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K-THEORY OF REAL GRASSMANN MANIFOLDS

SUDEEP PODDER and PARAMESWARAN SANKARAN

(communicated by Donald M. Davis)

Abstract
Let Gn,k denote the real Grassmann manifold of k-dimen-

sional vector subspaces of Rn. We compute the complex K-ring
of Gn,k, up to a small indeterminacy, for all values of n, k where
2 ⩽ k ⩽ n− 2. When n ≡ 0 (mod 4), k ≡ 1 (mod 2), we use the
Hodgkin spectral sequence to determine the K-ring completely.

1. Introduction

Let Gn,k denote the real Grassmann manifold consisting of all k-dimensional vector
subspaces in the real vector space Rn. We put the standard inner product on Rn. We
have the identification of Gn,k with the homogeneous space

SO(n)/S(O(k)×O(n− k)),

where O(k)×O(n− k) is the subgroup of the orthogonal group O(n) that stabilises
the subspace Rk spanned by the first k standard basis vectors, and

S(O(k)×O(n− k)) = SO(n) ∩ (O(k)×O(n− k)).

In this note our aim is to compute the complex K-ring of Gn,k.

Recall that the oriented Grassmann manifold G̃n,k
∼= SO(n)/(SO(k)× SO(n− k))

is the double cover of Gn,k and is simply-connected, except in the case of G̃2,1
∼= S1.

The description of the K-ring of G̃n,k goes back to work of Atiyah and Hirzebruch
[AH] when n is odd or k is even. Note that in each of these cases, the subgroup
SO(k)× SO(n− k) is connected and has rank equal to that of the whole group
SO(n). When n is even and k odd the K-ring was computed by Sankaran and Zven-
growski [SZ1].

The fact that S(O(k)×O(n− k)) is not connected makes the determination of the
ring K(Gn,k) difficult and, to the best of our knowledge, has not been carried out for
2 ⩽ k ⩽ n− 2. Note that since Gn,k

∼= Gn,n−k, it suffices to consider the case when
k ⩽ n/2. When k = 1, Gn,1 is the same as the real projective space RPn−1, whose
K-ring had been determined by Adams [A].

Our aim is to expressK∗(Gn,k) = K0(Gn,k)⊕K1(Gn,k) in terms of generators and
relations. However, we have thus far only met with partial success. We obtain complete
results only under the assumption that n ≡ 0 (mod 4) and k odd. In the remaining
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cases, our description is complete up to a small indeterminacy. See Theorem 1.2 below
and Proposition 5.5.

We now state the two main results of this paper. The proofs will be given in §4
and §5.

Theorem 1.1. Let n = 2m, k=2s+ 1, n− k=2t+ 1 and suppose that m= s+ t+ 1
is even. Let S denote the polynomial algebra Z[λ1, . . . , λs;µ1, . . . , µt, θ] in s+ t+ 1
variables. Then

K0(Gn,k) = S/I = Z[λ1, . . . , λs;µ1, . . . , µt, θ]/I,

where the ideal I is generated by the following elements:

(i) θ2 − 1, 2m−1(θ − 1),

(ii)
∑

0⩽p⩽j λpµj−p −
(
n
j

)
θj , 1 ⩽ j ⩽ m− 1, where λk−p = λp, µn−k−q = µq.

The K0(Gn,k)-module K1(Gn,k) is the ideal generated by θ + 1 in the ring S/Ĩ, where
Ĩ is generated by elements listed in (ii) above together with θ2 − 1.

The element [θ] in the above theorem corresponds to the complexification of the
Hopf line bundle ξ = ξn,k over Gn,k, which is associated to double cover G̃n,k → Gn,k.

Note that since θ2 − 1 ∈ Ĩ we have (θ − 1) · y = 0 for all y ∈ K1(Gn,k). It follows that

the S/Ĩ-module K1(Gn,k) is indeed a module over S/I = K0(Gn,k)-module.
Let γn,k be the canonical (real) k-plane bundle over Gn,k. Denote by Kn,k the

λ-subring of K(Gn,k) generated by the class [γn,k ⊗ C]. An algebraic description of
Kn,k will be given in §5.

Theorem 1.2. Let 2 ⩽ k ⩽ n/2. With the above notation, the inclusion

Kn,k ↪→ K(Gn,k)

has finite cokernel.

The main tool needed in the proof of Theorem 1.1 is the Hodgkin spectral sequence.
This will be recalled in §2. We need to compute the complex representation ring RHn,k

of a certain subgroup Hn,k of the spin group Spin(n) and determine its structure as a
module over RSpin(n). The relevant subgroupHn,k is such thatGn,k

∼= Spin(n)/Hn,k.
This is carried out in §4 when n ≡ 0 (mod 4) and k is odd. This seems rather compli-
cated for arbitrary values of n, k. As an application we obtain bounds for the order
of the element [ξ ⊗ C]− 1 ∈ K(Gn,k) for any n, k, 2 ⩽ k ⩽ n/2.

