
Homology, Homotopy and Applications, vol. 25(2), 2023, pp.75–95
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Abstract
We analyse the homotopy solvability of the classical Lie

groups O(n), U(n), Sp(n) and derive its heredity by closed sub-
groups. In particular, the homotopy solvability of compact Lie
groups is shown.

Then, we study the homotopy solvability of the loop spaces
Ω(Gn,m(F)), Ω(Vn,m(F)) and Ω(Fn;n1,...,nk

(F)) for Grassmann
Gn,m(F), Stiefel Vn,m(F) and generalised flag Fn;n1,...,nk

(F)
manifolds for F = R, C, the field of reals or complex numbers
and H, the skew R-algebra of quaternions. Furthermore, the
homotopy solvability of the loop space Ω(OP 2) for the Cayley
plane OP 2 is established as well.

Introduction

Given an associative H-space X, the functor [−, X] sending a pointed space Y to
the set of classes of maps Y → X takes its values in the category of groups. One may
then ask when this functor takes its values in various subcategories of groups. For
example X is homotopy commutative if and only if [Y,X] is Abelian for all Y .

Berstein and Ganea [4] adapted the nilpotency and Zabrodsky [25, Chapter II]
the solvability to H-spaces as follows. Given an associative H-space X, we write
φX,1 = ψX,0 = ιX , φX,2 = ψX,1 : X2 → X for the basic commutator map and define
inductively:

(1) φX,n+1 = φX,2(φX,1 × φX,n) : Xn+1 → X for n ⩾ 2;

(2) ψX,n+1 = ψX,1(ψX,n × ψX,n) : X2n+1 → X for n ⩾ 1.
The nilpotency class nilX of an associative H-space X is the least integer n ⩾ 0 for

which the map φX,n+1 ≃ ∗, is nullhomotopic. Similarly, the solvability class solX of
X is the least integer n ⩾ 0 for which the map ψX,n+1 ≃ ∗, is nullhomotopic. In view
of [25, Lemma 2.6.3], we have solX ⩽ nilX − 1 provided nilX <∞. Berstein and
Ganea [4] introduced a concept of the homotopy nilpotency of a pointed space X by
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means of its loop space Ω(X) which has been adjusted by Zabrodsky [25, Chapter II]
to the homotopy solvability.

The homotopy nilpotency classes nilX of associative H-spaces X has been exten-
sively studied as well as their homotopy commutativity. Hopkins [14] found cohomo-
logical criteria for a finite H-space to be homotopy nilpotent, and used it to prove
that H-spaces with no torsion in homology are homotopy nilpotent. This result drew
renewed attention to such problems by relating this classical nilpotency notion with
the nilpotence theorem of Devinatz, Hopkins, and Smith [8].

It is well-known (see e.g., [13]) that for the loop space Ω(Sm) of the m-sphere Sm
we have nil Ω(Sm) = 1 if and only if m = 0, 1, 3, 7 and

nil Ω(Sm) =

{
2 for odd m and m ̸= 0, 1, 3, 7 or m = 2;
3 for even m ⩾ 4.

Write FPm for the projective m-space for F = R, C, the field of reals or complex
numbers and H, the skew R-algebra of quaternions. Then, the homotopy nilpotency of
Ω(FPm) has been first studied by Ganea [9], Snaith [21] and then their p-localization
Ω((FPm)(p)) by Meier [17]. The homotopy nilpotency of the loop spaces of Grassmann
and Stiefel manifolds, and their p-localization have been extensively studied in [11].

Let S2m−1(p) be the p-localization of the sphere S2m−1 at a prime p. The main result

of the paper [12] is the explicit determination of the homotopy nilpotency class of
a wide range of homotopy associative multiplications on localized spheres S2m−1(p) for

p > 3. Furthermore, the paper [10] develops techniques in the study of the homotopy
nilpotency classes of Moore spaces M(A,n) for n ⩾ 1.

Zabrodsky [25, Proposition 2.6.10] proved that the classical Lie groups SU(n),
Sp(n) and SO(2n+ 1) were homotopy solvable. But, there are no other works, in the
literature known to the author, concerning the solvability of topological groups and
spaces. This paper grew out of our desire to develop techniques in calculating the
solvability classes of some classical Lie groups and loop spaces of associated homoge-
nous spaces. Its results attempt to provide some insight into the differences between
nilpotency and solvability classes.

Section 1 sets the stage for the developments to come. Subsection 1.1 examines
known results on the homotopy solvability stated in [25, Chapter II] and establishes
necessary notations on the homotopy solvability of H-spaces used in the rest of the
paper. Subsection 1.2 relates the homotopy nilpotency and solvability of a space with
its Postnikov sections. It is shown that the proof of [4, 4.11 Theorem] leads to the
following generalised result.

Theorem 1.14. Let X be a connected space with the solvable fundamental homotopy
group π1(X) and its nilpotent actions on πm(X) for m ⩾ 2. If the k-invariants km of
X are trivial for all but finitely many values of m then nil Ω(X) <∞. In particular,
sol Ω(X) ⩽ nil Ω(X) − 1 <∞ provided nil Ω(X) <∞.

Section 2, based on [15] and [25, Chapter II], analyses the homotopy solvability
of Ω(X) for some homogenous spaces X. Then, we take into account the homotopy
solvability of Lie groups.

Subsection 2.1 makes use of a well-known result on the associated principal G-
bundle E(G) → B(G) with a Lie group G, to derive



THE HOMOTOPY SOLVABILITY 77

Corollary 2.2. If G is a homotopy solvable Lie group and K ⩽ G its closed subgroup
then

sol Ω(G/K) ⩽ solG+ 1 and solK ⩽ 2 + 1 solG.

Next, we take up the systematic study of the homotopy solvability of the spaces
Ω(Vn,m(F)) for Vn,m(F) = SO(F, n)/SO(F,m) for m < n with F = R, C, the field
of reals or complex numbers and H, the skew R-algebra. We present the following
generalization of [25, 2.6.9 Proposition].

Proposition 2.5. Let F = R, C be the field of reals or complex numbers and H, the
skew R-algebra of quaternions. Then,

sol Ω(Vn,m(R)) ⩽ 2ko(n,m) + ke(n,m)

and

sol Ω(Vn,m(F)) ⩽ n−m for F = C,H,

where ko(n,m) and ke(n,m) are the numbers of all odd and even elements of the set
{m+ 1, . . . , n+m}.

