn,Rn+q)

Emb(Sn, Sn+q) Emb(Sn, Sn+q) Imm(Sn, Sn+q).

We view Rn+q = Sn+q −∞, where the “infinity” point is of codimension n+ q.
Given an embedding (resp. immersion) from Sn to Sn+q, we can perturb it slightly
in a way that it misses the “infinity” point as q ⩾ 3, so that we get an embedding
(resp. immersion) from Sn to Rn+q. Therefore, the second (resp. third) vertical map
is surjective on the level of π0. For injectivity, note that an isotopy (resp. regular
homotopy) of an embedding (resp. immersion) of Sn in Sn+q is (n+ 1)-dimensional,
while the “infinity” point has codimension n+ q, so it can still miss the point given
q ⩾ 3, and therefore the second (resp. third) vertical map is bijective on π0. The same
argument holds for π1 because q ⩾ 3. Therefore, the second and third vertical maps
induce isomorphisms on π0 and π1 when q ⩾ 3. By five lemma, we get

π0Emb(S
n, Sn+q) = π0Emb(S

n,Rn+q).

It is proved in [24, Theorem 1.1] that

π0Emb(S
n,Rn+q) = π0Emb∂(D

n, Dn+q).

Using the argument from [23, Proposition 1.2], we have that the following natural
projections are weak equivalences:

Emb
fr

∂ (Dn, Dn+q)→ Emb∂(D
n, Dn+q),

Emb
fr
(Sn,Rn+q)→ Emb(Sn,Rn+q).

Similarly, one can show that Emb
fr
(Sn, Sn+q)→ Emb(Sn, Sn+q) is a weak equiva-

lence. Thus, we get different representations for π0Emb∂(D
n, Dn+q) as in (3).
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By Smale–Hirsch theory [15, 22], we have Immfr
∂ (Dn, Dn+q) ≃ ΩnSO(n+ q),

and since we consider the ambient dimension to tend to infinity, we obtain
Immfr

∂ (Dn, Dn+∞) ≃ ΩnSO. Note that Embfr∂ (Dn, Dn+N ) is an open, dense subset

of Immfr
∂ (Dn, Dn+N ) of codimension N − n. As a consequence, as N gets large, the

inclusion Embfr∂ (Dn, Dn+N ) ↪→ Immfr
∂ (Dn, Dn+N ) becomes highly connected, and

we get Embfr∂ (Dn, Dn+∞) ≃ Immfr
∂ (Dn, Dn+∞) ≃ ΩnSO.

Lemma 4.2. For q ⩾ 3,

π0Emb
fr

∂ (Dn, Dn+q) = π0hofib
(
Embfr∂ (Dn, Dn+q)→ Embfr∂ (Dn, Dn+∞)

)
.

Proof. By definition, π0Emb
fr

∂ (Dn, Dn+q) is equal to

π0 hofib(Emb
fr
∂ (Dn, Dn+q)→ Immfr

∂ (Dn, Dn+q) ≃ ΩnSO(n+ q)),

which is isomorphic to π0 hofib(Emb
fr
∂ (Dn, Dn+q)→ ΩnSO) using the stability of

the homotopy groups of SO:

πiSO(n+ q) = πiSO, if i ⩽ n+ q − 2.

Therefore, for q ⩾ 3, we have that

π0Ω
nSO(n+ q) = πnSO(n+ q) = πnSO = π0Ω

nSO

and similarly π1Ω
nSO(n+ q) = π1Ω

nSO. Since ΩnSO ≃ Embfr∂ (Dn, Dn+∞), we get
the result as a consequence of five lemma.

Thus, for any element [(f, α)] in π0Emb
fr

∂ (Dn, Dn+q) there corresponds an equiva-

lence class of a pair (f̃ , α̃) where f̃ : Dn ↪→ Dn+q and α̃ : [0, 1]→ Embfr∂ (Dn, Dn+∞)

i.e, α̃ : Dn × [0, 1] ↪→ Dn+N × [0, 1] such that α̃|Dn×0 = id and α̃|Dn×1 = f̃ , together
with framing.