Our proof of Theorem 1.2 uses standard arguments involving the Chern character.
The Hodgkin spectral sequence had been used to determine the K-theory of many

compact homogeneous manifolds. Hodgkin [Ho, §12] applied it to determine the
K-ring of most of the compact simple Lie groups which are not necessarily sim-
ply connected. Roux [R] used it to compute the K-ring of real Stiefel manifolds,
independently of Gitler and Lam [GL], who had determined the same using a dif-
ferent approach. Antoniano, et al. [AGUZ] and Barufatti and Hacon [BH] used the
Hodgkin spectral sequence for computing the K-ring of real projective Stiefel man-
ifolds, and Minami [Mi] for simply connected compact symmetric spaces. See also
[SZ1, SZ2].
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2. The Hodgkin spectral sequence

We briefly recall the Hodgkin spectral sequence here. Let H be a proper closed
subgroup of a compact Lie group G. We denote the complex representation ring
of G by RG. Let ρ : RG→ RH denote the restriction homomorphism and regard
RH as an RG-module via ρ. Hodgkin [Ho] established the existence of a spectral
sequence, whose E2-diagram is given by Tor∗RG(RH,Z), which converges toK∗(G/H)
when π1(G) is torsion-free. Here TorpA(B,M) denotes TorA−p(B,M). In particular,
Tor∗RG(RH,Z) is graded by non-positive integers. We define the degree of an element
x ∈ TorpA(B,M) to be p.

When the rings RG,RH, and Z are given the trivial Z2 grading, we obtain a
Z2-grading on Ep,q

2 , where Ep,q
2 = TorpRG(RH,Z) if q is even and is zero if q is odd.

In particular, 0 = Ep,q
2 = Ep,q

∞ if q is odd. The differential dr : E
p,q
r → Ep+r,q−r+1

r

vanishes when r is even.
Using the multiplication in RH, one then obtains a Z2-graded ring structure on

Tor∗RG(RH,Z). The differential in the spectral sequence is an anti-derivation, leading
to a Z-graded ring structure on E∗

∞ which is compatible with the Z2-graded ring
K∗(G/H).

If Tor∗RG(RH,Z) is generated by elements of degree at least −2, then the spectral
sequence collapses at the E2-stage and we have Tor∗RG(RH,Z) ∼= K∗(G/H). See [R].

Pittie [P] has shown that RH is stably free over RG if H is connected, π1(G)
is torsion-free, and the rank of H equals the rank of G, i.e., if H has a maximal
torus T ⊂ H which is maximal in G. Moreover, if |W (G,T )|/|W (H,T )| > 1 + dimT ,
then RH is a free RG-module. (Here W (G,T ) denotes the Weyl group of G with
respect to T .) Consequently the Hodgkin spectral sequence collapses and we have
K(G/H) = Tor0RG(RH;Z) = RH ⊗RG Z. In case G is prime to the exceptional Lie
groups of type E6, E7, E8, this was proved by Atiyah and Hirzebruch [AH], who
conjectured its validity for any G with π1(G) torsion-free.

2.1. Change of rings spectral sequence
Suppose that G is simply connected so that RG is a polynomial ring Z[x1, . . . , xm].

When RH is not a free RG-module (via the restriction homomorphism), but is free
over a subring Λ = Z[x1, . . . , xr], then it is possible to use the change of rings spec-
tral sequence due to Cartan and Eilenberg [CE] to compute Tor∗RG(RH,Z). See
[R, AGUZ, §6] and also [BH, §6] for a more detailed discussion on the use of the
change of rings spectral sequence in the computation of K(G/H). We now recall the
Cartan–Eilenberg change of rings theorem.

Let K be any ring. A K-algebra Λ together with a K-homomorphism ε : Λ→ K
is called a supplemented K-algebra with augmentation ε. Let (Λ, ε), (Γ, η) be sup-
plemented K-algebras, and let φ : Λ→ Γ be a K-algebra homomorphism such that
η ◦ φ = ε. Denote ker(ε) by I(Λ). A K-algebra homomorphism φ : Λ→ Γ is normal
if the left ideal, denoted Γ · I(Λ), of Γ generated by φ(I(Λ)), is also a right ideal of Γ
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(always the case when K is commutative). Then Ω := Γ/(Γ · I(Λ)) is a supplemented
K-algebra.

We shall state the theorem in the special case of commutative augmented K-alge-
bras. So if Γ, Λ are supplemented, any augmentation preserving K-homomorphism
Γ→ Λ is normal. In our applications, K = Z, Γ = RG, Λ will be a subring of Γ, and
A = RH, where the Γ-module structure is given via the restriction homomorphism
ρ : RG→ RH. Also, the Ω-module C in the statement of the theorem below will be
Z (via the augmentation).

Theorem 2.1. ([CE, Theorem 6.1, Chapter XVI]) We keep the above notations.
Suppose that K is commutative. Suppose that φ : Λ→ Γ is normal and that Γ is
projective as a Λ-module (via φ). Then, for any Γ-module A and Ω-module C, there
exists a spectral sequence TorΩ∗ (Tor

Λ
∗ (A,K), C) that converges to TorΓ∗ (A,C).

The Ω-module structure on TorΛq (A,K) arises from the functorial isomorphism

TorΓq (A,Ω) = TorΓq (A,Γ⊗Λ K) ∼= TorΛq (A,K). (See [CE] for details.)

3. The representation ring of Hn,k

We follow the notations of Husemoller’s book [H] closely in our description of the
representation rings of the groups SO(n) and Spin(n).

