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Abstract
We show a Gottlieb element in the rational homotopy of a

simply connected spaceX implies a structural result for the Sul-
livan minimal model, with different results depending on parity.
In the even-degree case, we prove a rational Gottlieb element is
a terminal homotopy element. This fact allows us to complete an
argument of Dupont to prove an even-degree Gottlieb element
gives a free factor in the rational cohomology of a formal space
of finite type. We apply the odd-degree result to affirm a spe-
cial case of the 2N -conjecture on Gottlieb elements of a finite
complex. We combine our results to make a contribution to
the realization problem for the classifying space Baut1(X). We
prove a simply connected space X satisfying Baut1(XQ) ≃ S2n

Q
must have infinite-dimensional rational homotopy and vanishing
rational Gottlieb elements above degree 2n− 1 for n = 1, 2, 3.

1. Introduction

Let X be simply connected and of finite CW type. A homotopy class α ∈ πn(X) is
a Gottlieb element if the map of the wedge (α |1X) : Sn ∨X → X extends to a map
of the product F : Sn ×X → X. The definition directly implies the vanishing of the
Whitehead product of α with any β ∈ πm(X). Amongst many nice results, Gottlieb
proved that an even-degree Gottlieb element is in the kernel of the mod p Hurewicz
homomorphism for any prime p not dividing the Euler characteristic of X [7, Th.4.4].

Gottlieb elements have a natural description in rational homotopy theory which
we recall, briefly, here. Our general reference for rational homotopy theory is the
text [5]. A space X, as hypothesized, has a Sullivan minimal model which is a free
DG algebra (∧V, d) over Q with each V n finite-dimensional. The differential d has
image in the decomposable elements of ∧V . The affiliated map F for a Gottlieb class
α ∈ πn(X) induces a map F ∗ : (∧V, d) → (Q(u), 0)⊗ (∧V, d) of DG algebras. Here u
is of degree n and (Q(u), 0) ∼= H∗(Sn;Q) is a non-minimal Sullivan model for Sn

with trivial differential. Since F extends (α |1X) we have F ∗(v) = u where v ∈ V n is
dual to α under Sullivan’s isomorphism V n ∼= Hom(πn(X),Q) [5, Th.15.11]. Further,
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writing F ∗(χ) = χ+ uθ(χ) for χ ∈ ∧V , the linear map θ so-defined is a derivation of
∧V , θ(χ1χ2) = θ(χ1)χ2 + (−1)|χ1|nχ1θ(χ2), lowering degrees by n, of (degree n) and
θ is a derivation cycle, dθ − (−1)nθd = 0. We say v ∈ V n is a Gottlieb element for the
Sullivan minimal model (∧V, d) if there exists a derivation cycle θ of ∧V of degree n
with θ(v) = 1.

In [8, Lem.1.1], Halperin showed that the derivation cycle θ associated to a Gottlieb
element v ∈ V n that is a cycle, dv = 0, induces a change of basis for the Sullivan model
(∧V, d) and a resulting DG algebra factorization:

(∧V, d) ∼= (∧(v), 0)⊗ (∧V ′, d′).

Recall the space of cycles Z(V ) ⊆ V may be identified as the dual of the image of the
rational Hurewicz homomorphism. The result thus represents a natural extension of
Gottlieb’s theorem, mentioned above (cf. [13]).

In this paper, we explore the structural consequence of a Gottlieb element v ∈ V n

in the general case, when dv ̸= 0. For n even, we obtain a surprising result. Say an
element v ∈ V n is a terminal element if v does not appear in a differential dw for any
w ∈ V .

Theorem 1.1. An even-degree Gottlieb element v ∈ V 2n in a Sullivan minimal model
(∧V, d) is a terminal element.

We apply Theorem 1.1 to an old problem on the location of Gottlieb elements for
a formal space X. We recall that a formal space X has a bigraded Sullivan minimal
model (∧V, d) with the generators carrying a second, or lower, grading V =

⊕
i⩾0 Vi

that extends multiplicatively to the whole of ∧V . The differential satisfies d(V0) = 0
and d(Vi) ⊆ (∧V )i−1 for i ⩾ 1 (see [9]). The following conjecture is attributed to C.
Jacobsson.

Conjecture 1.2. IfX is a formal space with bigraded Sullivan minimal model (∧V, d),
then all Gottlieb elements are contained in V0 ⊕ V1.

In [2], Dupont initiated work on Conjecture 1.2 and enunciated several results on
this problem. However, this paper was never published and some arguments appear
to be incomplete. We here reproduce Dupont’s argument in the even-degree case of
[2, Pro.4] and use Theorem 1.1 to complete the proof.

Theorem 1.3. (cf. [2, Pro.4]) Let X be a formal space with finitely generated rational
cohomology and suppose y ∈ V 2n is an even-degree Gottlieb element in the Sullivan
minimal model (∧V, d) for X. Then dy = 0 and there is a DG algebra isomorphism

(∧V, d) ∼= (∧(y), 0)⊗ (∧V ′, d′).

The mapping theorem for rational L.S. category ([5, Th.28.6]) implies strong con-
straints on the rational Gottlieb elements of a space X of finite L.S. category. The
even-degree Gottlieb elements vanish in this case and the number of independent
odd-degree Gottlieb elements is bounded above by the rational L.S. category of X
[5, Pro.29.8]. The location of the odd-degree Gottlieb elements is the subject of the
following open problem.
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Conjecture 1.4. [5, p.518] Let X be space with H∗(X;Q) finite-dimensional. Let
N = max{n | Hn(X;Q) ̸= 0}. Then the rational Gottlieb elements for X are of degree
< 2N .

In Theorem 2.1 below, we show that a Gottlieb element v ∈ V 2n+1 induces a basis
change for (∧V, d) after which the appearance of v in differentials dw is explicitly
constrained. We apply this result to prove:

Theorem 1.5. Let X be space with H∗(X;Q) finite-dimensional and with top non-
trivial degree N . Let x ∈ V 2n+1 be a Gottlieb element in the Sullivan minimal model
(∧V, d) with dx a monomial in the generators of V. Then 2n+ 1 < 2N .

We apply our results in both the even and odd-degree cases to another open prob-
lem in rational homotopy, concerning the classifying space Baut1(X) for fibrations.
We recall that X, as hypothesized, has a universal fibration X → EX → Baut1(X)
such that any fibration of simply connected spaces with fibre X is equivalent to a
pullback by a map into the base Baut1(X), the classifying space (cf. [12]). There
is an H-equivalence ΩBaut1(X) ≃ aut1(X) with aut1(X) = map(X,X; 1). With our
hypotheses on X, the construction can be applied to the rationalization XQ of X
yielding XQ → EXQ → Baut1(XQ), the universal fibration with fibre XQ.

The construction of algebraic models for Baut1(XQ) is the classical work of many
authors (cf. [15, Ch.7]) and an area of continued interest. Recent advances provide
models in the non simply-connected case [1, 3]. We make primary use here of the
first and simplest description of a model, due to Sullivan. Write Dern(∧V ) for the
space of degree n derivations of the Sullivan minimal model (∧V, d) for n ⩾ 1 with
the graded commutator bracket [θ, φ] = θ ◦ φ+ (−1)|θ||φ|φ ◦ θ and differentialD(θ) =
[d, θ]. Sullivan’s identity [14, Sec.11] is an isomorphism of connected, graded Lie
algebras:

π∗(ΩBaut1(XQ)) ∼= H∗(Der(∧V ), D). (1)

The following question is due to M. Schlessinger.

Question 1.6. [5, p.517] Is every simply connected space Y realized, rationally, as a
classifying space, in the sense that there is some simply connected space X such that
Baut1(XQ) ≃ YQ?

Question 1.6 suggests a realization problem for classifying spaces. Given a space Y ,
the problem is to either constructX with Baut1(XQ) ≃ YQ or, alternately, to prove no
such space X exists. The identity K(Q, n) ≃ Baut1(K(Q, n− 1)) shows Eilenberg–
Mac Lane spaces are realized in this sense, at least for n ⩾ 2, Deciding whether an
arbitrary product K(Q,m)×K(Q, n) can be so realized is already challenging (see
[10, Th.1] for one class of examples).