Subsection 2.2 is concentrated with the homotopy solvability of classical Lie groups.
First, we present the following generalization of [25, 2.6.10 Proposition].

Proposition 2.7.

(1) The groups SO(n) are homotopy solvable with

solSO(n) ⩽ 2ko(2n, n) + ke(2n, n)

and the groups SU(n), Sp(n), U(n) are homotopy solvable with

solSU(n), solSp(n), solU(n) ⩽ n.

(2) For any topological space Y (not necessarily of the homotopy type of a CW -
complex),

sol [Y, SO(n)] ⩽ 2ko(2n, n) + ke(2n, n) and

sol [Y, SU(n)], sol [Y, Sp(n)], sol [Y,U(n)] ⩽ n.

Furthermore, we derive that:

(1) solO(n) = solSO(n) ⩽ 2ko(2n, n) + ke(2n, n) and solU(n) = solSU(n) ⩽ n;

(2) solPin(n), solSpin(n) = solSO(n) ⩽ 2ko(2n, n) + ke(2n, n)

for the universal covering groups Pin(n) → O(n) and Spin(n) → SO(n).
Since any compact Lie group G is isomorphic to a closed subgroup of the orthog-

onal group O(m) or the unitary group U(n) for some positive integers m and n,
respectively, we conclude

Corollary 2.10. If G is a compact Lie group then G is homotopy solvable and

solG ⩽ 2 solO(n) + 1 <∞

for some positive integer n.
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In particular, all exceptional compact Lie groups G2 ⊆ F4 ⊆ E6 ⊆ E7 ⊆ E8 are
homotopy solvable. We estimate that

solG2 ⩽ solSpin(7) ⩽ 10 and solF4 ⩽ solO(27) ⩽ 81.

Next, we show that the diffeomorphism OP 2 ≈ F4/Spin(9) for the Cayley plane OP 2

yields that

sol Ω(OP 2) ⩽ solSpin(9) ⩽ 13.

Furthermore, Proposition 2.11 implies that

solGL(n,F) = solSL(n,F) = solO(n,F)

and

sol Ω(Vn,m(F)) = sol Ω(GL(n,F)/GL(m,F)) = sol Ω(SL(n,F)/SL(m,F)).

Then, Subsection 2.3 takes up the systematic study of the homotopy solvability of
the spaces Vn,m(F) for F = R, C, the field of reals or complex numbers and H, the
skew R-algebra. some topological groups and loop spaces Ω(Gn,m(F)) and Ω(Vn,m(F))
of Grassmann Gn,m(F) and Stiefel Vn,m(F)) manifolds. We make use of results from
Subsections 2.1 and 2.2 the state the main result.

Theorem 2.13. If 1 ⩽ m < n <∞ then

sol Ω(Fn;n1,...,nk
(F)) <∞ for F = R, C, H

and

sol Ω(F+
n;n1,...,nk

(F)) ⩽ sol Ω((Fn;n1,...,nk
(F))) <∞ for F = R, C.

At the end, in Subsection 2.4 we follow [22] to consider the X-projective n-space
XP (n) for n ⩽ m, associated with an Am-space X. We make use of [11, Theorem 1.5]
on nil S2m−1(p) <∞ to close the paper with the following conclusion.

Corollary 2.16. If n ⩽ p− 1 and p > 3 is a prime then

sol Ω(S2m−1(p) P (n− 1)) ⩽ sol S2m−1(p) <∞.
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1. Prerequisites

All spaces in this note are assumed to be connected and based with the homotopy
type of CW -complexes unless we assume otherwise. We also do not distinguish nota-
tionally between a continuous based map and its homotopy class. We write Ω(X)
(resp. Σ(X)) for the loop (resp. suspension) space on a space X and [X,Y ] for the
set of homotopy classes of maps X → Y .
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Given a space X, we use the customary notations X ∨X and X ∧X for the wedge
and the smash square of X, respectively.

Recall that an H-space is a pair (X,µ), where X is a space and µ : X ×X → X
is a map such that the diagram

X ×X
µ // X

X ∨X
?�

OO

∇

==

commutes up to homotopy, where ∇ : X ∨X → X is the folding map. We call µ a
multiplication or an H-structure for X. Two examples of H-spaces come to mind:
topological groups and the loop spaces Ω(X). In the sequel, we identify an H-space
(X,µ) with the space X.

An H-space X is called a group-like space if X satisfies all the axioms of groups
up to homotopy. Recall that a homotopy associative H-CW -complex always has a
homotopy inverse. More precisely, according to [25, 1.3.2 Corollary] (see also [2,
Proposition 8.4.4]), we have

Proposition 1.1. If X is a homotopy associative H-CW -complex then X is a group-
like space.

From now on, we assume that any H-space X is group-like.
Given spaces X1, . . . , Xn, we use the customary notations X1 × · · · ×Xn for their

Cartesian product and Tm(X1, . . . , Xn) for the subspace of X1 × · · · ×Xn consisting
of those points with at least m coordinates at base points with m = 0, 1, . . . , n. Then,

T0(X1, . . . , Xn) = X1 × · · · ×Xn,

T1(X1, . . . , Xn) is the so called the fat wedge of spaces X1, . . . , Xn and

Tn−1(X1, . . . , Xn) = X1 ∨ · · · ∨Xn, the wedge sum of spaces X1, . . . , Xn.

We write jm(X1, . . . , Xn) : Tm(X1, . . . , Xn) → X1 × · · · ×Xn for the inclusion map
with m = 0, 1, . . . , n and

X1 ∧ · · · ∧Xn = X1 × · · · ×Xn/T1(X1, . . . , Xn)

for the smash product of spaces X1, . . . , Xn.
Let fm : (Xm, ⋆m) → (Ym, ∗m) be continuous maps of pointed topological spaces

for m = 1, . . . , n. The map

f1 × · · · × fn : (X1 × · · · ×Xn, (⋆1, . . . , ⋆n)) → (Y1 × · · · × Yn, (∗1, . . . , ∗n))

sends the point (x1, . . . , xn) into

(f1(x1), . . . , fn(xn)) for (x1, . . . , xn) ∈ X1 × · · · ×Xn

and restricts to maps

Tm(f1, . . . , fn) : Tm(X1, . . . , Xn) → Tm(Y1, . . . , Yn)
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with m = 0, 1, . . . , n. If Xm = X and fm = f for m = 1, . . . , n then we write

Xn = X1 × · · · ×Xn, X∧n = X1 ∧ · · · ∧Xn,

fn = f1 × · · · × fn and f∧n = f1 ∧ · · · ∧ fn.

