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HOMOLOGY TRANSFER PRODUCTS ON FREE LOOP SPACES:
ORIENTATION REVERSAL ON SPHERES

PHILIPPE KUPPER

(communicated by John R. Klein)

Abstract
We consider the space ΛM := H1(S1,M) of loops of Sobolev

class H1 of a compact smooth manifold M , the so-called free
loop space of M . We take quotients ΛM/G where G is a finite
subgroup of O(2) acting by linear reparametrization of S1. We
use the existence of transfer maps tr : H∗(ΛM/G) → H∗(ΛM)
to define a homology product on ΛM/G via the Chas–Sullivan
loop product. We call this product PG the transfer prod-
uct. The involution ϑ : ΛM → ΛM which reverses orientation,
ϑ
(
γ(t)

)
:= γ(1− t), is of particular interest to us. We compute

H∗(ΛS
n/ϑ;Q), n > 2, and the product

Pϑ : Hi(ΛS
n/ϑ;Q)×Hj(ΛS

n/ϑ;Q) → Hi+j−n(ΛS
n/ϑ;Q)

associated to orientation reversal. Rationally Pϑ can be realized
“geometrically” using the concatenation of equivalence classes
of loops. There is a qualitative difference between the homology
of ΛSn/ϑ and the homology of ΛSn/G when G ⊂ S1 ⊂ O(2)
does not “contain” the orientation reversal. This might be inter-
esting with respect to possible differences in the number of
closed geodesics between non-reversible and reversible Finsler
metrics on Sn, the latter might always be infinite.
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Introduction

In this article we investigate the topology of the free loop space ΛM of a compact
smooth manifold M . More precisely, we are interested in the homology of the quotient
space ΛM/G where G is a finite discrete group acting on ΛM .

Our motivation is geometric in nature, namely, given a Riemannian metric g on M ,
its closed geodesics are elements of the free loop space ΛM . Moreover, ΛM possesses
the structure of a smooth, infinite dimensional manifold and there is a smooth func-
tion Eg : ΛM → R, called the energy function associated to a metric g on M , whose
nonconstant critical points are exactly the closed geodesics of g. Furthermore, there
is a Riemannian metric g1 on ΛM such that the function Eg satisfies the so-called
Palais–Smale condition. This enables us to relate the topology of ΛM to the critical
points of Eg via Lusternik–Schnirelmann or even Morse theory. If we want to find and
count the closed geodesic of a metric g it might thus make sense to study H∗(ΛM).

There is a natural isometric action of O(2) on (ΛM, g1) which leaves the energy
Eg invariant for any metric g. This action is induced by linear reparametrization
of S1. Hence, we do not lose information about closed geodesics if we look at the
quotient spaces ΛM/G for subgroups G of O(2). A action of special interest is that
of Z2 ⊂ O(2) induced by the involution

ϑ : ΛM → ΛM, ϑ (γ) (t) := γ(1− t),

where we view a loop γ to be parametrized on the interval [0, 1]. This is the involution
that reverses the orientation of a loop. We sometimes also use the notation γ̄ to denote
γ with opposite orientation: γ̄ := ϑ(γ).

We are going to look at quotients ΛM/G for finite subgroups G of O(2). We will
see that, for some coefficients R (not necessarily the optimal ones) such as Q, the
homology of the quotient is the same as the homology of ΛM if we “divide” only
by subgroups of S1 ⊂ O(2). In contrast, as soon as we look at subgroups of O(2)
“involving” the orientation reversal ϑ above, the homology changes and H∗(ΛM ;R)
and H∗(ΛM/G;R) are not isomorphic any longer. This is interesting for the follow-
ing geometric reason: The critical-point-theoretic approach to the closed geodesic
problem is not only possible in the Riemannian setting but also in the more general
framework of Finsler Geometry. However, the closed geodesics of a Finsler metric
might not be invariant under orientation reversal, the energy of c and of ϑ(c) might
be different. This is best exemplified when M = Sn: On (Sn, gst), where gst is the
standard, round metric, there are infinitely many closed geodesics, namely the great
circles parametrized proportionally to arc length. Certainly, this is due to the huge
isometry group of gst, but it is also known that “most” Riemannian metrics (on
compact, simply-connected manifolds) have infinitely many closed geodesics. Results
in this direction are Theorems 9.8, 9.10 and 9.11 in [Rad92]. Of course, here we
mean infinitely many “geometrically distinct” ones, so if we count a closed geodesic
c we do not count its iterates cr(t) := c(rt), r ∈ N, which are different curves “rep-
resenting” the same closed geodesic. On spheres Sn we have no examples of Rie-
mannian metrics with only finitely many closed geodesics, but there are examples of
Finsler metrics which have only finitely many. Those are the so-called Katok exam-
ples ([Zil83]). These Katok metrics are non-reversible metrics, so their energy is not
invariant under ϑ. Bearing this in mind, this change in topology when “dividing” ΛM
by ϑ might be of geometric relevance.
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Organization of the paper:

1. In the first section we recall the definition of the Chas–Sullivan loop product,
which is defined on the homology H∗(ΛM) of the free loop space ΛM of a
compact smooth manifold M . The product uses the concatenation of loops, i.e.
a map ϕ : F := {(α, β) ∈ Λ× Λ|α(0) = β(0)} → ΛM . Here F denotes the so-
called figure-eight space, a submanifold of ΛM × ΛM of codimension dim(M).
We also recall the explicitly known Chas–Sullivan algebra of spheres Sn, n > 2.

2. In the second section we define the transfer maps tr : Hi(ΛM/G) → Hi(ΛM)
for quotients of actions of finite discrete groups G. Using this we define what we
call the transfer product PG, which is a product on the homology Hi(ΛM/G).
It is defined to be the composition

Hi(Λ/G;R)×Hj(Λ/G;R)

transfer×transfer

��

Hi+j−n(Λ/G;R)

Hi(Λ;R)×Hj(Λ;R)
Chas–Sullivan product

// Hi+j−n(Λ;R)

q∗

OO

where q : ΛM → ΛM/G is the quotient map.

3. In Section 3 we compute the transfer product Pϑ associated to the orientation
reversal of loops, (γ) (t) := γ(1− t), on spheres Sn, n > 2 with rational coeffi-
cients. We in fact deduce the structure of the algebras (H∗(ΛS

n;Q), PG) for all
groups G conjugate to some dihedral group.

We also consider a Z2-action which is closely related to the action ϑ, namely the
Z2-action induced by the involution θ : ΛM → ΛM

θ(γ)(t) := γ
(
1− (t+ 1

2 )
)
.

We denote the action also simply by θ.

Results:

• For G ⊂ S1 ⊂ O(2) finite we always have

Hi(ΛM/G;Q) ∼= Hi(ΛM ;Q)

as Q-modules for all i. While for finite G ⊂ O(2) with G ∩
(
O(2) \ S1) ̸= ∅ we

have

Hi(ΛM/G;Q) ∼= Hi(ΛM/ϑ;Q) ∼= Hi(ΛM ;Q)ϑ := {x ∈ Hi(ΛM ;Q)| ϑ∗(x) = x}

(compare Proposition 2.12).

• Under orientation reversal the fibration ev0 : ΛM → M, γ 7→ γ(0) descends to
a fibration ev0/ϑ : ΛM/ϑ → M with fibre ΩM/ϑ where ΩM denotes the based
loop space. Rationally ev0/ϑ induces an algebra homomorphism up to scaling
between Pϑ and the intersection algebra on M .

Ω
j

//

q
��

Λ
ev0 //

q
��

M

��

Ω/ϑ //
j/ϑ

// Λ/ϑ
ev0/ϑ

// M,
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Also the quotient of the fibre inclusion j/ϑ induces an algebra homomorphism
(j/ϑ)! between Pϑ and the transfer product on Ω/ϑ (induced by the Pontrjagin
product) when rational coefficients are used (see Propositions 2.6, 2.8).

• For a finite subgroup G of O(2), acting by linear reparametrization on ΛM ,
the quotient map q : ΛM → ΛM/G induces an algebra isomorphism up to scal-
ing between the rational Chas–Sullivan algebra restricted to classes that are
invariant under the action of G and the transfer algebra

(
H∗(ΛM ;Q), PG

)
(see

Theorem 2.14).
Furthermore, we compute the product

Pϑ : Hi(ΛS
n/ϑ;Q)×Hj(ΛS

n/ϑ;Q) → Hi+j−n(ΛS
n/ϑ;Q)

and in particular show that there are nonnilpotent classes for this product on
spheres (see Theorem 3.5). The existence of nonnilpotent classes could be useful
in the search for closed geodesics (compare [HR13]). An analogous result holds
for the product Pθ with rational coefficients.

Remark. The products Pϑ and Pθ possess “geometric realizations”. By that we mean
that there are homology products Aϑ on H∗(ΛM/ϑ) and Aθ on H∗(ΛM/θ) which are
defined using the concatenation of equivalence classes of pairs of loop, i.e. using maps
F/Z2 → ΛM/ϑ and F/Z2 → ΛM/θ respectively, such that

Aϑ = Pϑ, Aθ = Pθ

holds up to sign. For the definition of the products Aϑ and Aθ the author constructs
“tubes” around F/Z2 as a subset of Λ× Λ/Z2. While in the case of the action θ these
neighbourhoods are actual tubular neighbourhood, in the case of ϑ the neighbour-
hoods are only homeomorphic to a quotient of a vector bundle. These “geometric
products” are constructed in [Kup20].
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1. The manifold ΛM and the Chas–Sullivan product

1.1. The free loop space of a manifold
Let M be a topological space. We first consider the space of continuous loops

LM := C0(S1,M) in M . LM carries the compact-open topology. The base point in
S1 in denoted by 0.

Proposition 1.1. The evaluation map ev0 : LM → M, γ 7→ γ(0) is a Hurewicz fibra-
tion. The fibre ev−1

0 (p) over a point p ∈ M is the space of loops based at p:

Ωp := {γ ∈ LM | γ(0) = p} = ev−1
0 (p).
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Proof. Since the inclusion of the base point i : 0 ↪→ S1 is a cofibration and S1 is
(locally) compact and Hausdorff we can apply [Bre93, Chapter VII, Theorem 6.13]
to deduce that i∗ = ev0 : LM → C0(0,M) ∼= M is a Hurewicz fibration.