In previous work, we have proved several low-dimensional rational types Y cannot
be realized as Baut1(X) when X is restricted to have finite-dimensional rational
homotopy (X is π-finite). We have proved this result for Y = S2n for n = 1, 2 and
for Y = CPn for n = 2, 3, 4; namely, if Baut1(XQ) ≃ YQ for any such Y then X must
be π-infinite [10, 11]. We extend and sharpen these results with the following.

Theorem 1.7. Let X satisfy Baut1(XQ) ≃ S2n
Q for n = 1, 2, 3. Then X is π-infinite

with vanishing rational Gottlieb elements above degree 2n− 1.



278 GREGORY LUPTON and SAMUEL BRUCE SMITH

Our proof of Theorem 1.7 streamlines the argument given in [10, Th.3] and extends
it to include the case S6. The advance over our previous work is that here we do not
start by assuming X is π-finite with Baut1(XQ) ≃ S2n

Q . Instead, we give a constraint
on the π-infinite spaces X that could satisfy this identity.

The paper is organized as follows. In Section 2, we show a rational Gottlieb element
induces a basis change for a Sullivan minimal model. We deduce Theorems 1.3 and 1.5
as consequences in Section 3. In Section 4, we give a structure result for a Sullivan
minimal model having Gottlieb elements of both parities in the scenario that arises
in the realization problem for Y = S2n. We apply this result to prove Theorem 1.7.
In Section 5, we give a further example suggesting a negative answer to Question 1.6.
We prove a space X with Baut1(XQ) ≃ (S3 ∨ · · · ∨ S3)Q must have vanishing rational
Gottlieb elements.

2. Gottlieb elements and basis change for Sullivan models

In this section, we observe that a Gottlieb element v ∈ V n induces a change of
basis isomorphism for the Sullivan minimal model (∧V, d). The idea is as follows.
Start with an automorphism ϕ : ∧ V → ∧V of graded algebras. Then ϕ induces a
new differential d′ on ∧V given by d′ = ϕ−1 ◦ d ◦ ϕ. The map

ϕ : (∧V, d′) → (∧V, d)

is, tautologically, a DG algebra isomorphism. Also note that, since d is decomposable,
d′ is decomposable as well and ϕ is an isomorphism of minimal DG algebras.

A derivation θ of (∧V, d) induces a derivation θ′ = ϕ−1 ◦ θ ◦ ϕ of ∧V . If θ is a
derivation cycle, i.e., [d, θ] = 0, then we see

[d′, θ′] =
[
ϕ−1 ◦ d ◦ ϕ, ϕ−1 ◦ θ ◦ ϕ

]
= ϕ−1 ◦ [d, θ] ◦ ϕ = 0.

We focus first on the structuring effect of an odd-degree Gottlieb elementx∈V 2n+1.
Let θ be of degree 2n+ 1 and satisfy [d, θ] = 0 and θ(x) = 1. Write V = ⟨x⟩ ⊕W for
W ⊆ V a complementary subspace to ⟨x⟩ in V . Define a linear map ϕ : V → ∧V by
setting ϕ(x) = x and, for each v ∈W ,

ϕ(v) = v − xθ(v). (2)

Extend multiplicatively to a map of algebras ϕ : ∧ V → ∧V . It is easy to see that ϕ
is an automorphism. Notice further that

ϕ(v)ϕ(v′) =
(
v − xθ(v)

)(
v′ − xθ(v′)

)
= vv′ − xθ(v)v′ − (−1)|v| xvθ(v′)

= vv′ − xθ(vv′).

It follows that ϕ(χ) = χ− xθ(χ) for a general χ ∈ ∧W . Also note that, again for a
general χ ∈ ∧W , we have ϕ(xχ) = ϕ(x)ϕ(χ) = x

(
χ− xθ(χ)

)
= xχ. As above, define

d′ = ϕ−1 ◦ d ◦ ϕ and θ′ = ϕ−1 ◦ θ ◦ ϕ so that [d′, θ′] = 0. We prove

Theorem 2.1. Let (∧V, d) be a Sullivan minimal model with a Gottlieb element x ∈
V 2n+1. Let (∧V, d′) be as constructed above and θ′ the induced derivation cycle of
degree 2n+ 1 of the model (∧V, d′). Write V = ⟨x⟩ ⊕W . Then:



THE STRUCTURING EFFECT OF A GOTTLIEB ELEMENT ON THE SULLIVAN MODEL 279

(a) θ′(x) = 1 and d′(x) = dx

(b) For χ ∈ ∧W , we have θ′(χ) = xλ(χ) for some λ ∈ Der4n+2(∧W )

(c) For χ ∈ ∧W ,

d′(χ) = −θ′(χ) dx+ d′0(χ) = −xλ(χ)dx+ d′0(χ)

for some d′0 ∈ Der−1(∧W ) and λ ∈ Der4n+2(∧W ) as in (b).

Proof. Part (a) is immediate since ϕ(x) = x and further ϕ is the identity on elements
of degree ⩽ 2n. For (b) and (c), we begin with a general observation. Suppose that
ψ : ∧ V → ∧V is a derivation. Let χ ∈ ∧W . If we define linear maps on ∧W by

ψ(χ) = xψ1(χ) + ψ0(χ),

then both ψ1 and ψ0 are derivations of ∧W (of different degrees). This is easy to
check, as follows. For a product of terms χ, χ′ ∈ ∧W , write

ψ(χχ′) = ψ(χ)χ′ + (−1)|ψ||χ|χψ(χ′)

=
(
xψ1(χ) + ψ0(χ)

)
χ′ + (−1)|ψ||χ|χ

(
xψ1(χ

′) + ψ0(χ
′)
)

= x
(
ψ1(χ)χ

′ + (−1)|ψ||χ|+|χ|χψ1(χ
′)
)
+
(
ψ0(χ)χ

′ + (−1)|ψ||χ|χψ0(χ
′)
)

= xψ1(χχ
′) + ψ0(χχ

′).

In the last line, we used that ψ0 has the same degree as ψ, whereas the degree of ψ1

is of opposite parity to the degree of ψ, so we have |ψ|+ 1 ≡ |ψ0| mod 2.

Applying this decomposition to θ gives

θ(χ) = x θ1(χ) + θ0(χ). (3)

As just observed, this defines derivations θ0 and θ1 of ∧W with θ0 of degree 2n+ 1
and θ1 of degree 4n+ 2. The isomorphism ϕ is given by

ϕ(χ) = χ− x θ0(χ). (4)

Furthermore, as already noted, we have ϕ(xχ) = xχ, and hence also ϕ−1(xχ) = xχ.
Applying ϕ−1 to (4), then, yields

ϕ−1(χ) = χ+ x θ0(χ). (5)

We use the notation from (3), (4), and (5) in what follows.

(b) We calculate:

θ′(χ) = ϕ−1 ◦ θ ◦ ϕ(χ) = ϕ−1 ◦ θ
(
χ− x θ0(χ)

)
= ϕ−1

(
x θ1(χ) + θ0(χ)− 1 θ0(χ) + x θ0 ◦ θ0(χ)

)
= ϕ−1

(
x
(
θ1(χ) + θ0 ◦ θ0(χ)

))
= x

(
θ1(χ) + θ0 ◦ θ0(χ)

)
,

with the last line following from the observation made leading into (5), that ϕ−1(xχ) =
xχ. So θ′ has the form asserted. Note that θ0 ◦ θ0 = (1/2)[θ0, θ0] is a derivation of
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degree 4n+ 2. We have

λ = θ1 +
1

2
[θ0, θ0].

(c) As in (3), we write

d(χ) = x d1(χ) + d0(χ), (6)

which defines d1 and d0 as derivations of ∧W . We now compute:

θ ◦ d(χ) = θ
(
x d1(χ) + d0(χ)

)
= 1 · d1(χ)− x

(
x θ1(d1(χ)) + θ0(d1(χ))

)
+ x θ1(d0(χ)) + θ0(d0(χ))

= d1(χ)− x θ0 ◦ d1(χ) + x θ1 ◦ d0(χ) + θ0 ◦ d0(χ)

and

d ◦ θ(χ) = d
(
x θ1(χ) + θ0(χ)

)
= dx · θ1(χ)− x

(
x d1(θ1(χ)) + d0(θ1(χ))

)
+ x d1(θ0(χ)) + d0(θ0(χ))

= dx θ1(χ)− x d0 ◦ θ1(χ) + x d1 ◦ θ0(χ) + d0 ◦ θ0(χ).

