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Abstract
By applying Gröbner basis theory to spectral sequences alge-

bras, we develop a new computational methodology applicable
to any Leray–Serre spectral sequence for which the cohomology
of the base space is the quotient of a finitely generated polyno-
mial algebra. We demonstrate the procedure by deducing the
cohomology of the free loop space of flag manifolds, presenting
a significant extension over previous knowledge of the topology
of free loop spaces. A complete flag manifold is the quotient
of a Lie group by its maximal torus. The rank of a flag man-
ifold is the dimension of the maximal torus of the Lie group.
The rank 2 complete flag manifolds are SU(3)/T 2, Sp(2)/T 2,
Spin(4)/T 2, Spin(5)/T 2 and G2/T

2. In this paper we calculate
the cohomology of the free loop space of the rank 2 complete
flag manifolds.

1. Introduction

One of the most influential problems in topology and geometry is the study of
geodesics on Riemannian manifolds. The geodesic problem refers to finding geodesics
connecting two given points of a Riemannian manifold or to finding periodic geodesics,
and to giving information regarding their count. The study of geodesics originated with
the works of Hadamard [15] and Poincaré [21] and with substantial early contributions
by Birkhoff [3], Morse [18], and Lusternik and Schnirelman [16]. The most important
offspring of this problem is the development of topological methods in variational
calculus, generally referred to as Morse theory [7]. Recently Floer theory developed as
a central tool in modern symplectic topology taking its inspiration from the study of
geodesics. The geodesic problem also led to the development of computational tools
in algebraic topology (spectral sequences), and is connected to the theory of minimal
models and to Hochschild and cyclic homology.

One of the most natural starting points in the study of the geodesic problem is the
study of spaces of paths and loops on a manifold. In recent years, these spaces have
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been the object of much interest in topology, symplectic geometry and theoretical
physics. The free loop space ΛX of a topological space X is defined to be the mapping
space Map(S1, X), the space of all non-pointed maps from the circle to X.

Given a Riemannian manifold (M, g), the closed geodesics parametrised by S1 are
the critical points of the energy functional

E : ΛM → R, E(γ) :=
1

2

∫
S1

||γ̇(t)||2dt.

Morse theory applied to the energy functional E gives a description of the loop space
ΛM by successive attachments of bundles over the critical submanifolds with rank
given by the index of the Hessian d2E. This allows a grip on the topology of ΛM
provided one has enough information on these indices and on the attaching maps.
Conversely, knowledge of the topology of ΛM implies existence results for critical
points of E.

One of the most powerful results in this direction is due to Gromoll–Meyer [14] who
proved that when M is a simply connected closed manifold such that the sequence
{bk(ΛM)}, k ⩾ 0 of Betti numbers of ΛM with coefficients in some field is unbounded,
then for any Riemannian metric onM there exist infinitely many geometrically distinct
closed geodesics.

A distinctive subspace of ΛM is the based loops space ΩX = Map∗(S
1, X), the

space of all pointed maps from the circle to X. The based loop space functor is
an important classical object in algebraic topology and has been well studied. The
topology of the free loop space is much less well behaved and it is still only well
understood in a handful of examples. In particular, the cohomology of the free loop
space spheres, n-dimensional projective spaces and Lie groups.

The starting point for the topological study of a free loop space ΛM is the evaluation
fibration

ΩM → ΛM
ev→M,

where ev is the evaluation at the origin of a loop, and ΩM is the based loop space,
consisting of loops starting and ending at the basepoint of M . This fibration can be
used to determine the homotopy groups of ΛM , that is, πk(ΛM) ∼= πk(M)⊕ πk(ΩM):
the section given by the inclusion of constant loops determines a splitting of the
homotopy long exact sequence. However, the situation is very different as far as the
homology groups are concerned. It turns out that the Leray–Serre spectral sequence
is effective in simple cases (spheres [17, 11]) but of very limited use in general, unless
one has additional geometric information about the differentials. In contrast to the
evaluation fibration, the path-loop fibration ΩM → PM →M has been successfully
used to study ΩM due to it having a contractible total space PM . For example, the
author and Terzić [12, 13] calculate the integral Pontryagin homology ring of the flag
manifolds and of generalised symmetric spaces. Any successful reasoning in the study
of free loop spaces must use specific features of the evaluation fibration.

In this paper we explore the cohomology of the free loop space of homogeneous
spaces. In doing so we uncover some surprising combinatorial identities and explicitly
compute the cohomology of the free loop space of the flag manifolds of the rank
2 simple Lie groups. The cohomology of the free loop space of Lie groups is easy
to calculate as the free loop spaces split as the product ΛG ≃ ΩG×G. The only
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previously known examples of the free loops of homogeneous spaces were Sn and CPn
considered by Cohen–Jones–Yan [10]. Despite much interest in free loop spaces, prior
to our work, these were the only known examples. Therefore the results presented in
this paper greatly expand upon current knowledge. It is worth remarking that the
rank 2 flag manifolds represent a significant step forward in complexity form CPn.

As outlined above, we start by comparing the Leray–Serre spectral sequence for
the path-loop fibration (also known as the Wegraum fibration) with the free loop
space fibration for which the E2-terms are isomorphic and there is a mapping of
spectral sequences to make the comparison. The analysis of the Wegraum fibration
is mitigated by the fact that the projection map is the diagonal mapping on the
manifold, inducing the cup product. This idea itself is a classical one. To calculated the
differentials, the main problem in any spectral sequences approach, we established deep
connections between the free loop spaces of flag manifolds and underlying combinatorics
of symmetric polynomials. To completely determine the algebra structure the novel
ingredient is an analysis via Gröbner bases, presenting a new method applicable to
any Leray–Serre spectral sequence for which the cohomology of the base space is the
quotient of a finitely generated polynomial algebra.

A compact connected Lie group is called simple if it is non-abelian, simply connected
and has no non-trivial connected normal subgroups. The only compact connected
simple Lie groups are Spin(m), SU(n), Sp(n), G2, F4, E6, E7, E8 for n ⩾ 1 and
m ⩾ 2. In this paper we specialise to rank 2 simple Lie groups SU(3), Sp(2), Spin(4),
Spin(5) and G2. In low dimensions, there are isomorphisms among the classical Lie
groups called accidental isomorphisms, identifying certain simple Lie groups of rank 2
such as Spin(4) ∼= SU(2)× SU(2) and Spin(5) ∼= Sp(2). Therefore, in this paper we
focus on the cohomology of the free loop spaces on SU(3)/T 2, Sp(2)/T 2 and G2/T

2.

2. Background

2.1. Gröbner bases
Gröbner basis provide us with powerful methods to perform computations in

commutative algebra particularly with respect to ideals, although their applications
extend far beyond such calculations. In this subsection we briefly describe the Gröbner
basis theory to be used later in the paper. For more information and proofs see [1]
or [2]. We state all results over Euclidean or principal ideal domain R; in the paper
we will only consider the case R = Z for which all results hold. The theory of Gröbner
basis can be generalised to other rings and stronger results can be recovered over a
field.

Let R be a ring. Given a finite subset A of R[x1, . . . , xn], we denote by ⟨A⟩ the
ideal generated by elements of A. Fix a monomial ordering on the polynomial ring
R[x1, . . . , xn]. For f, g, p ∈ R[x1, . . . , xn], g is said to be reduced from f by p if there
exists a term m in f such that the leading term of p divides m and g = f −m′p for
some monomial m′ ∈ R[x1, . . . , xn].

Let R be a principal ideal domain and let G be a finite subset of R[x1, . . . , xn].
Then G is a Gröbner basis if all elements of ⟨G⟩ can be reduced to zero by elements
of G.

A set is called decidable if for any two elements input, there is an algorithm that
can determine whether they are equal. A ring is called computable if it is decidable as
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a set and there is an effectively computable algorithm for addition, multiplication and
subtraction in the ring for an input of a pair of elements. A principal ideal domain
is called a computable principal ideal domain if it is a computable ring, there is an
algorithm that can effectively compute whether a given pair of elements is divisible
and an extended Euclidean algorithm can be effectively computed. Euclidean domain
is a computable Euclidean domain if it is a computable ring and there is an algorithm
that effectively computes division with remainder.

The integers are a computable Euclidean domain. Moreover, as division with
remainder can be applied to construct an extended Euclidean algorithm, so every
computable Euclidean domain is also a computable principle ideal domain.

Theorem 2.1 ([2]). Let R be a computable principal ideal domain and fix a monomial
order on R[x1, . . . , xn]. For any ideal in R[x1, . . . , xn], there exists a Gröbner basis.
In particular, for finite A ⊆ R[x1, . . . , xn] there is an algorithm to obtain a Gröbner
basis G such that ⟨G⟩ = ⟨A⟩.

The most efficient algorithm is known as the Buchberger algorithm and can easily
be implemented by a computer. Over a Euclidean domain a more precise form of
reduction is required to replicate some properties of Gröbner basis over a filed.

Definition 2.2. For f, g, p ∈ E[x1, . . . , xn], g is said to be E-reduced from f by p to
g, if there exists a term t in f such that for some monomial m = at in f the leading
term lp of p divides t with t = slp and

g = f − qsp,

for some non-zero q ∈ E the quotient of a upon division with unique remainder by lp.

A Gröbner basis G in E[x1, . . . , xn] is said to be reduced if all polynomials in G
cannot be E-reduced by any other polynomial in G.

Theorem 2.3 ([2]). Let R be a Euclidean domain with unique remainders and let G be
a Gröbner basis for the ideal ⟨G⟩ in R[x1, . . . , xn]. Then all elements in R[x1, . . . , xn]
E-reduce to a unique representative in R[x1, . . . , xn]/⟨G⟩.

In particular, a Gröbner basis can be used to compute the intersection of ideals
which we make explicit in the next remark.

Remark 2.4. Let A = {a1, . . . , as} and B = {b1, . . . , bl} be subsets of R[x1, . . . , xn].
Take a Gröbner basis G of

{ya1, . . . , yat, (1− y)b1, . . . , (1− y)bl}

in R[x1, . . . , xn, y] using a monomial ordering in which monomials containing y are
larger than y free monomials. Then a Gröbner basis of ⟨A⟩ ∩ ⟨B⟩ is given by the
elements of G that do not contain y.

2.2. Cohomology of the complete flag manifolds of simple Lie groups
A Lie subgroup T of a Lie group G isomorphic to a torus is called maximal if

any subtorus containing T coincides with T . Maximal tori are conjugate and cover
the Lie group, therefore it is unambiguous to refer to the maximal torus T of G.
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The homogeneous space G/T , isomorphic regardless of the choice of T , is called the
complete flag manifold of G. The rank of a Lie group G is the dimension of the
maximal torus T .

The cohomology of homogeneous spaces was studied in detail by Borel in [5]. In
particular, from Borel’s work it is possible to deduce the rational cohomology of G/T .

