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LIFESPAN FUNCTORS AND NATURAL DUALITIES IN
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Abstract
We introduce lifespan functors, which are endofunctors on

the category of persistence modules that filter out intervals
from barcodes according to their boundedness properties. They
can be used to classify injective and projective objects in
the category of barcodes and the category of pointwise finite-
dimensional persistence modules. They also naturally appear
in duality results for absolute and relative versions of persis-
tent (co)homology, generalizing previous results in terms of bar-
codes. Due to their functoriality, we can apply these results to
morphisms in persistent homology that are induced by mor-
phisms between filtrations. This lays the groundwork for the
efficient computation of barcodes for images, kernels, and cok-
ernels of such morphisms.

1. Introduction

Persistent homology, the homology of a filtration of simplicial complexes, is a
cornerstone in the foundations of topological data analysis. It has found numerous
applications in a variety of disciplines, including for example computer vision, neu-
roscience, materials science, and evolutionary biology [7, 13, 18, 27, 30]. The most
common setting studied in the mathematical literature is as follows: Given a filtra-
tion of simplicial complexes

K• : ∅ = K−∞ = · · · = K0 ⊆ K1 ⊆ · · · ⊆ KN = · · · = K∞ = K,

by applying homology with coefficients in a field to each space and to each inclusion
map one obtains a diagram of vector spaces

H∗(K•) : · · · → H∗(K0) → H∗(K1) → · · · → H∗(KN ) → · · · .
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Such a diagram is called a persistence module, and it decomposes into a direct sum of
indecomposable diagrams, each supported on an interval [1,17,37]. The collection of
these intervals, called the persistence barcode, has proven to be a powerful invariant
of the filtration [21,31].

A natural question to ask is how the barcode changes when the filtration changes.
This leads to the seminal stability theorem of Cohen-Steiner et al. [14], which asserts
that passing from filtrations to barcodes is a 1-Lipschitz map. One way to approach
the stability theorem is via induced matchings, which were introduced in [3]. Given
a morphism of filtrations f• : L• → K•, the homology functor induces a morphism
H∗(f•) : H∗(L•) → H∗(K•) of persistence modules. From this morphism, the induced
matching construction yields a partial bijection between the barcodes of H∗(L•) and
H∗(K•), which can be used to bound the distance between these two barcodes from
above. The induced matching is defined in terms of the barcode of imH∗(f•), moti-
vating the problem of computing this barcode. A first algorithm for this problem
has been given by Cohen-Steiner et al. [15] for the special case where f• is of the
form L• = K• ∩ L ↪→ K•. In addition to their algorithm for image persistence, Cohen-
Steiner et al. [15] present algorithms for computing barcodes of the kernel and cok-
ernel of the morphism H∗(f•). All of their algorithms rely on the standard reduction
of boundary matrices.

The barcode of the image of a morphism of persistence modules has various appli-
cations besides the construction of the induced matching. Cohen-Steiner et al. [15]
propose applications of the image barcode to recovering the persistent homology of a
noisy function on a noisy domain; see also the related work by Chazal et al. [11]. Very
recently, Reani and Bobrowski [33] proposed a method that includes the computation
of induced matchings in order to pair up common topological features in different data
sets, with applications to statistical bootstrapping. Furthermore, the computation of
image barcodes is used in a distributed algorithm for persistent homology based on
the Mayer–Vietoris spectral sequence by Torras Casas [35].

Despite the usefulness of image persistence, there are a few aspects that have pre-
vented these techniques from being widely used in applications so far. Specifically,
to the best of our knowledge, there is no publicly available implementation at this
moment. Furthermore, computation using the known algorithms is slow in compari-
son to modern algorithms for a single filtration. Indeed, computing usual persistent
homology for larger data sets arising in real-world applications only became feasible
in recent years due to optimizations that exploit various structural properties and
algebraic identities of the problem [2,12,20]. One of our motivations is to develop
a theory allowing for the adaption of these speed-ups to the computation of images
and induced matchings.

One of the most important improvements for barcode computations relies on the
use of cohomology based algorithms. These were first studied by de Silva et al. in [20]
and justified by certain duality results. In summary, the authors provide correspon-
dences between the barcodes for persistent homology and for persistent cohomology,
as well as the barcodes for persistent relative homology

H∗(K,K•) : H∗(K,K0) → H∗(K,K1) → · · · → H∗(K,K)

and similarly for persistent relative cohomology. The homology persistence modules
simply have the same barcode as their cohomology counterparts [20, Proposition 2.3].
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For the absolute-relative correspondence [20, Proposition 2.4], it turns out that the
bounded intervals in the barcodes of Hd−1(K•) and Hd(K,K•) are also exactly the
same, and there is a one-to-one correspondence between intervals of the form [a,∞) in
the barcode ofHd(K•) and intervals of the form (−∞, a) in the barcode ofHd(K,K•).

The original proof for the absolute-relative correspondence uses a decomposition
of filtered chain complexes. This strategy relies on a non-canonical choice, which does
not extend to the functorial setting. We thus adopt a different point of view based on
the long exact sequence of a pair in homology. Applying this functorial construction
to a filtration K•, we obtain a long exact sequence of persistence modules

· · · ∆Hd(K) Hd(K,K•) Hd−1(K•) ∆Hd−1(K) · · · ,ϵd ∂ ηd−1

where ∆ denotes constant persistence modules. As it turns out, the first two of the
short exact sequences

0 im ∂ Hd−1(K•) im ηd−1 0

0 im ϵd Hd(K,K•) im ∂ 0

0 im ηd ∆Hd(K) im ϵd 0

split (as a special case of Corollary 4.8), showing that im ∂ is a summand of both
Hd(K,K•) and Hd−1(K•). Its barcode consists of the bounded intervals of either
persistence module. Moreover, the third short exact sequence has a constant persis-
tence module ∆Hd(K) in the middle, implying that the persistence modules im ηd
and im ϵd determine each other. Together this shows that the barcodes of H∗(K•)
and H∗(K,K•) completely determine each other. For details see Section 6.1.

By observing that ∆Hd(K) ∼= ∆colimHd(K) ∼= ∆ limHd(K,K•) and that ϵ and
η are the counit and the unit of the adjunctions ∆ ⊣ lim and colim ⊣ ∆, respectively,
we can generalize this discussion to arbitrary persistence modules, indexed by totally
ordered sets. Taking images, kernels and cokernels of the morphisms ϵ and η yields
endofunctors on the category of persistence modules, which we call lifespan functors
(see Figure 1); in particular, the mortal part (−)† = ker η(−) and the immortal part
(−)∞ = im η(−) determine death in the persistence module, while the nascent part
(−)∗ = coker ϵ(−) and the ancient part (−)−∞ = im ϵ(−) determine birth.

This general definition of lifespan functors also works in the category of matching
diagrams, since these diagrams admit limits and colimits (Proposition 4.1). The cate-
gory of matching diagrams is equivalent to the category of barcodes [4]. The effect of
the lifespan functors on persistence modules and matching diagrams is best described
in terms of barcodes, as for the above example im ∂ ∼= ker ηd−1

∼= coker ϵd, whose bar-
code corresponds to the bounded intervals; see also Figure 1 for an illustration and
Corollary 4.7 for a precise statement.

As an application of lifespan functors, we give a simple characterization of the pro-
jective and injective objects both in the category of barcodes (or matching diagrams)
as well as the category of pointwise finite-dimensional persistence modules (Theo-
rems 5.1 and 5.5). In both cases, the projective objects are those with vanishing
mortal part, while the injective objects are those with vanishing nascent part.

The lifespan functors allow us to succinctly express the above absolute-relative
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correspondence in terms of natural isomorphisms and correspondences (Theorem 6.2):

Hd−1(K•)
† ∼= im ∂ ∼= Hd(K,K•)

∗, Hd(K•)
∞ ∼= im ηd ↔ im ϵd ∼= Hd(K,K•)

−∞.

Here, naturality is inherited from the construction of the long exact homology
sequence. In particular, from the morphism of filtrations f• : L• → K• inducing a
map f : L→ K, we get an isomorphism Hd−1(f•)

† ∼= Hd(f, f•)
∗. We also get a mor-

phism

· · · ∆Hd(K) Hd(K,K•) Hd−1(K•) ∆Hd−1(K) · · ·

· · · ∆Hd(L) Hd(L,L•) Hd−1(L•) ∆Hd−1(L) · · ·

ϵd ∂ ηd−1

ϵd ∂ ηd−1

of long exact sequences. Note, however, that the induced sequences of kernels, images,
and cokernels are no longer exact in general, so the rest of the proof of the absolute-
relative-correspondence for a single filtration does not carry over completely to this
setting. In order to still obtain a useful absolute-relative correspondences for H∗(f•),
we develop conditions for when the lifespan functors commute with taking images,
kernels, and cokernels of morphisms (Theorem 3.10), so that, for example if H∗(f) is
an isomorphism, we get

(imHd−1(f•))
† ∼= im

(
Hd−1(f•)

†) ∼= im
(
Hd(f, f•)

∗) ∼= (imHd(f, f•))
∗,

meaning that, as in the single filtration case, the bounded intervals in the barcodes
of the images of the absolute and relative morphism agree. Furthermore, we will also
state a functorial version of the correspondence between persistent homology and
cohomology in terms of vector space duality (Proposition 6.4) and analyze how the
lifespan functors behave with respect to dualization (Section 4.2).