Adding these two identities, whose left-hand sides sum to zero, gives us the following
two identities amongst derivations of ∧W :

[d0, θ1] = [d1, θ0] and d1 + [d0, θ0] = −dx θ1 (7)

with the first from collecting terms in x · ∧W and the second from collecting terms
in ∧W , which terms are independent of each other.

Now we calculate:

d′(χ) = ϕ−1 ◦ d ◦ ϕ(χ) = ϕ−1 ◦ d
(
χ− x θ0(χ)

)
= ϕ−1

(
x d1(χ) + d0(χ)− dx θ0(χ) + x d0 ◦ θ0(χ)

)
= x d1(χ) +

(
d0(χ) + x θ0 ◦ d0(χ)

)
−
(
dx+ x θ0(dx)

)(
θ0(χ) + x θ0 ◦ θ0(χ)

)
+ x d0 ◦ θ0(χ)

= x
(
d1(χ) + [d0, θ0](χ)− dx θ0 ◦ θ0(χ)

)
+ d0(χ)− dx θ0(χ).

The last line follows using θ0(dx) = 0, which follows for degree reasons, to cancel one
term from the penultimate line. Notice that we also commuted x and dx without
changing the sign. Using the second identity of (7), we arrive at

d′(χ) = −x
(
dx θ1(χ) + dx θ0 ◦ θ0(χ)

)
+ d0(χ)− dx θ0(χ)

= −x dxλ(χ) + d′0(χ),

where we have written d′0(χ) = d0(χ)− dx θ0(χ) for the term not involving x. One can
see this is a derivation as it is a sum of two terms, each of which acts as a derivation on
∧W . Alternately, the terms here may be written in the form d′(χ) = xd′1(χ) + d′0(χ),
with both d′1 and d′0 derivations of ∧W by the observation at the top of the proof.

Remark 2.2. We record some further consequences.

(1) If dx = 0 then, by (c), there is a DG algebra decomposition

(∧V, d′) ∼= (∧(x), 0)⊗ (∧W,d′0).

We thus recover the odd-degree case of [8, Lem.1].
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(2) If we decompose [θ, θ] in the form [θ, θ] = x [θ, θ]1 + [θ, θ]0, with [θ, θ]1 and [θ, θ]0
derivations of ∧W . Then λ in part (b) is given by

λ =
1

2
[θ, θ]0.

(3) Decomposing d′ in this form so that d′(χ) = x d′1(χ) + d′0(χ) we then have the
identities:

[d′1, d
′
0] = 0 and d′0 ◦ d′0 + dx d′1 = 0.

An even-degree Gottlieb element y ∈ V 2m gives rise to a basis change, as well. In
this case, the result gives Theorem 1.1, that y is a terminal element. We explain this
now. Let θ be the derivation cycle of degree 2m with θ(y) = 1 and [d, θ] = dθ − θd = 0.
Write V = ⟨y⟩ ⊕W and define a linear map ψ : ∧ V → ∧V by setting

ψ(y) = 0 and ψ(χ) = −yθ(χ)

for χ ∈ ∧W . Extend multiplicatively so that the ideal of ∧V generated by y is in
the kernel of ψ. Then ψ is a degree-zero derivation of ∧V and, further, ψ is locally
nilpotent meaning that, for each element ξ ∈ ∧V , there is some r for which ψr(ξ) = 0.
We may thus exponentiate ψ to obtain a linear map

ϕ = exp(ψ) = id + ψ +
1

2!
ψ2 +

1

3!
ψ3 + · · · .

Then ϕ is an automorphism of ∧V and so induces a DG algebra isomorphism

ϕ : (∧V, d′) → (∧V, d)

by setting d′ = ϕ−1 ◦ d ◦ ϕ. We transfer the derivation cycle θ to one of (∧V, d′) by
setting θ′ := ϕ−1 ◦ θ ◦ ϕ.

Theorem 2.3. Let (∧V, d) be a Sullivan minimal model with a Gottlieb element
y ∈ V 2m. Let ϕ : (∧V, d′) → (∧V, d) and θ′ the induced derivation cycle of (∧V, d′) be
as above. Write V = ⟨y⟩ ⊕W . Then with notation as above:

(a) θ′(y) = 1 and d′(y) = dy.

(b) For χ ∈ ∧W , we have θ′(χ) = 0.

(c) The differential d′ restricts to a derivation of ∧W , namely, we have

d′(∧W ) ⊆ ∧W.

Proof. Again (a) is immediate. For (b), let χ ∈ ∧W and observe

ϕ(χ) = χ+ ψ(χ) +
1

2!
ψ2(χ) +

1

3!
ψ3(χ) + · · · .

Notice that ψ2(χ) = ψ
(
− yθ(χ)

)
= (−y)(−y)θ2(χ), since we defined ψ(y) = 0. Gen-

erally, we have

ψk(χ) = (−1)kykθk(χ),

for k ⩾ 1. It follows that

ϕ(χ) = χ+
∑
k⩾1

(−1)k
1

k!
ykθk(χ).
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Recall that θ is locally-nilpotent, so the sum is finite for each χ. Applying the deriva-
tion θ, with θ(y) = 1, we have

θ
(
ϕ(χ)

)
= θ(χ)− θ(χ)− yθ2(χ)

+
∑
k⩾2

(−1)k
(

1

(k − 1)!
yk−1θk(χ) +

1

k!
ykθk+1(χ)

)
= θ(χ)− θ(χ)− yθ2(χ) + yθ2(χ)

+
∑
k⩾3

(−1)k
1

(k − 1)!
yk−1θk(χ) +

∑
k⩾2

(−1)k
1

k!
ykθk+1(χ)

= θ(χ)− θ(χ)− yθ2(χ) + yθ2(χ)

+
∑
k⩾2

(
(−1)k+1 1

k!
ykθk+1(χ) + (−1)k

1

k!
ykθk+1(χ)

)
= 0.

Finally, this gives θ′(χ) = ϕ−1 ◦ θ′ ◦ ϕ(χ) = ϕ−1
(
xλ
(
ϕ(χ)

))
= 0, as claimed.

(c) Let v ̸= y be a generator of degree at least 2m+ 1 and write

d′(v) = χ0 + yχ1 + · · ·+ ykχk,

for some k ⩾ 1 and each χi ∈ ∧W , that is, not containing terms that involve y. The
derivation θ′ satisfies θ′(y) = 1 and θ′(χi) = 0 for each i. Also, because θ′ is a cycle
with respect to D′ = ad(d′), we have

θ′ ◦ d′(v) = d′ ◦ θ′(v) = 0,

and hence we have

0 = 0 + χ1 + yχ2 + · · ·+ yk−1χk.

Each of these terms must be zero independently of each other, since the χ do not
involve y, an even-degree generator of ∧V . Hence, each χi = 0 for i = 1, . . . , k, and we
have d′(v) = χ0, which does not involve y. For generators v of degree 2m and lower,
d′(v) cannot involve y for degree reasons.

Observe that the even-degree case of [8, Lem.1] follows from Theorem 2.3. When
dy = 0, we have a splitting (∧V, d) ∼= (∧(y), 0)⊗ (∧W,d′).

Proof of Theorem 1.1. Observe that Theorem 1.1 is a direct consequence of The-
orem 2.3. We give an alternate, homotopy-theoretic proof of Theorem 1.1 in Sec-
tion 5.

3. Location of rational Gottlieb elements

We begin with a simple example of a non-terminal Gottlieb element, necessarily
of odd degree.
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Example 3.1. Consider the minimal model (∧V, d) with V = ⟨u2, v2, x3, z3, y6⟩, where
subscripts denote degrees, and differential given on generators by

du = 0 = dv, dx = uv, dz = v2, dy = −uvx+ u2z.

Set θ(x) = 1 and θ(y) = x, and θ = 0 on all other generators. It is straightforward to
check that, extended as a derivation of ∧V , we have [d, θ] = 0.

Observe that the even-degree element y ∈ V 6 is also a Gottlieb element in Exam-
ple 3.1 as it is a terminal element. Indeed if V is finite-dimensional then we see
that any v ∈ V N with N = max{n | V n ̸= 0} is terminal and so a Gottlieb element.
The converse to this observation is relevant to the realization problem for classifying
spaces, in particular, Theorem 1.7 above. Namely, we note that a space having a
non-vanishing rational homotopy element in a degree that is higher than the degree
of all non-vanishing Gottlieb elements must be a π-infinite space.