If M is a topological manifold, then ev0 : LM → M is in addition locally triv-
ial.

From now on we even take M to be a smooth compact manifold. In this case,
instead of investigating LM we can look at the Hilbert manifold ΛM of H1-curves on
M . Topologically this does not make much difference since LM and ΛM are homotopy
equivalent. The continuous inclusions

C∞(S1,M) �
�

// ΛM �
�

// LM

are in fact homotopy equivalences ([Kli78, Theorem 1.2.10] or [Moo17, Theorem
1.5.1]).

As done in [Kli78, page 8] the set of functions ΛM can also be described as the set
of absolutely continuous maps f : S1(= [0, 1]/{0, 1}) → M whose derivative f ′ (which
is defined almost everywhere)is square-integrable, i.e.

∫
S1 g

(
f(t)

)(
f ′(t), f ′(f)

)
dt<∞.

It can be equipped with a differentiable structure:

Theorem 1.2 ([Kli78, Theorem 1.2.9]). ΛM is a smooth Hilbert manifold of infinite
dimension.

Recall that H1-vector fields along H1-curves are the fibres of the tangent bundle
TΛM → ΛM of ΛM : thus H1

(
f∗(TM)

) ∼= TfΛM is the fibre over f ∈ ΛM ([Kli78,
Section 1.3]). Induced by the metric g on M , there is a metric g1 on ΛM : The metric

g1(X,Y ) :=

∫
S1

g(X(t), Y (t))dt+

∫
S1

g
(
∇ċX(t),∇ċY (t)

)
dt,

defined on H1
(
c∗(TM)

)
for smooth loops c, extends to all of H1(S1,M) ([Kli78,

Theorem 1.3.6]).

Theorem 1.3 ([Kli78, Theorem 1.4.5] or [Kli82, Theorem 2.4.7]). If M is compact,
(ΛM, g1) is a complete Riemannian manifold. That is, ΛM with the distance induced
form g1 is a complete metric space.

Proposition 1.4 ([AS06, Lemma 2.2]). The evaluation map ev0 : ΛM→M,γ 7→ γ(0)
is a locally trivial fibration. If M is connected, the fibres are all homeomorphic to Ωp,
the based loop space at any point p ∈ M . Ωp := {γ ∈ ΛM | γ(0) = p} ⊂ ΛM is a smooth
submanifold of ΛM of codimension n.

1.2. Definition and properties of the Chas–Sullivan product

Let M now be a fixed finite-dimensional compact and connected smooth mani-
fold. Let Λ := ΛM denote the Hilbert manifold of closed curves on M . Let M have
dimension n.
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We call F := {(α, β) ∈ Λ× Λ|α(0) = β(0)} the figure-eight space. F fits into the
following pullback diagram:

F �
� iF //

ev0

��

Λ× Λ

ev0×ev0

��

M �
�

∆
// M ×M

where ev0 : F → M is ev0(α, β) := α(0) = β(0), iF : F ↪→ Λ× Λ = Λ2 is the inclu-
sion and ∆: M ↪→ M ×M = M2, p 7→ (p, p) is the diagonal embedding. The Chas–
Sullivan product

∗ : Hi(Λ)×Hj(Λ) → Hi+j−n(Λ)

is defined as the composition (see [CJ02] or [GH09, Section 5])

Hi(Λ)×Hj(Λ)

(−1)n(n−j)×
��

Hi+j−n(Λ)

Hi+j(Λ× Λ) //

iF !

,,
Hi+j(Λ× Λ,Λ× Λ−F)

Thom isomorphism
// Hi+j−n(F)

ϕ∗

OO

Here Hi(·) denotes singular homology. Which coefficients we use will be clear from
the context. The Chas–Sullivan product was originally defined in [CS99] with a
different definition.

We explain the different maps in this definition:

• The first map is just the homological cross product × together with the sign-
correction (−1)n(n−j) for nicer algebraic properties as we will see later.

• The map iF ! is a so-called “Gysin” or “umkehr” map. It is defined to be the
composition of the map Hi+j(Λ× Λ) → Hi+j(Λ× Λ,Λ× Λ−F) induced by
inclusion and the Thom isomorphism. That the latter exists follows from the
fact that F is a Hilbert submanifold of Λ× Λ: One can show that

ev0 × ev0 : Λ× Λ → M ×M

is a submersion. Thus F = (ev0 × ev0)
−1

(
∆(M)

)
is a submanifold of codimen-

sion n.
Let UF be a tubular neighbourhood of F . Since F is closed in Λ2=(Λ2 −F)∪UF
we have, by excision, that

Hi+j(Λ
2,Λ2 −F) ∼= Hi+j(UF , UF −F) ∼= Hi+j(NF , NF −F).

We can then cap with a (chosen) Thom class τF ∈ Hn(NF , NF −F) of the
normal bundle NF → F , which is an isomorphism by the Thom isomorphism
theorem ([GH09, Appendix B]):

Hi+j(NF , NF −F)
∩τF
∼=
// Hi+j−n(NF ) ∼= Hi+j−n(F).

Clearly, we have to take appropriate coefficients for homology here: If M is
orientable, then so is NF (see below) and we can take any coefficient ring.
Otherwise we have to take Z2 as coefficient domain.
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• On F the composition of loops can be defined ([GH09, Section 2]): The “con-
catenation of loops” ϕ = ϕ 1

2
: F → Λ is a continuous map defined by

ϕ(γ, δ)(t) = ϕ 1
2
(γ, δ)(t) :=

{
γ(2t), 0 ⩽ t ⩽ 1

2

δ(2t− 1), 1
2 ⩽ t ⩽ 1

.

We sometimes also write γ · δ for ϕ(γ, δ).

We now list some properties of the Chas–Sullivan product: The Chas–Sullivan
product is

• associative ([CS99, Theorem 3.3] or [HW18, Theorem 2.5]).

• graded commutative ([GH09, Proposition 5.2]): we have

b ∗ a = (−1)(|a|−n)(|b|−n)a ∗ b,

where |a| is the degree of a, i.e. a ∈ H|a|(ΛM).

• unital if M is a compact oriented manifold ([HW18, Theorem 2.5]): The inclu-
sion of point curves

c : M ↪→ ΛM0 ⊂ ΛM, p 7→ (t 7→ p ∀t)

is injective in homology since it is a section of the evaluation ev0 ◦ c = idM . The
image E := c∗([M ]) of the orientation class is a two-sided unit element for the
Chas–Sullivan product.

Let us look again at the loop fibration Ω
j
↪−→ Λ

ev0−−→ M . Later we are going to make
use of

Proposition 1.5 ([CS99, Proposition 3.4]). Let M be a connected, compact, oriented
n-dimensional manifold.

1. The homomorphism ev0∗ : H∗(Λ;Z) → H∗(M ;Z) of graded modules is an alge-
bra homomorphism from the Chas–Sullivan algebra to the intersection algebra.

2. The homomorphism j! : H∗(Λ;Z) → H∗−n(Ω;Z) of graded modules is an algebra
homomorphism from the Chas–Sullivan algebra to the Pontrjagin algebra.

(Compare [AS06, Proposition 2.4].) Here j! is again the Gysin map induced by
the inclusion Ω ↪→ ΛM .

1.3. Explicit tubular neighbourhoods of the figure-eight space

We will need some explicit tubular neighbourhoods. We start with showing that
NF , the normal bundle of F in Λ2, is the pullback of the normal bundle NM of
∆(M) ∼= M in M2 = M ×M :

Lemma 1.6. NF ∼= ev0
∗(NM ).

Proof. This holds since ev0 × ev0 : Λ
2 → M2 is a submersion (compare e.g. [Kli82,
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Proposition 2.4.1]). Therefore (ev0 × ev0)
−1

(
∆(M)

)
= F is a submanifold of codi-

mension n. Also due to transversality, the composition

TΛ2|F
d(ev0×ev0)|F

// TM2|∆(M)
// TM2|∆(M)/T∆(M)

is fibrewise surjective. Since TF is in the kernel of this bundle map we get a map

f : NF :=
TΛ2|F
TF

→ TM2|M
TM

=: NM

which is a surjective bundle map. For dimensional reasons f is fibrewise an isomor-
phism. We therefore have a commutative diagram

NF

g

∼=
))

f

##

//

ev0
∗(NM )

��

prNM // NM

��

F ev0 // M

which shows that g is fibrewise an isomorphism and thus it is a bundle isomorphism
over F . That is, the normal bundle of F is (isomorphic to) the pullback of the normal
bundle of ∆(M) ∼= M .

Let (M, g) be a compact Riemannian manifold an let dg(p, q) denote the distance
in M between the points p, q ∈ M defined by the metric g. We define the open neigh-
bourhood UM,ε of ∆(M) inside M2 by UM,ε := {(p, q) ∈ M2| dg(p, q) < ε}. Let exp
denote the Riemannian exponential map of g. Since M is compact, there exists an
ε > 0 such that the maps

t′M : DεTM ↪→ M ×M, (p, v) 7→
(
p, exp(p, v)

)
embeds the disk bundle DεTM := {(p, v) ∈ TM | |v|g < ε} as tubular neighbourhood
of ∆M intoM2. The tangent bundle TM and the normal bundleNM of ∆M⊂M ×M
are isomorphic ([MS74, Lemma 11.5]) and we understand t′M as defined on DεNM .
We denote with tM an extension of t′M to all of NM . We have

UM,ε = tM (NM ) = t′M (DεNM ).

Let ρ, with 0 < ρ < ∞, denote the injectivity radius of (M, g). The smooth map
h : UM,ρ ×M ⊂ M ×M ×M → M , that “pushes points”, is defined as in [HW18,
Lemma 2.1] via

h(p, q)(x) :=

{
exp

(
p, exp−1

p (x) + µ
(
dg(p, x)

)
exp−1

p (q)
)

if dg(p, x) ⩽ ρ/2

w if dg(p, x) ⩾ ρ/2

where µ : [0,∞) → R is a smooth “cut-off” function that is constant 1 near 0, constant
0 on [ρ3 ,∞) and decays appropriately in between. h satisfies

1. h(p, q) := h(p, q, ·) : M → M is a diffeomorphism if dg(p, q) <
ρ
14 ,

2. h(p, q)(p) = q if dg(p, q) <
ρ
14 , i.e. it pushes the first point to the second if the

two points a close enough,
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3. h(p, p) = idM .