We consider Dn+1 ∼= Dn × [0, 1] obtained by identifying Dn
+ to Dn × {1} and

Dn
− to Dn × {0} ∪ Sn−1 × [0, 1], and then smoothening the corners. We similarly

identify Dn+N+1 ∼= Dn+N × [0, 1], for some large N . Therefore, each pair (f̃ , α̃)
can be thought of as a special disked embedding with Type III framing i.e., a
pair (id ∪ f̃ , α̃) : (Sn, Dn+1) ↪→ (Sn+q, Dn+N+1) such that α̃|Dn

−
is the trivial inclu-

sion id : Dn
− ↪→ Dn+q

− with trivial framing, and α̃|Dn
+

is the framed embedding

f̃ : Dn
+ ↪→ Dn+q

+ . In other words, one has a natural map

µ : hofib
(
Embfr∂ (Dn, Dn+q)→ Embfr∂ (Dn, Dn+∞)

)
−→ SDEqn. (4)

On the level of π0, we obtain

µ∗ : π0Emb
fr

∂ (Dn, Dn+q)→ FCqn,

[(f, α)] 7→ [(id ∪ f̃ , α̃)].

Theorem 4.3. For q ⩾ 3, µ∗ is an isomorphism, and therefore

π0Emb
fr

∂ (Dn, Dn+q) = FCqn.
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Proof. To show that µ∗ is bijective, it suffices to show that

hofib
(
Embfr∂ (Dn, Dn+q)→ Embfr∂ (Dn, Dn+∞)

)
and SDEqn

are weakly homotopy equivalent, and then Lemma 4.2 concludes the result.
Consider the following diagram, where the vertical lines are fiber sequences, and

the map µ is defined above (4).

ΩEmbfr∂ (Dn, Dn+∞) Embfr∂ (Dn+1, Dn+1+∞)

hofib
(
Embfr∂ (Dn, Dn+q)→ Embfr∂ (Dn, Dn+∞)

)
SDEqn

Embfr∂ (Dn, Dn+q) Embfr∂ (Dn, Dn+q).

µ

Note that the top map is just restriction on the fibers. Moreover, it is a homotopy
equivalence since

Embfr∂ (Dn+1, Dn+1+∞) ≃ Immfr
∂ (Dn+1, Dn+1+∞) ≃ Ωn+1SO

≃ ΩΩnSO ≃ ΩEmbfr∂ (Dn, Dn+∞).

Thus, the map in the middle µ is also a weak homotopy equivalence. By Lemma 4.2,

we get π0Emb
fr

∂ (Dn, Dn+q) = FCqn.

Theorem 1.1 is immediate by combining Lemma 4.1 and Theorems 3.1 and 4.3.

5. Geometric interpretation of long exact sequences associ-
ated with the triad (SG;SO, SGq)

In this section, we prove Theorem 1.2 for the “non-framed” case i.e., we show the
isomorphism between the sequences in (1). The proof for the framed case is similar.

Recall that Imq
n is the group of concordance (or equivalently regular homotopy)

classes of immersions of Sn in Sn+q. According to Haefliger [14, Section 4], any
representative in Imq

n is regular homotopic to a special immersion i.e., an immersion
f : Sn ↬ Sn+q such that f |Dn

−
is the natural inclusion in Dn+q

− and f |Dn
+
is an immer-

sion in Dn+q
+ . We can extend this immersion as a disk immersion f̄ : Dn+1 ↬ Dn+N+1

for N large enough. Furthermore, we add framing on f̄ by first extending the fram-
ing from the base-point ∗ = e2 to Dn

+ inside Dn+q
+ , and then we extend this framing

to Dn+1 inside Dn+N+1 after taking the suspension. In other words, we add disk
structure and Type I framing in the same way as we did for special embeddings rep-
resenting elements in Cqn. Thus, any element in Imq

n can be represented by a special
disked immersion (f, f̄) : (Sn, Dn+1) ↬ (Sn+q, Dn+N+1) with Type I framing.