Let 2 ⩽ k ⩽ ⌊n/2⌋. Recall that Hn,k is the inverse image of S(O(k)×O(n− k))
under the double cover π : Spin(n)→ SO(n). The identity component of Hn,k is
the group H0

n,k := Spin(k) · Spin(n− k) ⊂ Spin(n) with quotient Hn,k/H
0
n,k
∼= Z2.

Although the representation ring of H0
n,k has been worked out in [SZ1], we shall

give most of the details here in order to make the exposition self-contained. Note
that H0

n,k is the quotient of Spin(k)× Spin(n− k) by the cyclic subgroup of order

2 generated by (−1,−1). The canonical surjection Spin(k)× Spin(n− k)→ H0
n,k

induces a ring monomorphism RH0
n,k → R(Spin(k)× Spin(n− k)) which we regard

as an inclusion. The image is generated as an abelian group by representations of
Spin(k)× Spin(n− k) on which (−1,−1) acts as identity. Likewise, the projection
H0

n,k → SO(k)× SO(n− k) induces a monomorphism

R(SO(k)× SO(n− k))→ RH0
n,k,

which we regard as an inclusion, whose image is generated by representations of H0
n,k

on which the kernel of the projection acts as the identity. This allows us to describe
RH0

n,k in a straightforward manner. The ring R(SO(k)× SO(n− k)) is a polynomial
ring when n is even and k is odd. The ring homomorphism

RSO(2r + 1)→ RSO(2r) induced by the inclusion SO(2r) ↪→ SO(2r + 1)

is a monomorphism. Moreover, RSO(2r + 1) is a polynomial ring in r indeterminates.
The ringRSO(2r) is not isomorphic to a polynomial algebra; it is known thatRSO(2r)
is generated over RSO(2r + 1) by an element λ+r which satisfies a monic quadratic
equation. As such RSO(2r) is a free RSO(2r + 1)-module of rank 2. So, for all parities
of k, n, R(SO(k)× SO(n− k)) is a free module of finite rank over a polynomial ring
generated by ⌊k/2⌋+ ⌊(n− k)/2⌋ indeterminates. We will show in this section that
the same statement holds for RHn,k as well.
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Before proceeding further in describing RH0
n,k, RHn,k, we need to introduce nota-

tions for certain natural representations of the spin and special orthogonal groups.
Set

k = 2s+ ε, n− k = 2t+ η, ε, η ∈ {0, 1} where s, t are integers.

Now n = 2s+ 2t+ 1 if n is odd. When n is even, both k and n− k are of the same
parity and n = 2s+ 2t or n = 2s+ 2t+ 2 according as k is even or odd. Let λ1 denote
the standard k-dimensional complex representation of SO(k). We then denote by
λj ∈ RSO(k) the jth exterior power Λj

C(λ1), j ⩽ k. (It is understood that λ0 = 1, the
trivial representation).1 We have the equality

λj = λk−j in RSO(k).

When k is even, the Hodge star operator ∗ yields a splitting λs = λ+s + λ−s , where
λ+s , λ

−
s ∈ RSO(2s) are the classes of +1,−1-eigenspaces when k ≡ 0 (mod 4) and are

the i,−i-eigenspaces when k ≡ 2 (mod 4) respectively. In the case of Spin(k) we
have the spin representation ∆s. When k is even, it splits as a sum of two half-
spin representations ∆+

s ,∆
−
s ; they are distinguished by the way an element z0 in

the centre of Spin(k) acts. (This will be made precise later.) We have the following
theorem proved in [H, §10, Chapter 13]. In the case of RSO(2s), our description is
slightly different from the one given in Husemoller’s book op. cit., but it is readily
seen that the two descriptions are equivalent.

Theorem 3.1. With the above notations, we have

(i) RSpin(2s) = Z[λ1, . . . , λs−2,∆
+
s ,∆

−
s ],

(ii) RSpin(2s+ 1) = Z[λ1, . . . , λs−1,∆s],

(iii) RSO(2s+ 1) = Z[λ1, . . . , λs], and,
(iv) RSO(2s) = Z[λ1, λ2, . . . , λs][λ+s ]/∼
where the ideal of relations is generated by (λ+s )

2 − aλ+s − b for suitable polynomials
a, b in λj, 1 ⩽ j ⩽ s (with Z-coefficients).

As the notation suggests, the rings RSpin(2s), RSpin(2s+ 1), RSO(2s+ 1) are
polynomial rings in the indicated variables. Also, the elements λj , 1 ⩽ j ⩽ s, are alge-
braically independent in RSO(2s).

Remark 3.2. The quadratic relation that λ+s satisfies over Z[λ1, . . . , λs] can be explic-
itly written down as follows: Set λ−s := λs − λ+s . From [H, Theorem 10.3, Chapter 13],
we have the relation

λ+s · λ−s = (λs−1 + λs−3 + · · · )2 − λs(λs−2 + λs−4 + · · · )− (λs−2 + λs4 + · · · )2

in Z[λ1, . . . , λs]. Denoting the negative of the right hand side of the last equality by
b and setting a := λs, we have

(λ+s )
2 = λ+s (λs − λ−s ) = aλ+s + b.