Theorem 2.5 ([5]). For compact connected Lie group G with maximal torus T ,

H∗(G/T ;Q) ∼=
H∗(BT ;Q)

⟨H̃∗(BT ;Q)WG⟩
,

where BT is the classifying space of T and WG is the Weyl group of Lie group G.

In [8] Bott and Samelson, using Morse theory, extended Borel’s work by showing
that there is no torsion in H∗(G/T ;Z). This made it easier to deduced the integral
structure of the cohomology of the complete flag manifolds in the cases of SU(n), Sp(n)
and G2. Toda [24] studied the cohomology of homogeneous spaces looking at the mod
p cohomology for prime p. In particular, Toda described in a nice form the integral
cohomology algebras of the complete flag manifolds in the case of SO(n). Soon after,
Toda and Watanabe [25] computed the integral cohomology of the complete flag
manifolds of F4 and E6. The cohomology of the complete flag manifolds of simple Lie
groups were completed by Nakagawa who described the cases for E7 and E8 in [19]
and [20], respectively.

We recall the cohomology rings of the flag manifolds used in this paper following
[5, 9]. The cohomology of the complete flag manifold of the simple Lie group SU(3)
is given by

H∗(SU(3)/T 2;Z) =
Z[γ1, γ2, γ3]
⟨σ1, σ2, σ3⟩

,

where |γi| = 2 for i = 1, 2, 3 and σi are the elementary symmetric polynomials of
degree i in variables γ1, γ2, γ3. To simplify calculations, using σ1 = γ1 + γ2 + γ3 rewrite
variable γ3 as γ3 = −γ1 − γ2, hence

H∗(SU(3)/T 2;Z) =
Z[γ1, γ2]
⟨σ2, σ3⟩

. (1)

Note that we also rewrite σ2 = γ21 + γ22 + γ1γ2 and σ3 = γ21γ2 + γ1γ
2
2 .

The cohomology of the complete flag manifold of the simple Lie group Sp(2) is
given by

H∗(Sp(2)/T 2;Z) =
Z[γ1, γ2]
⟨σ2

1 , σ
2
2⟩
, (2)

where |γi| = 2 for i = 1, 2 and σ2
i denotes elementary symmetric polynomial of degree

i in variables γ21 , γ
2
2 .

The cohomology of the complete flag manifold of the exceptional simple Lie group
G2 is given by

H∗(G2/T
2;Z) =

Z[γ1, γ2, γ3, t3]
⟨σ1, σ2, σ3 − 2t3, t23⟩

,

where |γi| = 2 for i = 1, 2, 3, |t3| = 6 and σi denotes the elementary symmetric
polynomial of degree i in variables γ1, γ2, γ3. Again to simplify calculations, using
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σ1 = γ1 + γ2 + γ3 we rewrite variable γ3 as γ3 = −γ1 − γ2, hence

H∗(G2/T
2;Z) =

Z[γ1, γ2, t3]
⟨σ2, σ3 − 2t3, t23⟩

. (3)

Similarly, rewrite σ2 = γ21 + γ22 + γ1γ2 and σ3 = γ21γ2 + γ1γ
2
2 .

2.3. Based loop space cohomology of simple Lie groups
The Hopf algebras of the based loop space of Lie groups were studied by Bott [6].

We recall the results used later in the paper. Recall the integral divided polynomial
algebra on variables x1, . . . , xn is given by

ΓZ[x1, . . . , xn] =
Z[(xi)1, (xi)2, . . . ]
⟨xki − k!(xi)k⟩

for 1 ⩽ i ⩽ n, k ⩾ 1 where (xi)1 = xi. The following results can be obtained from the
cohomology of SU(3) and Sp(2) by applying the Leray–Serre spectral sequence to the
path-loop fibrations

ΩSU(3) → PSU(3) → SU(3) and ΩSp(2) → PSp(2) → Sp(2).

The integral cohomology of the based loop space of the classical simple Lie group
SU(3) is given by

H∗(Ω(SU(3));Z) = ΓZ[x2, x4], (4)

where |x2| = 2 and |x4| = 4. The integral cohomology of the based loop space of the
classical simple Lie group Sp(2) is given by

H∗(Ω(Sp(2));Z) = ΓZ[x2, x6], (5)

where |x2| = 2 and |x6| = 6. It is less straightforward to, in a similar way, compute
the integral cohomology of ΩG2.

Proposition 2.6. The integral cohomology of the based loop space of the exceptional
simple Lie group G2 is given by

H∗(ΩG2;Z) =
Z[(a2)1, (a2)2, . . . ]

⟨am2 − (m!/2⌊
m
2 ⌋)(a2)m⟩

⊗ ΓZ[b10],

where m ⩾ 1, (a2)1 = a2 and |(a2)m| = 2m, |b10| = 10.

Proof. The integral cohomology of G2 [4] is given by

H∗(G2;Z) =
Z[x3, x11]

⟨x43, x211, 2x23, x23x11⟩
,

where |x3| = 3 and |x11| = 11. Since G2 is simply connected, consider the Leray–Serre
spectral sequence {Er, dr} of the path-loop fibration

ΩG2 → PG2 → G2.

The spectral sequence {Er, dr} converges to a trivial algebra and the first non-trivial
class in the cohomology of G2 is generated by x3 in degree 3. Hence, for dimensional
reasons there is an a2 ∈ H2(ΩG2;Z) and

d3(a2) = x3.
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Form ⩾ 1, denote by (a2)m the additive generator ofH2m(ΩG2;Z) such that c(a2)m =
am2 for some c ⩾ 0. Element x23 is 2-torsion and d3(a2x3) = x23, so the kernel of
d3 : E3

3,2 → E3
6,0 is generated by 2a2x3. Hence, as d3(a22) = 2a2x3,

(a2)2 = a22.

As the element a2x
2
3 is 2-torsion and d3((a2)2x3) = 2a2x

2
3 = 0, the kernel of the

differential d3 : E3
3,4 → E3

6,2 is generated by (a2)2x3. Hence, as d3(a32) = 3(a2)2x3,

3(a2)3 = a32.

For p ⩾ 1, q ⩾ 2 even and r ⩾ 1 odd,

ker(d3)(Ep,2q3 ) ∼= H∗(G2,Z) and ker(d3)(Ep,2r3 ) ∼= Ep,23 .

In particular, it can be shown inductively that {a2 = (a2)1, (a2)2, (a2)3, . . . } generates
an algebra

Z[(a2)1, (a2)2, . . . ]
⟨am2 − (m!/2⌊

m
2 ⌋)(a2)m⟩

.

As the element (a2)q−1x
2
3 is 2-torsion and d3((a2)qx3) = (a2)q−1x

2
3, the kernel of

d3 : E3
3,2q → E3

6,2q−2 is generated by 2(a2)q−1x3. As d3(aq2) = qaq−1
2 x3, by induction,

q!/2q(a2)q = aq2.

As the element a2rx
2
3 is 2-torsion and d3((a2)r+1x3) = arx

2
3, the kernel of the differ-

ential d3 : E3
3,2r → E3

6,2r−2 is generated by (a2)r−1x3. Hence, as d
3(ar2) = r(a2)

r−1x3,
by induction

r!/2r−1(a2)r = ar2.

For dimensional reasons, there are no other non-trivial d3 differentials other than those
occurring on multiple of (a3)m. Hence the only non-trivial elements on the E4-page
divisible by (a2)m, x3 or x11 for m ⩾ 1 are generated by

x11, (a2)tx2, (a2)tx3x11,

where t ⩾ 1 is odd, x11 is non-torsion, (a2)mx2 and x3x11 are 2-torsion. By [6], there is
no torsion in H∗(ΩG2,Z). Hence, for dimensional reasons, there is a b10 ∈ H∗(ΩG2;Z)
and

d5((a2)tx2) = (a2)t−2x3x11, d
9(b10) = a2x3, d

11(2b10) = x11

for odd t ⩾ 3. It can be shown that b10 generates a divided polynomial algebra in
the same way as for the generators of H∗(ΩSU(3);Z) and H∗(ΩSp(2);Z), which
completes the proof.

3. Differentials in the diagonal map spectral sequence

We begin by studying the differentials in the evaluation fibration of a simply
connected, simple Lie group G of rank 2 with maximal torus T . The argument is
similar to that of [22], in which the cohomology of the free loop spaces of spheres and
complex projective spaces are calculated using spectral sequence techniques. However
the technical details in the case of the complete flag manifolds is considerably more
complex.
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For a spaceX, the fibrationMap(I,X) → X ×X is given by α 7→ (α(0), α(1)). Note
that Map(I,X) ≃ X. It can be shown that eval is a fibration homotopy equivalent
to the diagonal map with fibre ΩX. In this section we compute the differentials in
the cohomology Leray–Serre spectral sequence of this fibration in the case X = G.
The aim is to compute H∗(ΛG/T ;Z). The fibration eval : ΛX → X is given by the
evaluation of a loop at the base point. The evaluation fibration is also a fibration with
fibre ΩX. This fibration is studied in Section 4 by considering a map of fibrations
from the evaluation fibration of G to the diagonal fibration and hence the induced
map on the spectral sequences. For the rest of this section we consider the fibration

Ω(G/T ) → G/T
∆−→ G/T ×G/T. (6)

By extending the fibration T → G→ G/T , we obtain the homotopy fibration
sequence

ΩG→ Ω(G/T ) → T → G. (7)

It is well known see [23], that the inclusion of the maximal torus into G is null-
homotopic. Hence there is a homotopy section T → ΩG, implying that

Ω(G/T ) ≃ ΩG× T. (8)

All cohomology algebras of spaces in fibration (6) are known. As G/T hence also
G/T ×G/T are simply connected, the cohomology Leray–Serre spectral sequence of
fibration (6), which we denote by {Ēr, d̄r}, converges to H∗(G/T ;Z) with an Ē2-page
given by Ēp,q2 = Hp(G/T ×G/T ;Hq(Ω(G/T );Z)).

3.1. Case SU(3)/T 2

When G = SU(3), using decomposition (8), we obtain an algebra isomorphism

H∗(Ω(SU(3)/T 2);Z) ∼= H∗(Ω(SU(3);Z)⊗H∗(T 2;Z) ∼= ΓZ[x2, x4]⊗ ΛZ(y1, y2),

where |x2| = 2, |x4| = 4 and |y1| = |y2| = 1. Using the cohomology description (1), we
set

H∗(SU(3)/T 2;Z) = Z[λ1,λ2]

⟨σλ
2 ,σ

λ
3 ⟩

and

H∗(SU(3)/T 2 × SU(3)/T 2;Z) = Z[α1,α2]
⟨σα

2 ,σ
α
3 ⟩ ⊗ Z[β1,β2]

⟨σβ
2 ,σ

β
3 ⟩
,

where |αi| = |βi| = |λi| = 2 for each i = 1, 2.
The following lemma determines the d̄2 differential on Ē∗,1

2 . We use the alternative
basis

vi = αi − βi and ui = βi

for H∗(SU(3)/T 2 × SU(3)/T 2;Z), where i = 1, 2.