The map h can be used to define a tubular neighbourhood embedding tF : NF ∼=
ev0

∗(NM ) ↪→ Λ2 of F that lifts tM : In [HW18, Proposition 2.2] they use t′M and
construct tF as follows. We have Dεev0

∗(NM ) = ev0
∗(DεNM ) if we equip ev0

∗(NM )
with the pullback metric. We choose ε < ρ

14 . The embedding t′F : ev0
∗(DεNM ) ↪→ Λ2

is defined by

t′F
(
(γ, δ), (x, v)

)
:=

(
γ, λ(δ, v)

)
and uses the map h from above that “pushes points” on M. Here, the curve λ is
defined to be

λ(δ, v)(t) := h
(
δ(0), exp(δ(0), v)

)(
δ(t)

)
= h

(
t′M (δ(0), v)

)(
δ(t)

)
.

Since |v| < ε < ρ
14 , the distance dg

(
δ(0), exp(δ(0), v)

)
= dg

(
δ(0), λ(0)

)
< ε < ρ

14 and

h
(
δ(0), exp(δ(0), v)

)
: M → M is a diffeomorphism. Thus, instead of starting at δ(0),

the curve λ starts at exp(δ(0), v). “δ is diffeomorphically pushed away from γ”.

Proposition 1.7 (See [HW18, Proposition 2.2]). Let (M, g) be a compact Rieman-
nian manifold with injectivity radius ρ and let 0 < ε < ρ

14 . Then the map

t′F : ev0
∗(DεNM ) ↪→ Λ2

is an open embedding with image UF,ε := {(γ, δ) ∈ Λ2| dg
(
γ(0), δ(0)

)
< ε} which is an

open neighbourhood of F . Moreover, the diagram

ev0
∗(DεNM )

� � t′F //

prNM

��

Λ× Λ

ev0×ev0

��

DεNM
� � t′M // M ×M

commutes and (ev0 × ev0)(UF,ε) = UM,ε.

Extending t′F to all of ev0
∗(NM ) yields a tubular neighbourhood map tF of the

inclusion F ⊂ Λ× Λ.

1.4. The Chas–Sullivan algebra of spheres

Let now M = Sn. The loop space homology of spheres is as follows:

Theorem 1.8 ([Zil77] or [GH09, Section 13]). If n ⩾ 3, for the space ΛSn we have:

• for n odd

Hi(ΛS
n;Z) ∼=



Z i = 0, n

Z i = λr = (2r − 1)(n− 1) for r ∈ N
Z i = n− 1 + λr = 2r(n− 1) for r ∈ N
Z i = n+ λr = 2r(n− 1) + 1 for r ∈ N
Z i = 2n− 1 + λr = n+ 2r(n− 1) for r ∈ N
{0} otherwise
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• for n even

Hi(ΛS
n;Z) ∼=



Z i = 0, n

Z i = λr = (2r − 1)(n− 1) for r ∈ N
Z2 i = n− 1 + λr = 2r(n− 1) for r ∈ N
Z i = 2n− 1 + λr = n+ 2r(n− 1) for r ∈ N
{0} otherwise

where λr = (2r − 1)(n− 1).

λr is in fact the Morse index of a r-fold iterated prime closed geodesic of the round
sphere (Sn, gst) ([Kli82, Example 2.5.7 (iib)]).

The above graded modules equipped with the Chas–Sullivan product have the
following algebra structure ([CJY04, Theorem 2]):

• for n ⩾ 3 and n odd (
H∗+n(ΛS

n;Z), ∗
) ∼= ∧

(a)⊗ Z[x]

with |a| = −n and |x| = n− 1 on the right-hand side

• and for n ⩾ 2 and n even(
H∗+n(ΛS

n;Z), ∗
) ∼= (∧

(s1)⊗ Z[a, t]
)
/(a2, s1 ⊗ a, 2a⊗ t)

with |a| = −n, |s1| = −1, |t| = 2n− 2 on the right-hand side.

The elements on the left-hand side are all shifted upward in degree by n, so that the
generators on the right correspond to the generators of the free loop space homology
indicated as follows:

A ↔ a, σ1 ↔ s1, U ↔ x, Θ ↔ t,

where

• A generates ∈ H0(ΛS
n;Z) and corresponds to the generator of H0(S

n;Z). It
generates the intersection algebra of Sn: A •A = 0.

• σ1 generates Hn−1(ΛS
n;Z).

• E ∈ Hn(ΛS
n;Z) corresponds to the orientation class of Sn. It is thus the unit

of the intersection algebra
(
H∗+n(S

n;Z), •
) ∼= ∧

(a) on Sn. Here a has degree
−n and is sent to A under this isomorphism.

• U ∈ H2n−1(ΛS
n;Z) exists only for odd n and is sent, via j!, to x which generates

the Pontrjagin algebra
(
H∗(ΩS

n;Z), ⋆
) ∼= Z[x] with |x| = n− 1.

• Θ generates H3n−2(ΛS
n;Z).

It is important to use the sign correction as in [GH09] for the definition of ∗ here.
Otherwise the commutativity behaviour on the two sides to the algebra homomor-
phisms differ.

For us it is important to know that

• for n ⩾ 3 and n odd each homology class can be written as a (Chas–Sullivan)
product of A and U .

• and for n ⩾ 4 and n even each homology class can be written as a (Chas–
Sullivan) product of A, σ1 and Θ.
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• the class E is a neutral element for the Chas–Sullivan product for n even and
odd.

Moreover, for any n there is a nonnilpotent homology class Θ ∈ H3n−2(ΛS
n;Z):

Θk = Θ∗k ̸= 0, ∀k ∈ N.

In the odd case, Θ = U ∗ U = U∗2. Furthermore, multiplication with this class is an
isomorphism

∗Θ: Hk(ΛS
n;Z)

∼=−→ Hk+3n−2−n(ΛS
n;Z)

for all k > 0. All of this (and more) is summarized in Lemma 5.4 of [HR13], proofs
are given in [GH09, Section 13].

2. The transfer and the transfer product

2.1. The transfer

Let G be a finite and discrete topological group acting continuously on Λ = ΛM ,
where M is a compact, connected, smooth manifold of dimension n.

If the action is free, then the map q : Λ → Λ/G is a covering map and we not only
have a homomorphism q∗ : Hi(Λ;R) → Hi(Λ/G;R), but also one in the other direc-
tion tr : Hi(Λ/G;R) → Hi(Λ;R) for singular homology with any coefficient group R.
This homomorphism is called transfer and it is induced by a chain map which can
be defined in a very straightforward and natural way on the singular chain com-
plexes: just send a singular simplex of X/G to the sum of its |G| distinct lifts. This
is explained in section 3.G of [Hat02].

Unfortunately, no subgroup G ⊂ O(2) (except the trivial) acts freely on Λ and thus
the quotient maps Λ → Λ/ϑ and Λ → Λ/θ are not covering maps. Nevertheless, also
for nonfree actions of a finite group G on Λ we get transfer homomorphisms. They
can be constructed in (at least) two ways:

1. Any orbit map q : X → X/G of a continuous action of a finite discrete group G
on a topological space X is a ramified covering map in the sense of [Smi83].
Let SP d(X) denote the d-fold symmetric product of X. A d-fold ramified cov-
ering map is a continuous surjective finite-to-one map p : X → Y for which a
continuous map tp : Y → SP d(X) exists. tp maps a y ∈ Y to the unordered
d-tupel of points of p−1(y) counted with multiplicities. In [Smi83], a transfer

homomorphism tr : H̃i(X/G;R) → H̃i(X;R) on reduced singular homology for
R = Z,Q,Zk is developed if X and X/G have the homotopy type of connected
CW-complexes. It uses the homotopy-theoretic definition of homology.
Alternatively we can refer to [Dol86], where a definition of a transfer for ram-
ified coverings as a singular chain map is given. This only requires that X is
Hausdorff and has the homotopy type of CW -complex.

2. If X and X/G both have the homotopy type of CW-complexes and X is para-
compact and Hausdorff, then by Theorem 1 of [Mar59] or Corollary 10.4 of
[Bre68] Čech homology and singular homology of X and X/G, respectively,
are isomorphic and we can apply Theorem 7.2 of Section 7 of Chapter 3 of
[Bre72] to get a transfer tr : Hi(X/G;R) → Hi(X;R) for singular homology
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with arbitrary coefficients. Since Λ is a manifold, it is paracompact and Haus-
dorff and it has the homotopy type of a countable CW-complex by Corollary 2 of
[Mil59]. The same also holds for Λ/G for any finite subgroup G of O(2) acting
as explained in the introduction: In fact, Λ/G is paracompact, Hausdorff since
q : Λ → Λ/G is a perfect map and Λ/G is locally contractible since the normal
bundle to any orbit is an equivariant vector bundle ([Bre72, Chapter 1, The-
orem 3.1], [Eng89, Theorem 4.4.15], [Hin84, Section 1.5]). Moreover, since Λ
has the O(2)-homotopy type of O(2)-CW-complex, Λ/G has the homotopy type
of countable CW-complex ([Rad89, Theorem 4.2], [Ill90, Theorem A], [tD87,
Chapter II, Proposition 1.16], [FP90, Corollary 5.2.6]). See also Lemma A.4 in
Appendix A of [GH09] for a comparison of Čech and singular homology groups
of Λ.

These transfer homomorphisms have similar properties as the transfer of actual
coverings. We now list of some of their properties and we are going to use them later
([Smi83, Section 2], [Bre72, Chapters 3 and 7], [Dol86, Section 2]):

1. (q∗ ◦ tr)(a) = |G|a.
2. (tr ◦ q∗)(x) =

∑
g∈G g∗(x).

3. q∗ : Hi(X;R)G → Hi(X/G;R) is an isomorphism if |G| is invertible in R.