The inclusion Spin(2s) ↪→ Spin(2s+ 1) induces an injective ring homomorphism

ρ : RSpin(2s+ 1)→ RSpin(2s) where ρ(∆s) = ∆+
s +∆−

s , ρ(λi) = λi + λi−1,

1 ⩽ i ⩽ s. The homomorphism RSpin(2s)→ RSpin(2s− 1) induced by the inclusion

1We shall often use the same notation for a representation and its class in the representation ring.
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Spin(2s− 1) ↪→ Spin(2s) is given by λj 7→ λj + λj−1, 1 ⩽ j < s,∆±
s 7→ ∆s−1. These

restriction homomorphisms also yield the restrictions RSO(k)→ RSO(k − 1) for any
parity of k.

Recall that given any two compact Lie groups H1, H2, we have R(H1 ×H2) =
RH1 ⊗RH2. We have the natural quotient homomorphisms

π0 : Spin(k)× Spin(n− k)→ H0
n,k and π : H0

n,k → SO(k)× SO(n− k),

where ker(π0) ∼= Z2 is generated by (−1,−1) ∈ Spin(k)× Spin(n− k) and kerπ ∼= Z2,
by π0(1,−1) ∈ H0

n,k. We shall regard the ring homomorphisms

π∗
0 : RH

0
n,k → R(Spin(k)× Spin(n− k)), π∗ : R(SO(k)× SO(n− k))→ RH0

n,k,

which are injective, as inclusions. It is easy to see that RH0
n,k is generated as an

R(SO(k)× SO(n− k))-algebra by elements xy ∈ R(Spin(k)× Spin(n− k)) where x, y
vary over the R(SO(k)× SO(n− k))-algebra generators of R(Spin(k)× Spin(n− k)).
The following description, in Proposition 3.3, of RH0

n,k is an immediate consequence
of Theorem 3.1.

We shall use the notation µj ∈ RSO(n− k) for the element represented by the

jth exterior power of the standard representation of SO(n− k). Also ∆′
t, and ∆

′±
t

will denote the spin and half-spin representations of Spin(n− k) respectively. Thus
R(SO(k)× SO(n− k)) contains the polynomial subring Z[λ1, . . . , λs, µ1, . . . , µt].

Proposition 3.3. We keep the above notations. Let R := R(SO(k)× SO(n− k)).
Then

RH0
n,k =


R[∆s∆

′
t], if k = 2s+ 1, n− k = 2t+ 1,

R[∆s(∆
′
t)

±], if k = 2s+ 1, n− k = 2t,

R[∆±
s ∆

′
t], if k = 2s, n− k = 2t+ 1,

R[∆±
s (∆

′
t)

±,∆±
s (∆

′
t)

∓], if k = 2s, n− k = 2t.

Moreover, the squares of the indicated generators belong to R.

Notations 3.4. We shall denote by ∆s,t the element

∆s∆
′
t ∈ R(Spin(k)× Spin(n− k)).

Also ∆ε,η
s,t will denote ∆ε

s · (∆′
t)

η, ε, η ∈ {+,−}. Also, we shall use upper case letters
Λj , 1 ⩽ j ⩽ m, etc., to denote the generators of RSpin(n) and similarly λ1, . . . , λs
(resp. µ1, . . . , µt) to denote generators of RSpin(k) (resp. RSpin(n− k)) as in Theo-
rem 3.1.

Next we turn our attention to the representation ring of Hn,k. Recall that we have
2 ⩽ k ⩽ n/2 and so n ⩾ 4. First we analyse when the exact sequence

1→ H0
n,k → Hn,k → Z → 1 (1)

splits. Evidently, the sequence splits if and only if there exists an order 2 element
z0 ∈ Hn,k ⊂ Spin(n) such that z0 /∈ H0

n,k. Taking z0 := e1e2e3en ∈ Cn, we see that

z20 = 1 and z0 ∈ Hn,k \H0
n,k, so the short exact sequence (1) splits. Here Cn denotes

the Clifford algebra of the quadratic space (Rn,−|| · ||2) and e1, . . . , en denote the
standard basis vectors of Rn. So Hn,k

∼= H0
n,k ⋊ Z2.
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Suppose that Hn,k = H0
n,k × Z and let z0 be the generator of Z ∼= Z2. Then

π(H0
n,k)× π(Z) = π(Hn,k) = S(O(k)×O(n− k))

is isomorphic to the product SO(k)× SO(n− k)× {±In}. In particular, n is even
and k is odd and z0 ∈ Z maps to −In. So, the order 2 element z0 is in the centre of
Spin(n). It follows that n ≡ 0 (mod 4), k ≡ 1 (mod 2).

When n ≡ 0 (mod 4), k ≡ 1 (mod 2), we may take z0 = e1e2 · · · en ∈ Hn,k. Then
z0 is in the centre of Hn,k and z0 /∈ H0

n,k and so Hn,k is the direct product H0
n,k × Z.

Thus Hn,k
∼= H0

n,k × Z2 if and only if n ≡ 0 (mod 4), k ≡ 1 (mod 2).
Using Proposition 3.3, we obtain the following.