Suppose now that (∧V, d) is a formal, minimal DG algebra. When V is finite-
dimensional then, in the lower grading, we have V = V0 ⊕ V1 by [4, Th.2]. Conjec-
ture 1.2 concerns the case when V is infinite-dimensional. Recall the assertion is that
a Gottlieb element v ∈ V n should be of lower grading ⩽ 1, i.e., v ∈ V0 ⊕ V1 with
V0 = Z(V ) the space of cycles. The following argument is due to Dupont [2, Pro.4].

Proof of Theorem 1.3. Let X be a formal space with Sullivan minimal model (∧V, d)
and supposeH∗(X;Q) ∼= H(∧V, d) is finitely generated. Then V0 is finite-dimensional.
Suppose y ∈ V 2m is a Gottlieb element. We prove that dy = 0 so that y ∈ V0.

Use the Gottlieb element y and Theorem 2.3 to obtain a change of basis (∧V, d′)
so that, in (∧V, d′), the generator y does not appear in the differential d′ and the
derivation θ′ has θ′(y) = 1 and θ′ = 0 on all other generators. Further, we have d′(y) =
dy.

Suppose d′(y) ̸= 0 so that y ̸∈ V0. Write V even
0 = ⟨z1, . . . , zk⟩. Let ai be of degree

2|zi| − 1. Extend (∧V, d′) to a minimal DG algebra (∧V ⊗ ∧(a1, . . . , ak), δ) by setting
δ(ai) = z2i and δ = d′ on ∧V . We prove:

Lemma 3.2. dimH(∧V ⊗ ∧(a1, . . . , ak), δ) <∞.

Proof. Write H = H(∧V, d′) and H0 = H/⟨x21, . . . , x2k⟩. Since (∧V, d′) is formal we
have a quasi-isomorphism (∧V, d′) ≃ (H, 0) and so a corresponding quasi-isomorphism

(∧V ⊗ ∧(a1, . . . , ak), δ) ≃ (H⊗ ∧(a1, . . . , ak), δ′)

with δ′(ai) = x2i (where xi now denotes the cohomology class represented by xi) and
δ′ = 0 on H. Observe that the graded algebra H⊗ ∧(a1, . . . , ak) is finitely generated
as a module over H. Since ker δ′ is preserved by the action of H, we see that the
homology H(H⊗ ∧(a1, . . . , ak), δ′) is a module over H as well, and finitely generated
as such. In the latter H-module, the elements x2i ∈ H act trivially. For

if γ ∈ H ⊗ ∧(a1, . . . , ak) is a δ′-cycle then x2i γ = δ′(aiγ) is a δ′-boundary.

We conclude that H(H⊗ ∧(a1, . . . , ak), δ′) is a module over H0 and is finitely gener-
ated as such. But H0 is clearly finite-dimensional. Thus

H(∧V ⊗ ∧(a1, . . . , ak), δ) ∼= H(H⊗ ∧(a1, . . . , ak), δ′)

is a finitely-generated module over a finite-dimensional algebra H0 and is thus finite-
dimensional.
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Now consider the derivation θ′ of (∧V, d′). Since y does not appear in any differen-
tial d′(v) for v ∈ V ′, we may extend θ′ to a derivation θ′′ of (∧V ⊗ ∧(a1, . . . , ak), δ),
that satisfies [δ, θ′′] = 0 and θ′′(y) = 1 by setting θ′′(ai) = 0 for each i. As a con-
sequence, θ′′ displays y as an even-degree Gottlieb element in the Sullivan mini-
mal model (∧V ⊗ ∧(a1, . . . , ak), δ). By Lemma 3.2, (∧V ⊗ ∧(a1, . . . , ak), δ) has finite
rational L.S. category contradicting [5, Pro.29.8(ii)]. We conclude that dy = d′(y) =
0.

Remark 3.3. We note the need for Theorem 1.1 in the preceding. The extension of
the derivation θ′ to θ′′ requires y ∈ V 2m to be a terminal element. Otherwise it is not
clear how the derivation θ′′ is to be defined on the ai.

We next apply our basis change formula to affirm Conjecture 1.4 in a restricted
case. Recall our hypothesis in Theorem 1.5 is that there is an element x ∈ V 2n+1

that is a Gottlieb element and such that dx a monomial. We introduce notation for
the latter hypothesis. Write V = ⟨u1, . . . , uk⟩ in a basis with the ui in (non-strictly)
increasing order of degrees. Then dx is a monomial means we may write

dx = w1 · · ·wn
in which wj = u

mj

ij
for mj ⩾ 1. We assume the indices ij are increasing and so the

degrees of the uij are increasing. Note mj = 1 when uij has odd degree.

Lemma 3.4. With notation as above, dw1 = 0.

Proof. We have

0 = d2x = d(w1 · · ·wn) = d(w1 · · ·wn−1)(wn) + (−1)|w1|+···+|wn−1|(w1 · · ·wn−1)dwn.

Since uin is of maximal degree, the term umn
in

does not appear in (w1 · · ·wn−1)dwn.
We must have that the two summands above are both zero. In particular,

d(w1 · · ·wn−1)(wn) = 0.

Since uin cannot appear in d(w1 · · ·wn−1) we have, in fact, d(w1 · · ·wn−1) = 0. The
result now follows by induction.

Proof of Theorem 1.5. Suppose we are given a Sullivan minimal model (∧V, d) with
Hq(∧V, d) = 0 for q > N and x ∈ V 2n+1 a Gottlieb element such that dx is a mono-
mial. We must prove n ⩽ N − 1. We perform the basis change of Theorem 2.1 using
x ∈ V 2n+1 to obtain an isomorphic Sullivan minimal model (∧V, d′). We observe that
d′(x) = dx remains a monomial under this basis change.

Suppose now that n ⩾ N . Write d′(x) = w1 . . . wn as above so that d′(w1) = 0 by
Lemma 3.4. Suppose first that w1 is of odd degree. Let u = w1x and observe that

d′(u) = d′(w1x) = (−1)|w1|w2
1w2 · · ·wn = 0

since w2
1 = 0. Now |u| > N and so u must be a boundary of (∧V, d′). However, this

contradicts Theorem 2.1 (3). If x appears in a differential d′(χ) for χ ∈ ∧V then it
must appear in a term of the form xλ(χ)d′(x).

So suppose w1 is of even degree. In this case, the identity

0 = (d′)2x = d′(w1 · · ·wn) = (−1)|wi|w1d
′(w2 · · ·wn)

implies d′(w2 · · ·wn) = 0. Now, since |d′(x)| = 2n+ 2 > 2N , either we have |w1| > N
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or |w2 · · ·wn| > N . In the first case, w1 is a cycle of (∧V, d′) of degree greater than
N and so w1 is a boundary. If w1 = d′(η) for η ∈ ∧V then u = x− ηw2 · · ·wn is
a cycle with |u| > N . Note that u cannot be a boundary as this contradicts the
decomposability of d′. Similarly, if w2 · · ·wn has degree > N then it must bound,
say d′(ζ) = w2 · · ·wn. Again this gives a cycle u = x− (−1)|w1|w1ζ with |u| > N that
cannot be exact.

4. The realization problem for S2n

The problem of realizing S2n as a classifying space, of producing a rational space
XQ with Baut1(XQ) ≃ S2n

Q , translates, with Sullivan’s identity (1), to a simple alge-

braic problem. Namely, a solution to the realization problem for S2n is a Sullivan
minimal model (∧V, d) giving a Lie algebra isomorphism:

H∗(Der(∧V ), D) ∼= π∗(ΩS
2n
Q ) ∼= ⟨ι2n−1, [ι2n−1, ι2n−1]⟩.

Here ι2n−1 ∈ π2n−1(ΩS
2n
Q ) ∼= π2n−1(S

2n−1
Q ) corresponds to the fundamental class.

Throughout this section, we assume a solution to the realization problem is given.
Specifically, we assume we have a Sullivan minimal model (∧V, d) admitting a non-
bounding derivation cycle θa ∈ Der2n−1(∧V ) such that [θa, θa] is non-bounding, as
well, and that these two classes span the homology of derivations:

H∗(Der(∧V ), D) = ⟨θa, [θa, θa]⟩. (8)

Write θb = [θa, θa]. We make one further hypothesis. We assume

θb(y0) = 1 for some y0 ∈ V 4n−2. (9)

Note that the hypothesis (9) corresponds to the case that (∧V, d) has a nontrivial
Gottlieb element in degree 4n− 2.