Haefliger [13, Section 4.2] has shown that Imq
n is isomorphic to the homotopy group

πn(SO, SOq) where his map η : Imq
n → πn(SO, SOq) is defined as follows: given a

special disked immersion (f, f̄) : (Sn, Dn+1) ↬ (Sn+q, Dn+N+1) with Type I framing,
one considers the trivialization of the normal bundle induced by the framing of f̄ . To
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each x ∈ Sn, one associates the (N − q) frame en+q+2, . . . , eN+n+1 with respect to this
trivialization. This (N − q) frame defines a map hf : S

n → VN,N−q that represents
a homotopy class [hf ] in πn(VN,N−q) = πn(SO, SOq), where VN,N−q = SON/SON−q
is the Stiefel manifold.

Remark 5.1. Note that the restriction hf |Dn
+
is constantly equal to the identity inclu-

sion RN−q ⊂ RN (viewed as the base-point of VN,N−q) because the framing on Dn
+

is given by suspension and the last (N − q) vectors are en+q+2, . . . , eN+n+1. Hence,
the class [hf ] depends only on the framing at Dn

−.

Let us now describe the map θ appearing in the geometric long exact sequence:

· · · −→ FCqn −→ Cqn −→ Imq
n

θ−→FCqn−1 −→ · · ·

Note that

Imq
n = π0Imm∂(D

n, Dn+q) = πnVn+q,n = π1Imm∂(D
n−1, Dn+q−1).

The natural map ΩImm∂(D
n−1, Dn+q−1)→ Emb∂(D

n−1, Dn+q−1) induces a map
Imq

n = π1Imm∂(D
n−1, Dn+q−1)→ π0Emb∂(D

n−1, Dn+q−1) = FC
q

n−1.

We can also interpret θ : Imq
n → FCqn−1 in terms of disked embeddings/immersions

as follows: given a special disked immersion (f, f̄) : (Sn, Dn+1) ↬ (Sn+q, Dn+N+1)
with Type I framing representing an element in Imq

n, we consider the restriction
f |Sn−1=Dn

−∩Dn
+
= g = id : Sn−1 ↪→ Sn+q−1, which is the natural inclusion. Moreover,

we get the disk immersion f |Dn
+
: Dn

+ ↬ Dn+q
+ , which can be immersed inside a big-

ger disk Dn+N
+ by allowing more dimensions. As a result, we obtain a disk immer-

sion ḡ := id ◦ f |Dn
+
: Dn

+ ↬ Dn+N
+ with the restricted framing from f̄ |Dn

+
. Since N

is large enough, we can change the framed immersion ḡ into a framed embed-
ding ḡ′ : Dn ↪→ Dn+N . The obtained pair (g, ḡ′) : (Sn−1, Dn) ↪→ (Sn+q−1, Dn+N ) is a
disked embedding where the framing on ḡ′|Sn−1 is given by suspension of a framing
inside Sn+q−1 i.e., (g, ḡ′) is a framed disked embedding. Therefore, given a special
disked immersion (f, f̄) with Type I framing, we can assign a framed disked embed-
ding (g, ḡ′) to it. Thus, we get a well defined map from Imq

n to FCqn−1.
The commutativity of the following diagram is given by a similar argument as in

the proof of Theorem 4.3.

Imq
n FCqn−1

π1Imm(Dn−1, Dn+q−1) π0Emb∂(D
n−1, Dn+q−1).

θ

≃ ≃

Remark 5.2. Note that while defining θ, instead of

(g, ḡ) = (id, id ◦ f |Dn
+
) : (Sn−1, Dn) ↬ (Sn+q−1, Dn+N ),

we can consider the pair (id, id ◦ f |Dn
−
) which is same as (id, id) since f |Dn

−
= id

with framing restricted from f̄ (such framing may not be a suspension). In FCqn−1,
the representative (g, ḡ′) corresponding to (g, ḡ) = (id, id ◦ f |Dn

+
) is equivalent to the

framed trivial disked embedding (id, id) = (id, id ◦ f |Dn
−
) with framing as on f̄ |Dn

−
,
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since f̄ acts as a concordance between id ◦ f |Dn
+
and id ◦ f |Dn

−
. To be precise, we take

a perturbation f̄ ′ of f̄ which acts as a concordance. We will use this in the following
proof to show commutativity of the third square in (5).