Proposition 3.5. We keep the above notations. Let k = 2s+ 1, n− k = 2t+ 1, and
s+ t odd. Let fs,t ∈ R := R(SO(k)× SO(n− k)) be the element such that ∆2

s,t = fs,t
and let θ be the class of the unique non-trivial one-dimensional representation of Hs,t.
Then

RHn,k = RH0
n,k ⊗RZ = R[∆s,t, θ]/⟨θ2 − 1,∆2

s,t − fs,t⟩. (2)

In particular, RHn,k is a free R-module with basis {1, θ,∆s,t, θ∆s,t}.

Writing λ0 = 1 = µ0, fs,t ∈ R can be expressed as a polynomial in λp, µq ∈ R, for
0 ⩽ p ⩽ s, 0 ⩽ q ⩽ t as follows (see [H, Theorem 10.3, Chapter 14].)

fs,t = ∆2
s,t = ∆2

s · (∆′
t)

2 = (
∑

0⩽p⩽s

λp)(
∑

0⩽q⩽t

µq) =
∑

0⩽r⩽s+t

(
∑

p+q=r

λpµq). (3)

4. The restriction homomorphism RSpin(n)→ RHn,k

Throughout this section we assume that k = 2s+ 1, n− k = 2t+ 1 so that n = 2m,
where m := s+ t+ 1. Also we shall assume that s+ t is odd so that n ≡ 0 (mod 4).
Hence Hn,k = H0

n,k × Z where Z ∼= Z2 is generated by z0 = e1 · · · en ∈ Spin(n).
The double covering ϕ : Spin(n)→ SO(n) is defined as ϕ(u)(x) = uxu∗, x ∈ Rn,

where ∗ is (the restriction to Spin(n) of) the anti-involution of the Clifford algebra
Cn, uniquely defined by the requirement: v∗ = v, v ∈ Rn. We refer the reader to [H]
concerning the spin group and its representation ring.

Maximal tori
Set ω(θ1, . . . , θm) :=

∏
1⩽j⩽m(cos 2πθj + sin 2πθj .e2j−1e2j) ∈ Spin(n) for θj ∈ R.

Then

T̃ := {ω(θ1, . . . , θm) ∈ Spin(n) | θj ∈ R, 1 ⩽ j ⩽ m} ∼= (S1)m

is a maximal torus of Spin(n). Its image in SO(n) is the standard maximal torus T :=
SO(2)× · · · × SO(2) whose elements restrict to rotations on Re2j−1 + Re2j , when-
ever 1 ⩽ j ⩽ m. In fact ϕ(ω(θ1, . . . , θm)) = D(2θ1, . . . , 2θm) ∈ T where D(t1, . . . , tm)
restricts to the positive rotation by angle 2πtj on the oriented vector subspace
Re2j−1 + Re2j , 1 ⩽ j ⩽ m, the orientation being given by the ordering e2j−1, e2j of
the basis elements.

Let T be the ‘standard torus’ (S1)m = (R/Z)m. One has a homomorphism

ω : T→ T̃ defined by (θ1, . . . , θm) 7→ ω(θ1, . . . , θm).



390 SUDEEP PODDER and PARAMESWARAN SANKARAN

Note that ω(θ1 + ε1/2, . . . , θm + εm/2) = (−1)εω(θ1, . . . , θm) where εj ∈ {0, 1} for all
j, and ε =

∑
1⩽j⩽m εj . In particular ker(ω) ∼= (Z2)

m−1. The kernel of ϕ ◦ ω : T→ T
is readily seen to be Zm

2
∼= {−1, 1}m ⊂ T.

Since n is even and k is odd, the rank of H0
n,k equals m− 1 = rank(Spin(n))− 1.

In this case,

T̃0 := H0
n,k ∩ T̃ = {ω(θ1, . . . , θm) ∈ T̃ | θs+1 = 0}

is a maximal torus of H0
n,k. Also, we observe that the element z0 = e1 . . . en, the

generator of Z, belongs to T̃ . Let T0 = π(T̃0) = T ∩ (SO(k)× SO(n− k)) which is a
maximal torus of SO(k)× SO(n− k).

The representation rings of T̃ , T̃0, T, T0 are viewed as subrings of RT as follows:
Let uj : T→ S1 be the jth projection, regarded as a character. We also denote the
corresponding 1-dimensional representation of T by the same symbol uj . Then

RT = Z[u±1
1 , . . . , u±1

m ], RT̃ = Z[u±2
1 , . . . , u±2

m , u1 · · ·um], and RT = Z[u±2
1 , . . . , u±2

m ],

both regarded as subrings of RT. Also Hn,k ∩ T̃ = T̃0 × Z. We have

RT0 = Z[u±2
1 , . . . , u±2

s , v±2
1 , . . . , v±2

t ] ⊂ RT,

where vj := us+j+1, 1 ⩽ j ⩽ t, and,

RT̃0 = Z[u±2
1 , . . . , u±2

s , v±2
1 , . . . , v±2

t , u1 · · ·usv1 · · · vt] ⊂ RT̃ .