The identity map of a space X involved is consistently denoted by ιX .
Given an H-group X, the functor [−, X] takes its values in the category of groups.

One may then ask when those functors take their values in various subcategories of
groups. For example, X is homotopy commutative if and only if [Y,X] is Abelian for
all Y .

Furthermore, we write φX,1 = ψX,0 = ιX , φX,2 = ψX,1 : X2 → X for the basic
commutator map and define inductively:

(1) φX,n+1 = φX,2(φX,1 × φX,n) : Xn+1 → X for n ⩾ 2;

(2) ψX,n+1 = ψX,1(ψX,n × ψX,n) : X2n+1 → X for n ⩾ 1.

1.1. Homotopy nilpotency and solvability
Let G be an abstract group. Recall that G is called nilpotent if it has the lower

central series

G = G0 �G1 � · · ·�Gn = E,

where Gm+1 = [Gm, G] for m ⩾ 0 terminating in the trivial subgroup E after finitely
many steps. We write nilG for the nilpotency class of G.

A group G is called solvable or soluble if its derived series, the descending normal
series

G = G(0) �G(1) �G(2) � · · ·�G(n) = E,

where every subgroup G(m+1) for m ⩾ 0 is the commutator subgroup (G(m))′ of the
previous one G(m), eventually reaches the trivial subgroup E of G. We write solG for
the solvability class of G. Since G(m) ⩽ Gm for m ⩾ 0, we derive that the nilpotency
of G implies its solvability.

Recall that by [20, Theorems 5.15–5.17], the solvability is closed under subgroups,
quotient groups and group extensions. Furthermore,

solG′ ⩽ solG (1)

for any subgroup G′ ⩽ G and

solG ⩽ solG′ + solG′′ (2)

for any group extension E → G′ → G→ G′′ → E.
The nilpotency class nil (X,µ) of an H-space (X,µ) is the least integer n ⩾ 0 for

which the map φX,n+1 ≃ ∗, is nullhomotopic and we call the homotopy associative
H-space X homotopy nilpotent. If no such integer exists, we put nil (X,µ) = ∞. In
the sequel, we simply write nilX for the nilpotency class of an H-space X.

The solvability class sol (X,µ) of an H-space (X,µ) is the least integer n ⩾ 0 for
which the map ψX,n+1 ≃ ∗, is nullhomotopic and we call the homotopy associative
H-space X homotopy solvable. If no such integer exists, we put sol (X,µ) = ∞. In the
sequel, we also simply write solX for the solvability class of an H-space X.

Notice that X is homotopy commutative if and only if nilX = 1 or equivalently
solX = 0.
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Given a space X, the numbers nil Ω(X) and sol Ω(X) (if any) are called the nilpo-
tency class and the solvability class of X, respectively. A space X with nil Ω(X) <∞
(resp. sol Ω(X) <∞) is called homotopy nilpotent (resp. homotopy solvable).

Notice that nil Ω(K(G, 1)) = nilG and sol Ω(K(G, 1)) = solG for the Eilenberg-
MacLane space K(G, 1) and an abstract group G.

It is obvious that for homotopy nilpotent group-like spaces X1, . . . , Xm, we have

nil (X1 × · · · ×Xm) = max{nilX1, . . . ,nilXm} (3)

and

sol (X1 × · · · ×Xm) = max{solX1, . . . , solXm}. (4)

The set π0(X) of all path-components of an H-space X is known to be a group. The
following result is easy to prove

Lemma 1.2. If X is an H-space and the path component of the base-point ⋆ ∈ X is
contractible then nil π0(X) = nilX and sol π0(X) = solX.

The definition of the nilpotency and solvability classes may be extended to maps.
The nilpotency class nil f of an H-map f : X → Y is the least integer n ⩾ 0 for which
the map f ◦ φX,n+1 : Xn+1 → Y is nullhomotopic; if no such integer exists, we put
nil f = ∞.

The solvability class sol f of an H-map f : X → Y is the least integer n ⩾ 0 for
which the map f ◦ ψX,n : X2n → Y is nullhomotopic; if no such integer exists, we put
sol f = ∞. Since fφX,n ≃ φY,nf

n and fψX,n ≃ φY,nf
2n , we derive

sol f ⩽ min{solX, solY } and nil f ⩽ min{nilX,nilY }.

In the sequel, we need

Lemma 1.3. Let X be an H-space. Then, the composite map:

(1)

T1(X, . . . ,X)
j1(X,...,X) // Xn

φX,n // X

is nullhomotopic;

(2)

T1(X, . . . ,X)
j1(X,...,X) // X2n

ψX,n // X

is nullhomotopic.

Since the space X∧n, the n-th smash power of X is the homotopy cofiber of the map
j1(X, . . . ,X) : T1(X, . . . ,X) → Xn, the result above implies the existence of maps

φX,n : X∧n → X for n ⩾ 1 and ψX,n : X∧2
n

→ X for n ⩾ 0

with

φ1,X = ψ0,X = ιX , φX,2 = ψ1,X = φX,2 : X∧2 → X

for the basic commutator map and define inductively:

(1) φX,n+1 = φX,2(φX,n ∧ ιX) : X∧(n+1) → X for n ⩾ 2;

(2) ψn+1,X = ψ2,X(ψn,X ∧ ψn,X) : X∧2
n+1

→ X for n ⩾ 1.
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It is well known that the quotient map Xn → X∧n has a right homotopy inverse
after suspending for n ⩾ 1, and the fact that X is an H-space means that the sus-
pension map [Y,X] → [ΣY,ΣX] is a monomorphism for any space Y . Thus, we may
state

Proposition 1.4. Let X be an H-space. Then:

(1) φX,n ≃ ∗ if and only if φX,n ≃ ∗ for n ⩾ 1;

(2) ψX,n ≃ ∗ if and only if ψX,n ≃ ∗ for n ⩾ 1.