Here Hi(X;R)G := {x ∈ Hi(X;R)| g∗(x) = x for all g ∈ G}.
Note that, provided |G| is invertible in R, (1) and (2) together imply that

Hi(X;R) ∼= ker(q∗)⊕ im(tr) = ker(q∗)⊕Hi(X;R)G

and that q∗ is surjective. Hence, in particular, property (3) follows: Define s := tr ◦ · 1
|G| .

Property (1) gives

q∗ ◦ s = idH∗(X/G;R).

Thus q∗ is surjective, tr is injective, im(s) = im(tr) andHi(X;R) ∼= ker(q∗)⊕ im(tr).
Restricted to Hi(X;R)G, s is also a left-inverse for q∗ by property (2): For any
x ∈ Hi(X;R)G we have

tr ◦ q∗(x) =
∑
g∈G

g∗(x) = |G|x,

i.e. s ◦ q∗(x) = x, as tr and q∗ are linear. Therefore Hi(X;R)G ⊂ im(s) = im(tr).
Finally, the two properties together imply that Hi(X;R)G = im(tr): If x = s(a), then
q∗(x) = q∗ ◦ s(a) = a by the first property and hence s ◦ q∗(x) = x. Property (2) now
gives

x = s ◦ q∗(x) = tr ◦ q∗
(

x
|G|

)
=

∑
g∈G

g∗
(

x
|G|

)
,

which is certainly invariant under each g∗ for all g ∈ G.
Furthermore, in this case, i.e. when |G| is invertible in R, the transfer maps

are uniquely determined by the Properties 1–3: For each a ∈ Hi(X/G;R) there is
a x ∈ Hi(X;R)G with q∗(x) = a, hence if tr and t̃r are two transfer maps, then
tr(a)− t̃r(a) = tr (q∗(x))− t̃r (q∗(x)) =

∑
g∈G g∗(x)−

∑
g∈G g∗(x) = 0. In all of our

applications |G| will be invertible in R, in fact we will choose R = Q. Moreover, atten-
tion will only be given to G-actions for which Λ and Λ/G have the homotopy types
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of CW -complexes. Hence we can use either of the definitions of the transfer referred
to above. Nevertheless, we are going to use the transfer definition given in [Dol86],
since it also covers the cases of G-actions for which Λ/G might not have the homotopy
type of a CW -complex.

2.2. The transfer product
Definition 2.1. Let M be a compact, connected, oriented manifold. Let G be any
finite, discrete topological group acting continuously on Λ = ΛM . Then the “transfer
product”

PG : Hi(Λ/G;R)×Hj(Λ/G;R) → Hi+j−n(Λ/G;R)

on singular homology with arbitrary coefficients R is defined by

PG(a, b) := q∗
(
tr(a) ∗ tr(b)

)
(2.1)

for classes a, b ∈ H∗(Λ/G;R), where ∗ is the Chas–Sullivan product.

The group actions of our interest will induce Chas–Sullivan algebra isomorphisms,
hence the following lemma will be useful:

Lemma 2.2. For arbitrary coefficients R, if g∗ : Hi(ΛM ;R)→Hi(ΛM ;R) is a Chas–
Sullivan algebra isomorphism for all g ∈ G, then H∗(Λ;R)G is invariant under the
Chas–Sullivan product. Hence we can write

(
H∗(Λ;R)G, ∗) to denote the subalgebra

of G-invariant classes.

Proof. Let x, y be elements of H∗(Λ;R)G, then g∗(x ∗ y) = g∗(x) ∗ g∗(y) = x ∗ y for
all g ∈ G.

Note that, in general, the submodule ker(q∗) is not invariant under an algebra
action of G on H∗(Λ;R).

Theorem 2.3. Assume that |G| is invertible in R and that G induces Chas–Sullivan
algebra isomorphisms. Then

(
H∗(Λ/G;R), PG

)
is up to scaling isomorphic to the

restriction of the Chas–Sullivan product to the G−invariant classes. More precisely,

q∗ :
(
H∗(Λ;R)G, ∗

) ∼=−→
(
H∗(Λ/G;R), PG

)
and

tr :
(
H∗(Λ/G;R), PG

) ∼=−→
(
H∗(Λ;R)G, ∗

)
are algebra isomorphisms up to scaling, satisfying

q∗(x ∗ y) = 1

|G|2
PG

(
q∗(x), q∗(y)

)
,

tr
(
PG(a, b)

)
= |G|tr(a) ∗ tr(b).

In particular,
(
H∗(Λ/G;R), PG

)
is an associative and graded-commutative algebra.

Proof. Let x, y be elements of H∗(Λ;R)G, then, by property (2),

PG

(
q∗(x), q∗(y)

)
= q∗

(
tr ◦ q∗(x) ∗ tr ◦ q∗(x)

)
= q∗

((∑
g∈G

g∗(x)
)
∗
( ∑
h∈G

h∗(y)
))
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= q∗(|G|x ∗ |G|y) = |G|2q∗(x ∗ y).

So q∗ is in fact algebra homomorphism for arbitrary coefficients R. If |G| is invertible
in R then im(tr) = H∗(Λ;R)G and hence

tr
(
PG(a, b)

)
= tr ◦ q∗

(
tr(a) ∗ tr(b)

)
=

∑
g∈G

g∗ (tr(a) ∗ tr(b))

=
∑
g∈G

g∗ (tr(a)) ∗ g∗ (tr(b)) =
∑
g∈G

tr(a) ∗ tr(b) = |G|tr(a) ∗ tr(b)

for a, b ∈ H∗(Λ/G;R) by property (2) and the previous lemma.

That both homomorphisms are isomorphisms if |G| is invertible in R follows since
Property (3) says that

q∗ : Hi(Λ;R)G → Hi(Λ/G;R) and tr : Hi(Λ/G;R) → Hi(Λ;R)G

are module isomorphisms for all i in this case.

Proposition 2.4. Assume that g : Λ → Λ is the identity on the point curves (= con-
stant loops) for all g ∈ G. Also assume that |G| is invertible in R and that G induces
Chas–Sullivan algebra isomorphisms. Then the pair

(
H∗(Λ/G;R), PG

)
is also a unital

algebra.

Proof. We only need to show that the unit E of
(
H∗(Λ;R), ∗) is an element of(

H∗(Λ;R)G, ∗). Since M is a compact, connected, oriented manifold of dimension
n, there is a unit E ∈ Hn(Λ;R) for the Chas–Sullivan product. We define

e :=
1

|G|2
q∗(E).

This in nonzero, since E is the orientation class of the base manifold M , which is
equivariantly embedded into ΛM via the point curves, and so g∗(E) = E for all g ∈ G
by assumption. For an arbitrary a ∈ Hi(Λ/G;R) there is a unique x ∈ Hi(Λ;R)G with
q∗(x) = a. We compute, using the properties of the transfer, that

PG(a, e) =
1

|G|2
q∗
(
(tr ◦ q∗)(x) ∗ (tr ◦ q∗)(E)

)
=

1

|G|2
q∗
(
|G|x ∗ |G|E

)
= q∗(x) = a.

Likewise PG(e, a) = a.

We thus have proved:

Theorem 2.5. Let M be a compact, connected, oriented manifold and Λ = ΛM its
free loop space. Let a finite discrete group G act continuously on Λ. Assume that G
induces Chas–Sullivan algebra isomorphisms which are the identity on point curves.
Then

(
H∗(Λ/G;Q), PG

)
is an associative, graded-commutative unital Q-algebra.

In particular, for n ⩾ 3 the algebras
(
H∗(ΛS

n/ϑ;Q), Pϑ

)
and

(
H∗(ΛS

n/θ;Q), Pθ

)
are associative, graded-commutative and unital, as we will see in the next section.

What comes next is satisfied by the action ϑ but not by θ since ϑ preserves base
points while θ does not:
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Proposition 2.6. In the situation of the above theorem, if all g in addition leave
base points fixed, i.e. g(γ)(0) = γ(0) for all γ ∈ ΛM and all g ∈ G, then

(ev0/G)∗ :
(
H∗(Λ/G;Q), PG

)
→

(
H∗(M ;Q), •)

is an algebra homomorphism up to scaling with scaling factor |G|2.

Proof. If base points are fixed by G, then ev0 := ΛM → M factors through ΛM/G.
Hence, the proposition follows by Proposition 1.5 and Theorem 2.3.

If each g ∈ G leaves base points fixed, i.e. if g(γ)(0) = γ(0) for all γ ∈ ΛM and all
g ∈ G, then we have the following commutative diagram

Ω
j

//

��

Λ
ev0 //

��

M

��

Ω/G //
j/G

// Λ/G
ev0/G

// M,

where the lower row is also a fibration (since ev0 : Λ → M is locally trivial, the action
is fibrewise and the base is paracompact). Also both rows of the diagram

Ω× EG
j×id

//

��

Λ× EG
ev0×id

//

��

M × EG

��

Ω×G EG //
(j×id)/G

// Λ×G EG
(ev0×id)/G

// M ×BG

are fibrations. If we use rational coefficients it does not matter whether we are working
with quotients or homotopy quotients:

Lemma 2.7. Let G be a finite discrete group acting continuously on a paracompact
Hausdorff space X that is homotopy equivalent to a CW-complex. Then

HG
i (X;Q) ∼= Hi(X/G;Q). (2.2)

Proof using transfer. Also EG is a (countable) CW-complex and we have isomor-
phisms given by the quotient maps (property (3)):

HG
i (X;Q) := Hi(X ×G EG;Q) ∼= Hi(X × EG;Q)G,

Hi(X/G;Q) ∼= Hi(X;Q)G,

where again Hi(·;Q)G denotes the classes of degree i that are fixed under g∗ for all
g ∈ G. As EG is contractible the Künneth formula gives

Hi(X × EG;Q) ∼=
⊕
k

(
Hi−k(X;Q)⊗Q Hk(EG;Q)

) ∼= Hi(X;Q).