We prove that assumptions (8) and (9) lead to a contradiction when n = 1, 2, and
3. For the latter two cases, we will make use of a combined version of our change of
basis results from Section 2. We begin with the following:

Lemma 4.1. There is x ∈ V 2n−1 with θa(x) = 1.

Proof. By (9) we have

1 = θb(y0) = [θa, θa](y0) = 2θa(θa(y0)) = θa (2θa(y0)) .

It follows that 2θa(y0) has an indecomposable summand, i.e., 2θa(y0) = x+ χ for
some x ∈ V 2n−1 and χ decomposable in ∧V . Then θa(χ) is decomposable and so, by
the above equation, θa(χ) = 0. Thus θa(x) = 1, as needed.

Lemma 4.1 already leads to a contradiction in the case n = 1 since V 1 = 0. We
note a stronger statement can be made in this case (see Proposition 5.1, below). We
assume now that n ⩾ 2

Lemma 4.2. The element x ∈ V 2n−1 with θa(x) = 1 satisfies dx ̸= 0.
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Proof. If dx = 0 then by Remark 2.2 (1) we have a factorization of DG algebras:

(∧V, d) ∼= (∧(x), 0)⊗ (∧W,d).

By the above factorization, we see (x, 1) is a non-bounding derivation cycle of degree
2n− 1. However, [(x, 1), (x, 1)] = 0 which is a contradiction of (8).

We now apply our work in Section 2. First we make the change of basis

ϕ : (∧(W,x), d′) → (∧V, d)

in (2) using the Gottlieb element x ∈ V 2n−1. Let y = 2y0. Remark 2.2 (2) implies

λ(y) =
1

2
[θa, θa]0(2y0) = θb(y0) = 1.

By Theorem 2.1 (b), we have

θ′(a)(y) = λ(y)x = x.

We next apply a basis change as in Theorem 2.3 except in this case we use the
derivation λ ∈ Der4n−2(∧V ). Write V = ⟨x⟩ ⊕ ⟨y⟩ ⊕ V̂ , so that W = ⟨y⟩ ⊕ V̂ in the
notation of Theorem 2.1. First define a linear map ψ : ∧ V → ∧V by setting

ψ(x) = 0, ψ(y) = 0, and ψ(χ) = −yλ(χ)

for χ ∈ ∧V̂ , and then extending ψ multiplicatively (so that the ideal of ∧V generated
by x and y is in the kernel of ψ). Then ψ is a degree-zero, locally nilpotent derivation
of ∧V . We may then exponentiate ψ to an isomorphism

ϕ′ = exp(ψ) = id + ψ +
1

2!
ψ2 +

1

3!
ψ3 + · · · : ∧ V → ∧V.

Setting d′′ = ϕ′−1 ◦ d′ ◦ ϕ′, we obtain a DG algebra isomorphism

ϕ′ : (∧V, d′′) → (∧V, d′).

We transfer the derivation cycle θ′a to this DG algebra by θ′′a = ϕ′−1 ◦ θ′a ◦ ϕ′. Then
[d′′, θ′′a ] = 0. We prove:

Proposition 4.3. Let (∧V, d′′) and θ′′a ∈ Der2n−1(∧V ) be as constructed above. Write

V = ⟨x⟩ ⊕W where W = ⟨y⟩ ⊕ V̂ . Then

(a) d′′x = d′x = dx and θ′′a(x) = 1, θ′′a(y) = x, and, θ′′a(χ) = 0 for χ ∈ ∧V̂ .

(b) y does not appear in the differential d′′(w) for any w ∈ V .

(c) Given χ ∈ ∧W and decompose d′′ in the form d′′(χ) = xd′′1(χ)+d
′′
0(χ) for deriva-

tions d′′1 and d′′0 of ∧W . We then have

d′′1(y) = −dx and d′′1(χ) = 0 for χ ∈ ∧V̂

(namely, x does not appear in any differential other than that of y, where it
occurs only in the term −xdx).

Proof. (a) Note d′(x) = dx by Theorem 2.1 (a) while d′′(x) = d′(x) since ψ(x) = 0.
Since ψ(y) = 0, it is immediate that ϕ′(x) = ϕ′−1(x) = x and ϕ′(y) = ϕ′−1(y) = y. It
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then follows that we have θ′′a(x) = 1 and θ′′(y) = x. For χ ∈ ∧V̂ , we have

ϕ′(χ) = χ+ ψ(χ) +
1

2!
ψ2(χ) +

1

3!
ψ3(χ) + · · · .

But notice that ψ2(χ) = ψ
(
− yλ(χ)

)
= (−y)(−y)λ2(χ), since ψ(y) = 0. Generally,

we have

ψk(χ) = (−1)kykλk(χ),

for k ⩾ 1. It follows that

ϕ′(χ) = χ+
∑
k⩾1

(−1)k
1

k!
ykλk(χ).

Then, applying the derivation λ, with λ(y) = 1, we have

λ
(
ϕ′(χ)

)
= λ(χ)− λ(χ)− yλ2(χ)

+
∑
k⩾2

(−1)k
(

1

(k − 1)!
yk−1λk(χ) +

1

k!
ykλk+1(χ)

)
= λ(χ)− λ(χ)− yλ2(χ) + yλ2(χ)

+
∑
k⩾3

(−1)k
1

(k − 1)!
yk−1λk(χ) +

∑
k⩾2

(−1)k
1

k!
ykλk+1(χ)

= λ(χ)− λ(χ)− yλ2(χ) + yλ2(χ)

+
∑
k⩾2

(
(−1)k+1 1

k!
ykλk+1(χ) + (−1)k

1

k!
ykλk+1(χ)

)
= 0.

Finally, this gives

θ′′a(χ) = ϕ′−1 ◦ θ′a ◦ ϕ′(χ) = ϕ′−1
(
xλ
(
ϕ′(χ)

))
= 0,

as claimed.
(b) Let v be a generator of degree at least 4n− 3 and write

d′′(v) = χ0 + yχ1 + · · ·+ ykχk,

for some k ⩾ 1 and each χi ∈ ∧(x)⊗ ∧(V̂ ), that is, not containing terms that involve
y. The derivation [θ′′a , θ

′′
a ] = 2θ′′a ◦ θ′′a satisfies [θ′′a , θ

′′
a ](y) = 2. Now [θ′′a , θ

′′
a ](v) = 0 for

v ∈ V̂ by (a). Also, because [θ′′a , θ
′′
a ] is a cycle with respect to D′′ = ad(d′′), we have

[θ′′a , θ
′′
a ] ◦ d′′(v) = d′′ ◦ [θ′′a , θ′′a ](v) = 0,

and hence we have

0 = 0 + 2λχ1 + 4λyχ2 + · · ·+ 2kλyk−1χk.

Here, we use the fact that [θ′′a , θ
′′
a ](χi) = 0 for each i. But each of these terms must

be zero independently of each other, since the χ do not involve y, an even-degree
generator of ∧V . Hence, each χi = 0 for i = 1, . . . , k, and we have d′′(v) = χ0, which
does not involve y. For generators v of degree 4n− 4 and lower, d′′(v) cannot involve
y for degree reasons. So y does not appear in d′′, as claimed.
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(c) Suppose given v ∈ V̂ k with k > 2n− 2. Write

d′′(v) = xV1 + V2,

for V1, V2 ∈ ∧V̂—recall that we just showed in (b) that y does not occur in the

differential of any generator. Then we have θ′′a(dv) = V1, since θ
′′
a(V̂ ) = 0. On the

other hand, we have θ′′a(v) = 0, for the same reason, and because θ′′a is a D′′-cycle we
have

0 = d′′ ◦ θ′′a(v) = −θ′′a ◦ d′′(v) = −V1.

Thus d′′(v) = V2 ∈ ∧V̂ , and x does not appear in d′′(v). For generators v of degree
2n− 2 and lower, d′′(v) cannot involve x for degree reasons. Finally, from part (b)
of Theorem 2.1, we have d′(y) = −x dx+ d′0(y), and d′0(y) is a decomposable term,
since the original d was decomposable. It follows that

ϕ′−1
(
− x dx+ d′0(y)

)
= −x dx+ d′0(y), and hence d′′(y) = −x dx+ d′′0(y).