Then, [4, 2.7 Theorem] and Proposition 1.4 lead to

Theorem 1.5. If X is an H-space then:

(1)

nilX = supm nil[Xm, X] = supm nil[X∧m, X] = supY nil[Y,X],

where m ranges over all integers and Y over all topological spaces;

(2)

solX = supm sol[X2m , X] = supm sol[X∧2
m

, X] = supY sol[Y,X],

where m ranges over all integers and Y over all topological spaces.

Recall that a nilpotent space, first defined by Dror [7] is a based topological space
X such that:

• the fundamental group π1(X) is a nilpotent group;

• π1(X) acts nilpotently on the higher homotopy groups πk(X) for k ⩾ 2.

A basic theorem about nilpotent spaces [7] states that any map that induces an
integral homology isomorphism between two nilpotent space is a weak homotopy
equivalence.

Remark 1.6. If X is a connected nilpotent space then following proofs of:

(1) [17, Proposition 1.2], one can show

sol Ω(X) = supY sol [Y,Ω(X)],

where Y ranges over all CW -spaces provided X is a CW -space;

(2) [17, Theorem 3.6], one can show

sol Ω(X) ⩽ sup
p

sol Ω(X(p)) + sol Ω(X(0))

for the p-localization X(p) at a prime p and the rationalization X(0) of the
space X.

In particular, given a topological space X, we deduce from Theorem 1.5 that

nilπ1(X) ⩽ nil Ω(X) and solπ1(X) ⩽ sol Ω(X).

Furthermore, in view of [25, Lemma 2.6.1], we may state

Corollary 1.7. A connected H-space X is:
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(1) homotopy nilpotent if and only if the functor [−, X] on the category of all spaces
is nilpotent group valued;

(2) homotopy solvable if and only if the functor [−, X] on the category of all spaces
is solvable group valued.

Proof. (1) Certainly, the homotopy nilpotency of a connected associative H-space X
implies that the functor [−, X] on the category of all pointed spaces is nilpotent
group valued.
Now, suppose that the functor [−, X] is nilpotent group valued and also that
nil [

∏∞
1 X,X] ⩽ n. Then, for the projection map

∏∞
1 X → Xn on the first n

factors, the composite map

∞∏
1

X → Xn φX,n−→ X

is null-homotopic. Since, the projection
∏∞

1 X → Xn has a retraction, we deduce
that the map φX,n : Xn → X is also null-homotopic.

(2) We follow mutatis mutandis the arguments above for (1) and the proof is com-
plete.

1.2. Homotopy solvability of loop spaces
First, notice that [25, Lemma 2.6.3, Lemma 2.6.6] and [4, 3.3 Theorem] yield

Proposition 1.8.

(1) ([25, Lemma 2.6.3]) ψX,n = φX,n+1(ιX ∧ ψX,0 ∧ ψX,1 ∧ · · · ∧ ψX,n−1) for n ⩾ 1.

(2) ([25, Lemma 2.6.6]) Let F
j−→ E

p−→ B be an H-fibration, i.e., it is a fibration and
all spaces and maps are H-spaces and H-maps.

If sol j, sol p <∞ then solE ⩽ sol j + sol p.

Corollary 1.9.

(1) If F
j→ E

p→ B is an H-fibration with solF <∞ and solB <∞ then

solE ⩽ solF + solB.

(2) Let F → E
p→ B be a fibration with sol Ω(E) <∞. Then

sol Ω(F ) ⩽ sol Ω(E) <∞.

Proof. (1) Is a direct consequence of Proposition 1.8(2).

(2) The fibration F → E
p→ B leads to the H-fibration Ω2(B) → Ω(F ) → Ω(E) of H-

spaces. Since Ω2(B) is an Abelian H-space and sol Ω(E) <∞, part (1) implies
that sol Ω(F ) ⩽ sol Ω(E) <∞ and the proof follows.

Now, let X be an H-space with nilX <∞. Then, by Proposition 1.8(1), we get
that

solX ⩽ nilX − 1

provided nilX <∞.
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Recall that for the m-th sphere Sm with m ⩾ 0, in view of (see e.g., [13]), we have
nil Ω(Sm) = 1 if and only if m = 0, 1, 3, 7 and

nil Ω(Sm) =

{
2 for odd m and m ̸= 1, 3, 7 or m = 2;
3 for even m ⩾ 4.

Consequently, by Proposition 1.8(1), we have sol Ω(Sm) = 0 if and only if m = 0, 1, 3, 7
and

sol Ω(Sm) ⩽

{
1 for odd m and m ̸= 1, 3, 7 or m = 2;
2 for even m ⩾ 4.

Recall that the Postnikov decomposition (Postnikov tower or Moore-Postnikov
tower/system) of a space X is a system (Pn(X), pn, fn)n⩾0, where:
Pn(X) are spaces called nth-Postnikov sections of X with P0(X) = ∗;
pn : Pn(X) → Pn−1(X) are fibration with fiber K(πn(X), n);
fn : X → Pn(X) are (n+ 1)-connected maps.

Write π̃n(X) for the π1(Pn−1(X)) = π1(X)-module πn(X) with n ⩾ 2. Then, the
characteristic class

kn = c(pn) ∈ Hn+1(Pn−1(X), π̃n(X)) of the fibration pn : Pn(X) → Pn−1(X)

is called the n-th Postnikov invariant, or n-th k-invariant of X. It can be shown that
the k-invariants kn are just the characteristic classes of fn : X → Pn−1(X) made into
a fibration.

Lemma 1.10. If X is a homotopy associative H-space and Y a finite dimensional
CW -complex with dimY = 2n then the group [Y,X] is solvable with the solvability
class at most n.

Proof. First, recall that given a homotopy associative H-space X, in view of [16],
all its m-th Postnikov stages PmX are also a homotopy associative H-space and
the canonical map X → PmX is an H-map. Hence, for a CW -complex Y with
dimY = 2n, there is an isomorphism [Y,X] ≈ [Y, P2nX] determined by the canon-

ical map X → P2nX. Then, the map ψP2nX,n+1(f1 ∧ · · · ∧ f2n+1) : Y ∧2
n+1 → P2nX

is homotopy trivial for any maps f1, . . . , f2n+1 : Y → PnX since the space Y ∧2
n+1

is
2n-connected. Consequently, nil [Y,X] = nil [Y, P2nX] ⩽ n and the proof follows.