Lemma 3.1. In the cohomology Leray–Serre spectral sequence of fibration (6), there
is a choice of basis y1, y2 such that
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d̄2(yi) = vi

for each i = 1, 2.

Proof. For dimensional reasons, d̄2 is the only possible non-zero differential with
codomain at any Ē2,0

∗ and no non-zero differential have domain in any Ē2,0
∗ . As

fibration (6) is the diagonal map ∆: SU(3)/T2 → SU(3)/T 2 × SU(3)/T 2 and the
spectral sequence converges to H∗(SU(3)/T 2), the image of d̄2 : Ē0,1

2 → Ē2,0
2 must be

the kernel of the cup product on H∗(SU(3)/T 2 × SU(3)/T 2;Z), which is generated
by v1, v2.

Theorem 3.2. In the spectral sequence {Ēr, d̄r}, up to class representative and sign
in Ē2,1

2 and Ē4,1
2 , the non-trivial differentials are given by

d̄2(x2) = y1v1 + y2v2 + y1v2 + 2y1u1 + 2y2u2 + y1u2 + y2u1

and

d̄4(x4) = y1v1v2 + y2v2v1 + 2y1u1v2 + 2y2u2v1 + y1v1u2 + y2v2u1

+2y1u1u2 + 2y2u2u1 + y1u
2
2 + y2u

2
1.

Proof. All differentials on αi and βi are trivial for dimensional reasons. So the only
remaining differentials left to determine are those on generators x2 and x4. For
dimensional reasons, the elements x2, x4 cannot be in the image of any differential.
By Lemma 3.1, the generators u1, u2 must survive to the Ē∞-page, so generators x2
and x4 cannot. The image of d̄2 : Ē0,2

2 → Ē2,1
2 will be a class in Ē2,1

2 in the kernel of
d̄2 generated by a single element, not in the image of an element generated by yi, ui
and vi alone.

We have d̄2(ui) = d̄2(vi) = 0 and by Lemma 3.1 we may assume that d̄2(yi) = vi
for each i = 1, 2. The non-zero generators in Ē2,1

2 can be expressed in the form

ykui or ykvi

and the non-zero generators in Ē4,1
2 can be expressed in the form

ykuiuj , ykviuj or ykvivj

for some 1 ⩽ i, j, k ⩽ 2. Notice that for 1 ⩽ k, i ⩽ 2

d̄2(y1v1 + y2v2 + y1v2 + 2y1u1 + 2y2u2 + y1u2 + y2u1)

= v21 + v22 + v1v2 + 2v1u1 + 2v2u2 + v1u2 + v2u1

= (α2
1 − 2α1β1 + β2

1) + (α2
2 − 2α2β2 + β2

2) + (α1α2 − α1β2 − α2β1 + β1β2)

+ 2(α1β1 − β2
1) + 2(α2β2 − β2

2) + (α1β2 − β1β2) + (α2β1 − β2β1)

= α2
1 + α2

2 + α1α2 − β2
1 − β2

2 − β1β2 = 0.

In particular since y1v1 is not a term in d̄2(y1y2) = y2v1 − y1v2,

y1v1 + y2v2 + y1v2 + 2y1u1 + 2y2u2 + y1u2 + y2u1

is a generator. Thus since it is the only remaining cycle that can be hit by x2 in the
kernel of d̄2 at E2,1

2 ,

d̄2(x2) = y1v1 + y2v2 + y1v2 + 2y1u1 + 2y2u2 + y1u2 + y2u1

up to class representative and sign. Notice that image of d̄2(x2) is obtained as the
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element whose image under d̄2 coincides with the degree 2 generators of the symmetric
ideal. Since the choice of degree 2 generator of the symmetric ideal is unique up to
sign, so the expression for d̄2(x2) is also uniquely determined up to sign.

For dimensional reasons and due to all lower rows exceptĒ∗,2
4 and Ē∗,1

4 being
annihilated by the d̄2 differential, the only possible non-zero differential beginning
at x4, is d̄

4 : Ē0,4
4 → Ē4,1

4 . The image of the differential d̄4 on x4 will therefore be a
class in Ē4,1

4 in the kernel of d2 generated by a single element, not in the image of the
elements generated by yi, ui and vi alone. We see that

d̄2(y1v1v2 + y2v2v1 + 2y1u1v2 + 2y2u2v1 + y1v1u2 + y2v2u1

+ 2y1u1u2 + 2y2u2u1 + y1u
2
2 + y2u

2
1)

= v21v2 + v22v1 + 2v1v2u1 + 2v1v2u2 + v21u2 + v22u1

+ 2v1u1u2 + 2v2u1u2 + v1u
2
2 + v2u

2
1

= (α2
1α2 − α2

1β2 − 2α1α2β1 + 2α1β1β2 + α2β
2
1 − β2

1β2)

+ (α1α
2
2 − α2

2β1 − 2α1α2β2 + 2α2β1β2 + α1β
2
2 − β1β

2
2)

+ 2(α1α2β1 − α1β1β2 − α2β
2
1 + β2

1β2) + 2(α1α2β2 − α1β
2
2 − α2β1β2 + β1β

2
2)

+ (α2
1β2 − 2α1β1β2 + β2

1β2) + (α2
2β1 − 2α2β1β2 + β1β

2
2)

+ 2(α1β1β2 − β2
1β2) + 2(α2β1β2 − β1β

2
2) + (α1β

2
2 − β1β

2
2) + (α2β

2
1 − β2

1β2)

= α2
1α2 + α2

2α1 − β2
1β2 − β2

2β1 = 0.

In particular since y1v1u2 is not a term in d̄2(y1y2u2),

y1v1v2 + y2v2v1 + 2y1u1v2 + 2y2u2v1 + y1v1u2 + y2v2u1

+2y1u1u2 + 2y2u2u1 + y1u
2
2 + y2u

2
1

is a generator. Thus since it is the only remaining cycle that can be hit by x4 in the
kernel of d̄2 at E4,1

2 ,

d̄4(x4) = y1v1v2 + y2v2v1 + 2y1u1v2 + 2y2u2v1 + y1v1u2 + y2v2u1

+2y1u1u2 + 2y2u2u1 + y1u
2
2 + y2u

2
1

up to class representative and sign. Similarly to the d̄2 differential, the image of
d̄4(x4) is obtained as the element whose image under d̄4 coincides with the degree
3 generators of the symmetric ideal. Since the choice of degree 3 generator of the
symmetric ideal is unique up to addition of multiples of the degree 2 generator and sign,
so the expression for d̄4(x4) is also uniquely determined up to addition of multiples of
d̄2(x2) and sign.

Remark 3.3. The elements (x2)m and (x4)m for each m ⩾ 2 are also generators on
the Ē2-page of the spectral sequence {Ēr, d̄r}, arising from the divided polynomial
algebra ΓZ[x2, x4]. We note that the differentials in the spectral sequence are also
completely determined on all (x2)m and (x4)m by Theorem 3.2 in the following way.

Using the relations xm2 −m!(x2)m and the Leibniz rule, it follows by induction that
d̄2(xm2 ) = md̄2(x2)x

m−1
2 and hence again using the relations

d̄2((x2)m) = d̄2(x2)(x2)m−1. (9)

Since we know that d̄4(x4) must be non-trivial we have that, as d̄2(x4) and d̄
3(x4)
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must be 0 as the image of d̄4(x4) is non-torsion. Due to the fact that there are no
torsion elements on the spectral sequence pages E∗,∗

i and (x4)m cannot be in the
image of any differential, on successive pages we obtain similarly to equation (9) that
d̄i((x4)m) = d̄i(x4)(x4)m−1 = 0 for i = 2, 3. Therefore as d̄i((x4)m) = 0 for all m ⩾ 1
and we can apply the same augments used to derive equation (9) to obtain that

d̄4((x4)m) = d̄4(x4)(x4)m−1.

3.2. Case Sp(2)/T 2

Consider now G = Sp(2). By (5), we have

H∗(Ω(Sp(2)/T 2);Z) ∼= ΓZ[x2, x6]⊗ ΛZ(y1, y2),

where ΓZ[x2, x6] is the integral divided polynomial algebra on the variables x2, x6
with |x2| = 2 and |x6| = 6 and Λ(y1, y2) is an exterior algebra generated by y1, y2 with
|y1| = |y2| = 1. By (2), the cohomology of Sp(2)/T 2 is

H∗(Sp(2)/T 2);Z) =
Z[λ1, λ2]
⟨σλ2

1 , σλ
2

2 ⟩
and

H∗(Sp(2)/T 2 × Sp(2)/T 2;Z) =
Z[α1, α2]

⟨σα2

1 , σα
2

2 ⟩
⊗ Z[β1, β2]

⟨σβ2

1 , σβ
2

2 ⟩

for the cohomology of the base space and fibre of fibration (6), where |λ1| = |αi| =
|βi| = 2 for i = 1, 2. Denote by {Ēr, d̄r} the cohomology Leray–Serre spectral sequence
associated to fibration (6). We again use the alternative basis

vi = αi − βi and ui = βi

for i = 1, 2. For exactly the same reasons as in Lemma 3.1, we get an equivalent lemma
in the present case.

Lemma 3.4. With the notation above, in the cohomology Leray–Serre spectral sequence
of fibration (6), there is a choice of basis y1, y2 such that

d̄2(yi) = vi

for each i = 1, 2.

We now prove an equivalent of Theorem 3.2 for G = Sp(2).

Theorem 3.5. In the spectral sequence {Er, dr} up to class representative and sign
on Ē2

2,1 and Ē2
6,1, the only non-trivial differentials are given by

d̄2(x2) = y1v1 + y2v2 + 2y1u1 + 2y2u2

and

d̄6(x6) = y1v
3
1 + 4y1v

2
1u1 + 6y1v1u

2
1 + 4y1u

3
1.

Proof. All differentials on αi and βi are trivial for dimensional reason. So the only
remaining differentials left to determine are those on ⟨x2⟩ and ⟨x6⟩. For dimensional
reasons, the elements x2, x6 cannot be in the image of any differential. By Lemma 3.4,
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the generators u1, u2 must survive to the Ē∞-page, so generators x2 and x6 cannot.
The image of d̄2 : Ē0,2

2 → Ē2,1
2 will be a class in Ē2,1

2 in the kernel of d̄2 generated by
a single element, not in the image of the elements generated by yi, ui and vi alone.