In order to determine the restriction homomorphism ρ : RSpin(n)→ RHn,k, we
first consider the homomorphism RSpin(n)→ RSpin(n)⊗RZ induced by the homo-
morphism µ : Spin(n)× Z → Spin(n) defined by multiplication: (g, z) 7→ gz. Note that
the restriction of µ to H0

n,k × Z is an isomorphism H0
n,k × Z → Hn,k. The homomor-

phisms

H0
n,k × Z → Hn,k, T̃ × Z → T̃ , T̃0 × Z → T̃ and T̃0 × Z → Hn,k,

each of which is obtained from µ by appropriately restricting its domain and co-
domain, will all be denoted by the same symbol µ by an abuse of notation. These
group homomorphisms induce homomorphisms of rings

µ∗ : RT̃ → RT̃ ⊗RZ, µ∗ : RT̃ → RT̃0 ⊗RZ,

µ∗ : RHn,k → RT̃0 ⊗RZ, µ∗ : RHn,k

∼=−→ RH0
n,k ⊗RZ, and

µ∗ : RSpin(n)→ RSpin(n)⊗RZ.

Let σ : T̃ ↪→ Spin(n) be the inclusion. We have the following commutative diagram
where the homomorphisms in the first row are induced by respective inclusions of
groups.

RSpin(n)⊗RZ ↪→ RT̃ ⊗RZ → RT̃0 ⊗RZ ←↩ RH0
n,k ⊗RZ

↑ µ∗ µ∗ ↑ ↑ id ↑ µ∗

RSpin(n)
σ∗

↪→ RT̃
µ∗

−→ RT̃0 ⊗RZ
µ∗

←↩ RHn,k,

(4)

The inclusion σ∗ : RSpin(n) ↪→ RT̃ is via the identification of RSpin(n) with the

invariant subgroup ofRT̃ under the action of the Weyl groupW (Spin(n), T̃ ). Similarly

we have the inclusion RH0
n,k ↪→ RT̃0 which in turn induces RHn,k ↪→ RT̃0 ⊗RZ.
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Moreover, µ∗(RSpin(n)) is contained in RHn,k ⊂ RT̃0 ⊗RZ since Hn,k ⊂ Spin(n).
This allows one to describe the restriction homomorphism ρ : RSpin(n)→ RHn,k

easily, once µ∗ : RT̃ → RT̃0 ⊗RZ is determined. This we shall carry out below, with
θ as in Proposition 3.5.

Routine computation, using n = 2m,m even, yields that

u1 · · ·um(z0) =

{
1 if n ≡ 0 (mod 8),

θ(z0) if n ≡ 4 (mod 8).
(5)

When t ∈ T̃0, we have u2s+1(t) = 1 and so u1. . . . .um restrict to u1 · · ·us · v1 · · · vt
on T̃0. Therefore

µ∗(u±2
j ) =


θu±2

j , 1 ⩽ j ⩽ s,

θ, j = s+ 1,

θv±2
j−s−1, s+ 1 < j ⩽ m,

(6)

and,

µ∗(u1 · · ·um) =

{∏
1⩽j⩽s uj ·

∏
1⩽j⩽t vj , n ≡ 0 (mod 8),

θ
∏

1⩽j⩽s uj ·
∏

1⩽j⩽t vj , n ≡ 4 (mod 8).
(7)

Let ej(x1, . . . , xr) denote the jth elementary symmetric polynomial in x1, . . . , xr.
Recall that σ∗(Λj) = ej(u

2
1, u

−2
1 , . . . , u2m, u

−2
m ). So, for 1 ⩽ j ⩽ m, we have

ρ(Λj) = µ∗(ej(u
2
1, u

−2
1 , . . . , u2m, u

−2
m ))

= θjej(u
2
1, u

−2
1 , . . . , u2s, u

−2
s , 1, 1, v21 , v

−2
1 , . . . , v2t , v

−2
t )

= θj
∑

p+q=j ep(u
2
1, u

−2
1 , . . . , u2s, u

−2
s , 1) · eq(v21 , v−2

1 , . . . , v2t , v
−2
t , 1)

= θj ·
∑

p+q=j;0⩽p⩽k,0⩽q⩽n−k λpµq,

= θjfj

(8)

for a suitable element

fj = fj(λ1, . . . , λs, µ1, . . . , µt) ∈ R

since λp = λk−p, µq = µn−k−q.
Using Equations (6) and (7) we obtain that if εj ∈ {1,−1}, then

µ∗(uε11 · · ·uεmm ) = θεuε11 · · ·uεss · v
η1

1 · · · v
ηt

t , (9)

where ηj = εs+1+j , and the value of ε ∈ {0, 1} is obtained as follows:

ε ≡
∑

1⩽j⩽m

εj (mod 2) if n ≡ 0 (mod 8) and

ε ≡1 +
∑

1⩽j⩽m

εj (mod 2) if n ≡ 4 (mod 8).

The following proposition now follows immediately from equations (8), (9), and
the definitions of ∆±

m, ∆s,t.

Proposition 4.1. Let n=2m≡ 0 (mod 4), k=2s+1, n− k=2t+1. With the above
notations, the restriction homomorphism ρ : RSpin(n)→ RHn,k is defined by
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ρ(Λj) = Λ′
j = θj

∑
p+q=j

λpµq = θjfj , 1 ⩽ j ⩽ m− 1,

ρ(∆+
m) = θε∆s,t, ρ(∆−

m) = θ1+ε∆s,t,

where ε = 0, 1 according as n ≡ 0 (mod 8) or n ≡ 4 (mod 8) respectively.