We apply Proposition 4.3, to obtain a differential d′′ on ∧V . Then y ∈ V 4n−2 does
not appear in a differential d′′(w) for any w ∈ V , i.e. y is terminal in (∧V, d′′). We
may write

d′′(y) = −x d′′(x) + d′′0(y), (10)

(here using that d′′(x) = dx) where d′′0(y) ∈ ∧W (so not involving x). Furthermore,

x does not appear in the differential d′′(v) for v in the subspace V̂ complementary to
y in V .

Proposition 4.4. Let n = 2 or 3. Let (∧V, d′′) be the Sullivan minimal model
described above. Then

dimH∗(Der(∧V ), D) > 2.

Proof. For convenience in the proof, we omit double subscripts and write d = d′′.
We begin with the case n = 2 so that x ∈ V 3 and y ∈ V 6. By Lemma 4.2, we may
suppose that dx ̸= 0. Write V 2 = ⟨v1, . . . , vr⟩ and note that, for degree reasons, V 2

consists of cycles: d(vj) = 0 for each j = 1, . . . , r. Now dx ∈ ∧2V 2, so choose and fix
elements αj ∈ V 2 for which

dx = v1α1 + · · ·+ vrαr

(some, but not all, of the αj may be zero). For each vj ∈ V 2, the derivation (y, vj) is
a D-cycle since y does not appear in the differential d. As a cycle of degree 4, each
(y, vj) must be exact or the inequality is achieved. We record a consequence of this
exactness in the following form.

Lemma 4.5. Let z ∈ V t, v ∈ V s with s < t and consider a derivation of the form
θ = (z, v) + θ′ with θ′(z) = 0. If θ is a D-boundary, with θ = D(η), then there exists
v∗ ∈ V t−s+1 such that

dz = vv∗ + α,

for α ∈ ∧V where V = ⟨v∗⟩ ⊕ V . Further, the derivation η satisfies η(v∗) = ±1.
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Proof. In the expression v = D(η)(z) = dη(z) + (−1)|η|η(dz), the term dη(z) is de-
composable and so dη(z) = 0. Thus v = (−1)|η|η(dz) which implies dz must contain
a quadratic term vv∗ as specified with η(v∗) = (−1)|η|.

Returning to our case, each degree 4 derivation cycle (y, vj) must be exact, say
(y, vj) = D(ηj). By Lemma 4.5, there exist (independent) v∗j ∈ V 5 such that

dy = −xdx+

r∑
j=1

vjv
∗
j + β,

and ηj(v
∗
j ) = ±1 where the term −xdx occurring in dy is by Proposition 4.3. Here β

is in ∧7(V ) with V complementary to ⟨v∗1 , . . . , v∗r ⟩ in V .
Now define a degree 3 derivation

γ = (y, x)− α1 · η1 − · · · − αr · ηr.

Notice that, since d(αj) = 0, we have

D(αj · ηj) = αjD(ηj) = αj(y, vj) = (y, vjαj).

Also, since y does not appear in the differential d, we have D(y, x) = (y, dx). Hence,

D(γ) = (y, dx)− (y, v1α1)− · · · − (y, vrαr) = 0.

Thus, γ is a D-cycle. Since θa(x) = 1, γ is not a multiple of θa. Thus γ must be exact.
Applying Lemma 4.5 with z = y and v = x, we conclude that dy contains a term of
the form xx∗ for an indecomposable x∗ of degree 3 with η(x∗) = ±1. We have arrived
at a contradiction: other than in the term xdx, the generator x does not occur in dy.

For the case n = 3, we have x ∈ V 5 and y ∈ V 10. By Lemma 4.2, we again assume
dx ̸= 0. If V 2 = 0, then dx ∈ ∧2V 3 and we may define the derivation γ and proceed
to a contradiction exactly as above.

Suppose then that there is some v ∈ V 2. We define a degree 3 derivation

ζ = (x, v) + (y, vx).

We claim ζ is a D-cycle. Since dv = 0, and since y is terminal, we see D(y, vx) =
(y, vdx). Since x only appears in the differential dy and there as the term −xdx, we
see D(x, v) = (x, v) ◦ d = (y,−vdx). Thus D(ζ) = 0 and so, for degree reasons, ζ is a
D-boundary. Write ζ = D(ρ) for ρ ∈ Der4(∧V ). By Lemma 4.5, dx contains a term
vv∗ for v∗ ∈ V 4 with ρ(v∗) = ±1. Further, we have that D(ρ)(y) = vx with D(ρ)
vanishing on a complementary subspace of ⟨x, y⟩ in V .

If V 2 = ⟨v⟩ is one-dimensional, write d(v∗) = vw for w ∈ V 3. Note that dw = 0.
The D-cycle (y, v) must be a boundary, so write (y, v) = D(η) for η of degree 9. Then,
set

β = (y, v∗)− w · η.

We see that β is D-cycle of degree 6 that must be a D-boundary. By Lemma 4.5
again, this implies a term v∗v∗∗ appears in dy with v∗∗ ∈ V 7. But ρ(v∗) = ±1 and so
D(ρ)(y) = ρ(dy) has a summand v∗∗ which contradicts D(ρ)(y) = vx.

It remains to handle the case V 2 = ⟨v1, v2, . . . , vn⟩ for n ⩾ 2. Here we begin by
defining D-cycles ζj = (x, vj) + (y, vjx) of degree 3 as above. These must each bound
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which implies we have derivations ρj of degree 4 with D(ρj) = ζj . Using Lemma 4.5,
we may write

dx = v1v
∗
1 + · · ·+ vnv

∗
n + χ

for v∗j ∈ V 4 where χ ∈ ∧V and V is complementary to ⟨v∗1 , · · · , v∗n⟩ in V . We have
ρj(v

∗
j ) = ±1. Consider the derivation

α = v1 · ρ2 − v2 · ρ1

of degree 2. We see

D(α)(x) = v2v1 − v1v2 = 0 and D(α)(y) = v1v2x− v2v1x = 0.

Since D(ρ1) = ζ1 and D(ρ2) = ζ2 and the latter vanish on a complementary subspace
to ⟨x, y⟩ in V so does D(α). Thus α is a D-cycle which, for degree reasons, must be a
D-boundary. Write α = D(σ) for σ ∈ Der3(∧V ). Then D(σ)(v∗1) = α(v∗1) = −v2 and
D(σ)(v∗2) = α(v∗2) = v1. From this we deduce there is w ∈ V 3 with σ(w) = 1 and the
term −wv2 appears in d(v∗1) while the term wv1 appears in d(v∗2).

Finally, consider the D-cycles of degree 8 given by (y, vj) for j = 1, . . . , r. Since
these must be D-boundaries we obtain degree 9 derivations ηj satisfying D(ηj) =
(y, vj). Since w ∈ V 3 we may write dw = α1v1 + · · ·+ αrvr for choices of elements
αj ∈ V 2. Define a degree 7 derivation

γ = (y, w)−
r∑
j=1

αjηj .

We directly check that γ is a D-cycle and so a D-boundary. Then, by Lemma 4.5
applied with z = y and v = w, we must have a generator w∗ ∈ V 8 such that dy con-
tains the term ww∗. Since σ(w) = 1 we see that w∗ occurs in D(σ)(y) as an indecom-
posable summand. On the other hand, we have

D(σ)(y) = α(y) = v1 · ρ2(y)− v2 · ρ1(y)

is decomposable since ρj(y) is of degree 6. This contradiction completes the proof.