Next, any CW -complex Y can be expressed as

Y = lim
→
Yα

with Yα finite. This leads to the short exact sequence

E → lim
←

1[ΣYα, X] −→ [Y,X] −→ lim
←

[Yα, X] → E

for any connected homotopy associative H-space X.
In view of [14, Proposition 1.2], we have that the intersection

([Y,X]d) ∩ (lim
←

1[ΣYα, X]) = 0

for any finite connected, homotopy associative H-space X with dimX = d <∞,
where [Y,X]d stands for the d-th member of the lower central series of the group
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[Y,X]. Since the d-th derived subgroup [Y,X](d) ⊆ [Y,X]d, Lemma 1.10 and [14,
Proposition 1.1] yield:

Proposition 1.11. If X is a finite connected, homotopy associative H-space then the
group [Y,X] is pro-solvable for any CW -complex Y .

Since pn : Pn(X) → Pn−1(X) is a fibration with the fiber K(πn(X), n) starting
with P1(X) = K(π1(X), 1), it follows by an inductive argument and Proposition 1.8
that Postnikov sections Pn(X) are solvable spaces for n ⩾ 0 provided X is nilpotent.
Furthermore, in view of [17, Proposition 1.3], the homotopy nilpotency of a space X
implies its nilpotency. But, not every space X is homotopy solvable if X is nilpotent
or even simply connected.

Example 1.12. Take X = Sk ∨ Sl with k, l ⩾ 2 and write i1 : Sk ↪→ Sk ∨ Sl, as well as
i2 : Sl ↪→ Sk ∨ Sl for the canonical inclusion maps. Then, for the 2n-fold non-trivial
Whitehead products [i1, . . . , i1] and [i2, . . . , i2] with n ⩾ 1, the non-trivial Whitehead
product [[i1, . . . , i1], [i2, . . . , i2]] yields (via the Samelson product) a non-trivial map

(Sk−1)∧2
n ∧ (Sl−1)∧2

n // Ω(X)∧2
n+1 ψX,n+1 // Ω(X).

Consequently, the space X is not homotopy solvable.

In view of [3, Corollary 5.3.10] or [19, Theorem 1.1], we have

Proposition 1.13. Let (Pn(X), pn, fn)n⩾0 be the Postnikov decomposition of a nilpo-
tent space X. Then, the Postnikov sections Pn(X) are nilpotent spaces fro n ⩾ 0 and
the fibrations pn : Pn(X) → Pn−1(X) have finite principal refinements for n ⩾ 1. That
is, for each n ⩾ 1 there are Abelian groups Ai and principal K(Ai, n)-fibrations qi for
i = 1, . . . ,mn such pn = q1 · · · qmn

.

Then, the proof of [4, 4.11 Theorem] leads to the following generalised result.

Theorem 1.14. Let X be a connected space with the solvable fundamental homotopy
group π1(X) and its nilpotent actions on πm(X) for m ⩾ 2. If the k-invariants km of
X are trivial for all but finitely many values of m, then nil Ω(X) <∞. In particular,

sol Ω(X) ⩽ nil Ω(X) − 1 <∞.

Let (Pn(X), pn, fn)n⩾0 be the Postnikov decomposition of a space X. Recall that

the homotopy fiber X̃n of the map fn : X → Pn(X) is called the n-connected covering
of X for n ⩾ 0. Then, the fibration

Ω2(Pn(X)) → Ω(X̃n) → Ω(X),

in view of Corollary 1.9(2), leads to

Corollary 1.15. If X is a nilpotent space and (Pn(X), pn, fn)n⩾0 its Postnikov de-

composition then its n-connected coverings X̃n are homotopy solvable for n ⩾ 0.
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2. Homotopy solvability of some homogenous spaces and Lie
groups

Basing on some results from [15] and [25], we first analyse homotopy solvability
of homogenous spaces. Then, we take into account the homotopy solvability of some
topological groups.

2.1. Homotopy solvability of some homogenous spaces
First, we recall (see e.g., [6, Lemma 1.33]) the following

Proposition 2.1. Let G be a Lie group and E(G) → B(G) the associated principal
G-bundle. If K ⩽ G is a closed subgroup of G and i : K ↪→ G the embedding map then

passage to orbits yields a G/K-bundle G/K
η→ B(K)

B(i)→ B(G).

Then, we derive

Corollary 2.2. If G is a homotopy solvable Lie group and K ⩽ G its closed subgroup
then

sol Ω(G/K) ⩽ solG+ 1 and solK ⩽ 2 solG+ 1.

Proof. We mimic the proof of [4, Theorem 3.3]. Namely, given a homotopy solvable
Lie group G and its closed subgroup K < G, the G/K-bundle

G/K
η−→ B(K)

B(i)−→ B(G)

from Proposition 2.1 and the associated Puppe sequence yield an exact sequence of
groups and homomorphisms

· · · i∗−→ [Y,Ω(G)]
∂−→ [Y,Ω(G/K)]

Ω(η)∗−→ [Y,K]
i∗−→ [Y,G]

for any space Y .
Since the group [Y,Ω(G)] is Abelian, formulas (1), (2) and the definition of the

homotopy solvability, in view of the above, lead to sol Ω(G/K) ⩽ solG+ 1. Further-
more, Corollary 1.9(1) implies that solK ⩽ 2 solG+ 1 and the proof is complete.

To make use of the above, we need some further result. Given a map f : X → Y
of pointed topological spaces, write Ff for its homotopy fiber.

Proposition 2.3 ([18, p. 96]). If X
g→ Y

f→ Z are maps of pointed topological spaces
then the commutative diagram

X

g

��

X

fg

��

g // Y

f

��
Y

f // Z Z

leads to the fibration

Ff −→ Fgf −→ Ff .

Then, Propositions 1.8 and 2.3 lead to
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Corollary 2.4. If G1 ⩽ G2 ⩽ · · · ⩽ Gn is a sequence of topological groups such that
n ⩾ 3 and Ω(Gi+1/Gi) are homotopy solvable for i = 1, . . . , n− 1 then Ω(Gi+k/Gi)
are homotopy solvable for k = 0, 1, . . . , n− i with i = 1, . . . , n− 1.