V †,∗

V † V ∗

V −∞,† V V ∗,∞

V −∞ V ∞

V −∞,∞

Figure 1: Lifespan functors applied to a finite type R-indexed persistence module V ,
visualized via their barcode according to Corollary 4.7.
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As explained in [2], computing cohomology instead of homology is particularly rel-
evant in conjunction with the clearing optimization, introduced by Chen and Kerber
in [12], and also used implicitly in the cohomology algorithm by de Silva et al. [20].
There is also an adaptation of this optimization for the computation of barcodes of
images, which we aim to formalize in future work. We already provide an implemen-
tation of the resulting method for computing barcodes of images of maps between
the persistent homologies of Vietoris–Rips filtrations [5].

Outline
We start off by reviewing some preliminaries on persistence including the theory
of matching diagrams in Section 2. In Section 3, we present the lifespan functors
and some of their relevant properties in a general setting. The lifespan functors are
then specialized to persistence modules in Section 4. As an application, we then use
the lifespan functors in Section 5 to classify injective and projective objects in the
categories of barcodes and p.f.d. persistence modules. We finish by proving functorial
dualities in persistent homology involving our lifespan functors in Section 6.

Notation and conventions
Throughout the paper, we fix a totally ordered set (T,⩽) and write T for the corre-
sponding category. Note that Top is then the category corresponding to (T,⩾). We
also fix a field F and write Vec for the category of vector spaces over F. The full
subcategory of finite dimensional vector spaces is denoted by vec. We write Top for
the category of topological spaces. If A is an abelian category, we write Ch(A) for
the category of chain complexes over A. If C and D are categories, we write CD for
the category of functors C → D.

2. Preliminaries

We recall the basic definitions of absolute and relative persistent (co)homology in
Section 2.1. They are examples of persistence modules, which we go over together with
matching diagrams in Section 2.2. Subsequently, we present a formal framework for
barcodes in Section 2.3. The equivalence between barcodes and matching diagrams is
recalled in Section 2.4. We then collect some basic categorical properties of barcodes
and matching diagrams in Section 2.5. Finally, we recall some facts about dualization
of persistence modules in Section 2.6.

2.1. Persistent homology
Definition 2.1. The category of persistence modules indexed by T is defined as the
functor category VecT. The category of pointwise finite dimensional (p.f.d.) persis-
tence modules indexed by T is defined as vecT.

The full subcategory vec is closed under taking kernels, cokernels and finite direct
sums in the abelian category Vec, so it is also abelian. Moreover, since T is a small
category, the functor categories vecT and VecT are again abelian, with kernels,
cokernels, direct sums, etc. given pointwise.

The most commonly studied example of a persistence module is the persistent
homology of a diagram of spaces. To define it, we start by observing that there is
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a purely formal identification of the categories Ch(VecT) and Ch(Vec)T. Thus, if
we have a chain complex of persistence modules, we can interpret it as a diagram of
chain complexes, and vice versa. Objects in these identified categories will be called
persistent chain complexes indexed by T.

Let C∗ : Top → Ch(Vec) be the functor assigning to a topological space its singu-
lar chain complex with coefficients in F. Similarly, let C∗ : Top → Ch(Vec)

op
denote

the singular cochain complex functor with coefficients in F.
If X : T → Top is a filtration, or any T-indexed diagram of topological spaces,

composing with C∗ and C∗ yields a persistent chain complex C∗(X) indexed by
T and a persistent cochain complex C∗(X) indexed by Top. Moreover, recall that
every diagram X in Top has a colimit, and the natural map X → ∆colimX induces
morphisms C∗(X) → C∗(∆ colimX) and C∗(∆ colimX) → C∗(X). We write

C∗(colimX,X) = coker(C∗(X) → C∗(∆ colimX)),

C∗(colimX,X) = ker(C∗(∆ colimX) → C∗(X)).

We then define the d-th persistent homology of X as Hd(X) = Hd(C∗(X)) and the
d-th persistent relative homology of X as Hd(colimX,X) = Hd(C∗(colimX,X)), and
similarly for cohomology.

Note that the relative versions are intrinsic to the diagram X, and that persistent
homology is indexed by T, while persistent cohomology is indexed by Top.

2.2. Structure of persistence modules
A natural way to construct persistence modules is to specify a basis for each index

t ∈ T and then to specify the linear maps by matching the basis elements of different
indices in a compatible way. This can be formalized as a functor from a category
of sets and matchings to the category of vector spaces. In fact, this construction
already generates all possible p.f.d. persistence modules up to isomorphism, providing
a structure theorem for p.f.d. persistence modules. We now introduce the requisite
definitions and recall the fundamental results from the literature.

Definition 2.2. If A and B are sets, a subset σ ⊆ A×B is called a matching if for
each a ∈ A there is at most one b ∈ B with (a, b) ∈ σ and for each b ∈ B there is
at most one a ∈ A with (a, b) ∈ σ. If τ ⊆ B × C is another matching, we define the
composition τ ◦ σ ⊆ A× C as

τ ◦ σ = {(a, c) | there exists b ∈ B with (a, b) ∈ σ and (b, c) ∈ τ}.

The resulting category, with sets as objects, matchings as morphisms, and the above
composition, will be denoted by Mch. If σ ⊆ A×B is a matching, we define its
opposite matching

σ◦ = {(b, a) | (a, b) ∈ σ} ⊆ B ×A.

This construction makes the category Mch self-dual, i.e., it yields an isomorphism
between Mch and its opposite category. We define the category of matching diagrams
indexed by T as the functor category MchT.

We can now functorially assign a persistence module to a matching diagram.
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Definition 2.3. We define the functor F : Mch → Vec by sending a set A to the
free vector space generated by A and sending a matching σ ⊆ A×B to the linear
extension of the map

a 7→

{
b if (a, b) ∈ σ

0 otherwise.

By a slight abuse of notation, we also define the matching module functor of the form
F : MchT → VecT by applying F pointwise, i.e., F(D) = F ◦D.

In certain cases we can also go from persistence modules to matching diagrams.

Definition 2.4. We say that a persistence moduleM is interval-decomposable if there
exists a matching diagram D with F(D) ∼=M . A choice of isomorphism F(D) ∼=M
is called an interval decomposition.

Interval decompositions are typically described in terms of barcodes, which are
collections of intervals in T. We will formally introduce barcodes in the next section,
and develop their equivalence to matching diagrams MchT in a categorical sense.

The most commonly used existence result asserts that every p.f.d. persistence
module admits an interval decomposition [17, Theorem 1.1]; see also [8, Theorem 1.2].
While there may be many different interval decompositions for a single persistence
module, by a version of the Krull–Schmidt–Azumaya Theorem the structure of the
decomposition is still unique, which can be conveniently phrased in the language of
matching diagrams as follows.

Theorem 2.5 ([32], Theorem 2.7; see also [32], Section 4.8). The matching module
functor F : MchT → VectT reflects the property of being isomorphic: If D and D′

are matching diagrams with F(D) ∼= F(D′), then already D ∼= D′.

2.3. Barcodes
An equivalent description for a matching diagram can be given in terms of a

collection of intervals, called barcode. The intervals encode the index range of matched
elements in the matching diagram. A barcode should be thought of as a multiset of
intervals, that is, the same interval may appear multiple times.

Definition 2.6. We denote the set of all intervals in T as I(T ), or simply as I when
the index set is clear from the context. If A is an arbitrary set, we call any subset
B ⊆ I×A a barcode in T .

The purpose of the set A in this definition is to distinguish multiple instances of
the same interval, as in the standard construction of a disjoint union. If clear from
the context, we sometimes suppress this index from the notation. If B ⊆ I×A is a
barcode and I an interval in T , the cardinality of the set {a ∈ A | (I, a) ∈ B}measures
how many copies of I are in B.

Barcodes form a category, which is equivalent to the category of matching dia-
grams [4]. We introduce some terminology used to give an explicit description of the
morphisms in the category of barcodes.

Definition 2.7. Let I and J be intervals in T . We say that I bounds J above if for
all s ∈ J there exists t ∈ I such that s ⩽ t. We say that I bounds J below if for all
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u ∈ J there exists t ∈ I such that t ⩽ u. We say that I overlaps J above, or that J
overlaps I below, if their intersection is non-empty, I bounds J above, and J bounds
I below.

Definition 2.8. For barcodes B and B′, we call a matching σ ⊆ B ×B′ an over-
lap matching if for each ((I, a), (I ′, a′)) ∈ σ the interval I overlaps the interval I ′

above. If σ ⊆ B ×B′ and τ ⊆ B′ ×B′′ are overlap matchings, we define their overlap
composition as

τ • σ = {((I, a), (I ′′, a′′)) ∈ τ ◦ σ | I overlaps I ′′ above}.

The resulting category with barcodes as objects, overlap matchings as morphisms
and overlap composition will be denoted by Barc(T).

Note that two barcodes B ⊆ I×A and B′ ⊆ I×A′ are isomorphic if and only
if there is a bijection f : B → B′ such that for all (I, a) ∈ B there is a′ in A′ with
f(I, a) = (I, a′). In other words, B and B′ are isomorphic if and only if the sets
{a ∈ A | (I, a) ∈ B} and {a′ ∈ A′ | (I, a′) ∈ B′} have the same cardinality for every
interval I ∈ I.

2.4. Equivalence of barcodes and matching diagrams

As we have mentioned before, the two categories MchT and Barc(T) are equiva-
lent. We will now review the construction of an explicit equivalence following [4].