Proof of Theorem 1.2. To prove the result, we need to show that each square in the
following diagram commutes:

πn+1(SG, SGq) πn+1(SG;SO, SGq) πn(SO, SOq) πn(SG, SGq)

FCqn Cqn Imq
n FCqn−1.

ξ ≃ ψ ≃

θ

η ≃ ξ ≃ (5)

For the first square, the map FCqn → Cqn is an inclusion on the level of representatives
i.e., a framed disked embedding representing an element in FCqn clearly represents an
element in Cqn. Therefore, the commutativity of this square is straightforward from
the construction.

The commutativity of the second square is given by Haefliger [13, Section 4.4]
and is easy to see. The map Cqn → Imq

n is obvious since an embedding is also an
immersion. We have seen that the vertical map η on a given representative in Imq

n

depends only on the behavior of the representative on Dn
−, see Remark 5.1. Similarly,

the top horizontal map πn+1(SG;SO, SGq)→ πn(SO, SOq) is defined by restricting
the representatives in πn+1(SG;SO, SGq) to the half-disk Dn

−.

We now check the commutativity of the third square. Given an element α ∈ Imq
n

represented by a special disked immersion

(f, f̄) : (Sn, Dn+1) ↬ (Sn+q, Dn+N+1)

with Type I framing, by Remark 5.2, the corresponding element θ(α) in FCqn−1 can
be represented by the framed trivial disked embedding

(id, id) = (id, id ◦ f |Dn
−
) : (Sn−1, Dn) ↪→ (Sn−1 ×Dq, Dn ×DN ),

with the framing obtained as a restriction f̄ |Dn
−
. Recall that on Sn−1 = Dn

− ∩Dn
+,

the framing is given by suspension of a framing inside Sn+q−1. We can homotope
the obtained framing on Sn−1 so that it becomes trivial on Dn−1

− . Now, under the
vertical map ξ, the image of θ(α) is represented by a map

ϕ : Dn × SN−1 → SN−1 with an extension ϕ̄ : Dn ×DN → DN

defined linearly by (x, y) 7→ r(x)(y), for some rotation r given by the framing on f̄ |Dn
−
.

More precisely, r : Dn → SO(N) is such that r|∂Dn=Sn−1 is a suspension of rotation
in SO(q) with r = id on Dn−1

− , by construction. The map ϕ̄ satisfies the definition of
ξ (see Subsection 3.2), since

ϕ̄−1(0) = f̄(Dn
−) = Dn × 0, with ϕ̄|Sn−1 ∈ SO(q)

such that ϕ̄x = id for x ∈ Dn−1
− and ϕ̄x is the suspension of a map Dq → Dq for any

x ∈ Dn−1
+ . Moreover, ϕ̄ also represents an element in πn(SO, SOq) and is precisely

the representative that we get for η(α), as η also depends only on the non-trivial
framing on Dn

− (see Remark 5.1). Therefore, the square commutes.
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6. Applications

6.1. Known computations

For Cqn, the well-known computations were done by Haefliger [11, 12, 13] in the
1960s and later by Milgram [18] in the early 1970s. To the best of our knowledge, no
computations were done ever since. The Manifold Atlas webpage [25] describes all the
known groups Cqn. Haefliger [11] has shown that Cqn = 0 for n < 2q − 3. Furthermore,
he proved that for q ⩾ 3 (see [13, Corollary 8.14]),

Cq2q−3 =

{
Z q odd ,
Z2 q even.

For odd q, the generator is given by the Haefliger trefoil knot [12]. It is an interesting
question whether the Haefliger trefoil is a generator for the even case.

There are only a few computations for FCqn in the literature. For example, Haefliger
[13, Theorem 5.17] has shown that FC3

3 = Z⊕ Z. Moreover, it is easy to see that for
n < 2q − 3, we get FCqn = πn(SOq), see Proposition 6.2.