Proof of Theorem 1.7. Suppose given a simply connected space X satisfying

Baut1(XQ) ≃ S2n
Q

for n = 1, 2, 3. The Sullivan minimal model (∧V, d) for X then satisfies (8) and so
we have θa ∈ Der2n−1(∧V ) and θb = [θa, θa] ∈ Der4n−2(∧V ) which are non-bounding
derivation cycles. If X has a non-vanishing rational Gottlieb element in degree at least
2n, then there is a derivation cycle θ ∈ Derq(∧V ) with θ(v) = 1 for some v ∈ V q. The
minimality condition for d implies θ cannot be aD-boundary and so, since q > 2n− 1,
we must have q = 4n− 2 and θ = c θb for some c ̸= 0. Thus, taking y0 = cv ∈ V 4n−2

we have θb(y0) = 1. When n = 1, we have the contradiction V 1 = 0. Proposition 4.4
gives the result for n = 2 and 3.
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5. The universal fibration and the realization problem

Question 1.6 naturally leads to consideration of the universal fibration. For observe
that YQ ≃ Baut1(XQ) for some space XQ implies the existence of a fibration

XQ → EXQ → Baut1(XQ) ≃ YQ

that is universal for fibrations with fibre XQ. We consider this expanded view here.
Write ∂∞ : ΩBaut1(XQ) → XQ for the connecting homomorphism. We recall that
α ∈ πn(XQ) is a Gottlieb element if and only if

α = (∂∞)♯(β) for some β ∈ πn+1(Baut1(XQ)) [7, Th.2.6].

Suppose now we have such universal fibration for Y = S2. That is, suppose we
have a simply connected space X with Baut1(XQ) ≃ S2

Q. By Theorem 1.7, X has
vanishing rational Gottlieb elements. By Gottlieb’s result, mentioned above, it follows
that pXQ : EXQ → Baut1(XQ) induces a surjection on rational homotopy groups. We
can also see this directly from the long-exact homotopy sequence of the universal
fibration. As a consequence, we deduce:

Proposition 5.1. Suppose X is a simply connected and satisfies Baut1(XQ) ≃ S2
Q.

Then the universal fibration XQ → EXQ → Baut1(XQ) with fibre XQ has a section.

Proof. We obtain a section of pXQ : EXQ → Baut1(XQ) as the lift of the identity
homotopy class S2

Q ≃ Baut1(XQ) → Baut1(XQ) to EXQ .

Proposition 5.1 gives a strong restriction on a rational space XQ which satisfies
Baut1(XQ) ≃ S2

Q. Namely, XQ must have the property that every rational fibration
XQ → EQ → BQ has a section. We give an example to show that it is possible to
have a non-trivial, sectioned fibration with base S2 and fibre X such that X has no
rational Gottlieb elements.

Example 5.2. Let p : S2 ∨ S2 → S2 denote the projection onto the first summand.
Convert p into a fibration, to obtain a fibre sequence

X
j // S2 ∨ S2 p // S2.

Then p admits the obvious section i1 : S
2 → S2 ∨ S2 which is just inclusion into

the first summand. Also, the fibration is not trivial, even after rationalization, since
H∗(S2 ∨ S2;Q) does not split as a tensor product H∗(S2;Q)⊗H∗(X;Q). Next, note
that X has infinitely many non-zero rational homotopy groups since, from the long
exact sequence in rational homotopy, we have πi(XQ) ∼= πi((S

2 ∨ S2)Q) for i ⩾ 4, and
S2 ∨ S2 has infinitely many non-zero rational homotopy groups. To see that X has no
rational Gottlieb elements, we apply the mapping theorem for rational L.S. category
([5, Th.28.6]). Note that that the fibre inclusion j : X → S2 ∨ S2 induces an injection
of rational homotopy groups and cat0(X) ⩽ cat0(S

2 ∨ S2) = 1 Now X is π-infinite
and so it follows that X has the rational homotopy type of a wedge of at least two
spheres. Thus, the homotopy Lie algebra π∗(ΩXQ) is a free Lie algebra on at least
two generators. It follows directly that XQ has no nontrivial Gottlieb elements; for
recall a Gottlieb element α ∈ πn(XQ) has vanishing Whitehead products [α, β] = 0
for all β ∈ πq(XQ).
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The rationalization of the fibration of Example 5.2 cannot be a universal fibration.
We argue as follows. First by a Serre spectral sequence argument, Hi(X;Q) ̸= 0 for
i ⩾ 2. Since cat0(X) = 1, XQ is an infinite wedge of spheres. We prove:

Proposition 5.3. Suppose that X has the rational homotopy type of a wedge of
infinitely many spheres. Then Baut1(XQ) is π-infinite.

Proof. We note that Gatsinzi has proved essentially this fact for XQ a finite wedge
(cf. [6]). We use the model for Baut1(XQ) described in [15, VII.2] that derives from
a Quillen model of X. Since X is a wedge of spheres, it has Quillen model a free
Lie algebra L(V ) with zero differential and V a graded vector space of generators
isomorphic to the (de-suspension of the) reduced homology of X. We assume this
homology is infinite-dimensional, and so write V = {vi}i∈N with the generators vi
written in order of increasing degree: thus i < j =⇒ |vi| ⩽ |vj |. Now the model for
Baut1(XQ) is a DG Lie algebra written as

(sL(V )⊕DerL(V ), δ),

where sL(V ) denotes the abelian Lie algebra on the vector space L(V ) with degrees
shifted up by one, DerL(V ) denotes the usual Lie algebra of derivations that increase
degree, except that in degree 1 we restrict to just the cycles. The differential δ restricts
to the usual differential on DerL(V ) which, since we assume X is a wedge of spheres,
is zero here. The only non-trivial differentials, therefore, are of elements from sL(V ),
where we have δ(sx) = ad(x) ∈ DerL(V ), for x ∈ L(V ). See [15, VII.2(6)] for details.
Suppose that vn ∈ V is the first generator of degree strictly greater than that of v0.
Then we define an infinite sequence of non-zero derivations θi ∈ Der L(V ) for i ⩾ n
by setting θi(v0) = vi and θi = 0 on all other generators, and then extending θi as a
derivation to an element of DerL(V ). Then each θi is a δ-cycle in sL(V )⊕DerL(V )
that cannot be exact, since any boundary ad(x) will map v0 to elements of bracket
length at least two in L(V ). The homology of the Quillen model (sL(V )⊕DerL(V ), δ)
gives the homotopy of Baut1(XQ), which therefore is non-zero in infinitely many
degrees.

Our main result in this section is a further example with the same conclusion as
Proposition 5.1.

Theorem 5.4. Suppose X is a simply connected space with

Baut1(XQ) ≃
(
S3 ∨ · · · ∨ S3

)
Q (a wedge of two or more copies of S3).

Then the universal fibration XQ → EXQ → Baut1(XQ) has a section.

We prove a preliminary result on the homology of derivations of a Sullivan minimal
model having a free factor generated by an element of even degree. We say an element
x in a graded Lie algebra L is a zero-divisor of L if there exists y ∈ L with y ̸∈ ⟨x⟩
such that [x, y] = 0.

Lemma 5.5. Let (∧V, d) be a Sullivan minimal model admitting a DG algebra factor-
ization (∧V, d) ∼= (∧(y), 0)⊗ (∧W,d) for some y ∈ V 2m. Let θ ∈ Der2m(∧V ) be dual
to y. If the homology class [θ] is not a zero divisor in H∗(Der(∧V ), D), then

H⩾2m(Der(∧V ), D) = ⟨[θ]⟩.
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Proof. Suppose that we have a derivation cycle α ∈ Derq(∧V ) with q ⩾ 2m repre-
senting a class [α] ∈ H⩾2m(Der(∧V ), D) in the complement of ⟨[θ]⟩. We will show
that if [θ] is not a zero divisor then α is a D-boundary.

Without loss of generality, we assume that α(y) = 0, for otherwise we may replace
α with α− θ. Given χ ∈ ∧W , write

α(χ) = α0(χ) + yα1(χ) + · · ·+ yrαr(χ) + · · · ,

which defines derivations αi of ∧W for i ⩾ 0. Since α is a D-cycle, and y is a d-cycle,
and the differential d restricts to one of ∧W , it follows that each αi is a D-cycle.
Notice that the sum here is locally finite, namely only finitely many terms are non-
zero for a fixed χ. We will show inductively that we have a sequence of derivations
{ηi}i⩾0 of ∧W , for which D(ηi) = αi, and it follows that the (locally finite) sum

η(χ) = η0(χ) + yη1(χ) + · · ·+ yrηr(χ) + · · ·

hasD(η) = α. Induction starts with i = −1, where there is nothing to prove. For some
r ⩾ −1, assume that we have derivations {ηi}0⩽i⩽r with D(ηi) = αi. Then D(yiηi) =
yiα, and

α−D

(
r∑
i=0

yiηi

)
(χ) = yr+1αr+1(χ) + yr+2αr+2(χ) + · · · .