Definition 2.9. Let D be a matching diagram. We define its components as the set
of equivalence classes

C(D) =

( ⋃
t∈T

{t} ×Dt

)
/∼,

where the equivalence relation ∼ is defined as follows: For t ⩽ u ∈ T , d ∈ Dt, and
d′ ∈ Du, we set (t, d) ∼ (u, d′) if and only if (d, d′) ∈ Dt,u. Note that each component
Q ∈ C(D) can also be regarded as a matching diagram such that Qt ⊆ Dt has at most
one element for each t ∈ T . For a component Q ∈ C(D), we define its support as the
range of indices in T spanned by the component,

supp(Q) = {t ∈ T | (t, d) ∈ Q for some d ∈ Dt}.

Note that the component set construction may be regarded as a functor of the
form C : MchT → Mch. Even more than that, it can not only be used to pass from
matching diagrams to the matching category, but it can also be used to pass from
matching diagrams to barcodes.

Definition 2.10. We define a functor B : MchT → Barc(T) by setting

B(D) = {(I,Q) ∈ I× C(D) | I = supp(Q)}

for any matching diagram D and

B(ψ) = {((I,Q), (I ′, R)) ∈ B(D)× B(E) | Qt ×Rt ⊆ ψt for all t ∈ I ∩ I ′}

for any morphism of matching diagrams ψ : D → E.
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As shown in [4], the support of a component is indeed an interval, a morphism
of matching diagrams is mapped to an overlap matching by the above construction,
and we indeed get a functor. Conversely, we can also pass from barcodes to matching
diagrams.

Definition 2.11. We define a functor D : Barc(T) → MchT by setting D(B) for
any barcode B to be the matching diagram given by

D(B)t = {(I, a) ∈ B | t ∈ I},
D(B)t,u = {((I, a), (I ′, a′)) ∈ D(B)t ×D(B)u | (I, a) = (I ′, a′)}.

For an overlap matching σ, we let D(σ) be the morphism of matching diagrams with

D(σ)t = {((I, a), (I ′, a′)) ∈ σ | t ∈ I ∩ I ′}.

Again, we refer to [4] for the fact that D is a well-defined functor.

Theorem 2.12 ([4]). The functors

B : MchT → Barc(T) and D : Barc(T) → MchT

defined above are quasi-inverses. In particular, the categories MchT and Barc(T)
are equivalent.

Note that in [4], the equivalences were denoted by E and F . Using this equivalence,
we can give an explicit description of the composite functor F ◦ D : Barc(T) → VecT

constructing a persistence module with a given barcode as follows.

Definition 2.13. Let I ⊆ T be an interval. The interval module C(I) is the persis-
tence module obtained from the barcode consisting of a single instance of I:

C(I)t =

{
F if t ∈ I,

0 otherwise,
with structure maps C(I)t,u =

{
idF if t, u ∈ I,

0 otherwise.

If I and J are intervals such that I overlaps J above, there exists a canonical morphism
φ(I, J) : C(I) → C(J) defined by

φ(I, J)t =

{
idF if t ∈ I ∩ J,
0 otherwise.

We define the barcode module functor M : Barc(T) → VecT by sending a barcode B
to the direct sum of interval modules

⊕
(I,a)∈B C(I) and sending an overlap matching

σ ⊆ B ×B′ to the direct sum of the morphisms φ(I, I ′) : C(I) → C(I ′) for all pairs
((I, a), (I ′, a′)) ∈ σ. If a persistence module M satisfies M(B) ∼=M for some barcode
B ∈ Barc(T), we say that B is a barcode of M .

The following proposition is straightforward to verify from the definitions.

Proposition 2.14. There are natural isomorphisms F ∼= M◦B and M ∼= F ◦ D.

2.5. Categorical properties of matching diagrams
One can use large parts of the theory of homological algebra in the categories Mch

and MchT since they have the following property.
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Definition 2.15. A category is called Puppe-exact or p-exact if it has a zero object,
it has all kernels and cokernels, every mono is a kernel and every epi is a cokernel,
and every morphism has an epi-mono-factorization.

Put informally, a Puppe-exact category is an abelian category that need not have
(co)products. Recall that in any category with kernels and cokernels, monos have
vanishing kernels and epis have vanishing cokernels. While the converse is not true in
general, it is true in p-exact categories.

Lemma 2.16 ([9, Korollar 2.4.4]). A morphism in a p-exact category is mono if and
only if its kernel vanishes and it is epi if and only if its cokernel vanishes.

We will use this lemma throughout without explicit reference. In particular, we
will use it for barcodes and matching diagrams, which form p-exact categories.

Proposition 2.17 ([22, Section 1.6.4]). Mch is Puppe-exact. For a choice of match-
ing σ ⊆ A×B we have

kerσ = {a ∈ A | (a, b) /∈ σ for all b ∈ B},
imσ = {b ∈ B | (a, b) ∈ σ for some a ∈ A},

cokerσ = {b ∈ B | (a, b) /∈ σ for all a ∈ A},
coimσ = {a ∈ A | (a, b) ∈ σ for some b ∈ B}.

MchT is also Puppe-exact, with kernels, cokernels etc. given pointwise.

Importantly, these constructions are compatible with the passage to vector spaces
and persistence modules, as expressed in the following statement.

Proposition 2.18. The functor F preserves and reflects exactness, i.e., a sequence
of matchings V → V ′ → V ′′ is exact if and only if the corresponding sequence of
vector spaces F(V ) → F(V ′) → F(V ′′) is exact. The same holds for F as a functor
MchT → VecT.

Using the equivalence between MchT and Barc(T), we can translate the con-
structions in Proposition 2.17 to describe the kernels, cokernels, and images of overlap
matchings explicitly as barcodes.

Definition 2.19. For an overlap matching σ ⊆ B ×B′ and (I, a) ∈ B, (I ′, a′) ∈ B′,
we set

ker(σ, (I, a)) =

{
(I \ I ′, a) if ((I, a), (I ′, a′)) ∈ σ,

(I, a) otherwise;

coker(σ, (I ′, a′)) =

{
(I ′ \ I, a′) if ((I, a), (I ′, a′)) ∈ σ,

(I ′, a′) otherwise.

Proposition 2.20 ([4]). Let B ⊆ I×A and B′ ⊆ I×A′ be barcodes. Any overlap
matching σ ⊆ B ×B′ has a kernel, coimage, image and cokernel in Barc(T), with

kerσ = {(J, a) ∈ I×A | J = ker(σ, (I, a)) for (I, a) ∈ B}
coimσ = {(J, a) ∈ I×A | J = I ∩ I ′ for ((I, a), (I ′, a′)) ∈ σ}
imσ = {(J, a′) ∈ I×A′ | J = I ∩ I ′ for ((I, a), (I ′, a′)) ∈ σ}

cokerσ = {(J, a′) ∈ I×A′ | J = coker(σ, (I ′, a′)) for (I ′, a′) ∈ B′}.
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Using the p-exact structure on barcodes, we will later consider exact sequences of
barcodes and translate them to exact sequences of persistence modules. We will also
further study the categorical structure on barcodes later on and classify injective and
projective objects. In both of these settings, the following characterization of split
mono and epi overlap matchings will be important.

Lemma 2.21. Let σ be an overlap matching and assume that σ is mono or epi. Then
σ is split if and only if ((I, a), (I ′, a′)) ∈ σ implies I = I ′.

Proof. If ((I, a), (I ′, a′)) ∈ σ implies I = I ′ for some overlap matching σ, then its
opposite matching σ◦ is again an overlap matching. If σ is epi, this yields a right
inverse and if σ is mono, this yields a left inverse.

If on the other hand σ is split mono or split epi, there needs to be an overlap
matching τ with ((I ′, a′), (I, a)) ∈ τ whenever ((I, a), (I ′, a′)) ∈ σ. Since both σ and τ
are overlap matchings, I and I ′ overlap each other above, so we have I = I ′ whenever
((I, a), (I ′, a′)) ∈ σ.

2.6. Dualization for persistence modules

We have seen persistent homology and cohomology as examples of persistence
modules indexed by either (T,⩽) or (T,⩾). In general, the following yields a way of
translating between the two.

Definition 2.22. We define the contravariant dualization functor

(−)∨ : VecT → VecT
op

by applying vector space dualization pointwise, i.e., for a T-indexed persistence mod-
ule M , its dual M∨ is the Top-indexed persistence module given by the formula
M∨

t = Hom(Mt,F) for all t ∈ T .

Note that a subset I ⊆ T is an interval with respect to ⩽ if and only if it is an
interval with respect to ⩾. This yields an obvious contravariant isomorphism between
Barc(T) and Barc(Top) which maps each barcode to itself. Thus, we can compare
barcodes of persistence modules indexed by (T,⩽) with barcodes of persistence mod-
ules indexed by (T,⩾). As such, we have the following well-known fact.

Lemma 2.23. Let M be a p.f.d. persistence module. Then B is a barcode for M if
and only if it is a barcode for M∨.

Recall that F is injective as a module over itself, which means that the contravariant
functor Hom(−,F) : Vec → Vec is exact. As pointwise application of an exact functor
yields an exact functor of diagram categories, we get the following.