It follows that for y ∈ Hi(X × EG;Q), given a generator 1 ∈ H0(EG;Q) we have
y = x× 1 for a unique x ∈ Hi(X;Q). Then

(g × g)∗(y) = g∗(x)× g∗(1) = g∗(x)× 1

since any continuous map induces the identity onH0(EG;Q) as EG is path-connected.
Hence, y is fixed under G if and only if x is and so

HG
i (X;Q) ∼= Hi(X × EG;Q)G ∼= Hi(X;Q)G ∼= Hi(X/G;Q)

for all i ∈ Z.
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The above result can be used for a straightforward definition of transfer in rational
homology for pairs (X,A) where both X and A are paracompact Hausdorff and of
the homotopy type of a CW-complex. For instance, for the pair (E,E −B) where
E → B is a (smooth) vector bundle over B, the following definition can be made:
Just take the transfer map of the covering

E × EG → E ×G EG

and compose with the above isomorphism. Also, naturality of the transfer is easily
proved in this way.

Just as in the case of ΛM/G one can also define a transfer product on the homology
of Ωp/G for the submanifold

Ωp := {γ ∈ ΛM | γ(0) = p} ⊂ ΛM

via q∗ ◦ tr ⋆ tr where ⋆ is the Pontrjagin product on H∗(Ωp). We henceforth denote
it by PΩ

G .

We write Λ := ΛM in the remainder of this subsection. We now consider the inclu-
sion jp : Ωp ↪→ Λ of the loops based at a point p ∈ M . We fix some base point p ∈ M
and just write j and Ω for jp,Ωp from now on. We again use that ev0 : Λ → M is
a submersion (compare Lemma 1.6). Thus, if we consider the inclusion of the point
{p} ↪→ M , it follows that ev−1

0 ({p}) = Ω ⊂ Λ is a submanifold of codimension n and
has trivial normal bundle NΩ isomorphic to a pullback of a (normal) bundle of a
point, NΩ

∼= ev0
∗(TpM). This assures the existence of a Thom class for any coef-

ficients. Thus for arbitrary coefficients also the Gysin map j! : H∗(Λ) → H∗−n(Ω) is
defined. For convenience we recall the definition of j! here: Let t : N → U be a tubular
neighbourhood map onto an open neighbourhood U of Ω in Λ. The map j! is then
defined as the composition such that the diagram

H∗(Λ)

��

j! // H∗−n(Ω)

H∗(Λ,Λ− Ω)
excision

∼= // H∗(U,U − Ω)
t−1
∗

∼= // H∗(NΩ, NΩ − Ω)

Thom isomorphism∼=
OO

commutes. The definition does not depend on the particular choice of a tubular
neighbourhood. Assume now that a group G acts on Λ leaving the starting points of
loops fixed, so that j is aG-equivariant embedding and j/G is defined. Moreover, since
ev0 is equivariant with respect to the trivial action on M , G acts trivially on NΩ and
the Thom class passes to the quotient. If in addition also the tubular neighbourhood
map t is equivariant (j/G)! can be defined (see proof below).

Proposition 2.8. In the situation of Theorem 2.5, assume that g : ΛM → ΛM fixes
the starting point of each loop for each g ∈ G. Also assume that Ωp ⊂ Λ possesses a
equivariant tubular neighbourhood for all p. Then

(j/G)! :
(
H∗(ΛM/G;Q), PG

)
→

(
H∗−n(ΩM/G;Q), PΩ

G )

is an algebra homomorphism. Note the index shift.

The Z2-action ϑ for example satisfies the assumptions in this proposition.
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Proof. We have to show that the diagram

Hi−n(Ω/G;Q)×Hj−n(Ω/G;Q)

tr×tr
��

Hi(Λ/G;Q)×Hj(Λ/G;Q)
(j/G)!×(j/G)!

oo

tr×tr
��

Hi−n(Ω;Q)×Hj−n(Ω;Q)

⋆
��

Hi(Λ;Q)×Hj(Λ;Q)
j!×j!oo

∗
��

Hi+j−2n(Ω;Q)
q∗
��

Hi+j−n(Λ;Q)
j!oo

q∗
��

Hi−n(Ω/G;Q) Hi(Λ/G;Q)
(j/G)!

oo

(2.3)
commutes. The middle square commutes by Proposition 1.5.

We now show that the top square commutes by proving that the maps in the
definition of j! pass to quotients such that j! and (j/G)! commute with tr: Denote
by τΩ ∈ Hn(NΩ, NΩ − Ω;Q) a Thom class of the normal bundle NΩ of Ω ⊂ Λ. τΩ
corresponds to

pr∗(σ) ∈ Hn(ev0
∗(TpM), ev0

∗(TpM)− Ω;Q)

where σ is some generator of Hn(Rn,Rn − 0;Q) ∼= Q and pr : ev0
∗(TpM) → TpM is

the projection. Since G acts on Λ leaving the starting point of each loop fixed, for
the induced action on Ω we have the commutative diagram of pullback squares

ev0
∗(TpM)

Q=q×id
//

p
��

pr

,,(
ev0/G

)∗
(TpM)

pr/G
//

p/G
��

TpM ∼= Rn

��

Ω
q

//

ev0

33Ω/G
ev0/G

// {p}

where we view TpM as a trivial G-space. Hence the quotient map Q := q × id is the
orbit projection of the diagonal action on ev0

∗(TpM), where q : Ω → Ω/G is the orbit
projection of the action on Ω. As |G| is invertible in Q, it follows that the diagram

Hi−n

(
(ev0/G)

∗
(TpM);Q

)
tr
��

Hi

(
(ev0/G)

∗
(TpM), (ev0/G)

∗
(TpM)− Ω/G;Q

)
tr
��

∩(pr/G)∗(σ)
oo

Hi−n

(
ev0

∗(TpM);Q
)

Hi

(
ev0

∗(TpM), ev0
∗(TpM)− Ω;Q

)∩pr∗(σ)
oo

(2.4)
is commutative as we show now: Given

a ∈ Hi

(
(ev0/G)

∗
(TpM), (ev0/G)

∗
(TpM)− Ω/G;R

)
we compute

Q∗
(
tr(a) ∩ pr∗(σ)

)
= Q∗

(
tr(a) ∩Q∗((pr/G)∗(σ)

))
= Q∗

(
tr(a)

)
∩ (pr/G)∗(σ)

= |G|a ∩ (pr/G)∗(σ)

by property (1) of the transfer and the naturality of the cap product. Hence
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|G|tr
(
a∩(pr/G)∗(σ)

)
= (tr ◦Q∗)

(
tr(a) ∩Q∗((pr/G)∗(σ)

))
=

∑
g∈G

g∗

(
tr(a) ∩Q∗((pr/G)∗(σ)

))
=

∑
g∈G

g∗

(
tr(a) ∩ (Q ◦ g)∗

(
(pr/G)∗(σ)

))
=

∑
g∈G

g∗
(
tr(a)

)
∩Q∗((pr/G)∗(σ)

)
=

∑
g∈G

(tr(a) ∩Q∗((pr/G)∗(σ)
)

= |G|
(
tr(a) ∩Q∗((pr/G)∗(σ)

)
= |G|

(
tr(a) ∩ pr∗(σ)

)
by property (2) of the transfer, naturality of the cap product and since im(tr) is
invariant under G. Since multiplication with |G| is an isomorphism

tr
(
a ∩ (pr/G)∗(σ)

)
= tr(a) ∩ pr∗(σ)

follows, i.e. diagram (2.4) is commutative. (Notice that in our particular situation we
could have shown the above equation by using that

ev0
∗(TpM) = Ω× TpM, pr∗(σ) = 1× σ

and analogously for (ev0/G)
∗
(TpM). Then one can just take the transfer on the factor

Ω.)
On the left we extend diagram (2.4) with

Hi−n(Ω/G;Q)

trq
��

Hi−n

(
(ev0/G)

∗
(TpM);Q

)
trQ
��

(p/G)∗
oo

Hi−n(Ω;Q) Hi−n

(
ev0

∗(TpM);Q
)p∗oo

where the subscripts q,Q in trq and trQ emphasize to which orbit map the transfer
is associated. This diagram commutes since, as |G| is invertible, we have a = Q∗(x)
and hence

trq ◦ (p/G)∗(a) = trq ◦ (p/G)∗
(
Q∗(x)

)
= trq ◦ q∗ ◦ p∗(x) =

∑
g∈G

g∗
(
p∗(x)

)
=

∑
g∈G

p∗
(
g∗(x)

)
= p∗

(∑
g∈G

g∗(x)
)
= p∗ ◦ trQ ◦Q∗(x) = p∗ ◦ trQ(a),

since p is equivariant. Abbreviating ev0
∗(TpM) with T , on the right we extend (2.4)

with

Hi(T/G, T/G−Ω/G)

tr
��

(t/G)∗

∼=
// Hi(U/G,U/G−Ω/G)

tr
��

∼=
// Hi(Λ/G,Λ/G−Ω/G)

tr
��

Hi(Λ/G)oo

tr
��

Hi(T, T−Ω)
t∗

∼= // Hi(U,U−Ω)
∼= // Hi(Λ,Λ−Ω) Hi(Λ)oo

(coefficients Q). Here t : T → U is an equivariant tubular neighbourhood map, for
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example, for the action ϑ we could take t(γ, v) := λ(γ, v) where λ is defined as in
Section 1.3. All the other maps involved are also equivariant and we can argue as
above that the diagram commutes. The composition of the three diagrams is the
commutative diagram

Hi−n(Ω/G;Q)

tr
��

Hi(Λ/G;Q)
(j/G)!

oo

tr
��

Hi−n(Ω;Q) Hi(Λ;Q),
j!oo

which shows that the top square of diagram (2.3) at the beginning of the proof is
commutative. In the same way as above one shows that

Q∗(x) ∩ (pr/G)∗(σ) = Q∗
(
x ∩ pr∗(σ)

)
holds, from which it follows that also the bottom square of (2.3) commutes and hence
the whole diagram (2.3) is commutative.

The commutative diagram

|G|j!
(
tr(a)

)
⋆ j!