The ring R′ := Z[θpλp, θqµq; 1 ⩽ p ⩽ s, 1 ⩽ q ⩽ t] ⊂ RHn,k is mapped to the poly-
nomial ring Z[λp, µq; 1 ⩽ p ⩽ s, 1 ⩽ q ⩽ t] = R = R(SO(k)× SO(n− k)) by an auto-
morphism of the ring R[θ] since θ is invertible. It follows that R′ is a polynomial ring
in s+ t = m− 1 indeterminates. Evidently, R′[θ] = R[θ].

Lemma 4.2. Let n = 2m ≡ 0 (mod 4), k = 2s+ 1, n− k = 2t+ 1. Let

R′[θ] = R[θ] ⊂ RHn,k.

Then R′[θ] is a free Λ′-module of rank 2
(
m−1
s

)
where

Λ′ := Z[Λ′
1, . . . ,Λ

′
m−1] ⊂ RHn,k.

In particular, Λ′
1, . . . ,Λ

′
m−1 are algebraically independent. Also RHn,k = R[θ,∆s,t] is

a free module of rank 4
(
m−1
s

)
over Z[Λ1, . . . ,Λm−1] via ρ.

Proof. Since R = R(SO(k)× SO(n− k)) is a polynomial algebra in s+ t = m− 1
indeterminates, the algebraic independence of Λ′

1, . . . ,Λ
′
m−1 would follow once we

show that R[θ] ∼= R⊕R is a finitely generated free Λ′-module.

First note that Λ′[θ] is free as a Λ′-module with basis {1, θ}.
Next we will show that R[θ] ⊂ RHn,k is free as a Λ′[θ]-module of rank

(
m−1
s

)
.

Let Λ0 = Z[f1, . . . , fm−1]. Then Λ′[θ] = Λ0[θ] = Λ0 ⊗Z Z[θ]. Since R[θ] = R⊗Z Z[θ],
it suffices to show that R is free as a module over Λ0 ⊂ R, of rank

(
m−1
s

)
.

Denote by ρ0 : RSpin(n)→RHn,k→RH0
n,k the restriction homomorphism induced

by the inclusionH0
n,k ↪→Hn,k ↪→ Spin(n). Then Λ0 = ρ0(Λ) and ρ0(Λ) ⊂ R ⊂ R[∆s,t].

Then R is free as a Λ0-module (see [SZ1, Lemma 2.6]). We give a proof for the sake
of completeness.

Let

zj = ej(u
2
1 + u−2

1 , . . . , u2m + u−2
m ),

xp = ep(u
2
1 + u−2

1 , . . . , u2s + u−2
s ), and

yq = eq(v
2
1 + v−2

1 , . . . , v2t + v−2
t ).

Then Z[z1, . . . , zm] = Z[Λ1, . . . ,Λm]. Indeed, since Λ1, . . . ,Λm are expressible as sym-
metric polynomials in u2j + u−2

j , 1 ⩽ j ⩽ m, they are expressible as polynomials in

z1, . . . , zm. Conversely, since z1, . . . , zm ∈ Z[u21, u
−2
1 , . . . , u2m, u

−2
m ] are invariant under

the permutations of the variables u21, . . . , u
2
n as well as the involutions u2j 7→ u−2

j for

every j, we see that the zj belong to the subring of Z[u21, u
−2
1 , . . . , u2n, u

−2
n ] fixed by

the group Zn
2 ⋊ Sn. This fixed subring equals Z[Λ1, . . . ,Λm]; see [H, §10, Ch. 13]. So

each zj is expressible as a polynomial in the Λi.

The same argument shows that Z[λ1, . . . , λs] = Z[x1, . . . , xs] and Z[µ1, . . . , µt] =
Z[y1, . . . , yt]. Consequently, R = Z[λp, µq; 1 ⩽ p ⩽ s, 1 ⩽ q ⩽ t] ⊂ RH0

n,k.

Now using Equation (6) we obtain
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ρ0(zj) =
∑

p+q=j

xpyq + 2
∑

p+q=j−1

xpyq, 1 ⩽ j ⩽ m− 1, (10)

and ρ0(zm) = 2xs.yt where it is understood that z0 = x0 = y0 = 1. Set z′1 := z1 − 2,
and, inductively, z′r := zr − 2z′r−1, 2 ⩽ r < m, so that

ρ0(z
′
r) =

∑
p+q=r

xpyq, 1 ⩽ r ⩽ m− 1.

Then Z[z′1, . . . , z′m−1] = Z[z1, . . . , zm−1] = Λ0. Moreover, we have

ρ0(z
′
j) =

∑
p+q=j

xp.yq, 1 ⩽ j ⩽ m− 1. (11)

The proof that R is a free Λ0-module of rank
(
m−1
s

)
is now completed using some

well-known facts concerning the cohomology of classifying spaces BU(s) of the uni-
tary group U(s), as we shall now explain. We regard R = Z[x1, . . . , xs, y1, . . . , yt] as
a graded ring where |xp| = 2p, |yq| = 2q. Then Λ0 = Z[z′1, . . . , z′m−1] is a graded sub-
ring where |z′r| = 2r. We may identify R with H∗(B(U(s)×U(t));Z) and Λ0 with
H∗(BU(s+ t);Z) so that the inclusion Λ0 ↪→ R corresponds to the homomorphism
induced by the the projection of the fibre bundle B(U(s)×U(t))→ BU(s+ t) with
fibre the complex Grassmann manifold CGs+t,s = U(s+ t)/U(s)× U(t). The Grass-
mann manifold bundle is totally non-cohomologous to zero (with Z-coefficients) and
so by the Leray–Hirsch theorem H∗(B(U(s)×U(t));Z) is a free H∗(BU(s+ t);Z)-
module of rank equal to rank(H∗(CGs+t,t;Z)) =

(
s+t
s

)
.