The groups FCqn = πn+1(SG, SGq) are related to the homotopy groups of spheres.
Some of these groups are known, in particular,

FC3
2 = π3(SG, SG3) = Z2 and FC3

3 = π4(SG, SG3) = Z,

found in [13, Section 5.16] and [21, Proof of Lemma 3.1].

The rational computations of FCqn are known [3, Corollary 20], [10, Section 5.7],
and can also be computed directly as follows:

Proposition 6.1. For q ⩾ 3,

FCqn ⊗Q =

 Q n = q − 1, q even,
Q n = 2q − 3, q odd,
0 otherwise.

Proof. Since FCqn = πn+1(SG, SGq), we consider the long exact sequence of the
pair (SG, SGq):

· · · −→ πn+1(SG) −→ πn+1(SG, SGq) −→ πn(SGq) −→ πn(SG) −→ · · · (6)

The rational homotopy groups πQ
n (SGq) can be easily computed by considering

the long exact sequence associated with the fibration Ωq−1
∗ Sq−1 → SGq → Sq−1,

where Ωq−1
∗ Sq−1 is the component of loops of degree one. The connecting homo-

morphism πn+1(S
q−1)→ πn(Ω

q−1
∗ Sq−1) = πn+q−1(S

q−1) is given by the Whitehead
bracket [idSq−1 ,−]. Note that all πn(SG) are torsions being the stable homotopy
groups of spheres, hence, πQ

n (SG) = 0. Using the rational homotopy groups of spheres,
we get

πQ
n (SGq) =

 Q n = q − 1, q even,
Q n = 2q − 3, q odd,
0 otherwise.

Thus, from the long exact sequence (6) we get πQ
n+1(SG, SGq) = πQ

n (SGq) and
that concludes the result.
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6.2. Metastable range
From [13, Section 4.4], one can deduce the following stability result for the groups

FCqn and FCqn:

Proposition 6.2. For n < 2q − 3, FCqn = πn+1(SO, SOq) and FC
q
n = πnSOq.

Proof. Consider the long exact sequence associated with the triad (SG;SO, SGq)
given in [13, Section 4.4]:

→ πn+1(SG, SGq)→ πn+1(SG;SO, SGq)→ πn(SO, SOq)→ πn(SG, SGq)→ (7)

By [13, Corollary 6.6], the groups πn+1(SG;SO, SGq) = Cqn = 0 for n < 2q − 3.
Therefore, from the above sequence, we get

πn+1(SO, SOq) = πn+1(SG, SGq) = FCqn for n < 2q − 4.

Moreover, any element of Cqn is trivial as immersion for n < 2q − 1, see [13, Corol-
lary 6.10]. Thus, the homomorphism π2q−2(SG;SO, SGq)→ π2q−3(SO, SOq) in (7)
is trivial, and we get π2q−3(SO, SOq) = π2q−3(SG, SGq) = FCq2q−4.

For the second equality, we consider the geometric long exact sequence given by
Haefliger [13, Section 5.9]:

· · · −→ πnSOq −→ FCqn −→ Cqn −→ πn−1SOq −→ · · · (8)

The result easily follows for n < 2q − 4 since Cqn = 0 for n < 2q − 3. When n = 2q − 4,
the homomorphism Cq2q−3 → π2q−4SOq in (8) is the composition

Cq2q−3 = π2q−2(SG;SO, SGq)
0→π2q−3(SO, SOq)→ π2q−4(SOq),

and therefore is also trivial.

Lemma 6.3. For i ⩽ q − 2, πi(SGq) = πi(SG).

Proof. When i ⩽ q − 1, we have πi(SG, SGq) = πi(SO, SOq) = 0, where we get
the first equality from Proposition 6.2, and the second one using the fact that
πi(SO, SOq) = 0 for i < q. Therefore, from the long exact sequence (6), we conclude
that for i ⩽ q − 2, πi(SGq) = πi(SG).
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