Let now F = R, C be the field of reals or complex numbers and H, the skew R-
algebra of quaternions. Then, we set for classical groups:

O(F, n) =


O(n) if F = R;

U(n) if F = C;

Sp(n) if F = H.
and SO(F, n) =


SO(n) if F = R;

SU(n) if F = C;

Sp(n) if F = H.
Notice that the groups SO(F, n) are each subject to the standard embeddings

SO(F,m) ⊆ SO(F, n) provided 1 ⩽ m ⩽ n. We write Vn,m(F) = SO(F, n)/SO(F,m),
the Stiefel manifold and aim to show that Ω(Vn,m(F)) are homotopy solvable provided
1 ⩽ m ⩽ n.

First, given m < n we write ko(n,m) and ke(n,m) for the numbers of all odd and
even elements of the set {m+ 1, . . . , n+m}. Certainly, ko(n,m) + ke(n,m) = n−m.
Then, Corollary 2.4 yields the following generalization of [25, 2.6.9 Proposition].

Proposition 2.5. Let F = R, C be the field of reals or complex numbers and H, the
skew R-algebra of quaternions. Then,

sol Ω(Vn,m(R)) ⩽ 2ko(n,m) + ke(n,m)

and

sol Ω(Vn,m(F)) ⩽ n−m for F = C,H.

Proof. First, notice that Vn,n−1(R) ≈ Sn−1 and Vn,n−1(F) ≈ Snd−1 (d = 2 if F = C
and d = 4 if F = H).

Since

sol Ω(Snd−1) ⩽ 1 for d = 2, 4 and sol Ω(Sn−1) ⩽

{
2 if n is odd,

1 if n is even,

we get by Corollary 2.4 that sol Ω(Vn,m(F)) <∞ for m < n. But, in view of Propo-
sition 2.3, one has the fibration

Vk,m(F) → Vn,m(F) → Vn,k(F)

for m < k < n and by looping we obtain an H-fibration

Ω(Vk,m(F)) → Ω(Vn,m(F)) → Ω(Vn,k(F)).

Therefore, Propositions 1.8 and 2.3 imply

sol Ω(Vn,m(F)) ⩽ sol Ω(Vk,m(F)) + sol Ω(Vn,k(F)).

Thus, by induction with respect to n−m and Proposition 1.8, the proof is complete.

Remark 2.6. Since

Vn,m(R) ≈ O(n)/O(m) and Vn,m(C) ≈ U(n)/U(m),

Proposition 2.5 leads to

sol Ω(O(n)/O(m)) ⩽ 2ko(n,m) + ke(n,m) and sol Ω(U(n)/U(m)) ⩽ n−m.
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2.2. Homotopy solvability of some Lie groups

Given a topological group G and its subgroup H ⩽ G, following [15], we describe
H as homotopy-Abelian in G if maps f, f : H ×H → G defined by

f(x, y) = xy = f(y, x)

for x, y ∈ H are homotopic.

This is the case, for example, when G is pathwise-connected and H is conjugate
to, subgroup whose elements commute with those of H. If H is homotopy-Abelian in
G, then any subgroup of H is homotopy-Abelian in any group which contains G as a
subgroup.

Certainly, the groups O(n) (n ⩾ 2), SO(n) (n ⩾ 3), U(n) (n ⩾ 2), Sp(n) (n ⩾ 1)
are non-Abelian, but elements of SO(F, n) and O(F, n) commute with those of appro-
priate conjugate subgroups. Since the groups SO(F, n) are pathwise-connected and
the short exact sequence 1 → SU(n) → U(n) → S1 → 1 implies ([5, 1.12 Proposi-
tion]) the pathwise-connectivity of U(n), it follows that SO(F, n) and U(n) are
homotopy-Abelian in SO(F, 2n) and U(2n), respectively. Thus, the standard embed-
dings SO(F, n) ↪→ SO(F, 2n) and U(n) ↪→ U(2n) are ⩽ 1 homotopy nilpotent (or = 0
homotopy solvable). (This property is stated as SO(F, n) and U(n) homotopy com-
mute in SO(F, 2n) and U(2n), respectively.)

Since

Ω(V2n,n(F)) → SO(F, n) ↪→ SO(F, 2n), Ω(U(2n)/U(n)) → U(n) ↪→ U(2n)

are H-fibrations with the loops addition and Lie group multiplications, Proposi-
tion 1.8(2), Remark 2.6 and Proposition 2.5 imply the following generalization of
[25, 2.6.10 Proposition].

Proposition 2.7.

(1) The groups SO(n) are homotopy solvable with

solSO(n) ⩽ 2ko(2n, n) + ke(2n, n)

and the groups SU(n), Sp(n), U(n) are homotopy solvable with

solSU(n), solSp(n), solU(n) ⩽ n.

(2) For any topological space Y (not necessarily of the homotopy type of a CW -
complex),

sol [Y, SO(n)] ⩽ 2ko(2n, n) + ke(2n, n) and

sol [Y, SU(n)], sol [Y, Sp(n)], sol [Y, U(n)] ⩽ n.

Remark 2.8.

(1) The group O(n) is disconnected. But, either the group isomorphism O(n) ≈
SO(n) ⋊O(1) or the diffeomorphism O(n) ≈ SO(n) ×O(1) yields that O(n) is
homotopy-Abelian in O(2n) via the standard embedding O(n) ↪→ O(2n).
Since O(n+ 1)/O(n) ≈ Sn, as in Proposition 2.7, we get that

solO(n) = solSO(n) ⩽ 2ko(2n, n) + ke(2n, n).
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(2) Let Pin(n) → O(n) and Spin(n) → SO(n) be the universal covering maps. Then,
fibrations

O(1) → Spin(n) → SO(n), O(1) → Pin(n) → O(n),

homeomorphisms

Spin(n+ 1)/Spin(n), P in(n+ 1)/P in(n) ≈ Sn

and Propositions 1.8(2), 2.5 yield that

solPin(n), solSpin(n) = solSO(n) ⩽ 2ko(2n, n) + ke(2n, n).

But, the homotopy solvability of a topological group does not imply its solvability.