We have d̄2(ui) = d̄2(vi) = 0 and by Lemma 3.4 we assume that d̄2(yi) = vi for
each i = 1, 2. The non-zero generators in Ē2,1

2 can be expressed in the form

ykui or ykvi

and the non-zero generators in Ē6,1
2 can be expressed in the form

ykui1ui2ui3 , ykvi1ui2ui3 , ykvi1vi2ui3 or ykvi1vi2vi3

for some 1 ⩽ i2, i2, i3, k ⩽ 2. Notice that

d̄2(ykvi) = v2k = α2
k − 2αkβk + β2

k

d̄2(ykuk) = vkuk = αkβk − β2
k

so

d̄2(y1v1 + y2v2 + 2y1u1 + 2y2u2) = α2
1 + α2

2 − β2
1 − β2

2 = 0.

In particular since y1v1 is not a term in d̄2(y1y2) = y2v1 − y1v2,

y1v1 + y2v2 + 2y1u1 + 2y2u2

is a generator. Thus since it is the only remaining cycle that can be hit by x2 in the
kernel of d̄2 at E2,1

2 ,

d̄2(x2) = y1v1 + y2v2 + 2y1u1 + 2y2u2

up to class representative and sign. Notice that image of d̄2(x2) is obtained as
the element whose image under d̄2 coincides with the degree 2 generators of the
symmetric ideal. Since the choice of degree 2 generator of the symmetric ideal is
unique up to sign, so the expression for d̄2(x2) is also uniquely determined up to sign.
Similarly,

d̄2(y1v
3
1) = v41 = α4

1 − 4α3
1β1 + 6α2

1β
2
1 − 4α1β

3
1 + β4

1

d̄2(y1v
2
1u1) = v31u1 = α3

1β1 − 3α2
1β

2
1 + 3α1β

3
1 − β4

1

d̄2(y1v1u
2
1) = v21u

2
1 = α2

1β
2
1 − 2α1β

3
1 + β4

1

d̄2(y1u
3
1) = v1u

3
1 = α1β

3
1 − β4

1 .

Hence

d̄2(y1v
3
1 + 4y1v

2
1u1 + 6y1v1u

2
1 + 4y1u

3
1) = α4

1 − β4
1 = 0.

In particular since y1v
3
1 , is not a term in d̄2(y1y2v

2
1),

y1v
3
1 + 4y1v

2
1u1 + 6y1v1u

2
1 + 4y1u

3
1

is a generator. Thus since it is the only remaining cycle that can be hit by x6 in the
kernel of d̄2 at E6,1

2 ,

d̄6(x6) = y1v
3
1 + 4y1v

2
1u1 + 6y1v1u

2
1 + 4y1u

3
1

up to class representative and sign. Similarly to the d̄2 differential, the image of
d̄6(x6) is obtained as the element whose image under d̄6 coincides with the degree
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4 generators of the symmetric ideal. Since the choice of degree 3 generator of the
symmetric ideal is unique up to addition of multiples of the degree 2 generator and sign,
so the expression for d̄6(x6) is also uniquely determined up to addition of multiples of
d̄2(x2) and sign.

Remark 3.6. For the same reasons given in Remark 3.3, the only non-trivial differentials
in the spectral sequence {Ēr, d̄r} on the all generators (x2)m and (x6)m for m ⩾ 1
arising form the dividend polynomial algebras are d̄2 and d̄6 respectively. Moreover
these differentials are determined by

d̄2((x2)m) = d̄2(x2)(x2)m−1 and d̄6((x6)m) = d̄2(x6)(x6)m−1.

3.3. Case G2/T
2

Consider now G = G2. Using (3) and Proposition 2.6, in the following argument
we use the notation for the cohomology of the base space and fibre in fibration (6)

H∗(G2/T
2 ×G2/T

2;Z) =
Z[α1, α2, l3]

⟨σα2 , 2l3 − σα3 , l
2
3⟩

⊗ Z[β1, β2, s3]
⟨σβ2 , 2s3 − σβ3 , s

2
3⟩
,

H∗(Ω(G2/T
2);Z) =

Z[(a2)1, (a2)2, . . . ]
⟨am2 − (m!/2⌊

m
2 ⌋)(a2)m⟩

⊗ ΓZ[b10]⊗ ΛZ(y1y2),

where the degrees are |α1| = |β1| = |α2| = |β2| = 2, |y1| = |y2| = 1, |a2| = 2, |b10| = 10
and |l3| = |s3| = 6. Again we use the change of basis ui = βi and vi = αi − βi. In
addition we also make the change of basis

θ = l3 − s3 and ψ = l3.

Theorem 3.7. In the spectral sequence {Ēr, d̄r} up to class representatives and sign
on Ē2

2,1 and Ē2
10,1, the non-trivial differentials are given by

d̄2(a2) = y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2)

d̄4(a2(y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2))) = θ

and

d̄10(b10) = y1(θv
2
1 + 3θv1u1 + 3θu21 + 2ψv21 + 3ψv1u1 + 3y1ψu

2
1).

Proof. Similarly to the previous cases, the differential on yi is given by

d̄2(yi) = vi.

The differential on a2 is obtained as in Theorem 3.2. and is given by

d̄2(a2) = y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2),

which we denote by ζ.
The reminder of the augment is also similar to the previous cases, however there

are two exceptions. Firstly, since

Z[(a2)1, (a2)2, . . . ]
⟨am2 − (m!/2⌊

m
2 ⌋)(a2)m⟩

is not a divided polynomials algebra,
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d̄2((a2)m) = m
2⌊

m
2 ⌋

m!
d̄2(a2)a

m−1
2 =

2⌊
m
2 ⌋

(m− 1)!
d̄2(a2)

(m− 1)!

2⌊
m−1

2 ⌋
(a2)m−1

=
2⌊

m
2 ⌋

2⌊
m−1

2 ⌋
(a2)m−1d̄

2(a2) =

{
2(a2)m−1ζ for m even

(a2)m−1ζ for m odd

for each m ⩾ 1. Hence the differential is not surjective and for odd m ⩾ 1, (a2)mζ
multiplicatively generates 2-torsion on the E3-page. Secondly, although the ideal
⟨2s3 − α3

1, 2l3 − β3
1⟩ does not correspond to any elements of the kernel of d̄2, due to

these relations

d̄2(y1(v
2
1 + 3v1u1 + 3u21)) = 2θ,

it also multiplicatively generates 2-torsion on the Ē3-page. If a2ζ survived to the
Ē∞-page, this would imply that for dimensional reasons after the resolving extension
problems there would be torsion class in H∗(G2/T

2;Z). However there is no torsion in
H∗(G2/T

2;Z), so a2ζ must be trivial by the Ē∞-page. Hence for dimensional reason
the only possibility is

d̄4(a2ζ) = θ

up to class representative and sign. Since a2ζ and θ generate all the 2-torsion, for
r ⩽ 9, d̄r(b10) = 0 and there is no torsion by the Ē5-page. In particular, we determine
the differentials on b10 in the same way as in previous cases. Notice that

d̄2(y1θv
2
1) = v31θ = 2s23 − 4s3l3 − 3s3α

2
2β1 + 3α2

1l3β1 + 3s3α1β
2
1 − 3α1l3β

2
1 + 2l23,

d̄2(y1θv1u1) = θv21u1 = s3α
2
1β1 − 2s3α1β

2
1 − α2

1l3β1 + 2α1l3β
2
1 + 2s3l3 − 2l23,

d̄2(y1θu
2
1) = θv1u

2
1 = s3α1β

2
1 − 2s3l3 − α1l3β

2
1 + 2l23,

d̄2(y1ψv
2
1) = v31ψ = 2s3l3 − 3α2

1l3β1 + 3α1l3β
2
1 − 2l23,

d̄2(y1ψv1u1) = v21ψu1 = α2
1l3β1 − 2α1l3β

2
1 + 2l23,

d̄2(y1ψu
2
1) = v1ψu

2
1 = α1l3β

2
1 − 2l23.

Hence

d̄2(y1(θv
2
1 + 3θv1u1 + 3θu21 + 2ψv21 + 3ψv1u1 + 3ψu21)) = 2s23 − 2l23 = 0

and for the same reasons as in previous cases

d̄10(b10) = y1(θv
2
1 + 3θv1u1 + 3θu21 + 2ψv21 + 3ψv1u1 + 3y1ψu

2
1)

up to class representative and sign.

Remark 3.8. For similar reasons to those given in Remark 3.3, the only non-trivial
differentials in the spectral sequence {Ēr, d̄r} on generators (a2)m and (b10)m for
m ⩾ 1 are d̄2 and d̄10 respectively. The only difference in this case is that there is
some 2-torsion on the Ē3 and Ē4 pages. However this does not effect the augment, as
d̄3 is trivial for dimensional reasons and all 2-torsion is either sent to or in the image
on another 2-torsion generator under the d̄4 differential. More precisely for odd m ⩾ 3
we have

d̄4((a2)mζ) = d̄4(a2ζ)(a2)m−2,

where ζ = y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2). It now follows that the d̄2 and d̄10
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differentials on (a2)m and (b10)m respectively are determined by

d̄2((a2)m) = d̄2(a2)(a2)m−1, and d̄10((b10)m) = d̄10(x10)(x10)m−1.

4. Differentials in the cohomology Leray–Serre spectral
sequence of the evaluation fibration

Throughout the following argument we consider the map ϕ of fibrations between
the evaluation fibration of the complete flag manifold G/T and the diagonal fibration
given by the following commutative diagram

Ω(G/T ) //

id

��

Λ(G/T )
eval //

eval

��

G/T

∆

��
Ω(G/T ) // G/T

∆ // G/T ×G/T .

(10)

Since we assume that G, hence G/T is simply connected, the cohomology Leray–Serre
spectral sequence {Er, dr} associated with the evaluation fibration converges. Hence
ϕ induces a map of spectral sequences ϕ∗ : {Ēr, d̄r} → {Er, dr}. More precisely, for
each r ⩾ 2 and a, b ∈ Z there is a commutative diagram

Ēa,br
d̄r //

ϕ∗

��

Ēa+r,b−r+1
r

ϕ∗

��
Ea,br

dr // Ea+r,b−r+1
r ,

(11)

where ϕ∗, for each r, is the induced map on the homology of the previous page,
beginning as the map induced on the tensor on the E2-pages by the maps

id : Ω(G/T ) → Ω(G/T ) and ∆: G/T → G/T ×G/T.

4.1. Case SU(3)/T 2

Let G = SU(3). By (8) and (1), we have

H∗(Ω(SU(3)/T 2);Z) ∼= ΓZ(x
′
2, x

′
4)⊗ ΛZ(y

′
1, y

′
2)

and

H∗(SU(3)/T 2;Z) ∼=
Z[γ1, γ2]
⟨σγ2 , σ

γ
3 ⟩
,

where |y′i| = 1, |γi| = 2, |x′2i| = 2i for each 1 ⩽ i ⩽ 2. Next we determine all the differ-
entials in {Er, dr} when G = SU(3).