Lemma 2.24. The dualization functor (−)∨ is exact. In particular, a morphism
φ : M → N of persistence modules yields isomorphisms

(kerφ)∨ ∼= cokerφ∨, (imφ)∨ ∼= imφ∨, (cokerφ)∨ ∼= kerφ∨.
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3. Lifespan functors

In Section 3.1, we will construct what we call the lifespan functors based on
(co)units of the adjunction of the diagonal functor with (co)limits. We then estab-
lish conditions for when the lifespan functors commute with the image, kernel, and
cokernel functors in Section 3.2.

3.1. Defining lifespan functors
Let A be any category with T-shaped limits and colimits, so that we get func-

tors lim: AT → A and colim: AT → A. As for any functor category, we also have
a diagonal functor ∆: A → AT, mapping each object to the corresponding constant
diagram. Of course, this setting includes the case where A = Vec.

For each object V inAT, the canonical maps Vt → colimV for t ∈ T form a natural
transformation ηV : V → ∆colimV . Recall that colim is left adjoint to the diagonal
functor ∆, and the morphism ηV is the component at V for the unit

η : idAT → ∆ ◦ colim

of the adjunction colim ⊣ ∆. Similarly, the canonical maps limV → Vt give a nat-
ural transformation ϵV : ∆ limV → V, which is the counit ϵ : ∆ ◦ lim → idAT of the
adjunction ∆ ⊣ lim. We thus get the diagram

∆ limV V ∆colimV.
ϵV ηV

From now on, we assume that A is Puppe-exact, so that we can form kernels, coker-
nels, and images.

Definition 3.1. We define the following functors AT → AT.

1. The mortal part functor is defined as (−)† = ker η(−).

2. The immortal part functor is defined as (−)∞ = im η(−).

3. The nascent part functor is defined as (−)∗ = coker ϵ(−).

4. The ancient part functor is defined as (−)−∞ = im ϵ(−).

By definition, for each object V in AT we get a natural diagram

V † V ∗

V

V −∞ V∞

with diagonal short exact sequences. We also get composite natural transformations

(−)† → idAT → (−)∗ and (−)−∞ → idAT → (−)∞

and can again form kernels, cokernels and images to get new functors.

Definition 3.2. We define the following functors AT → AT.

1. The finite part functor is defined as (−)†,∗ = im((−)† → (−)∗).

2. The constant part functor is defined as (−)−∞,∞ = im((−)−∞ → (−)∞).
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Remark 3.3. The universal property of epi-mono-factorizations implies that we have
a canonical isomorphism V −∞,∞ ∼= im(∆ limV → ∆colimV ) for all objects V inAT.

We will also form kernels and cokernels of the above composite morphisms. In the
cases we are interested in, these turn out to coincide: by [22, Lemma 2.2.4], pullbacks
of monos and pushouts of epis exist in p-exact categories, and we have canonical
isomorphisms

ker(V † → V ∗) ∼= V † ×V V −∞ ∼= ker(V −∞ → V∞)

coker(V † → V ∗) ∼= V ∗ +V V∞ ∼= coker(V −∞ → V∞)

for any V . Using this fact, we can make the following well-posed definition.

Definition 3.4. We define the following functors AT → AT.

1. The ancient mortal part functor is defined as

(−)−∞,† = ker((−)† → (−)∗) = ker((−)−∞ → (−)∞).

2. The immortal nascent part functor is defined as

(−)∗,∞ = coker((−)† → (−)∗) = coker((−)−∞ → (−)∞).

We give a common name to all the functors defined above.

Definition 3.5. For an object V in AT, we will call the diagram

V †,∗

V † V ∗

V −∞,† V V ∗,∞

V −∞ V ∞

V −∞,∞

the lifespan diagram of V . We call the functors at the nodes of the diagram lifespan
functors and the natural maps between them lifespan transformations. We use the
notation (−)⋄ as a wildcard symbol for an arbitrary lifespan functors.

See Figure 1 for an example of a lifespan diagram of persistence modules. Note that
the lifespan diagram simplifies to a smaller diagram in many applications. For exam-
ple, the short exact sequence V −∞,† ↪→ V −∞ ↠ V −∞,∞ on the bottom left vanishes
if V is bounded below. Similarly, the bottom right sequence vanishes if V is bounded
above. For the top left and the top right short exact sequences in the lifespan diagram,
we have the following conditions.

Proposition 3.6. Consider lim, colim: AT → A and an object V in AT.

1. If colim is exact, then V † = 0 if and only if all structure maps of V are mono.

2. If lim is exact, then V ∗ = 0 if and only if all structure maps of V are epi.
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Proof. We only show the first statement since the second one is dual to it. So, assume
that taking colimits is exact.

If V † = 0, then V → ∆colimV is mono, i.e., Vt → colimV is mono for any t ∈ T .
Now, for any structure map Vt → Vu, we obtain that the composition

Vt → Vu → colimV

is mono since it is equal to the natural map Vt → colimV . This implies that Vt → Vu
is mono.

Next, assume that all structure maps of V are mono and let t ∈ T . Define an
object Ṽ in AT by setting Ṽs = Vs for any s < t and Ṽu = Vt for any u ⩾ t. There
is an obvious map Ṽ → V consisting of structure maps of V and because we assume
these structure maps to be mono the map Ṽ → V is mono, too. We assume that
taking colimits is exact, so the induced map colim Ṽ → colimV is still mono. But
colim Ṽ is Vt and the induced map is given by the natural map Vt → colimV . Hence,
V → ∆colimV is mono, which implies V † = 0.

The construction of the lifespan functors involves kernels, cokernels, and images of
the natural transformations ϵ and η. Note, however, that we have not used ker ϵ(−)

and coker η(−) so far. These play a somewhat different role than the lifespan functors,
as they do not yield subobjects or quotients of the object we start with. Still, their
properties will be of similar importance, especially in Theorem 6.2.

Definition 3.7. We define the following functors AT → AT.

1. The ghost complement functor is defined as (−)▷ = ker ϵ(−).

2. The unborn complement functor is defined as (−)◁ = coker η(−).

See Figure 2 for an illustration of the complement functors.

3.2. Lifespan functors and images, kernels, and cokernels
One of our overall goals is to study images, kernels, and cokernels of morphisms in

persistent homology. For that purpose, we want to study how the lifespan functors
appearing in the statement of Theorem 6.2 behave with respect to these operations.
The relevant theorems hold in the general setting, so, as before, let A be p-exact with
T-indexed limits and colimits.

V

∆limV ∆colimV

V ▷ V ◁

ηϵ

Figure 2: Complement functors applied to a finite type R-indexed persistence module
V , visualized via their barcode according to Propositions 4.9 and 4.10.
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Example 3.8. The following examples show that the nascent and mortal part do not
preserve images. For both examples, let the index set be Z.

1. Consider a morphism φ : C([0,+∞)) → C([0, 1]) which has maximal rank every-
where, e.g., by taking φ0 and φ1 to be identities and all other maps 0. Clearly,
φ is epi and in particular (imφ)† = C([0, 1])† = C([0, 1]). However, we have
C([0,+∞))† = 0, so imφ† = 0 and thus imφ† ̸= (imφ)†.

2. Now let φ : C([−1, 0]) → C((−∞, 0]) be of maximal rank everywhere. By a sim-
ilar argument, we get imφ∗ = 0 but (imφ)∗ = C([−1, 0]).

While the preservation of images fails in general, there are classes of morphisms
for which we get the desired result. We start with a lemma.

Lemma 3.9. Let V and W be objects in AT and φ : V →W a morphism.

1. If φ is epi, then φ∗ is epi; if φ is mono, then φ† is mono.

2. If limφ is epi, then φ−∞ is epi; if colimφ is mono, then φ∞ is mono.

Proof. Assume φ is epi. Note that the canonical map P ↠ P ∗ is also epi for any P .
We get a commutative diagram

V W

V ∗ W ∗,

φ

φ∗

where the composition V →W ∗ is epi. Thus, φ∗ must be epi, too. The other assertions
can be shown analogously.

Theorem 3.10. Let V and W be objects in AT and φ : V →W a morphism.

1. If ker colimφ = 0, we have canonical isomorphisms

kerφ† ∼= kerφ, kerφ∞ = 0,

imφ† ∼= (imφ)†, imφ∞ ∼= (imφ)∞ ∼= V∞.

2. If coker limφ = 0, we have canonical isomorphisms

cokerφ∗ ∼= cokerφ, cokerφ−∞ = 0,

imφ∗ ∼= (imφ)∗, imφ−∞ ∼= (imφ)−∞ ∼=W−∞.