Remark 2.9. Since the commutators

[SO(3), SO(3)] = SO(3) and [SU(2), SU(2)] = SU(2),

and:

SO(3) ⊆ SO(n) ⊆ O(n) for n ⩾ 3,

SU(2) ⊆ SU(n) ⊆ U(n) for n ⩾ 2, and

SU(2) = Sp(1) ⊆ Sp(n) for n ⩾ 1,

we derive that the groups:

(1) SO(n) and O(n) are not solvable for n ⩾ 3;

(2) U(n) and SU(n) are not solvable for n ⩾ 2;

(3) Sp(n) is not solvable for n ⩾ 1.

In view of [5, Theorem 5.1], any compact Lie group G is (isomorphic to) a matrix
Lie group. (More precisely, any compact Lie group G is isomorphic to a closed sub-
group of the orthogonal group O(m) or the unitary group U(n) for some positive
integers m and n, respectively). Therefore, Corollary 2.2 and Proposition 2.7 yield

Corollary 2.10. If G is a compact Lie group then G is homotopy solvable and

solG ⩽ 2 solO(m) + 1, 2 solU(n) + 1 <∞

for some positive integers m and n.

By [1, Chapter 8], we have the increasing sequence of exceptional compact Lie
groups: G2 ⊆ F4 ⊆ E6 ⊆ E7 ⊆ E8. In view of Corollary 2.10 all of them are homotopy
solvable. We estimate the solvability class of G2 and F4.

First, consider the exceptional compact Lie group G2 = Aut(O), the automorphism
group of the octonions O as a normed algebra. Consequently, the canonical inclusion
G2 ⊆ SO(7) leads to G2 ⊆ Spin(7). Furthermore, by e.g., [24, Theorem 3], the group
G2 is the stabilizer group of any point on the sphere S7 of the canonical transitive
action of Spin(7) on S7.
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Then, the fibration

S7 = Spin(7)/G2 → B(G2) → B(Spin(7))

yields the H-fibration

Ω(S7) → G2 → Spin(7).

Since Ω(S7) is an Abelian H-space and solSpin(7) ⩽ 10, Proposition 1.8(2) implies

solG2 ⩽ solSpin(7) ⩽ 10.

The group F4 is known as Aut(Herm3(O), ◦), the automorphism group of the
Jordan algebra (Herm3(O), ◦) with Herm3(O) as Hermitian 3 × 3-matrices over the
octonions O. Since, F4 ⊆ O(27), the fibration

O(27)/F4 → B(F4) → B(O(27))

leads to the H-fibration

Ω(O(27)/F4) → F4 → O(27).

Hence, the relation solO(27) ⩽ 40, in view of Corollary 2.10, yields

solF4 ⩽ 2 solO(27) + 1 ⩽ 81.

It is well-known a transitive action of the exceptional group F4 on the Cayley plane
OP 2 which yields a diffeomorphism

F4/Spin(9) ≈ OP 2.

Since, solSpin(9) ⩽ 13, Corollary 1.9(2) implies

sol Ω(OP 2) ⩽ solSpin(9) ⩽ 13.

The result below has been stated in [23, 11.44 Proposition]. Nevertheless, we
present its proof with other details.

Proposition 2.11. If n ⩾ 1 and F = R, C, H then the group O(n,F) is a strong
deformation retract of the group GL(n,F).

Proof. Let T (n,F) ⊆ GL(n,F) be the subgroup of upper-triangular matrices with
positive diagonal entries. An immediate consequence of the Gram-Schmidt orthonor-
malization theorem is that every matrix A ∈ GL(n,F) has a unique representation in
the form A = OT , where O ∈ O(n,F) and T ∈ T (n,F). Thus, the map

θ : O(n,F) × T (n,F) → GL(n,F)

given by θ(O, T ) = OT for (O, T ) ∈ O(n,F) × T (n,F) is a continuous bijection. In
fact, θ is a homeomorphism.

Now, the group T (n,F) is contractible: we define a map

G : T (n,F) × I → T (n,F)
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given by G(T, t) = G



a11 a12 · · · a1n

a22 · · · · · ·
· · · · · ·

an−1n−1 an−1n
ann

 , t

 =


t+ a11(1 − t) (1 − t)a12 · · · (1 − t)a1n

t+ a22(1 − t) · · · · · ·
· · · · · ·

t+ an−1n−1(1 − t) (1 − t)an−1n
t+ ann(1 − t)


for I = [0, 1] and (T, t) ∈ T (n,F) × I. Then,

GL(n,F) × I
θ−1×I // O(n,F) × T (n,F) × I

idO(n,F)×G // O(n,F) × T (n,F)

is a deformation of GL(n,F) on O(n,F) × {In} and the proof is complete.

Proposition 2.11 leads to a map f : GL(n,F) → O(n,F) being a homotopy inverse
of the canonical inclusion map O(n,F) ↪→ GL(n,F). Since, O(n,F) ↪→ GL(n,F) is an
H-map, we deduce that f : GL(n,F) → O(n,F) is also an H-map. Consequently, we
get

solGL(n,F) = solO(n,F).

Furthermore, this proposition yields a homotopy equivalence

Vn,m(F) ≃ GL(n,F)/GL(m,F)

provided m ⩽ n. In particular, there is a homotopy equivalence

GL(n,F)/GL(n− 1,F) ≃ Sdn−1,

where d = dimR F and

sol Ω(Vn,m(F)) = sol Ω(GL(n,F)/GL(m,F)).

As a byproduct of the proof of Proposition 2.11, we get that there is a deformation
of SL(n,F) on SO(n,F) × {In}. Hence, we get

solSL(n,F) = solSO(n,F) = solO(n,F) and

sol Ω(Vn,m(F)) = sol Ω(SL(n,F)/SL(m,F)).

2.3. Grassmannians and generalised flag manifolds
Let F = R, C be the field of reals or complex numbers and H, the skew R-algebra

of quaternions. Write Gn,m(F) (resp. G+
n,m(F)) for the (resp. oriented with F = R,C)

Grassmannian of m-dimensional subspaces in the n-dimensional F-vector space. For
example, the set of lines Gn+1,1(F) = FPn, the projective n-space over F.