(
tr(b)

)
|G|tr(a) ∗ tr(b)�j!oo �(ev0)∗

// |G|(ev0)∗
(
tr(a)

)
• (ev0)∗

(
tr(b)

)
PΩ
G

(
(j/G)!(a), (j/G)!(b)

)_tr
OO

PG(a, b)
�

(j/G)!

oo
_tr
OO

�
(ev0/G)∗

// |G|2(ev0)∗
(
tr(a)

)
• (ev0)∗

(
tr(b)

)_·|G|−1∼=
OO

summarizes the situation. We observe that the left-hand square and property (1)
show that (j/G)! =

1
|G|qΩ ◦ j! ◦ trΛ and the right-hand square shows that we could

define (ev0/G)∗ := |G|(ev0)∗ ◦ trΛ even for actions of G that do not leave base points
fixed. Here the subscripts Λ and Ω indicate to the G-action on which space the maps
are associated to.

2.3. Group actions under consideration: G a finite subgroup of O(2)
For a Riemannian manifold (M, g), O(2) acts continuously on (ΛM, g1) via isome-

tries in the following way: The O(2) ∼= S1 ⋊ Z2-action on S1 is generated by rotations
and a reflection. Viewing the circle as parametrized from zero to one, we like to denote
the induced maps on

ΛM ∼=
{
γ : [0, 1] → M

∣∣∣ γ(0) = γ(1), γ is absolutely continuous and∫ 1

0

g
(
γ̇(t), γ̇(t)

)
dt < ∞

}
by

• χs : ΛM → ΛM, χs(γ)(t) := γ(t+ s),

• ϑ : ΛM → ΛM, ϑ(γ)(t) := γ(1− t).

Note that χs ◦ ϑ = ϑ ◦ χ−s. Of special interest to us is also the involution

θ := ϑ ◦ χ 1
2
= χ 1

2
◦ ϑ

mentioned in the introduction. It reverses the orientation and shifts the starting point
about 1/2: θ(γ)(t) := γ

(
1− (t+ 1

2 )
)
.
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The involutions ϑ, θ and the rotations χs all leave the energy Eg of every metric g
on M invariant and are isometries of (ΛM, g1) (Lemma 2.2.1 and Theorem 2.2.5 in
[Kli78]).

For rational coefficients, there is a relation between the products Pϑ and Pθ. The
geometric differences between the actions do not seem to be relevant when 2 is invert-
ible: The diffeomorphism χ 1

4
: Λ → Λ is equivariant with respect to the Z2-actions

induced by ϑ and θ:

ϑ = ϑ ◦ id = ϑ ◦ χ 1
2
◦ χ 1

2
= θ ◦ χ 1

2
= θ ◦ χ 1

4
◦ χ 1

4

and hence χ 1
4
◦ ϑ = ϑ ◦ (χ 1

4
)−1 = θ ◦ χ 1

4
. Let χ := χ 1

4
/Z2 : Λ/ϑ ∼= Λ/θ denote the

homeomorphism induced by χ 1
4
.

Proposition 2.9. χ∗ : H∗(Λ/ϑ;Q) → H∗(Λ/θ;Q) is an algebra isomorphism between(
H∗(Λ/ϑ;Q), Pϑ

)
and

(
H∗(Λ/θ;Q), Pθ

)
.

Proof. Let a, b ∈ H∗(Λ/ϑ). If we consider homology with coefficients in Q, the quo-
tient maps qθ, qϑ of the two actions induce surjective maps in homology. Thus there
are uniquely determined classes x, y ∈ H∗(Λ;Q)ϑ = H∗(Λ;Q)θ with qϑ∗(x) = a and
qϑ∗(y) = b. It follows that

trθ
(
χ∗(a)

)
= trθ

(
χ∗

(
qϑ∗(x)

))
= trθ

(
qθ∗

(
χ 1

4 ∗
(x)

))
= trθ

(
qθ∗(x)

)
,

since χ 1
4
is homotopic to the identity. Using the properties of the transfer homomor-

phisms we then get

trθ
(
qθ∗(x)

)
= x+ θ∗(x) = 2x = x+ ϑ∗(x) = trϑ

(
qϑ∗(x)

)
= trϑ(a),

as ϑ∗ = θ∗. Therefore

Pθ

(
χ∗(a), χ∗(b)

)
= qθ∗

(
trθ

(
χ∗(a)

)
∗ trθ

(
χ∗(b)

))
= qθ∗

(
trϑ(a) ∗ trϑ(b)

)
= qθ∗ ◦ χ 1

4 ∗

(
trϑ(a) ∗ trϑ(b)

)
= (χ∗ ◦ qϑ∗)

(
trϑ(a) ∗ trϑ(b)

)
= χ∗

(
Pϑ(a, b)

)
and χ∗ is an algebra homomorphism. It is an isomorphism since it inverse is also an
algebra homomorphism as can be seen in the same way.

Corollary 2.10. The homomorphism

(ev0/ϑ)∗ :
(
H∗(Λ/ϑ;Q), Pϑ

)
→

(
H∗(M ;Q), •)

and

(ev0/θ)∗ ◦ (χ∗)
−1 :

(
H∗(Λ/θ;Q), Pθ

)
→

(
H∗(M ;Q), •)

are algebra homomorphisms up to scaling.

The discrete subgroups of O(2) ∼= S1 ⋊ Z2 are isomorphic to the following finite
groups:

• the groups Cm given by the inclusions Zm ↪→ S1 ⊂ O(2), [n] 7→ e2πi
n
m .

• the dihedral groups Dm := Cm ⋊ Z2.

Lemma 2.11. For arbitrary coefficients R, all i ∈ N and all m ∈ N, we have
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• Hi(ΛM ;R)Cm = Hi(ΛM ;R),

• Hi(ΛM ;R)Dm = Hi(ΛM ;R)ϑ.

Furthermore

Hi(ΛM ;R)ϑ = Hi(ΛM ;R)D1 = Hi(ΛM ;R)
χ 1

4
D1χ

−1
1
4 = Hi(ΛM ;R)θ

Proof.

• Each element χ of Cm is a rotation and hence χ∗= id∗= id : Hi(ΛM)→Hi(ΛM).

• Dm acts as the subgroup{
id, χ 1

n
, . . . , χn−1

n
, ϑ, χ 1

n
◦ ϑ, . . . , χn−1

n
◦ ϑ

}
of the diffeomorphism group of ΛM . It follows that a homology class x is
invariant under the induced action of Dm if and only if it is invariant under
ϑ∗ : Hi(ΛM) → Hi(ΛM).

The last assertion follows immediately.

Together with property (3) of transfers this yields

Proposition 2.12.

• For the action of Cm on ΛM we have, for all i ∈ Z and all m ∈ N,

Hi(ΛM ;Q)Cm = Hi(ΛM ;Q) ∼= Hi(ΛM/Cm;Q)

as Q-modules via q∗ or tr.

• For the action of Dm on ΛM we have, for all i ∈ Z and all m ∈ N,

Hi(ΛM ;Q)Dm = Hi(ΛM ;Q)ϑ ∼= Hi(ΛM/Dm;Q)

as Q-modules via q∗ or tr.

In particular, this means that taking the quotient with respect to Cm has no effect on
rational homology.

Due to its “geometric definition” the Chas–Sullivan product behaves well with
respect to the O(2)-action:

Proposition 2.13. Let M be an n-dimensional connected, compact, smooth manifold
that is R-orientable. Then, the homomorphism

ϑ∗ = θ∗ :
(
H∗(ΛM ;R), ∗) →

(
H∗(ΛM : R), ∗)

is an algebra endomorphism: for all a ∈ Hi(Λ;R), b ∈ Hj(Λ;R) we have

ϑ∗(a) ∗ ϑ∗(b) = ϑ∗(a ∗ b). (2.5)

Hence, our O(2)-action induces an action by algebra isomorphisms on (H∗(ΛM ;R), ∗).

Proof. Since our definition of the Chas–Sullivan involves capping with a Thom class
τF of F ⊂ Λ2 := Λ× Λ, we first show that τF is invariant under ϑ× ϑ: Let N denote
the normal bundle of the inclusion M ∼= ∆(M) ⊂ M ×M =: M2. Now recall from
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Lemma 1.6 that the normal bundle NF of the figure-eight space F⊂Λ2 is isomorphic
to ev0

∗(N), where ev0 := F → M, (γ, δ) → γ(0). ev0 is just the restriction of

ev0 × ev0 : Λ
2 → M2 to F ⊂ Λ2 and M ∼= ∆(M) ⊂ M2.

A Thom class τF ∈ Hn(NF , NF −F) of NF is then a pullback of a Thom class
τ ∈ Hn(N,N −M ;R) of N via the differential of ev0 × ev0 restricted to normal direc-
tions. Since the diagram

Λ2

ev0×ev0 %%

ϑ×ϑ
// Λ2

ev0×ev0yy

M2

commutes, it follows that (ϑ× ϑ)∗(τF ) = τF . Furthermore, there is a tubular neigh-
bourhood map that commutes with ϑ× ϑ: Recall the map h that pushes points from
the section on tubular neighbourhoods (Section 1.3). As

ϑ
(
λ(δ, v)

)
(t) = h

(
δ(0), exp(δ(0), v)

)(
δ(1− t)

)
= h

(
δ(0), exp(δ(0), v)

)(
ϑ(δ)(t)

)
= λ

(
ϑ(δ), v

)
(t),

the explicit tubular neighbourhood map t = tF : ev0
∗(N) → Λ2 defined in Section 1.3

satisfies (ϑ× ϑ) ◦ t = t ◦ ((ϑ× ϑ)× idN ), where (ϑ× ϑ)× idN corresponds to the dif-
ferential of ϑ× ϑ in ev0

∗(N) ∼= NF . Thus, mildly abusing notation by also using the
symbol τF for the Thom class understood as an element of Hn(Λ2,Λ2 −F), we hence
have the following commutative diagram (R-coefficients), where the horizontal com-
positions precomposed with the cross product are the Chas–Sullivan product:

Hi+j(Λ
2,Λ2 −F)

∩(ϑ×ϑ)∗(τF )=τF

//

(ϑ×ϑ)∗

��

Hi+j−n(F)

(ϑ×ϑ)∗

��

ϕ∗

// Hi+j−n(Λ)

θ∗

��

Hi+j(Λ
2,Λ2 −F) ∩τF

// Hi+j−n(F)
ϕ∗

// Hi+j−n(Λ).