Proof. We only show the first part of the theorem, the second one being completely
dual. First, assume that ker colimφ = 0, i.e., colimφ is mono. Taking kernels is left
exact, so we have an exact sequence

0 kerφ† kerφ kerφ∞

induced by the corresponding sequences from the lifespan diagrams of V and W . By
the second part of Lemma 3.9, our assumption that colimφ is mono implies that
φ∞ is mono. This implies kerφ∞ = 0, and by exactness of the above sequence also
kerφ† ∼= kerφ. In addition, we obtain imφ∞ ∼= V∞ because φ∞ is mono.
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For the assertion on images, consider the epi-mono-factorizations

V † imφ† W † and V imφ W
p i

of φ† and φ, respectively. Applying the mortal part functor to the second factorization
and leaving the first one as is yields a commutative diagram

V † imφ† W †

(imφ)†
p† i†

By the universal property of epi-mono-factorizations, we get imφ† ∼= (imφ)† if i† is
mono and p† is epi. Since i is mono, by Lemma 3.9 i† is mono, too. By assumption,
colimφ = colim i ◦ colim p is also mono, so colim p is mono. Using the second part of
Lemma 3.9, we get that p∞ is mono as well. Thus, applying the snake lemma (which
holds in p-exact categories, see [22, Lemma 6.2.8]) to the diagram

0 V † V V∞ 0

0 (imφ)† imφ (imφ)∞ 0

p† p p∞

yields that p† is epi. Hence, we obtain imφ† ∼= (imφ)† as claimed.
Moreover, recall that colim preserves epis, so colim p is not only mono but in fact

an isomorphism. Thus, we get a commutative diagram

V im ηV ∆colim(V )

imφ im ηimφ ∆colim(imφ)

p (∆ colim p)−1

with the epi-mono-factorizations of ηV and ηimφ in the rows. Uniqueness of the
epi-mono-factorization implies that the middle terms have to agree, so we obtain
V∞ = im ηV ∼= im ηimφ = (imφ)∞. We have already observed that imφ∞ ∼= V∞, so
we obtain imφ∞ ∼= (imφ)∞.

4. Lifespan of persistence modules

We will look at the special case of the lifespan functors for persistence modules
and describe their effect at the level of barcodes in Section 4.1. We then discuss how
lifespan functors behave under dualization of persistence modules in Section 4.2.

4.1. Lifespan functors and barcodes
In order to give an explicit description of how our lifespan functors change the

barcode of an interval-decomposable persistence module, we will take a detour via
matching diagrams. We can apply the theory of lifespan functors to them because they
have limits and colimits, as we will show using the component set from Definition 2.9.

Proposition 4.1. Every matching diagram D indexed by T has a limit and a colimit.
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Proof. The limit is given by

limD = {Q ∈ C(D) | supp(Q) is not strictly bounded below},

with natural maps limD → Dt matching a class Q to its representative in Dt if there
is one. We can also explicitly construct the colimit of D as

colimD = {Q ∈ C(D) | supp(Q) is not strictly bounded above}.

Here, the natural maps Dt → colimD match an element to its equivalence class if
this class is contained in the set above. We omit the straightforward verification that
these construction satisfy the universal properties of limits and colimits.

Remark 4.2. The construction above can be adapted to show that Mch not only has
totally ordered limits and colimits, but all cofiltered limits and filtered colimits.

We will now look at how the lifespan functors behave when being transported to
barcodes via the equivalence in Theorem 2.12. We introduce some notation.

Definition 4.3. We define the following subsets of the intervals I in T .

I∗ = {I ∈ I | I is strictly bounded below}, I−∞ = I \ I∗,
I† = {I ∈ I | I is strictly bounded above}, I∞ = I \ I†,

I†,∗ = I∗ ∩ I†, I−∞,∞ = I−∞ ∩ I∞,

I−∞,† = I−∞ ∩ I†, I∗,∞ = I∗ ∩ I∞.

If B is a barcode, we also define

B⋄ = {(I, a) ∈ B | I ∈ I⋄}

for any lifespan functor (−)⋄.

Theorem 4.4. Let B be a barcode. We have

B(D(B)⋄) ∼= B⋄

for all lifespan functors (−)⋄. Moreover, under these isomorphisms, all lifespan trans-
formations correspond to the respective inclusions and coinclusions.

Proof. From the definitions of B and D as well as the explicit constructions of limits
and colimits for matching diagrams in the proof of Proposition 4.1, we obtain

B(∆ limD(B)) ∼= {(T, (I, a)) ∈ I×B | I ∈ I−∞},
B(∆ colimD(B)) ∼= {(T, (I, a)) ∈ I×B | I ∈ I∞}.

The overlap matching

B(ϵD(B)) : B(∆ limD(B)) → B

matches every interval (T, (I, a)) with I ∈ I−∞ to (I, a). Similarly, B(ηD(B)) matches
every element (I, a) with I ∈ I∞ to (T, (I, a)). All lifespan functors are given on
the level of barcodes by first forming kernels, cokernels, and images of B(ϵD(B)) and
B(ηD(B)), and then kernels, cokernels, and images of the resulting composite lifes-
pan transformations. Hence, the claim follows by applying the formulas for kernels,
cokernels, and images of overlap matchings from Proposition 2.20 several times.
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Next, we want to show that all the lifespan functors are compatible with the
matching module functor F . Since F is exact, a straightforward proof strategy would
be to show that F also commutes with lim and colim and then use the fact that all
lifespan functors are obtained from lim and colim by forming kernels, cokernels, and
images. For colimits, this works out.

Lemma 4.5. The functor F : Mch → Vec commutes with T-indexed colimits.

Proof. Recall that in the proof of Proposition 4.1 we constructed the colimit of a
matching diagram D as the set of components Q ∈ C(D) whose support is in I∞.
Further, recall from the definition of the component set that each component can
be regarded as a matching diagram. As such, D is canonically isomorphic to the
disjoint union (which is not the coproduct, but rather a butterfly product in Mch, cf.
[22, Section 2.1.7]) of all its components. Clearly, F takes disjoint unions to direct
sums. Moreover, for each component Q ∈ C(D) the colimit of F(Q) is one-dimensional
if suppQ ∈ I∞ and trivial else. Altogether, we obtain a natural isomorphism

colimF(D) ∼= colim
⊕

Q∈C(D)

F(Q) ∼=
⊕

Q∈C(D)

colimF(Q) ∼=
⊕

Q∈C(D)
supp(Q)∈I∞(T )

F ∼= F(colimD),

proving the claim.

In contrast to colimits, F does not, in general, commute with T-indexed lim-
its: Consider the matching diagram D indexed by the negative integers and given
by D−n = {1, . . . , n} with structure maps matching each number to itself. Then
F(limD) =

⊕
n∈N F, but limF(D) =

∏
n∈N F.

Instead, we will use a more explicit argument to show that F commutes with the
ancient part, which, together with the colimit, can also be used as a starting point to
construct the other lifespan functors by forming kernels, cokernels, and images.

Theorem 4.6. Let D be a matching diagram. We have canonical isomorphisms

F(D)⋄ ∼= F(D⋄)

for all lifespan functors (−)⋄, which commute with the lifespan transformations.

Proof. We start by showing that F commutes with the ancient part. For this, consider
the epi-mono-factorizations

∆ limD ↠ D−∞ ↪→ D and ∆ limF(D) ↠ F(D)−∞ ↪→ F(D).

Recall that F preserves exactness and hence also monos and epis. Thus, by applying
F to the first diagram, we get another epi-mono-factorization. The universal property
of the limit also induces a unique morphism F(∆ limD) → ∆ limF(D) through which
the cone morphism F(∆ limD) → F(D) factors. We obtain a commutative diagram

F(∆ limD) F(D−∞) F(D)

∆ limF(D) F(D)−∞ F(D).

id

Since epi-mono factorizations are unique up to unique isomorphism, we only need to
show that the composite morphism F(∆ limD) → F(D)−∞ is epi in order to obtain
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our claim. So let t0 ∈ T and m ∈ F(D)−∞
t0 . Because m is in the ancient part, i.e.,

the image of the natural map limF(D) → F(D)t0 , there exists a family (mt)t with
mt ∈ F(D)t, mt0 = m and such that F(D)s,t(ms) = mt whenever s ⩽ t. Now, write
finite formal linear combinationsmt =

∑
α∈At

λα,tdα,t with dα,t ∈ Dt and λα,t ̸= 0 for
all t ∈ T , α ∈ At. Because F(D)s,t0(ms) = mt0 holds for any s ⩽ t0, we obtain that
for any α ∈ At0 and s ⩽ t0 there exists β = β(α, s) ∈ As with (dβ,s, dα,t0) ∈ Ds,t0 .
In particular, the component Qα represented by dα,t0 has support in I−∞ for any
α ∈ At0 . Thus, m is the image of

∑
α∈At0

λα,t0Qα ∈ F(limD) under the composite

morphism F(limD) → F(D)−∞
t0 . In particular, this map is epi as we needed to show.

The claimed isomorphisms for the other lifespan functors can now be deduced from
the isomorphisms we have shown already: Consider the commutative squares

F(D) ∆ colimF(D)

F(D) F(∆ colimD)

id

ηF(D)

F(ηD)

and

F(D)−∞ F(D)

F(D−∞) F(D).

αF(D)

id

F(αD)

We have just shown that the vertical maps in the square on the right are isomor-
phisms. The vertical maps in the square on the left are isomorphisms because F and
colim commute by Lemma 4.5. Thus, we obtain

F(D)† = ker ηF(D)
∼= F(ker ηD) = F(D†)

F(D)∞ = im ηF(D)
∼= F(im ηD) = F(D∞)

F(D)∗ = cokerαF(D)
∼= F(cokerαD) = F(D∗).

By these isomorphisms, the vertical maps in the commutative squares

F(D)† F(D)∗

F(D†) F(D∗)

βF(D)

F(βD)

and

F(D)−∞ F(D)∞

F(D−∞) F(D∞)

γF(D)

F(γD)

are isomorphisms, too. This yields

F(D)−∞,† = kerβF(D)
∼= F(kerβD) = F(D−∞,†)

F(D)†,∗ = imβF(D)
∼= F(imβD) = F(D†,∗)

F(D)∗,∞ = coker γF(D)
∼= F(coker γD) = F(D∗,∞)

F(D)−∞,∞ = im γF(D)
∼= F(im γD) = F(D−∞,∞).