Theorem 4.1. The only non-zero differentials on generators of the E2-page of the
spectral sequence {Er, dr} are, up to class representative and sign, given by

d2(x′2) = y′1(2γ1 + γ2) + y′2(γ1 + 2γ2)

and

d4(x′4) = y′1(γ
2
2 + 2γ1γ2) + y′2(γ

2
1 + 2γ1γ2).
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Proof. The identity id : Ω(SU(3)/T 2) → Ω(SU(3)/T 2) induces the identity map on
cohomology, while the diagonal map ∆: SU(3)/T 2 → SU(3)/T 2 × SU(3)/T 2 induces
the cup product. Hence, by choosing generators in {E2, d

2}, we may assume that for
i = 1, 2

ϕ∗(yi) = y′i, ϕ∗(xi) = x′i and ϕ∗(αi) = ϕ∗(βi) = ϕ∗(ui) = γi.

Therefore, ϕ∗(vi) = 0 for i = 1, 2. For dimensional reasons, the only possibly non-
zero differential on the generators y′i in {Er, dr} is d2. However using commutative
diagram (11) and Lemma 3.1, we have

d2(y′i) = d2(ϕ∗(yi)) = ϕ∗(d̄2(yi)) = ϕ∗(vi) = 0.

Using commutative diagram (11) and Theorem 3.2, we have up to class representative
and sign

d2(x′2) = ϕ∗(d̄2(x2))

= ϕ∗(y1v1 + y2v2 + y1v2 + 2y1u1 + 2y2u2 + y1u2 + y2u1)

= 2y′1γ1 + 2y′2γ2 + y′1γ2 + y′2γ1

and

d4(x′4) = ϕ∗(d̄4(x4))

= ϕ∗(y1v1v2 + y2v2v1 + 2y1u1v2 + 2y2u2v1 + y1v1u2

+ y2v2u1 + 2y1u1u2 + 2y2u2u1 + y1u
2
2 + y2u

2
1)

= 2y′2γ1γ2 + 2y′1γ1γ2 + y′2γ
2
1 + y′1γ

2
2 .

Differentials on the generators γi for i = 1, 2 are zero for dimensional reasons.

Remark 4.2. As the restriction ϕ∗ : Ē0,∗
r → E0,∗

r is induced by the identity map, we
have that ϕ∗((xi)m) = (xi)m for i = 2, 4 and for all m ⩾ 1. Therefore using Remark 3.3
it follows that

d2((x2)m) = d2(x2)(x2)m−1 and d4((x4)m) = d4(x4)(x4)m−1.

4.2. Case Sp(2)/T 2

Just as we did in Theorem 4.1, we can now use the results of Theorem 3.5 and
diagram (10) to deduce the differentials in the cohomology Leray–Serre spectral
sequence {Er, dr} associated to the evaluation fibration of Sp(2)/T 2. For the rest of
the section, we denote the cohomology algebras of the base space and fibre of the
evaluation fibration by

H∗(Ω(Sp(2)/T 2);Z) = ΓZ(x
′
2, x

′
6)⊗ ΛZ(y

′
1, y

′
2)

and

H∗(Sp(2)/T 2;Z) =
Z[γ1, γ2]
⟨σ2

1 , σ
2
2⟩
,

where |y′1| = 1 = |y′2|, |γ1| = 2 = |γ2|, |x′2| = 2, |x′6|=6 and σ2
1 , σ

2
2 are the elementary

symmetric polynomials in variables γ21 , γ
2
2 .

Theorem 4.3. The only non-zero differentials on generators of the E2-page of the
spectral sequence {Er, dr} are, up to class representative and sign, given by
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d2(x′2) = 2y′1γ1 + 2y′2γ2

and

d6(x′6) = 4y′1γ
3
1 .

Proof. For the same reasons as in the proof of Theorem 4.1, we have for i = 1, 2

ϕ∗(yi) = y′i, ϕ∗(xi) = x′i and ϕ∗(αi) = γi = ϕ∗(βi) = ϕ∗(ui), so ϕ∗(vi) = 0.

Hence by the same arguments as in the proof of Theorem 4.1, we have

dr(y′i) = 0 and dr(γi) = 0

and the image of dr on generators x′2, x
′
6 is determined by those summands in the

image of d̄2 on x2, x6 given in Theorem 3.5 containing no vi, replacing ui with γi and
yi with y

′
i. This proves the statement.

Remark 4.4. As the restriction ϕ∗ : Ē0,∗
r → E0,∗

r is induced by the identity map, we
have that ϕ∗((xi)m) = (xi)m for i = 2, 6 and for all m ⩾ 1. Therefore using Remark 3.6
it follows that

d2((x2)m) = d2(x2)(x2)m−1 and d6((x6)m) = d6(x6)(x6)m−1.

4.3. Case G2/T
2

To obtain the differentials in the Leray–Serre spectral sequence of the evaluation
fibration of G2/T

2, as in previous flag manifolds, we consider the map of Leray–
Serre spectral sequences induced by (11). In the following argument using (3) and
Theorem 2.6 we have

H∗(G2/T
2;Z) =

Z[γ1, γ2, t3]
⟨σγ1 , σ

γ
2 , 2t3 − σγ3 , t

2
3⟩

and

H∗(Ω(G2/T
2);Z) =

Z[(a′2)1, (a′2)2, . . . ]
⟨a′m2 − (m!/2⌊

m
2 ⌋)(a′2)m⟩

⊗ ΓZ[b
′
10]⊗ ΛZ(y

′
1, y

′
2),

where |γ1| = |γ2| = 2, |y1| = |y2| = 1, |a′2| = 2, |b′10| = 10 and σi are the elementary
symmetric polynomials of degree i in bases γ1, γ2, γ3 with −γ3 = γ1 + γ2.

Theorem 4.5. The cohomology Leray–Serre spectral sequence {Er, dr} associated to
the evaluation fibration of G2/T

2 has, up to class representative, the only non-trivial
differentials

d2(a′2) = y′1(2γ1 + γ2) + y′2(γ1 + 2γ2)

and

d10(b′10) = 3y′1t3γ
2
1 .

Proof. We deduce the differentials in {Er, dr} using the notation and results of
Theorem 3.7. For the same reasons as in the proof of Theorem 4.1, we have

ϕ∗(yi) = y′i, ϕ∗(xi) = x′i and ϕ∗(αi) = γi = ϕ∗(βi) = ϕ∗(ui), so ϕ∗(vi) = 0.

Recall that θ = d̄4(a2(y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2))) and ψ = l3. Then
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ϕ∗(θ) = 0 and ϕ∗(ψ) = t3.

Hence by the same arguments used in the proof of Theorem 4.1, we have

dr(θ) = 0, dr(y′i) = 0 and dr(γi) = 0.

Using the results of Theorem 3.7, we deduce the differentials in {Er, dr}. Recall that
ζ = y1(u2 + v2 + 2u1) + y2(u1 + v1 + 2u2). Since d̄

4 is non-trivial only on a2ζ, and
ϕ∗d̄4(a2ζ) = ϕ∗(θ) = 0, the differential d4 is trivial.

The image of dr on the generators a′2, b
′
10 is determined by those summands in the

image of d̄2 on a2, b10 given in Theorem 3.7 containing no vi or θ, and replacing ui
with γi, yi with y

′
i and ϕ with t3. This gives the result stated in the theorem.

Remark 4.6. As the restriction ϕ∗ : Ē0,∗
r → E0,∗

r is induced by the identity map, we
have that ϕ∗((a2)m) = (a2)m and ϕ∗((b10)m) = (b10)m for all m ⩾ 1. Therefore using
Remark 3.8 it follows that

d2((a2)m) = d2(a2)(a2)m−1 and d10((b10)m) = d10(b10)(b10)m−1.

5. Free loop cohomology of complete flag manifolds of simple
Lie groups of rank 2

In this section we calculate the cohomology of the free loop space of all complete
flag manifolds arising form simple Lie groups of rank 2.

5.1. Free loop cohomology of SU(3)/T 2

Theorem 5.1. The integral algebra structure of the E∞-page of the Leray–Serre
spectral sequence associated to the evaluation fibration of SU(3)/T 2 is A/I, where

A = ΛZ((x4)bγi, (x4)byi, (x2)m(x4)by1y2, (x2)m(x4)b(y1(γ1 + γ2)− y2γ2),

(x2)m(x4)b(y2(γ1 + γ2)− y1γ1), (x2)m(x4)b(2y2γ
2
1 + y1γ

2
1),

(x2)m(x4)bγ
2
1γ2, (x2)m(x4)bγ

3
1 , (x2)m(x4)b(γ

2
1 + γ22 + γ1γ2))

and

I = ⟨(x4)b((x2)m1 −m!(x2)m)j, ((x4)
m
1 −m!(x4)m)k,

(x2)a(x4)b(γ
2
1 + γ22 + γ1γ2), (x2)a(x4)bγ

3
1 ,

(x2)a(x4)b(y2(γ1 + 2γ2) + y1(2γ1 + γ2), 3(x2)a(x4)b(y1γ1γ2 + y2γ2γ2))⟩,

where m ⩾ 1, a, b ⩾ 0, |γi| = 2, |yi| = 1, |(x2)m| = 2m, |(x4)m| = 4m,

j ∈ {y1y2, y1(γ1 + γ2)− y2γ2, y2(γ1 + γ2)− y1γ1,

2y1γ
2
1 + y2γ

2
1 , γ

2
1 + γ22 + γ1γ2, γ

2
1γ2, γ

3
1},

k ∈ {γi, yi, (x2)my1y2, (x2)m(y1(γ1 + γ2)− y2γ2), (x2)m(y2(γ1 + γ2)− y1γ1),

(x2)m(2y2γ
2
1 + y1γ

2
1), (x2)mγ

2
1γ2, (x2)mγ

3
1 , (x2)m(γ21 + γ22 + γ1γ2)}

and 1 ⩽ i ⩽ 2.

Proof. We consider the cohomology Leray–Serre spectral sequence {Er, dr} associated
to the evaluation fibration of SU(3)/T 2 studied in Section 4, that is,
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Ω(SU(3)/T 2) → Λ(SU(3)/T 2) → SU(3)/T 2.

By (1), the integral cohomology of the base space SU(3)/T 2 is given by

Z[γ1, γ2]
⟨γ21 + γ1γ2 + γ22 , γ

3
1⟩
,

where |γ1| = |γ2| = 2. The integral cohomology of the fibre Ω(SU(3)/T 2) is given by

ΛZ(y1, y2)⊗ ΓZ[x2, x4],

where |y1| = |y2| = 1, |x2| = 2 and |x4| = 4. Additive generators on the E2-page of
the spectral sequence are given by representative elements of the form

(x2)a(x4)bP, (x2)a(x4)byiP, (x2)a(x4)by1y2P,

where 0 ⩽ a, b, 1 ⩽ i ⩽ 2 and P ∈ Z[γ1, γ2] is a monomial of degree at most 3. By
Theorem 4.1 and Remark 4.2, the only non-zero differentials are d2 and d4, which are
non-zero only on generators x2 and x4, respectively. Therefore the spectral sequence
converges by the fifth page. The differentials up to sign are given by

d2(x2) = y1(2γ1 + γ2) + y2(γ1 + 2γ2), d4(x4) = y1(γ
2
2 + 2γ1γ2) + y2(γ

2
1 + 2γ1γ2).