This diagram commutes since the concatenation ϕ = ϕ 1
2
at time 1

2 indeed satisfies

ϕ ◦ (ϑ× ϑ) = θ ◦ ϕ. Recalling that for a loop γ we have γ̄ := ϑ(γ) and that θ = χ 1
2
◦ ϑ,

that is θ (γ · δ) = γ̄ · δ̄ for loops γ, δ. The diagram thus implies that

ϑ∗(a) ∗ ϑ∗(b) = θ∗(a ∗ b)

holds for a ∈ Hi(Λ;R), b ∈ Hj(Λ;R). Via ϑ∗ = θ∗ this yields equation (2.5). As any
element of O(2) is either a rotation χ or of the form χ ◦ ϑ the second assertion of the
proposition is immediate.

This together with Theorem 2.3 proves

Theorem 2.14. Let M be an n-dimensional connected, compact, orientable smooth
manifold and G a finite subgroup of O(2) acting on ΛM by linear reparametriza-
tion as described above. Then

(
H∗(ΛM/G;Q), PG

)
is up to scaling isomorphic to the

restriction of the Chas–Sullivan product to the G-invariant classes. More precisely:

•
(
H∗(ΛM/Cm;Q), PCm

)
is up to scaling isomorphic to the entire Chas–Sullivan

algebra
(
H∗(ΛM ;Q), ∗

)
.
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• For groups G conjugate to some Dm,
(
H∗(ΛM/G;Q), PG

)
is up to scaling iso-

morphic to the restricted Chas–Sullivan algebra
(
H∗(ΛM ;Q)ϑ, ∗

)
.

In particular,
(
H∗(ΛM/G;Q), PG

)
is an associative, graded-commutative and unital

algebra.

For groups G conjugate to some Dm, we are going to compute the algebras(
H∗(ΛS

n/G;Q), PG

)
more explicitly (see Theorem 3.5) in the next section.

3. The transfer product Pϑ on H∗(ΛS
n/ϑ;Q)

In this section we set Λ := ΛSn.
We now compute the transfer product Pϑ associated to orientation reversal of loops

on spheres with rational coefficients.
We first compute the rational homology of Λ/ϑ as follows:

• We know that the surjective homomorphism q∗ induced by q : Λ → Λ/ϑ maps
the subspace ofH∗(Λ;Q) consisting of those classes which are fixed under ϑ∗ iso-
morphically onto H∗(Λ/ϑ;Q), i.e, for 0 ̸= x ∈ Hi(Λ;Q), 0 ̸= q∗(x) ∈ Hi(Λ/ϑ;Q)
if and only if ϑ∗(x) = x.

• We are going to see how ϑ∗ acts on the generators of the rational loop homol-
ogy algebra of spheres. The universal coefficient theorem for homology shows
that Hi(ΛS

n;Q) ∼= Hi(ΛS
n;Z)⊗Q is either zero or isomorphic to Q since

Hi(ΛS
n;Z) is either 0 or Z or Z2. The Chas–Sullivan product is defined in

exact the same way as for Z-coefficients and all classes of H∗(ΛS
n;Q) can be

written as a Chas–Sullivan product of the rational classes corresponding to the
generators introduced in Section 1.4 (compare [HR13, Lemma 5.4]).

• Since we also know that ϑ∗(x ∗ y) = ϑ∗(x) ∗ ϑ∗(y) for all x, y ∈ H∗(ΛS
n;Q)

(Proposition 2.13), it suffices to know how ϑ∗ acts on the generators to compute
H∗(Λ/ϑ;Q).

We compute the above relations using the Pontrjagin product on the based loop
space: Let p ∈ Sn and consider the space ΩpS

n = ΩSn of loops based at p. Since
ΩSn is an H-space, even an H-group, its singular homology carries a Pontrjagin
product. Let ⋆ denote this Pontrjagin product. It is well known that for n ⩾ 2 (with
Z-coefficients) the Pontrjagin ring of spheres is a polynomial ring: (H∗(ΩS

n;Z), ⋆) ∼=
Z[x] with x ∈ Hn−1(ΩS

n;Z) (see e.g. [Hat02, Section 4J]).

Lemma 3.1. Let ϑ be the orientation reversal of loops on the based loop space ΩSn

of Sn with n ⩾ 2. Then, for the generator x ∈ Hn−1(ΩS
n;Z) of the Pontrjagin ring

(H∗(ΩS
n;Z), ⋆) ∼= Z[x], we have

ϑ∗(x) = −x,

as ϑ induces −id on Hn−1(ΩS
n;Z).

Proof. Let ϕ denote the concatenation on ΩSn, i.e. the H-group multiplication of
ΩSn. Consider the diagonal embedding ∆: ΩSn → ΩSn × ΩSn, f 7→ (f, f). Since
ϑ : ΩSn → ΩSn is the homotopy inversion of the H-group ΩSn it follows that the
composition ϕ ◦ (id× ϑ) ◦∆: ΩSn → ΩSn is homotopic to the constant map and
therefore induces the zero map on Hn−1(ΩS

n;Z), as n− 1 ⩾ 1.
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Let y be any element of Hn−1(ΩS
n;Z). For the remainder of the proof we abbre-

viate ΩSn with Ω and Ω× Ω with Ω2 and omit the coefficients Z from the notation.
By the Künneth theorem ∆∗(y) = a(x× 1) + b(1× x) ∈ Hn−1(Ω

2) for some integers
a, b, since Hn−1(Ω

2) is isomorphic to⊕
i+j=n−1

Hi(Ω)⊗Hj(Ω) = Hn−1(Ω)⊗H0(Ω)
⊕

H0(Ω)⊗Hn−1(Ω)

via the cross product ×. Here 1 denotes a generator of H0(Ω) ∼= Z, the unit for the
Pontrjagin product. Consider the swap map T: Ω2 → Ω2, (α, β) 7→ (β, α). We have
T∗(x× 1) = 1× x and

a(x× 1) + b(1× x) = ∆∗(y) = T∗ ◦∆∗(y) = b(x× 1) + a(1× x),

which shows that a = b. Thus ∆∗(y) = a(x× 1 + 1× x) = a (×(x⊗ 1 + 1⊗ x)). The
commutative diagram

Hn−1(Ω)

0

++∆∗ // Hn−1(Ω
2)

(id×ϑ)∗
// Hn−1(Ω

2)
ϕ∗ // Hn−1(Ω)

⊕
i+j=n−1 Hi(Ω)⊗Hj(Ω)

× ∼=
OO

id×ϑ∗

//
⊕

i+j=n−1 Hi(Ω)⊗Hj(Ω)

×∼=
OO

⋆

44

shows that

0 = a (x ⋆ 1 + 1 ⋆ ϑ∗(x)) = a (x+ ϑ∗(x))

holds since ϑ∗(1) = 1 and hence, ϑ∗(x) = −x.

Lets us see how ϑ∗ comports with the Pontrjagin multiplication of the generators
of H∗(ΩS

n):

Lemma 3.2. Let ϑ be the orientation reversal of loops on the based loop space ΩSn,
n > 2. Then in the Pontrjagin ring (H∗(ΩS

n;Z), ⋆) ∼= Z[x], where |x| = n− 1, we
have

ϑ∗(x
⋆k) =

{(
ϑ∗(x)

)⋆k
= (−1)kx⋆k, if n is odd or (k − 1)k ≡ 0 mod 4

−
(
ϑ∗(x)

)⋆k
= (−1)k+1x⋆k, if n is even and (k − 1)k ̸≡ 0 mod 4

.

Proof. Similar to the case of free loops, for Ω = ΩM we have that for the concatena-
tion ϕ

ϑ ◦ ϕ = ϕ ◦ (T ◦ (ϑ× ϑ))

holds. Here T : Ω× Ω → Ω× Ω, (α, β) 7→ (β, α). Hence, we get the commutative dia-
gram (any coefficients)

Hi(Ω)⊗Hj(Ω) ×
//

ϑ∗⊗ϑ∗
��

Hi+j(Ω× Ω)
ϕ∗

//

(ϑ×ϑ)∗
��

Hi+j(Ω)

ϑ∗

��

Hi(Ω)⊗Hj(Ω) ×
//

a⊗b7→b⊗a
��

Hi+j(Ω× Ω)

T∗
��

Hj(Ω)⊗Hi(Ω)
(−1)ij×

// Hi+j(Ω× Ω)
ϕ∗

// Hi+j(Ω),
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i.e. (−1)ijϑ∗(b) ⋆ ϑ∗(a) = ϑ∗(a ⋆ b) for all a ∈ Hi(Ω), b ∈ Hj(Ω). If M = Sn the Pon-
trjagin algebra with integer coefficients is a polynomial algebra and thus in particular
commutative, hence we can also write

(−1)ijϑ∗(a) ⋆ ϑ∗(b) = ϑ∗(a ⋆ b)

for a ∈ Hi(ΩS
n;Z), b ∈ Hj(ΩS

n;Z). For any class a ∈ Hi(ΩS
n;Z) we have ϑ∗(a) =

±a as ϑ is an involution and Hi(ΩS
n;Z) is isomorphic to either Z or 0. Thus if above

a = b we have

ϑ∗(a
⋆2) =

{(
ϑ∗(a)

)⋆2
= a⋆2, if |a| is even

−
(
ϑ∗(a)

)⋆2
= −a⋆2, if |a| is odd

.

The assertion of the lemma follows by iteratively applying the above and setting
a = x.

We now use the above lemmata to see how ϑ acts on the generators of the Chas–
Sullivan algebra of spheres.

Proposition 3.3. • For n odd the Chas–Sullivan algebra
(
H∗(ΛS

n;Z); ∗
)
has two

generators A and U and a unit E (see Section 1.4) and we have

ϑ∗(A) = A, ϑ∗(E) = E, ϑ∗(U) = −U.

• for n even the Chas–Sullivan algebra
(
H∗(ΛS

n;Z); ∗
)
has three generators A, σ1

and Θ and a unit E (see Section 1.4) and we have

ϑ∗(A) = A, ϑ∗(E) = E, ϑ∗(σ1) = −σ1, ϑ∗(Θ) = −Θ.