Write β(χ) = αr+1(χ) + yαr+2(χ) + y2αr+3(χ) + · · · , so that

α−D

(
r∑
i=0

yiηi

)
= yr+1β.

Since the left-hand side here is a D-cycle, it follows that so too is β a D-cycle. Now
use β to construct the derivation

β̂ = β − y [θ, β] +
y2

2!

[
θ, [θ, β]

]
+ · · ·+ yn

n!
adn(θ)(β) + · · · .

Since y is a d-cycle, and θ and β are both D-cycles, each term in this (locally finite)

sum is a derivation that is a D-cycle. Hence, β̂ is a D-cycle. But observe that we have

[θ, β̂] = ([θ, β]− 1 · [θ, β]) + (−y
[
θ, [θ, β]

]
+ y

[
θ, [θ, β]

]
) + · · · = 0.

Then our assumption that θ is not a zero divisor implies that β̂ = D(η) for some

η ∈ Derq+1(∧V ). However, we have β̂ = β0. This follows by writing out terms in

β̂(χ), as

β̂(χ) = β(χ)− y [θ, β](χ) + · · ·

= β(χ)− y θ ◦ β(χ) + · · ·+ yn

n!
θn ◦ β(χ) + · · ·

= (αr+1(χ) + yαr+2(χ) + y2αr+3(χ) + · · · )
− y θ(αr+1(χ) + yαr+2(χ) + y2αr+3(χ) + · · · )

+ · · ·+ yn

n!
θn(αr+1(χ) + yαr+2(χ) + y2αr+3(χ) + · · · ) + · · ·
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= (αr+1(χ) + yαr+2(χ) + y2αr+3(χ) + · · · )
− (yαr+2(χ) + 2y2αr+3(χ) + 3y3αr+4(χ) + · · · )

+ · · ·+ (ynαr+1+n(χ) +

(
n+ 1

n

)
yn+1 αr+1+n+1(χ) + · · · ) + · · · .

Notice above, in passing from the first to the second lines, we replaced adn(θ)(β)(χ)
with θn ◦ β(χ) since θ(χ) = 0. A careful tallying of the terms in this last expression
reveals that it consists of a sum of terms ynαr+1+n(χ) for n ⩾ 0 and, for n ⩾ 1, the
coefficient of ynαr+1+n(χ) is the alternating sum

1− n+

(
n

2

)
+ · · ·+ (−1)t

(
n

t

)
+ · · ·+ (−1)n.

But this is zero, since it is the value of (1− x)n when x = 1. That is, we have

D(η)(χ) = β̂(χ) = αr+1(χ).

But this means that we have D(η) = αr+1, as derivations of ∧W , and setting η = ηr
completes the inductive step. Notice that αr is of degree |αr| = |α| − 2mr, and |ηr| =
|αr|+ 1, so for a fixed χ only finitely many ηr(χ) can be non-zero, for degree reasons.
It follows from the induction that, with

η =
∑
i⩾0

yiηi,

we have D(η) = α.

Proof of Theorem 5.4. Suppose X with Sullivan minimal model (∧V, d) also satis-
fies Baut1(XQ) ≃ (S3 ∨ · · · ∨ S3)Q. Let pXQ : EXQ → Baut1(XQ) denote the univer-
sal fibre map for XQ. Suppose (pXQ)♯ : π3(EXQ) → π3(Baut1(XQ)) is not surjective.
Then there is a Gottlieb element y ∈ V 2. Since (∧V, d) is simply connected, dy = 0.
Thus we have a factorization (∧V, d) ∼= (∧(y), 0)⊗ (∧W,d) for W complementary to
⟨y⟩ in V . We may apply Lemma 5.5. However, here we have

H∗(Der(∧V ), D) ∼= π∗
(
ΩBaut1(XQ)

) ∼= π∗
(
Ω(S3 ∨ · · · ∨ S3)Q

)
and the latter is the free graded Lie algebra generated in degree 2 by at least two
elements. No element of degree 2 (or any other degree) can be a zero divisor and yet
neither can we have H⩾2(Der(∧V ), D) one-dimensional (indeed, H⩾2(Der(∧V ), D) is
infinite-dimensional). We have a contradiction.

We may assume (pXQ)♯ : π3(EXQ) → π3(Baut1(XQ)) is surjective. Then, for each
summand S3

Q involved in the wedge, we may lift the inclusion S3
Q → (S3 ∨ · · · ∨ S3)Q

through pXQ to a map S3
Q → EXQ . Assembling these liftings gives a lifting of the

identity map of Baut1(XQ) ≃ (S3 ∨ · · · ∨ S3)Q through pXQ and so a section of the
universal fibration.

We conclude with a homotopy-theoretic proof of Theorem 1.1 using the universal
fibration for rational spaces.

Alternate Proof of Theorem 1.1. Given a spaceX with a Gottlieb elementα∈ π2n(X)
we show that there is a corresponding terminal element y ∈ V 2n in a Sullivan minimal
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model (∧V, d) for X. Let F : S2n ×X → X be the affiliated map for α. The rational-
ization of F is a map F0 : S

2n
Q ×XQ → XQ which has adjoint β0 : S

2n
Q → aut1(XQ).

From the isomorphisms

π2n+1(Baut1(XQ)) ∼= π2n(ΩBaut1(XQ)) ∼= π2n(aut1(XQ))

we may view β0 as a class β0 : S
2n+1
Q → Baut1(XQ). The pullback of the universal

fibration XQ → EXQ → Baut1(XQ) by β0 is a fibration of the form

XQ → EQ → S2n+1
Q with connecting homomorphism satisfying ∂♯(ι2n+1) = α0,

where ι2n+1 ∈ π2n+1(S
2n+1
Q ) is the fundamental class and α0 ∈ π2n(XQ) the image of

α under rationalization. Stepping back one stage in the Puppe sequence gives a fibra-
tion ΩS2n+1

Q → XQ → EQ. Now observe ΩS2n+1
Q = K(Q, 2n). The relative Sullivan

model for this fibration is thus of the form

(∧V ′, d′) → (∧(V ′ ⊕ ⟨y⟩), D) → (∧(y), 0).

Since y ∈ V 2n is a Gottlieb element, using [5, Pro.15.13] we can see that the mid-
dle term is a minimal Sullivan model for XQ having terminal homotopy element y
corresponding to the class α.
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[1] Alexander Berglund and Tomáš Zeman, Algebraic models for classifying spaces
of fibrations, arXiv.org:2203.02462.
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Math., Univ. Catholique de Louvain, no. 210, 1992.

[3] Yves Félix, Mario Fuentes, and Aniceto Murillo, Lie models of homotopy auto-
morphism monoids and classifying fibrations, Adv. Math. 402 (2022), Paper
No. 108359, 64.

[4] Yves Félix and Stephen Halperin, Formal spaces with finite-dimensional ratio-
nal homotopy, Trans. Amer. Math. Soc. 270 (1982), no. 2, 575–588.

[5] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy
theory, Grad. Texts in Math., vol. 205, Springer-Verlag, New York, 2001.

[6] Jean-Baptiste Gatsinzi, LS-category of classifying spaces, Bull. Belg. Math.
Soc. Simon Stevin 2 (1995), no. 2, 121–126.

[7] Daniel H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math.
91 (1969), 729–756.

[8] Stephen Halperin, Torsion gaps in the homotopy of finite complexes, Topology
27 (1988), no. 3, 367–375.

[9] Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences,
Adv. Math. 32 (1979), no. 3, 233–279.

[10] Gregory Lupton and Samuel Bruce Smith, Realizing spaces as classifying
spaces, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3619–3633.

[11] Gregory Lupton and Samuel Bruce Smith, The universal fibration with fibre
X in rational homotopy theory, J. Homotopy Relat. Struct. 15 (2020), no. 2,
351–368.

https://arXiv.org/abs/2203.02462


296 GREGORY LUPTON and SAMUEL BRUCE SMITH

[12] J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1
(1975), no. 1, 155, xiii+98.

[13] John Oprea, Decomposition theorems in rational homotopy theory, Proc. Amer.
Math. Soc. 96 (1986), no. 3, 505–512.

[14] Dennis Sullivan, Infinitesimal computations in topology, Publ. Math. Inst.
Hautes Études Sci. (1977), no. 47, 269–331 (1978).
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