The homotopy nilpotency of FPn has been studied by Ganea [9, Propositions 1.3–
1.5], Meier [17, Theorem 5.4] and Snaith [21, Corollary 3.3]. Then, results presented
in [11] extend this investigation onto Grassmannians and generalised flag manifolds.
The aim of this subsection is to present some results on the homotopy nilpotency of
those manifolds.
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It is well known that Gn,m(F) (resp. G+
n,m(F)) are smooth manifolds with diffeo-

morphisms

Gn,m(F) ≈ O(F, n)/(O(F,m) ×O(F, n−m)) and

G+
n,m(F) ≈ SO(F, n)/SO(F,m) × SO(F, n−m))

which lead to fibrations

Ω(O(F, n)) → Ω(Gn,m(F)) → O(F,m) ×O(F, n−m)

and

Ω(SO(F, n)) → Ω(G+
n,m(F)) → SO(F,m) × SO(F, n−m).

Next, there is the universal covering map

S0 −→ G+
n,m(R) −→ Gn,m(R)

and a fibre bundle

S1 −→ G+
n,m(C) −→ Gn,m(C).

Furthermore, recall that the classifying space

BO(F,m) = lim
n→∞

Gn,m(F) = G∞,m(F).

Then, Propositions 1.8 and 2.7 yield

Theorem 2.12. If 1 ⩽ m < n ⩽ ∞ then

sol Ω(Gn,m(F)) <∞ for F = R, C, H

and

sol Ω(G+
n,m(F)) ⩽ sol Ω(Gn,m(F)) <∞ for F = R, C.

In particular,

sol Ω(FPn) <∞ for F = R, C, H.

The (resp. oriented) generalised flag manifold

Fn;n1,...,nk
(F) (resp. F+

n;n1,...,nk
(F) for F = R, C) with 1 ⩽ n1 < · · · < nk ⩽ n− 1

in the n-dimensional F-vector space is smooth with a diffeomorphism

Fn;n1,...,nk
(F) ≈

(O(F, n)/(O(F, n1) ×O(F, n1 − n2) × · · · ×O(F, nk−1 − nk) ×O(F, n− nk))

and

F+
n;n1,...,nk

(F) ≈
(SO(F, n)/SO(F, n1) × SO(F, n1 − n2) × · · · × SO(F, nk−1 − nk) × SO(F, n− nk)).

Then, the universal covering map,

(S0)k → F+
n;n1,...,nk

(R) → Fn;n1,...,nk
(R)

a fibre bundle

(S1)k → F+
n;n1,...,nk

(C) → Fn;n1,...,nk
(C)
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and the fibrations

Ω(SO(F, n)) −→ Ω(Fn;n1,...,nk
(F)) −→

SO(F, n1) × SO(F, n1 − n2) × · · · × SO(F, nk−1 − nk) × SO(F, n− nk),

and

Ω(SO(F, n)) −→ Ω(F+
n;n1,...,nk

(F)) −→
SO(F, n1) × SO(F, n1 − n2) × · · · × SO(F, nk−1 − nk) × SO(F, n− nk)

lead to the following generalization of Theorem 2.12.

Theorem 2.13. If 1 ⩽ m < n <∞ then

sol Ω(Fn;n1,...,nk
(F)) <∞ for F = R, C, H

and

sol Ω(F+
n;n1,...,nk

(F)) ⩽ sol Ω((Fn;n1,...,nk
(F))) <∞ for F = R, C.

2.4. Am-spaces
Recall that by Stasheff [22], an Am-structure on a space X consists of m-tuples

X = E1(X)

q1

��

� � // · · · �
� // En(X)

qn

��

� � // · · · �
� //� � // Em(X)

qm

��
∗ = B1(X) �

� // · · · �
� // Bn(X) �

� // · · · �
� // Bm(X)

such that qn∗ : πk(En(X), X) → πk(Bn(X)) is an isomorphism for all k ⩾ 1, together
with a contracting homotopy

h : CEn−1(X) → En(X) such that h(CEn−1(X)) ⊆ En(X)

for the cone space CEn−1(X) on En−1(X) with n = 2, . . . ,m. For the purposes of
homotopy theory, in the light of [22, Proposition 2], we can think of

X −→ En(X)
qn−→ Bn(X),

as a fibration.
An Am-space form = 0, 1 . . . ,∞ is a spaceX with a multiplication µ : X ×X → X

that is associative up to higher homotopies involving up to n variables. Further, an
A∞-space has all coherent higher associativity homotopies and is equivalent to a loop
space Ω(Y ) for a space Y called the classifying space of X.

By [22, Theorem 5], classes of spaces with Am-structures and Am-spaces coincide.

Proposition 2.14. A space X admits an Am-structure if and only if X is an Am-
space.

The X-projective n-space XP (n) for n ⩽ m, associated with an Am-space is the
base space Bn+1(X) of the derived Am-structure. The space B1(X) is a point and
B2(X) can be recognized as the suspension Σ(X). Notice that Bm+1(X) can be defined
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even when pm+1 cannot; it has the homotopy type of the mapping cone CEm(X) ∪qm

Bm(X). By means of [22, Theorem 11, Theorem 12], the spaces En(X) and Bn+1(X)
have the homotopy types of the n-th join X∗

n

and CEn(X) ∪pn Bn(X) for n ⩽ m,
respectively provided X is path-connected. Because of a homotopy equivalence X∗

n ≃
Σn−1(X∧n) for the (n− 1)-th suspension Σn−1, we deduce that the fibration

X −→ En(X)
qn−→ Bn(X)

is homotopy equivalent to

X → Σn−1X∧n
qn−→ XP (n− 1).

Now, let S2m−1(p) be the p-localization of the sphere S2m−1 at a prime p. Then, [11,

Theorem 1.5] yields

Proposition 2.15. If m ⩾ 2 and p > 3 is a prime then

nilS2m−1(p) <∞

with respect to any homotopy associative H-structure on S2m−1(p) .

But, S2m−1(p) admits an Ap−1-structure for p > 3. Hence, the fibration

S2m−1(p) −→ S2mn−1 −→ S2m−1(p) P (n− 1)

yields the H-fibration

Ω(S2mn−1(p) ) −→ Ω(S2m−1(p) P (n− 1)) −→ S2m−1(p)

with an AbelianH-space Ω(S2mn−1(p) ) and sol S2m−1(p) ⩽ nilS2m−1(p) −1<∞. Consequently,

in view of Proposition 1.8, we derive

Corollary 2.16. If n ⩽ p− 1 and p > 3 is a prime then

sol Ω(S2m−1(p) P (n− 1)) ⩽ sol S2m−1(p) <∞.
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