Finally, combining the fact that F commutes with the lifespan functors by Theo-
rem 4.6 with the fact that passing from barcodes to persistence modules is compatible
with passing from matching diagrams to persistence modules by Proposition 2.14, we
can use the formulas for the effect of lifespan functors on barcodes from Theorem 4.4
to describe how the lifespan functors change the barcodes of persistence modules.

Corollary 4.7. Let M be a persistence module. If B is a barcode of M , then

B⋄ = {(I, a) ∈ B | I ∈ I⋄}

is a barcode for M⋄, where (−)⋄ is any lifespan functor.
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From Corollary 4.7 we obtain that all the short exact sequences in the lifes-
pan diagram of an interval-decomposable persistence module are obtained up to
isomorphism by applying M to a short exact sequence of barcodes of the form
B′ ↪→ B′ ⊔B′′ ↠ B′′. The inclusion and coinclusion into and out of the disjoint union
only match bars with identical underlying intervals, so they admit one-sided inverses
by Lemma 2.21. Applying M to the sequence of barcodes above preserves these one-
sided inverses, so we obtain the following corollary.

Corollary 4.8. All short exact sequences in the lifespan diagram of an interval-
decomposable persistence module split.

For the unborn complement, the expected formula for the effect on barcodes and
the compatibility with F hold as for the lifespan functors. We summarize the results
and omit the analogous proofs.

Proposition 4.9. The unborn complement satisfies

B(D(B)◁) ∼= B◁ := {(T \ I, a) | (I, a) ∈ B, I ̸= T and I ∈ I∞}

for any barcode B. Moreover, the unborn complement commutes with the matching
module functor up to natural transformation. In particular, if M is a persistence
module with barcode B, then B◁ is a barcode of M◁.

For the ghost complement, however, not all of the corresponding statements hold
in general: It does not commute with the matching module functor and thus does
not change the barcode of a persistence module as we would like it to. This is closely
related to the fact that F does not commute with limits as mentioned before Theo-
rem 4.6, which can even happen for p.f.d. persistence modules indexed by the real line
as the example

⊕
n∈N C((−∞,−n)) shows. The problems with the ghost complement

disappear for classes of persistence modules where limits do commute with F , e.g.
those of finite type, which are persistence modules with a finite barcode. Similarly,
everything works out as desired if the index set has a minimal element tmin, because
then we have limF(D) ∼= F(Dtmin

) ∼= F(limD).

Proposition 4.10. Let B be a barcode satisfying limF(D(B)) ∼= F(limD(B)). Then
we have

B(D(B)▷) ∼= B▷ := {(T \ I, a) | (I, a) ∈ B, I ̸= T and I ∈ I−∞}.

Moreover, on the full subcategory of these barcodes the ghost complement commutes
with the matching module functor up to natural transformation. In particular, if M
is a persistence module with barcode B, then B▷ is a barcode of M▷.

Remark 4.11. For persistence modules, some of the lifespan functors admit more
explicit descriptions. In particular, the mortal part of a persistence module M =
((Mt)t, (ms,t)s,t) is the submodule given by the subspaces M†

t =
⋃

u kermt,u ⊆Mt.
In this form, the construction has been considered before by Höppner and Lenz-
ing in [25]. They describe it as analogous to taking the submodule of all torsion
elements of a module over some integral domain. Certain categories of persistence
modules can be shown to be equivalent to categories of modules over some ring (cf.
[16,29,37]), and under these equivalences, the mortal part indeed corresponds to the
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torsion submodule. Furthermore, the immortal part has also been considered before
in applications of barcodes to symplectic geometry. For a recent example, see [19].

Note that, on the other hand, while the ancient part is always a submodule of the
intersection of images,M−∞

t ⊆
⋂

s imms,t, in general the two need not be isomorphic.
The persistence module M3 described in Remark 5.6 provides a counterexample.

4.2. Lifespan and dualization
When passing from homology to cohomology, we will see later in Section 6 that

what happens on the level of persistence modules is dualization. When passing from
absolute to relative persistent homology, our correspondence result Theorem 6.2 will
involve the lifespan functors. So, in order to get the full picture involving all four
persistence modules associated to a diagram of spaces, we now also have to analyze
whether dualization is compatible with lifespan functors.

Because we dualize, we will not only consider persistence modules indexed by
(T,⩽), but also ones indexed by (T,⩾). When interpreting lifespan in terms of bar-
codes, it is important to note that the index set changes the meaning of the dif-
ferent classes of intervals we consider, i.e., Definition 4.3 depends on whether we
use the usual or the opposite order. For example, we have I∗(T,⩽) = I†(T,⩾) and
I−∞(T,⩽) = I∞(T,⩾). Thus, one should expect duals of mortal parts to correspond
to nascent parts of duals and so on. To avoid confusion, we introduce some notation.

Notation 4.12. In the context of the indexing category Top, we will write

(−)† := (−)∗, (−)∞ := (−)−∞, (−)∗ := (−)†, (−)−∞ := (−)∞,

(−)†,∗ := (−)†,∗, (−)−∞,∞ := (−)−∞,∞, (−)∗,∞ := (−)−∞,†, (−)−∞,† := (−)∗,∞,

(−)◁ := (−)▷, (−)▷ := (−)◁.

The above convention now yields I⋄(T,⩾) = I⋄(T,⩽) for any lifespan functor (−)⋄.

Proposition 4.13. Let M be a persistence module. We have canonical isomorphisms

(M†)∨ ∼= (M∨)†, (M∞)∨ ∼= (M∨)∞, (M◁)∨ ∼= (M∨)◁.

Proof. The functor Hom(−,F) takes colimits to limits, so we have a canonical iso-
morphism (∆ colimM)∨ ∼= ∆ limM∨. Together with the kernel, cokernel, and image
descriptions for dual maps from Lemma 2.24, this yields the claim.

The limit functor for persistence modules commonly exhibits less desirable prop-
erties than the colimit functor. For example, the limit functor does not preserve
exactness and does not commute with the functor F while the colimit functor does.
A similar phenomenon arises with dualization of persistence modules, preventing
the previous proposition from holding for all lifespan functors: In general, we do not
have an isomorphism between (∆ limM)∨ and ∆colimM∨, because the vector spaces
Hom(limM,F) and colimM∨ need not be isomorphic. However, if (T,⩽) has a mini-
mal element tmin, then we have (∆ limM)∨ ∼= ∆Hom(Mtmin

,F) ∼= ∆colimM∨. Thus,
we get the following.

Proposition 4.14. Assume that (T,⩽) has a minimal element and let M be a T-
indexed persistence module. Then we have canonical isomorphisms (M⋄)∨ ∼= (M∨)⋄
for any lifespan functor (−)⋄.
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For later use, we also record the following completely equivalent reformulation in
terms of persistence modules indexed by the opposite order.

Proposition 4.15. Assume that (T,⩽) has a largest element and let M be a Top-
indexed persistence module. Then we have canonical isomorphisms (M⋄)

∨ ∼= (M∨)⋄

for any lifespan functor (−)⋄.

Note that above, we use the notation (−)∨ as a functor from T-indexed persistence
modules to Top-indexed persistence modules and also vice versa.

Furthermore, in the p.f.d. case, applying any lifespan functor (−)⋄ to a persistence
moduleM has the same effect on barcodes as the corresponding functor (−)⋄ applied
to the dual persistence module M∨.

Proposition 4.16. Let M be a p.f.d. persistence module. Then M⋄ and (M∨)⋄ have
the same barcodes for any lifespan functor (−)⋄.

Proof. By Lemma 2.23 we know that p.f.d. persistence modules have the same bar-
code as their duals, so the claim follows immediately from the explicit formula in
Corollary 4.7 for the effect of lifespan functors on barcodes.

5. Projectivity, injectivity, and lifespan

As a first application, we will use our lifespan functors to characterize projective
and injective objects in the categories of barcodes, matching diagrams, and p.f.d.
persistence modules.

Theorem 5.1. A barcode B is projective if and only if B† = 0, and injective if and
only if B∗ = 0.

Proof. We will only show the first statement, the second one can be shown analo-
gously. First, assume that B† = 0. In order to show that B is projective, we consider
some overlap matching σ : B → B′ and need to show that it factors through an arbi-
trary epi τ : B′′ → B′. Consider σ and τ as ordinary matchings and set ρ = τ◦ ◦ σ,
where τ◦ is the opposite matching of τ (see Definition 2.2). We show that ρ is in fact
an overlap matching, i.e., that for any ((I, a), (I ′′, a′′)) ∈ ρ we have that I overlaps
I ′′ above:

Since B† = 0, we have I ∈ I∞, so that I bounds any other interval, and in par-
ticular I ′′, above. What is left to check is that I ′′ bounds I below and that the two
intervals have non-empty intersection. If ((I, a), (I ′′, a′′)) ∈ ρ, then by definition of
ρ there is some (I ′, a′) ∈ B′ such that ((I, a), (I ′, a′)) ∈ σ and ((I ′′, a′′), (I ′, a′)) ∈ τ .
Since τ is epi, its cokernel vanishes and we obtain I ′ ⊆ I ′′ from the explicit cokernel
formula in Proposition 2.20. Moreover, I overlaps I ′ above, so we know that I ′ bounds
I below and that I ∩ I ′ ̸= ∅. Together with I ′ ⊆ I ′′, this implies that I ′′ bounds I
below and that I ∩ I ′′ ̸= ∅. In total, I overlaps I ′′ above and ρ is an overlap matching.