However notice that we may write the representative of d4(x4) as follows,

d4(x4) = y1(γ
2
2 + 2γ1γ2) + y2(γ

2
1 + 2γ1γ2) + d2(x2)(γ1 + γ2)

= y1(2γ
2
1 + 2γ22 + 5γ1γ2) + y2(2γ

2
1 + 2γ22 + 5γ1γ2)

= 3(y1γ1γ2 + y2γ1γ2),

where the second equality is given by subtracting elements of the symmetric ideal
2yi(γ

2
1 + γ22 + γ1γ2) for i = 1, 2. Hence from now on we take

d4(x4) = 3(y1γ1γ2 + y2γ1γ2).

The monomial generators γi, x4, yi and (x2)my1y2 occur in E∗,0
2 or E0,∗

2 and are
always in the kernel of the differentials, so are algebra generators of the E∞-page. All
relations on the E5-page coming from the relations in

H∗(Ω(SU(3)/T 2);Z) : (x2)m1 −m!(x2)m and (x4)
m
1 −m!(x4)m,

the relations in

H∗(SU(3)/T 2;Z) : γ21 + γ1γ2 + γ22 and γ31 ,

are in the image of

d2 : y1(γ1 + 2γ2) + y2(2γ1 + γ2)

or are in the image of

d4 : 3(y1γ1γ2 + y2γ1γ2)

hold on the E∞-page and therefore are in I if they are in A. For this reason, since E2

generator (x2)m and (x4)m will not be in A, all generators of I must be considered
up to multiple of (x2)a and (x4)b. In addition, we add ((x2)

m
1 −m!(x2)m)j for j

such that (x2)mj is a generator, rather than (x2)
m
1 −m!(x2)m to I. Similarly we

add ((x4)
m
1 −m!(x4)m)k rather than (x4)

m
1 −m!(x4)m. It remains to determine all

generators of A.
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The elements on the E2-page of the form

(x2)a(x4)by1y2P, (x4)byiP and (x4)bP

are in the kernel of d2 and generated by y1y2(x2)m, (x4)m, γ1 and γ2. Let

ϕ : Z[(x4)m, (x2)m, γ1, γ2] → Z[(x4)m, (x2)m, y1, y2, γ1, γ2]

be the map defined by d2 so that the following diagram commutes

ker(ϕ) //

q

��

Z[(x4)m, (x2)m, γ1, γ2]
ϕ //

q

��

Z[(x4)m, (x2)m, y1, y2, γ1, γ2]
q

��
ker(d2) // E2

d2 // E2,

where q is the quotient map by the symmetric polynomials and the divided polynomial
relations

γ21 + γ1γ2 + γ22 , γ
3
1 , (x2)

m
1 −m!(x2)m and (x4)

m
1 −m!(x4)m.

By direct calculation, it can be seen that the kernel of ϕ is generated by γ1, γ2 and
(x4)m which are also in the kernel of d2. Thus the remaining elements of the kennel of
d2 of the form (x2)m(x4)bP are obtained as elements of the ideal

qϕ−1(⟨y2(2γ2 + γ1) + y1(γ2 + 2γ1)⟩ ∩ ⟨γ22 + γ2γ1 + γ21 , γ
3
1⟩), (12)

where y1(2γ2 + γ1) + y1(γ2 + 2γ1) spans Im(ϕ). Note as (x4)b has trivial image under
d2 and by Remark 4.2 it is sufficient here just to compute the kernel in the case m = 1
and b = 0. Intersection (12) can be computed by Gröbner basis to show it contains no
generators with γi term lower than degree 4. Hence the generators of the of kernel
are of the form (x2)m(x4)bP where the degree of P is 3. Since it is not yet contained
in the set of generators, we add the relation (x2)m(γ21 + γ22 + γ1γ2) as a generator in
order to minimize the number of algebra generators required. Let

ψ : Z[(x4)m, (x2)my1, (x2)my2, γ1, γ2] → Z[(x4)m, (x2)m, y1, y2, γ1, γ2]

be the map defined by d2 so that the following diagram commutes

ker(ψ) //

q

��

Z[(x4)m, (x2)my1, (x2)my2, γ1, γ2]
ψ //

q

��

Z[(x4)m, (x2)m, y1, y2, γ1, γ2]
q

��
ker(d2) // E2

d2 // E2,

where q is the quotient map by relations

γ21 + γ1γ2 + γ22 , γ
3
1 , (x2)

m
1 −m!(x2)m and (x4)

m
1 −m!(x4)m.

By a direct calculation, it can be seen that the kernel of ψ is generated by γ1, γ2,
(x4)m. We also note that as d2 is a differential, the image of d2 on generators of the
form (x2)m(x4)byiP , generated by

(x2)a(x4)b(y2(2γ2 + γ1) + y1(γ2 + 2γ1))

must also be in the kernel of d2 when restricted to generators of the form (x2)a(x4)byiP .
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Thus the remaining element of the kernel of d2 of the form (x2)m(x4)byiP are
elements of the ideal

qψ−1(⟨y1y2(2γ2 + γ1), y1y2(γ2 + 2γ1)⟩ ∩ ⟨γ22 + γ2γ1 + γ21 , γ
3
1⟩), (13)

where y1y2(2γ2 + γ1), y1y2(γ2 + 2γ1) span Im(ψ). Note as (x4)b has trivial image
under d2 and by Remark 4.2 it is sufficient here just to compute the kernel in the case
m = 1 and b = 0.

Intersection (13) can be computed by Gröbner basis with respect to the lexicographic
monomial ordering y2 > y1 > γ2 > γ1 yielding the ideal

⟨y1y2(γ22 + γ2γ1 + γ21), 3y1y2γ
3
1 , y1y2(γ2γ

3
1 + 2γ41)⟩. (14)

Generators of the qψ−1 image of (14) will up to multiple of (x2)m, generate the
kernel of d2 with elements of the form (x2)m(x4)byiP . The qψ

−1 image of generator
y1y2(γ

2
2 + γ2γ1 + γ21) of (14) is y2(γ1 + γ2) + y1γ1. To write the image of d2 in terms

of the generators we add

(x2)m(y2(γ1 + γ2) + y1γ1) and (x2)m(y1(γ1 + γ2) + y2γ2)

as generators of the algebra. The qψ−1 image of the generator 3y1y2γ
3
1 of (14) is

2y2γ
2
1 + y1γ

2
1 . Hence we take

(x2)m(2y2γ
2
1 + y1γ

2
1)

as generators of the algebra. The qψ−1 image of the generator y1y2(γ2γ
3
1 + 2γ41) of (14)

is trivial. It remains to determine the kernel of the d4 differential.

We have that

d2(x2(y1(2γ1 + γ2))) = y1y2(2γ
2
1 + 2γ22 + 5γ1γ2) = 3y1y2γ1γ2 = d4(x4yi),

where the second equality is given by subtracting the symmetric relation

2y1y2(γ
2
1 + γ22 + γ1γ2).

Hence yi multiples of d4(x4) are trivial. Since we can obtain from the symmetric
relations

γ1(γ
2
1 + γ1γ2 + γ22)− γ31 = γ21γ2 + γ1γ

2
2

we have that

d2(x2(γ
2
1 + 2γ1γ2)) = y1(2γ

3
1 + 3γ21γ2 + 2γ1γ

2
2) + y2(γ

3
1 + 4γ21γ2 + 4γ1γ

2
2)

= 3y1γ
2
1γ2 = −3y1γ1γ

2
2 ,

d2(x2(γ
2
2 + 2γ1γ2)) = y1(4γ

2
1γ2 + 4γ1γ

2
2 + γ32) + y2(2γ

2
1γ2 + 3γ1γ

2
2 + 2γ32)

= 3y2γ1γ
2
2 = −3y2γ

2
1γ2.

This allows us to easily determine that

d4(x4γ1) = 3(y1γ
2
1γ2 + y2γ

2
1γ2) = d2(x2(γ

2
1 − γ22)),

d4(x4γ2) = 3(y1γ1γ
2
2 + y2γ1γ

2
2) = d2(x2(γ

2
2 − γ21)).

Hence γi multiples of d4(x4) are also trivial and so using Remark 4.2 the only elements
on the E4-page not in the kernel of d4 are (x4)b.
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Theorem 5.2. The cohomology algebra H∗(Λ(SU(3)/T 2);Z) is isomorphic as a mod-
ule to the algebra A/I given in Theorem 5.1. In addition there are no multiplicative
extension problem on the sub-algebra generated by γ1, γ2, the sub-algebra generated by
y1, y2 and no multiplicative extension on elements yiγj for 1 ⩽ i, j ⩽ 2.

Proof. Beginning with the structure of the E∞-page, given in Theorem 5.1, of the
Leray–Serre spectral sequence of the evaluation fibration, we first consider the additive
extension problems.

Since there is no torsion produced by the divided polynomial relations

(x4)b((x2)
m
1 −m!(x2)m)j and ((x4)

m
1 −m!(x4)m)k

a reduced Gröbner basis of the ideal

⟨y21 , y22 , γ21 + γ1γ2 + γ22 , γ
3
1 , y2(γ1 + 2γ2) + y1(2γ1 + γ2),

y1y2(2γ1 + γ2), y1y2(2γ2 + γ1), 3(y1γ1γ2 + y2γ2γ2)⟩

has elements with terms containing coefficient 1 or all the coefficients are 3. Hence by
Theorem 2.3, all the torsion on the E∞-page of the spectral sequence is 3-torsion. In
order to resolve any additive extension problems we consider the spectral sequence
{Er, dr} over the field of three elements.

None of the generators in the integral spectral sequence are divisible by 3, hence
in the modulo 3 spectral sequence all of the integral generators remain non-trivial. In
addition when the kernel of d2 and d4 at Ep,q∞ = Ep,q5 is all of Ep,q∞ , the free rank plus
torsion rank in the integral spectral sequence must be greater than or equal to the rank
in the modulo 3 spectral sequence. So in these cases, the rank in modulo 3 spectral
sequence is exactly the free rank plus the torsion rank in the integral case. Hence it
remains to consider the cases when kernel of either the d2 or the d4 differentials in the
cases integral kernel are not the entire domain. By the rank nullity theorem, the rank of
the image plus the nullity, the dimension of the kernel, is the dimension of the domain.

When considering the spectral sequence modulo 3, the rank of any differential is
the same as in the integral case when the quotient of the preceding kernel by the
image contains no torsion. When integral 3-torsion exists, there are generators of the
image which are 3 times generators of the kernel. Therefore in the modulo 3 spectral
sequence these generators are now generators of the kernel. Hence in the modulo 3
spectral sequence the rank is reduced by the integral torsion rank and the nullity
increased by the same number.