Proof. Since the inclusion Sn ↪→ Λ as constant curves is a ϑ-equivariant section of
Λ

ev0−−→ Sn, it follows that the generators A and E are fixed under ϑ∗.
For the generators σr ∈ H(2r−1)(n−1)(Λ;Z) ∼= Z we have

σr := σ1 ∗Θ∗(r−1) = Θ∗(r−1) ∗ σ1.

Here Θ ∈ H3n−2(Λ) is a designated generator (compare [HR13, Lemma 5.4]). Fur-

thermore, form the homotopy sequence of the fibration ΩSn j−→ ΛSn ev0−−→ Sn, for the
generator x ∈ Hn−1(ΩS

n;Z) of the Pontrjagin ring we have j∗(x) = σ1. The sequence
implies that

Hn−1(ΩS
n;Z) ∼= πn−1(ΩS

n)
j∗ // πn−1(ΛS

n) ∼= Hn−1(ΛS
n;Z)

is surjective. Hence j∗ maps generators to generators in degree n− 1. The isomor-
phisms Hn−1(ΩS

n;Z) ∼= πn−1(ΩS
n) and πn−1(ΛS

n) ∼= Hn−1(ΛS
n;Z) also follow

from this homotopy sequence: It implies that 0 = πk(ΩS
n) = πk(ΛS

n) for k ⩽ n− 2,
i.e. that ΩSn and ΛSn are (n− 2)-connected. This in turn implies, via the Hurewicz
theorem, that the Hurewicz map is an isomorphism in degree n− 1 if n− 1 is at
least 2.

We now use the relations between the algebras of the spaces in the fibration of
Proposition 1.5, Ω → Λ → M . More precisely, we use the following three relations
given in [GH09, Section 9.3] or in [HR13, Section 6, Equations 27–29]:

j!(a ∗ b) = j!(a) ⋆ j!(b), (3.1)
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j∗(y) ∗ a = j∗
(
y ⋆ j!(a)

)
, (3.2)

j∗
(
j!(a)

)
= A ∗ a, (3.3)

where A is a generator of H0(Λ) and ⋆ denotes the Pontrjagin product. The third
equation follows from the second noting that in the Pontrjagin algebra the class of a
constant loop is a unit. Using these equations for M = Sn we obtain:

• for n odd we have U∗2 = Θ, where U ∈ H2n−1(ΛS
n;Z) is a generator. Hence,

since σ1 = A ∗ U , using equations (3.3) and (3.1), we have

σr = σ1 ∗Θ∗(r−1) = σ1 ∗ U∗(2r−2) = A ∗ U∗(2r−1) = j∗j!(U
∗(2r−1))

= j∗j!(U)⋆(2r−1) = j∗(x
⋆(2r−1))

since j!(U) = x (compare [HR13, Section 6]). Note that j!(U) = x must hold,
as the above for r = 1 is j∗(x) = σ1 = j∗

(
j!(U)

)
. Since |x| = n− 1 is even, it

follows from Lemma 3.2 that

ϑ∗(σr) = ϑ∗
(
j∗(x

⋆(2r−1))
)
= j∗

(
ϑ∗(x

⋆(2r−1))
)
= j∗

(
ϑ∗(x)

⋆(2r−1))
= j∗(−x⋆(2r−1)) = −j∗(x

⋆(2r−1)) = −σr.

• for n even, using the equations (3.2) and (3.1), we only get

σr = σ1 ∗Θ∗(r−1) = j∗(x) ∗Θ∗(r−1) = j∗
(
x ⋆ j!(Θ

∗(r−1))
)

= j∗
(
x ⋆ j!(Θ)⋆(r−1)

)
since H2n−1(ΛS

n;Z) = 0 (compare [HR13, Section 6]). Hence we have

ϑ∗(σr) = ϑ∗

(
j∗
(
x ⋆ j!(Θ)⋆(r−1)

))
= j∗

(
ϑ∗

(
x ⋆ j!(Θ)⋆(r−1)

))
= j∗

(
ϑ∗(x) ⋆ ϑ∗

(
j!(Θ)⋆(r−1)

))
= −j∗

(
x ⋆ ϑ∗

(
j!(Θ)⋆(r−1)

))
= −j∗

(
x ⋆

(
ϑ∗ ◦ j!(Θ)

)⋆(r−1)
)
,

since j!(Θ) has even degree. σr = j∗(x ⋆ j!(Θ)∗(r−1)) being a generator implies
that j!(Θ) = ±x2. Thus

ϑ∗
(
j!(Θ)

)
= ϑ∗(±x⋆2) = ±ϑ∗(x

⋆2) = ±(−x⋆2) = −1(±x⋆2) = −j!(Θ)

and so

ϑ∗(σr) = (−1)rj∗

(
x ⋆

(
j!(Θ)

)⋆(r−1)
)
= (−1)rσr.

For Θ we have

ϑ∗(Θ) = (−1)(n−1)Θ

since

• if n is odd we have ϑ∗(Θ) = ϑ∗(U
∗2) = ϑ∗(U)∗2 (see Proposition 2.13) and

−A ∗ U = −σ1 = ϑ∗(σ1) = ϑ∗(A ∗ U) = ϑ∗(A) ∗ ϑ∗(U) = A ∗ ϑ∗(U).

Since the homology is torsion-free for n odd and with at most one generator in
each degree, it follows that ϑ∗(U) = −U and hence ϑ∗(Θ) = Θ if n is odd.
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↑ d
8n− 8 Q

7n− 6 Q

7n− 7 0

6n− 5 0

6n− 6 Q

5n− 4 ⟨q∗(U4)⟩ = Q

5n− 5 0

4n− 3 0

4n− 4 ⟨q∗(A ∗ U4)⟩ = Q

3n− 2 ⟨q∗(U2)⟩ = Q

3n− 3 0

2n− 1 0

2n− 2 ⟨q∗(A ∗ U2)⟩ = Q

n Q

n− 1 0

0 Q

0 1 2 3 4 → r

Figure 1: The homology Hi(ΛS
n/ϑ;Q) for n odd.

• if n is even

ϑ∗(σ2) = ϑ∗(σ1 ∗Θ) = ϑ∗(σ1) ∗ ϑ∗(Θ) = −σ1 ∗ ϑ∗(Θ)

(again by equation 2.5). However we have just shown that ϑ∗(σ2) = σ2 hence
ϑ∗(Θ) = −Θ for even n.

Together with Proposition 2.13 we get (see Figure 1)
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Corollary 3.4. Let ϑ : ΛSn → ΛSn be the involution that reverses the orientation of
loops. Then, if n ⩾ 3, for the orbit space Λ/ϑ of the associated Z2-action we have:

• for n odd

Hi(ΛS
n/ϑ;Q) ∼=


Q i = 0, n

Q i = n− 1 + λr = 2r(n− 1) for r ∈ N
Q i = 2n− 1 + λr = n+ 2r(n− 1) for r ∈ N
{0} otherwise

• for n even

Hi(ΛS
n/ϑ;Q) ∼=


Q i = 0, n

Q i = λr = (2r − 1)(n− 1) for r ∈ 2N
Q i = 2n− 1 + λr = n+ 2r(n− 1) for r ∈ 2N
{0} otherwise

where λr = (2r − 1)(n− 1) is the index of a r-fold iterated prime closed geodesic of
the round sphere (Sn, gst).

Proof. Using Proposition 2.13 we compute

• for n odd we have ϑ∗(U
∗k)=ϑ∗(U)∗k=(−1)kU∗k and hence, by Proposition 2.12,

q∗(U
∗k) ̸= 0 ⇔ k is even,

q∗(A ∗ U∗k) ̸= 0 ⇔ k is even.

• for n even we have ϑ∗(Θ
∗k) = (−1)kΘ∗k and ϑ∗(σk) = (−1)kσk and so, by

Proposition 2.12,

q∗(Θ
∗k) ̸= 0 ⇔ k is even,

q∗(σk) = q∗(σ1 ∗Θ∗(k−1)) ̸= 0 ⇔ k is even.

We now compute the transfer product Pϑ associated to orientation reversal. Recall
that it is given by

Pϑ(a, b) = qϑ∗
(
trϑ(a) ∗ trϑ(b)

)
for a, b ∈ H∗(Λ/ϑ).

Theorem 3.5. Let n > 2 and let ϑ be the orientation reversal of loops on ΛSn. Then

• for n odd, there exists a generator µ of H3n−2(ΛS
n/ϑ;Q) which is not nilpotent

in the algebra (H∗(ΛS
n/ϑ;Q), Pϑ). More precisely, for every k ∈ N, µk is a

generator of H2k(n−1)+n(ΛS
n/ϑ;Q). Moreover, multiplication with µ, i.e.

Pϑ(·, µ) : Hi(ΛS
n/ϑ;Q) → Hi+2n−2(ΛS

n/ϑ;Q)

is an isomorphism for i ⩾ 0.

• for n even, there exists a generator η of H5n−4(ΛS
n/ϑ;Q) which is not nilpotent

in the algebra (H∗(ΛS
n/ϑ;Q), Pϑ). More precisely, for every k ∈ N, ηk is a

generator of H4k(n−1)+n(ΛS
n/ϑ;Q). Moreover, multiplication with η, i.e.

Pϑ(·, η) : Hi(ΛS
n/ϑ;Q) → Hi+4n−4(ΛS

n/ϑ;Q)

is an isomorphism for i > 0.
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Proof.

• for n odd we define µ := qϑ∗(U
∗2). Then µ is a generator of H3n−2(Λ/ϑ;Q).

• for n even we define η := qϑ∗(Θ
∗2). Then η is a generator of H5n−4(Λ/ϑ;Q).

The theorem now follows immediately from Theorem 2.3, Proposition 2.13 and the
Chas–Sullivan algebra of spheres (see Section 1.4).

An analogous result holds for the product Pθ with rational coefficients as Propo-
sition 2.9 shows. In fact, the transfer algebras for all G conjugate to some Dm have
a structure as shown in the theorem, this now follows from Theorem 2.14.
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