Now, an easy calculation verifies that we have τ • ρ = σ, i.e., that when considering
ρ as an overlap matching, its overlap composition with τ recovers σ. Hence, we have
shown that σ factors through τ , so B is projective.
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Next, assume that B† ̸= 0. We want to show that in this case B is not projective by
constructing a barcode B′ and an epi σ : B′ → B that does not split. To do so, choose
(I, a) ∈ B such that I ∈ I†, which is possible by our assumption B† ̸= 0. Define

J = {t ∈ T | there exists s ∈ I with s ⩽ t}.

Clearly, J is an interval in T and it overlaps I above. We define

B′ = (B \ {(I, a)}) ∪ {(J, a)}

and σ : B′ → B by matching each element of B \ {(I, a)} to itself and matching (J, a)
to (I, a). This matching σ has trivial cokernel since I ⊆ J , so σ is epi as desired. But,
we have I ̸= J since I ∈ I†. Thus, σ matches non-identical intervals and consequently
does not split by Lemma 2.21, so B cannot be projective.

Translating via the equivalence of barcodes and matching diagrams, we also obtain
that a matching diagram is projective if and only if its mortal part vanishes and
injective if and only if nascent part vanishes.

By Proposition 3.6 we know that vanishing mortal and nascent part can equiva-
lently be described in terms of the structure maps of a diagram, given that taking
limits and colimits of diagrams is exact. It is therefore interesting to check whether
taking limits and colimits of matching diagrams is exact.

Proposition 5.2. The functors colim, lim: MchT → Mch are exact.

Proof. Let D → D′ → D′′ be an exact sequence of matching diagrams. By Proposi-
tion 2.18 the functor F preserves exactness, so the sequence

F(D) → F(D′) → F(D′′)

remains exact. It is well-known that taking colimits of persistence modules is exact.
Thus, the sequence

colimF(D) → colimF(D′) → colimF(D′′)

is still exact. Using that F commutes with taking T-indexed colimits by Lemma 4.5,
we get that

F(colimD) → F(colimD′) → F(colimD′′)

is also exact. By Proposition 2.18 the functor F reflects exactness, so

colimD → colimD′ → colimD′′

is exact, proving that taking colimits of matching diagrams is exact. Self-duality of
the category Mch implies that taking limits then has to be exact, too.

Knowing that taking limits and colimits of matching diagrams is exact, we can
now combine the equivalent conditions for vanishing mortal and nascent parts from
Proposition 3.6 and Theorem 5.1 to obtain the following.

Corollary 5.3. A matching diagram D is projective if and only if all of its structure
maps are mono, and injective if and only if all of its structure maps are epi.
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A natural question to ask is whether statements analogous to the above Theo-
rem 5.1 and Corollary 5.3 also hold for persistence modules instead of matching dia-
grams: can we characterize projectivity/injectivity or structure maps being mono/epi
by vanishing mortal/nascent parts? We start with some general results.

Proposition 5.4. For any persistence module M , we have M† = 0 if and only if all
structure maps of M are mono. Moreover, if M∗ = 0, then all structure maps of M
are epi.

Proof. The first part of the proposition is just a special case of the first part of
Proposition 3.6, noting that taking colimits of persistence modules is exact.

For the second part, we repeat parts of the dual version of the proof of Propo-
sition 3.6: If M∗ = 0, then ∆ limM →M is epi, i.e., limM →Mt is epi for all
t ∈ T . This implies in particular that for any structure map Ms → Mt, the compo-
sition limM →Ms →Mt is epi since it is equal to limM →Mt. As a consequence,
Ms →Mt needs to be epi, finishing the proof.

As we will see in Remark 5.6, the converse to the second part of the proposition
does not hold in general. In the category vecT of p.f.d. persistence modules, however,
we can indeed characterize projectives and injectives in a way analogous to matching
diagrams MchT.

Theorem 5.5. Let M be a p.f.d. persistence module.

1. The following are equivalent:

(a) All structure maps of M are mono.
(b) M† = 0.
(c) M is projective in vecT.

2. The following are equivalent:

(a) All structure maps of M are epi.
(b) M∗ = 0.
(c) M is injective in vecT.

Proof. Starting with the first part of the theorem, we first note that we have already
shown thatM† = 0 is equivalent toM having mono structure maps for any persistence
module M in Proposition 5.4. Thus, what is left to show for the first part is that
M† = 0 is equivalent to M being projective in the p.f.d. category. To do so, we
fix a barcode decomposition M ∼=

⊕
α C(Iα), which is possible by Crawley-Boevey’s

Theorem since M is p.f.d.
Now, assume that M† = 0, or equivalently M =M∞. We want to show that M

is projective in vecT. A direct sum of projectives is projective, so it suffices to check
that the interval modules C(Iα) in the decomposition of M are projective in vecT.
Recall that vecT is abelian, so in order to show that C(Iα) is projective in vecT we
only need to show now that any epimorphism φ : N → C(Iα) with N p.f.d. splits.

Choosing a barcode decomposition N ∼=
⊕

β C(Jβ) induces maps

φβ : C(Jβ) → C(Iα)

for each β. Because φ is an epimorphism of p.f.d. persistence modules, there has to
be some β0 such that φβ0

is epi (see also the proof of [3, Lemma 4.3]). This implies
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that Iα ⊆ Jβ0
and that simultaneously Jβ0

has to overlap Iα above. Since we assume
M† = 0, Iα ∈ I∞ holds by Corollary 4.7, so we obtain Iα = Jβ0

, which yields that
φβ0 is an isomorphism. We can thus define ψ : C(Iα) → N as the composition

C(Iα) C(Jβ0
)

⊕
β C(Jβ)

∼= N.
φ−1

β0

By construction, we have φ ◦ ψ = φ−1
β0

◦ φβ0
, which is the identity on C(Iα), so φ

splits. Thus, we have shown that C(Iα), and consequently M , is projective.
Next, we assume thatM† ̸= 0 and show thatM is not projective in vecT. Because

the mortal part of M does not vanish, there now has to be some α0 with Iα0
∈ I†.

We proceed as in the proof of Theorem 5.1 and define

J = {t ∈ T | there exists s ∈ Iα0
with s ⩽ t}.

Clearly, J is an interval in T and it overlaps Iα0 above. Since the canonical map
C(J) → C(Iα0) is an epi, we can use to construct an epi⊕

α̸=α0

C(Iα)⊕ C(J) →
⊕
α̸=α0

C(Iα)⊕ C(Iα0)
∼=M

in vecT, which is an isomorphism on all summands except for C(J). If this map would
split, the splitting would induce a morphism C(Iα0

) → C(J), which cannot exist since
Iα0 by construction does not overlap J above. Thus, the epi we constructed does not
split and M is not projective in vecT. This finishes the proof of the first part.

For the second part, we first observe that in the p.f.d. setting, barcode decompo-
sitions can not only be interpreted as direct sums but even as biproducts. Note that
a p.f.d. persistence module may have a barcode consisting of infinitely many inter-
vals, so this assertion is not guaranteed by vecT being abelian and thus having finite
biproducts. However, the observation is still true due to the fact that direct sums
and products of persistence modules are given pointwise, and they coincide for finite
dimensional vector spaces, so they also coincide for p.f.d. persistence modules. Thus,
since we have biproduct decompositions, one can now show thatM∗ = 0 is equivalent
to M being injective in vecT by dualizing the previous argument and exploiting the
fact that products of injectives are again injectives.

That M∗ = 0 implies M having epi structure maps has been shown for all persis-
tence modules M before in Proposition 5.4, so what remains to be checked is that
M∗ = 0 if M is p.f.d. and its structure maps are epi. To see that this is the case, one
can use the fact that the functor lim: vecT → Vec is exact (because derived inverse
limits of p.f.d. persistence modules vanish [28, Proposition 1.1], [34, Théorème 2])
and reuse the argument in the proof of Proposition 3.6 to show that ∆ limM →M
is epi if the structure maps of M are epi, which implies that M∗ = 0.

Any p.f.d. persistence module has a barcode and the lifespan functors are compat-
ible with the passage to barcodes, so another way of phrasing the previous theorem
is that a p.f.d. persistence module is projective or injective in vecT if and only if its
barcode has the corresponding property in Barc(T).

Remark 5.6. When considering persistence modules beyond the p.f.d. category, some
of the equivalences established in Theorem 5.5 do not hold anymore in general. We
give a few examples.
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First consider the case T = R, which is the most relevant one for persistent homol-
ogy. In this case, if the structure maps ofM are epi, thenM∗ = 0, providing a converse
to the second part of Proposition 5.4. The assertion can be shown by a simple argu-
ment as in the proof of [36, Lemma 7]. Moreover, any injective object in VecR has
epi structure maps. The converse does not hold: the real-indexed persistence module
M1 = C(−∞, 0) satisfies M∗

1 = 0 and has epi structure maps, but it is not injective
in VecR because the obvious mono

M1 = C(−∞, 0) →
∏

n∈N>0

C

(
−∞,− 1

n

)
does not split. Similarly, any projective object in VecR has vanishing mortal part and
mono structure maps. Again, the converse does not hold: the real-indexed interval
module M2 = C(0,∞) satisfies M†

1 = 0 and has mono structure maps, but it is not
projective in VecR because the obvious epi⊕

n∈N>0

C

(
1

n
,∞

)
→ C(0,∞) =M2

does not split. ThatM1 is not injective andM2 is not projective in VecR also follows
from the classification of injective and projective interval modules by Bubenik and
Milićević [10, Section 6].