Since the modulo 3 spectral sequence has coefficients in a field, there are no exten-
sion problems. As the total degrees of the d2 and the d4 differentials are −1 and
E5 = E∞, dim(Hi(SU(3)/T 2;Z3)) is the sum of the ranks of total degree i in the
integral E5-page plus the sum of the torsion ranks in total degrees i and i+ 1. Hence,
the modulo 3 cohomology algebra is only consistent with the case when all the torsion
on the E∞-page of the spectral sequence is contained in the integral cohomology
module. Therefore all additive extension problems are resolved and all the torsion
elements in the spectral sequence are present in the integral cohomology.

Now that we know the module structure of H∗(Λ(SU(3)/T 2);Z) is isomorphic to
A/I, we have that A/I is an associated graded algebra of H∗(Λ(SU(3)/T 2);Z) with
respect to multiplication length filtration. Next we study the multiplicative extension
problem.
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Multiplication on generators γ1, γ2 is in the image of the induced map of the
evaluation fibration H∗(SU(3)/T 2;Z) → H∗(Λ(SU(3)/T 2);Z), hence the sub-algebra
they generate contains no extension problems. Multiplication on generators y1, y2 is
a free graded commutative sub-algebra, so contains no extension problems.

Suppose the product yiγj for 1 ⩽ i, j ⩽ 2 in A/I contains additional summands in
H∗(Λ(SU(3)/T 2);Z). For dimensional reasons any summand must have the form yi′γj′

for 1 ⩽ i′, j′ ⩽ 2. However since γi, yi ∈ H∗(Λ(SU(3)/T 2);Z) all possible additional
summands have the same multiplication length showing that there is no multiplicative
extension problem for yiγj , 1 ⩽ i, j ⩽ 2.

5.2. Free loop cohomology of Sp(2)/T 2

Theorem 5.3. The integral algebra structure of the E∞-page of the Leray–Serre
spectral sequence associated to the evaluation fibration of Sp(2)/T 2 is A/I, where

A = ΛZ(((x6)bγi, (x6)byi, (x2)m(x6)by1y2, (x2)m(x6)b(y1γ2 − y2γ1),

(x2)m(x6)by2γ
3
1 , (x2)m(x6)b(y1γ1 + y2γ2), (x2)m(x6)b(γ

2
1 + γ22),

(x2)m(x6)bγ
4
1 , (x2)m(x6)bγ

3
1γ2)

and

I = ⟨((x2)m1 −m!(x2)m)j, ((x6)
m
1 −m!(x6)m)k,

(x2)a(x6)b(γ
2
1 + γ22), (x2)a(x6)bγ

4
1 , 2(x2)a(x6)b(y1γ1 + y2γ2), (x6)b4y1γ

3
1)⟩,

where i = 1, 2, m ⩾ 1, a, b ⩾ 1, |γi| = 2, |(x2)m| = 2m, |(x6)m| = 6m, |yi| = 1,

j ∈ {(x6)by1y2, (x6)by1γ2 − y2γ1, (x6)by2γ
3
1 ,

(x6)by1γ1 + y2γ2, (x6)bγ
3
1γ2, (x6)bγ

2
1 + γ22 , (x6)bγ

4
1}

and

k ∈ {γi, yi, (x2)my1y2, (x2)m(y1γ2 − y2γ1), (x2)my2γ
3
1 ,

(x2)m(y1γ1 + y2γ2), (x2)mγ
3
1γ2), (x2)m(γ21 + γ22), (x2)mγ

4
1)}

for 1 ⩽ i ⩽ 2.

Proof. We consider the cohomology Leray–Serre spectral sequence {Er, dr} associated
to the evaluation fibration of Sp(2)/T 2,

Ω(Sp(2)/T 2) → Λ(Sp(2)/T 2) → Sp(2)/T 2.

By (2), the cohomology of the base space Sp(2)/T 2 is

H∗(Sp(2)/T 2;Z) =
Z[γ1, γ2]

⟨γ21 + γ22 , γ
4
1⟩
.

From (4.2), the cohomology of the fibre Ω(Sp(2)/T 2) is

H∗(Ω(Sp(2)/T 2);Z) = ΛZ(y1, y2)⊗ ΓZ[x2, x6],

where |y1| = 1 = |y2|, |x2| = 2 and |x6| = 6.
The elements on the E2-page of the spectral sequence are generated additively by

the representative elements of the form
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(x2)a(x6)bP, (x2)a(x6)byiP, (x2)a(x6)by1y2P,

where 0 ⩽ a, b, 1 ⩽ i ⩽ 2 and P ∈ Z[γ1, γ2] is a monomial of degree at most 4.
By Theorem 4.3 and Remark 4.4, the only non-zero differentials in {Er, dr} are

d2 and d6, which are non-zero only on generators x2 and x6 respectively. Hence the
spectral sequence converges at the seventh page. The differentials up to sign are given
by

d2(x2) = 2(y1γ1 + y2γ2), d6(x6) = 4y1γ
3
1 . (15)

The monomial generators γi, yi and (x2)m(x6)by1y2 occur in E∗,0
2 or E0,∗

2 and are
always in the kernel of the differentials, so they are algebra generators of the E∞-page.
All relations on the E7-page coming from the relations in

H∗(Ω(Sp(2)/T 2);Z) : (x2)m1 −m!(x2)m and (x6)
m
1 −m!(x6)m,

the relations in

H∗(Sp(2)/T 2;Z) : γ21 + γ22 and γ41

or are either in the image of

d2 : 2(y1γ1 + y2γ2)

or in the image of

d6 : 4y1γ
3
1

hold on the E∞-page and therefore are in I if they are in A. For this reason, since
the E2 generators (x2)m and (x6)m will not be in A, all the generators of I must be
considered up to a multiple of (x2)a and (x6)b. In addition we add ((x2)

m
1 −m!(x2)m)j

and ((x6)
m
1 −m!(x6)m)k for the j, k such that (x2)mj and (x6)mk are generators of

the algebra. It remains to determine all the generators of A.
Elements on the E2-page of the form (x2)a(x6)by1y2P are in the kernel of d2 and

generated by y1y2(x2)m(x6)b, (x6)byi and (x6)bγi. Let

ϕ : Z[(x6)m, (x2)m, γ1, γ2] → Z[(x6)m, (x2)m, y1, y2, γ1, γ2]

be the map defined by d2 so that the following diagram commutes

ker(ϕ) //

q

��

Z[(x6)m, (x2)m, γ1, γ2]
ϕ //

q

��

Z[(x6)m, (x2)m, y1, y2, γ1, γ2]
q

��
ker(d2) // E2

d2 // E2,

where q is the quotient map by the symmetric polynomial and divided polynomial
relations

γ21 + γ22 , γ
4
1 , (x2)

m
1 −m!(x2)m and (x6)

m
1 −m!(x6)m.

By direct calculation, it can be seen that the kernel of ϕ is generated by γ1, γ2 and
(x6)m which are also in the kernel of d2. Thus the remaining elements of the kennel of
d2 of the form (x2)m(x6)bP are elements of the ideal

qϕ−1(⟨2(y1γ1 + y2γ2)⟩ ∩ ⟨γ22 + γ21 , γ
4
1⟩), (16)

where 2(y1γ1 + y2γ2) spans Im(ϕ). Note as (x6)b has trivial image under d2 and by
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Remark 4.2 it is sufficient here just to compute the kernel in the case m = 1 and b = 0.
Intersection (16) can be computed by Gröbner basis. A basis with respect to the
lexicographic monomial ordering y2 > y1 > γ1 > γ1 restricted to the terms containing
only a multiple of a single yi is given by

2y2γ2γ
2
1 + y2γ

3
2 + 2y1γ

2
2γ1 + 2y1γ

3
1 , 2y2γ2γ

4
1 + 2y1γ

5
1 , 2y2γ

2
2γ

3
1 + 2y1γ

2
2γ

4
1 . (17)

The qψ−1 image of (17) will, up to multiple of (x2)m and (x6)m, generate the ker-
nel of d2 with elements of the form (x2)m(x4)bP . In addition, the qψ−1 image of
2y2γ2γ

2
1 + y2γ

3
2 + 2y1γ

2
2γ1 + 2y1γ

3
1 is trivial. However since it is not yet contained in

the generators, we add relation

(x2)m(x4)b(γ
2
1 + γ22)

as a generator in order to minimize the number of algebra generators required. The
qψ−1 image of 2y2γ

2
2γ

3
1 + 2y1γ

2
2γ

4
1 is γ2γ

3
1 . Hence, we take

(x2)m, (x6)bγ2γ
3
1

as generators of the algebra. The qψ−1 image of 2y2γ2γ
4
1 + 2y1γ

5
1 is trivial. Since it is

not yet contained in the generators, we add relation

(x2)m(x4)bγ
4
1

as a generator in order to minimize the number of algebra generators required. Let

ψ : Z[(x6)b, (x2)my1, (x2)my2, γ1, γ2] → Z[(x2)m, (x6)b, y1, y2, γ1, γ2]

be the map defined by d2 so that the following diagram commutes

ker(ψ) //

q

��

Z[(x6)b, (x2)my1, (x2)my2, γ1, γ2]
ψ //

q

��

Z[(x2)m, (x6)b, y1, y2, γ1, γ2]
q

��
ker(d2) // E2

d2 // E2,

where q is the quotient map by relations

γ21 + γ22 , γ
4
1 , (x2)

m
1 −m!(x2)m and (x6)

m
1 −m!(x6)m.

By direct calculation, it can be seen that the kernel of ψ is generated by γ1, γ2, (x6)m.
We also note that as d2 is a differential, the image of d2 on generators of the form
(x2)m(x6)byiP , generated by

2(x2)a(x6)b(y1γ1 + y2γ2)

must also be in the kernel of d2 when restricted to generators of the form (x2)a(x6)byiP .
Thus the remaining element of the kernel of d2 of the form (x2)m(x6)byiP are

elements of the ideal

qψ−1(⟨2y1y2γ1, 2y1y2γ2⟩ ∩ ⟨γ22 + γ21 , γ
4
1⟩), (18)

where y1y2(2γ2 + γ1), y1y2(γ2 + 2γ1) span Im(ψ). Note as (x6)b has trivial image
under d2 and by Remark 4.2 it is sufficient here just to compute the kernel in the case
m = 1 and b = 0.

It is straightforward to see that intersection (18) is the ideal
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⟨2y1y2(γ21 + γ22), 2y1y2γ
4
1⟩. (19)

The generators of the qψ−1 image of (18) will up to multiples of (x2)m and (x6)m,
generate the kernel of d2 with elements of the form (x2)m(x4)byiP . The qψ

−1 image
of generator 2y1y2(γ

2
1 + γ22) of (19) is y1γ1 − y2γ2. Hence we take both

(x2)m and (x6)b(y1γ1 − y2γ2)

as generators of the algebra. The qψ−1 image of the generator y1y2γ
4
1 of (19) is y2γ

3
1 .