For general totally ordered indexing sets T , we still have the implications that any
injective object in VecT has epi structure maps and that any projective object in
VecT has mono structure maps and vanishing mortal part (see [24, 25] for classi-
fication results for injectives in VecT and [26] for a classification of projectives in
VecT). However, for persistence modules, having epi structure maps does not always
imply vanishing nascent part: there is a non-zero persistence module M3 indexed by
the opposite poset of the first uncountable ordinal ω1 whose structure maps are all
epi, but which satisfies limM3 = 0 ([23, Section 3]), so that M∗

3 =M3 ̸= 0. We are
presently unable to determine whether an injective persistence module necessarily
has vanishing nascent part.

6. Functorial dualities in persistent homology

In Section 6.1, we discuss functorial versions of the duality results by de Silva et al.
[20]. As an application, we present some considerations in Section 6.2 on obtaining
images of morphisms in persistent homology from their counterparts in relative coho-
mology, which is of great relevance for making their algorithmic computation more
efficient.

6.1. Persistent homology dualities in terms of lifespan functors

We will now prove a generalization of the absolute-relative correspondence [20,
Proposition 2.4] involving our lifespan functors. In order for this to work nicely, we
only consider filtrations that satisfy the following condition.

Definition 6.1. Let X be a T-indexed diagram of topological spaces. We say that
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X is colimit proper if the natural maps

colimHd(X) → Hd(colimX) and Hd(colimX) → limHd(colimX,X)

are isomorphisms for all d.

Note that colimit properness is always satisfied if the diagram X is initially empty
and eventually constant. In particular, if the index set has a largest element tmax

and a minimal element tmin then every X with Xtmin = ∅ is colimit proper. These
properties are usually given in the computational setting for persistent homology.

Theorem 6.2. Let X be a colimit proper filtration of topological spaces. For all d,
we have the following isomorphisms, which are natural in X:

Hd−1(X)† ∼= Hd(colimX,X)∗,

Hd(X)◁ ∼= Hd(colimX,X)−∞,

Hd(X)∞ ∼= Hd(colimX,X)▷.

Proof. To shorten notation, we write A for colimX. SinceX is a filtration, the natural
map C∗(X) → C∗(∆A) is mono. Thus, we have a short exact sequence

0 C∗(X) C∗(∆A) C∗(A,X) 0.

This induces a long exact sequence of persistence modules

· · · ∆Hd(A) Hd(A,X) Hd−1(X) ∆Hd−1(A) · · ·ϵd ∂ ηd−1

Since we assume X to be colimit proper, the map ϵd can be identified with the counit

ϵHd(A,X) : ∆ limHd(A,X) → Hd(A,X)

of the adjunction ∆ ⊣ lim. Similarly, the map ηd−1 may be identified with the unit

ηHd−1(X) : Hd−1(X) → ∆colimHd−1(X)

of the adjunction colim ⊣ ∆. Applying the definition of the lifespan functors, the
claimed isomorphisms are now simply given by exactness of the above sequence :

Hd−1(X)† ∼= ker ηd−1
∼= coker ϵd ∼= Hd(A,X)∗,

Hd(X)◁ ∼= coker ηd ∼= im ϵd ∼= Hd(A,X)−∞,

Hd(X)∞ ∼= im ηd ∼= ker ϵd ∼= Hd(A,X)▷.

These isomorphisms are natural in X as a direct consequence of the fact that the
construction of the long exact sequence is natural in X.

Using the barcode formulas for lifespan functors and complements in Corollary 4.7
and Propositions 4.9 and 4.10, one can easily recover the original duality result by de
Silva et al. [20, Proposition 2.4]. Moreover, naturality in the filtration variable implies
that for a morphism f : X → Y between colimit proper filtrations with ϕ = colim f
we also get isomorphisms

Hd−1(f)
† ∼= Hd(ϕ, f)

∗, Hd(f)
◁ ∼= Hd(ϕ, f)

−∞, Hd(f)
∞ ∼= Hd(ϕ, f)

▷

in the category of morphisms of persistence modules. These also translate to isomor-
phisms between the corresponding images, kernels, and cokernels.
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Note that the isomorphism between the mortal part of the absolute persistent
homology and the nascent part of the relative persistent homology in the proof of
Theorem 6.2 is induced by the boundary operator. This means that if an interval in
the nascent part of the barcode of the relative persistent homology is represented by
some relative cycle, the boundary of this cycle represents the same interval in the
absolute persistent homology in one dimension lower, as observed in [20].

Remark 6.3. While the above result is stated for persistent homology of filtrations
of spaces, a similar statement holds in the purely algebraic setting. Given a filtered
chain complex C, we can consider the short exact sequence

0 C ∆colimC C◁ 0.

We can then continue as in the proof above to get natural isomorphisms

Hd−1(C)
† ∼= Hd(C

◁)∗ Hd(C)
◁ ∼= Hd(C

◁)−∞ Hd(C)
∞ ∼= Hd(C

◁)▷.

For completeness, we also record a functorial version of the correspondence between
persistent homology and persistent cohomology [20, Proposition 2.3], which follows
immediately from the universal coefficient theorem.

Proposition 6.4. Let X be a T-indexed diagram of topological spaces. For all d, we
have the following isomorphisms, which are natural in X:

Hd(X)∨ ∼= Hd(X),

Hd(colimX,X)∨ ∼= Hd(colimX,X).

While the correspondence in [20, Proposition 2.3] is stated on the level of barcodes,
the natural isomorphism asserted in Proposition 6.4 appears in its proof, which essen-
tially combines the previous statement with the fact that p.f.d. persistence modules
have the same barcode as their duals (Lemma 2.23).

As in the absolute-relative correspondence, naturality in the variable X yields
corresponding isomorphisms in the category of morphisms of persistence modules for
maps f : X → Y .

6.2. Absolute homology images from relative cohomology images
As a concrete application, we want to explain how to use our previous results for

the efficient computation of barcodes for images of morphisms in persistent homol-
ogy. Note that similar considerations also apply for kernels and cokernels of such
morphisms.

As mentioned above, and as is explained e.g. in [2], one of the most efficient ways
currently known to compute the barcode of the persistent homology of a filtration
of finite simplicial complexes is to actually compute the barcode of the persistent
relative cohomology with the so-called clearing optimization, and to then translate
this to persistent homology via the two duality results from de Silva et al. [20].

Our generalizations of these duality results now allow us to proceed similarly for
the image of a map f : X → Y . Since we are talking about computational speed-ups,
X and Y are assumed to be filtrations of finite simplicial complexes indexed by a
totally ordered set T with a minimal element tmin and a largest element tmax. We
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also assume that Xtmin
= Ytmin

= ∅, so that both filtrations are colimit proper, and
that colimHd(f) = limHd(colim f, f) = Hd(ftmax

) is an isomorphism.
In order to compute the barcode for imHd(f), we start with applying the (non-

natural) decomposition

imHd(f) ∼= (imHd(f))
† ⊕ (imHd(f))

∞

from Corollary 4.8. We consider both summands separately, making use of the fact
that taking barcodes is compatible with direct sums.

Starting with the first summand, we observe that because colimHd(f) = Hd(ftmax
)

is an isomorphism, and in particular a monomorphism, we have

(imHd(f))
† ∼= im(Hd(f)

†)

using the first part of Theorem 3.10. The natural duality Theorem 6.2, which we can
apply since X and Y are colimit proper, provides an isomorphism

im(Hd(f)
†) ∼= im(Hd+1(colim f, f)∗).

An application of the second part of Theorem 3.10 yields the isomorphism

im(Hd+1(colim f, f)∗) ∼= (imHd+1(colim f, f))∗

using that limHd(colim f, f) = Hd(ftmax
) is epi. Finally, the duality of homology and

cohomology from Proposition 6.4 yields an isomorphism

(imHd+1(colim f, f))∗ ∼= ((imHd+1(colim f, f))∨)∗,

where we also make use of the fact that applying dualization twice yields the identity
on p.f.d persistence modules. Finally, because our index set has a largest element,
Proposition 4.15 gives

((imHd+1(colim f, f))∨)∗ ∼= ((imHd+1(colim f, f))∗)
∨.

In total, the above implies that (imHd(f))
† and (imHd+1(colim f, f))∗ have the same

barcode by Lemma 2.23 because we are in the p.f.d. setting, so we can obtain the
mortal part of the absolute homology barcode from the one in relative cohomology.

For the second term in the mortal-immortal decomposition of imHd(f), we have

(imHd(f))
∞ ∼= Hd(X)∞

by Theorem 3.10. We proceed again with our natural absolute-relative duality from
Theorem 6.2 to obtain

Hd(X)∞ ∼= Hd(colimX,X)▷.

Since all modules are p.f.d., passing to cohomology with Proposition 6.4 yields

(Hd(colimX,X))▷ ∼= ((Hd(colimX,X))∨)▷.

Proposition 4.15 finally yields

((Hd(colimX,X))∨)▷ ∼= (Hd(colimX,X)▷)
∨.

Thus, we can also obtain the immortal part of the absolute homology barcode from the
one in relative cohomology. For a simplified restatement and an algorithmic applica-
tion of the above argument in the computational setting of finite simplicial complexes,
we refer to [6].
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