Hence we take

(x2)m, (x6)by2γ
3
1

as a generators of the algebra. It remains to consider when the d6 differential is
non-trivial.

Notice that by (15) and Remark 4.4 , on the E6-page

d6((x6)my1) = 4(x6)m−1y
2
1γ

3
1γ2 = 0,

d6((x6)my2) = 4(x6)m−1y1y2γ
4
1 = 0,

d6((x6)mγ1) = 4(x6)m−1y1γ
4
1 = 0

and d6((x6)mγ2) = 4(x6)m−1y1γ
3
1γ2 = 0.

Therefore the only elements on the E6 page not in the kernel of d6 are (x6)m.

Theorem 5.4. The cohomology algebra H∗(Λ(Sp(2)/T 2);Z) is isomorphic as a mod-
ule to the algebra A/I given in Theorem 5.3 up to order of 2-torsion.

Proof. As in the proof of Theorem 5.2 by considering a Gröbner basis of the elements
in I it can be seen that the torsion on the E∞-page of {Er, dr} is a power of 2, at most
4. Hence we consider the spectral sequence {Er, dr} over the field of two elements.
Since the only non-zero differentials d2 and d6 have bidegree (2,−1) and (6,−5)
respectively, for exactly the same reasons as for the modulo 3 spectral sequence in
Theorem 5.1, all torsion on the E∞-page survives the additive extension problem over
Z. The only remaining additive extension problem is whether the 4-torsion generated
by (x2)ay1γ

3
1 on the E∞, is 2-torsion or 4-torsion in H∗(Λ(Sp(2)/T 2);Z).

5.3. Free loop cohomology of G2/T
2

Theorem 5.5. The integral algebra structure of the E∞-page of the Leray–Serre
spectral sequence associated to the evaluation fibration of G2/T

2 is A/I, where

A = ΛZ((b10)lγi, (b10)lt3, (b10)lyi, (a2)m(b10)ly1y2,

(a2)m(b10)l(y1(γ1 + γ2) + y2γ2), (a2)m(b10)l(t3γ
2
1(y1 − 2y2)),

(a2)m(b10)l(y1(2γ1 + γ2) + y2(γ1 + 2γ2)), (a2)m(b10)l(γ
2
1 + γ1γ2 + γ22)

(a2)m(b10)l(2t3 − γ31), (a2)m(b10)lt3, (a2)m(b10)lγ
3
1 , (a2)m(b10)lγ

2
1γ2)

and

I = ⟨(am2 −m!/2⌊
m
2 ⌋(a2)m)j, (bm10 −m!(b10)m)k, (a2)h(b10)l(2t3 − γ31),

(a2)h(b10)l(γ
2
1 + γ1γ2 + γ22), (a2)h(b10)lt

2
3,

2(a2)s+1(b10)l(y1(2γ1 + γ2) + y2(γ1 + 2γ2)),

(a2)s(b10)l(y1(2γ1 + γ2) + y2(γ1 + 2γ2)), 3(a2)h(b10)ly1t3γ
2
1⟩,
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where s, l, h ⩾ 0 with s even, m ⩾ 1, (a2)0 = 1, |γi| = 2, |yi| = 1, |(a2)m| = 2m,
|(b10)m| = 10m,

j ∈ {(b10)ly1y2, (b10)l(y1(γ1 + γ2) + y2γ2),

(b10)l(t3γ
2
1(y1 − 2y2)), (b10)lγ

2
1γ2, (b10)l(y1(2γ1 + γ2) + y2(γ + 2γ2)),

(b10)l(γ
2
1 + γ1γ2 + γ22), (b10)l(2t3 − γ31), (b10)lt3, (b10)lγ

3
1 , (b10)lγ

2
1γ2}

and

k ∈ {γi, yi, t3, (a2)sy1y2, (a2)l(y1(γ1 + γ2) + y2γ2),

(a2)l(t3γ
2
1(y1 − 2y2)), (a2)lγ

2
1γ2, (a2)m(y1(2γ1 + γ2) + y2(γ + 2γ2)),

(a2)l(γ
2
1 + γ1γ2 + γ22), (a2)l(2t3 − γ31), (a2)lt3, (a2)lγ

3
1 , (a2)lγ

2
1γ2}

for 1 ⩽ i ⩽ 2.

Proof. We consider the cohomology Leray–Serre spectral sequence {Er, dr} associated
to the evaluation fibration of G2/T

2,

Ω(G2/T
2) → Λ(G2/T

2) → G2/T
2.

The cohomology of G2/T
2 is given by

Z[γ1, γ2, t3]
⟨γ21 + γ1γ2 + γ22 , 2t3 − γ31 , t

2
3⟩
,

where |γ1| = |γ2| = 2 and |t3| = 6. The cohomology of Ω(G2/T
2) is

Λ(y1, y2)⊗
Z[(a2)1, (a2)2, . . . ]

⟨am2 − (m!/2⌊
m
2 ⌋)(a2)m⟩

⊗ ΓZ[b10],

where |y1| = |y2| = 1, |a2| = 2 and |b10| = 10.
The E2-page of the spectral sequence is generated additively by the elements of

the form

(a2)h(b10)lP, (a2)h(b10)lyiP, (a2)h(b10)ly1y2P,

where 0 ⩽ l, h, 1 ⩽ i ⩽ 2 and P ∈ Z[γ1, γ2, t3] is a monomial of degree at most 6, taking
t3 as monomial of degree 3. By Theorem 4.5 and Remark 4.6 , the only non-zero
differentials are d2 and d10, which are non-zero only on the generators a2 and b10,
respectively. The differentials up to sign are given by

d2(a2) = y1(γ1 + 2γ2) + y2(2γ1 + γ2), d10(b10) = 3y1t3γ
2
1 . (20)

In particular the spectral sequence converges by the E11-page. The monomial genera-
tors γi, t3, yi and (a2)s(b10)ly1y2 occur in E∗,0

2 or E0,∗
2 and are always in the kernel

of the differentials, so are algebra generators of the E∞-page. All relations on the
E11-page coming from the relations in

H∗(Ω(G2/T
2);Z) : am2 −m!/2⌊

m
2 ⌋(a2)m and (b10)

m
1 −m!(b10)m,

the relations in

H∗(G2/T
2;Z) : γ21 + γ1γ2 + γ22 , 2t3 − γ31 and t23,
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or are in the image of

d2 : y1(γ1 + 2γ2) + y2(2γ1 + γ2)

or in the image of

d10 : 3y1t3γ
2
1

hold on the E∞-page and therefore are in I if they are in A. For this reason, since E2

generators (a2)m and (b10)m will not be in A all generators of I, must be considered
up to multiple of (a2)h and (b10)l. However due to the non-divided polynomial
multiplicative structure on (a2)m, unlike for the previous flag manifolds for s ⩾ 1 even

d2((a2)s) = 2(a2)s−1(y1(γ1 + 2γ2) + y2(2γ1 + γ2)).

Hence, we add generators

(a2)s(y1(γ1 + 2γ2) + y2(2γ1 + γ2)) and 2(a2)s+1(y1(γ1 + 2γ2) + y2(2γ1 + γ2))

to I instead of (a2)m(y1(γ1 + 2γ2) + y2(2γ1 + γ2)).
In addition, We add (am2 −m!/2⌊

m
2 ⌋(a2)m)j and ((b10)

m
1 −m!(b10)m)k for the j, k

such that (a2)mj and (b10)mk are generators of the algebra. It remains to determine
all the generators of A.

The image of the differential and the symmetric ideal generators are similar to
the case of the proof of Theorem 5.1. Hence the argument is similar to the proof of
Theorem 5.1, we add

(a2)m(b10)l(y1(γ1 + γ2) + y2γ2) (a2)m(b10)l(t3γ
2
1(y1 − 2y2)),

(a2)m(b10)l(y1(2γ1 + γ2) + y2(γ1 + 2γ2)), (a2)m(b10)l(γ
2
1 + γ1γ2 + γ22)

(a2)m(b10)l(2t3 − γ31), (a2)m(b10)lt3, (a2)m(b10)lγ
3
1 and (a2)m(b10)lγ

2
1γ2

as generators of A. It remains to consider when the d10 differential is non-trivial.
Using (20), it can be seen that the images of b10γi and b10yi are trivial. Therefore,

the only classes on the E10 page not in the kernel of d10 are (b10)m.

Theorem 5.6. The cohomology algebra H∗(Λ(G2/T
2);Z) is isomorphic as a module

to the algebra A/I given in Theorem 5.5 up to the order of 2-torsion.

Proof. As in the proof of Theorem 5.2 by considering a Gröbner basis of the elements
in I all torsion on the E∞ is of rank 2, 3, 6 or 12. Most module extension problems are
resolved in the same way as previous cases by considering the module 2 and modulo 3
spectral sequences. However this does not determine torsion of rank 12.
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[22] N. Seeliger, Addendum to: On the cohomology of the free loop space of a
complex projective space, Topology Appl. 156 (2009), no. 4, 847. MR 2492969
(2010d:55012)

[23] L. Smith, Cohomology of Ω(G/U), Proc. Amer. Math. Soc. 19 (1968), 399–404.

[24] H. Toda, On the cohomology ring of some homogeneous spaces , J. Math. Kyoto
Univ. 15 (1975), no. 1, 185–199.

[25] H. Toda and T. Watanabe, The integral cohomology rings of F4/T and E6/T ,
J. Math. Kyoto Univ. 14 (1974), no. 2, 257–286.

Matthew Burfitt m.burfitt@bimsa.cn

Yanqi Lake Beijing Institute of Mathematical Sciences and application (BIMSA),
Yanqihu, Huairou District, Beijing, 101408, China

Jelena Grbić J.Grbic@soton.ac.uk

School of Mathematics, University of Southampton, University Road, Southampton,
SO171BJ, United Kingdom

mailto:m.burfitt@bimsa.cn
mailto:J.Grbic@soton.ac.uk

	1 Introduction
	2 Background
	2.1 Gröbner bases
	2.2 Cohomology of the complete flag manifolds of simple Lie groups
	2.3 Based loop space cohomology of simple Lie groups

	3 Differentials in the diagonal map spectral sequence
	3.1 Case SU(3) mod 2-torus
	3.2 Case Sp(2) mod 2-torus
	3.3 Case G[sub]2 mod 2-torus

	4 Differentials in the cohomology Leray–Serre  of the evaluation fibration
	4.1 Case SU(3) mod 2-torus
	4.2 Case Sp(2) mod 2-torus
	4.3 Case G[sub]2 mod 2-torus

	5 Free loop cohomology of complete flag manifolds of simple Lie groups of rank 2
	5.1 Free loop cohomology of SU(3) mod 2-torus
	5.2 Free loop cohomology of Sp(2) mod 2-torus
	5.3 Free loop cohomology of G[sub]2 mod 2-torus