Since RHn,k is a free R[θ]-module (with basis {1,∆s,t}) by Proposition 3.5, the
last assertion of the lemma follows.

Remark 4.3. (i) We shall denote by B0 a basis of R = Z[λp, µq; 1 ⩽ p ⩽ s, 1 ⩽ q ⩽ t]
over Λ0 and assume that 1 ∈ B0. Then a

Z[Λ1, . . . ,Λm−1]-basis for RHn,k is B0 ∪ B0θ ∪ B0∆s,t ∪ B0θ∆s,t.

(ii) The argument in the last paragraph of the above proof is valid irrespective
of the parity of m = s+ t+ 1. It follows that R = Z[x1, . . . , xs, y1, . . . , yt] is a free
Λ0 = Z[z′1, . . . , z′s+t]-module for any s, t ⩾ 1. Moreover, the quotient ring R/I, being

isomorphic to H∗(CGs+t,s;Z), is a free abelian group of rank
(
s+t
s

)
where I is the

ideal ⟨z′1, . . . , z′s+t⟩ ⊂ R.

Next we note that irrespective of whether n ≡ 0 or 4 (mod 8), we have

ρ((∆+
m)2 − (∆−

m)2) = 0 and ρ(∆+
m∆−

m) = θ∆2
s,t = θfs,t.

We have the following consequence of Lemma 4.2.

Lemma 4.4. The elements Λ′
1, . . . ,Λ

′
m−2, ρ(∆

+
m) ∈ RHn,k are algebraically indepen-

dent. As a module over Λ := Z[Λ1, . . . ,Λm−2,∆
+
m] ⊂ RSpin(n), RHn,k is free of rank

2
(
m−1
s

)
with basis B0 ∪ B0θ.

Proof. Since ρ(∆+
m)2 = ∆2

s,t = fs,t, it suffices to show that Λ′
1, . . . ,Λ

′
m−2, fs,t are alge-

braically independent in RHn,k. Note that ∆+
m ·∆−

m = Λm−1 + Λm−3 + · · ·+ Λ1 in
RSpin(n); see [H, Theorem 10.3, Chapter 14]. So

fs,t = θρ(∆+
m ·∆−

m) = Λ′
m−1 + Λ′

m−3 + · · ·+ 1.
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Since Λ′
1, . . . ,Λ

′
m−1 are algebraically independent, it follows that Λ′

1, . . . ,Λ
′
m−2, fs,t

are also algebraically independent. Moreover, we have Λ′[ρ(∆+
m)] = ρ(Λ) ∼= Λ.

Let B be a basis for R′[θ] = R[θ] over Λ′ = Z[Λ′
1, . . . ,Λ

′
m−1]. Note that we may

take B to be B0 ∪ B0θ by Remark 4.3. Then B is a basis for R[θ, ρ(∆+
m)] = RHn,k

over Λ′[ρ(∆+
m)] ∼= Λ. In view of Lemma 4.2, we conclude that RHn,k is a free module

over Λ of rank 2
(
m−1
s

)
.

Let δm = ∆+
m −∆−

m. Then RSpin(n) = Λ[δm] with Λ as in Lemma 4.4. Note that
ρ((∆+

m)2 − (∆−
m)2) = 0 and ρ(∆+

m ·∆−
m) = θ∆2

s,t = θfs,t. So the following equations
hold in RHn,k:

ρ((∆+
m)2) = ρ(δ2m − 2∆+

mδm) = 0, and ρ(∆+
m)ρ(δm) + (θ − 1) · fs,t = 0. (12)

4.1. Computation of Tor∗RSpin(n)(RHn,k,Z)
We shall apply the change of rings spectral sequence (§2.1) in order to compute

Tor∗RSpin(n)(RHn,k,Z). In the notation of Theorem 2.1, we let Γ = RSpin(n), with

A = RHn,k, K = C = Z and Λ = Z[Λ1, . . . ,Λm−2,∆
+
m] ⊂ Γ = RSpin(n). Then A is

a free Λ-module via the restriction homomorphism, in view of Lemma 4.4. Hence
setting

B := TorΛ∗ (RHn,k,Z),

we have, with ε ∈ {0, 1} as in Proposition 4.1,

Bq = TorΛq (RHn,k,Z) =

{
RHn,k/⟨Λ′

j −
(
n
j

)
, 1 ⩽ j ⩽ m− 2; θε∆s,t − 2m−1⟩, q = 0,

0, if q ̸= 0.

(13)
Thus

B = B0 = RHn,k/⟨Λ′
j −

(
n

j

)
, 1 ⩽ j ⩽ m− 2; θε∆s,t − 2m−1⟩.

Recall the basis B = B0 ∪B0θ ofRHn,k over Λ given in Lemma 4.4. (See Remark 4.3
for the definition B0.) Under the natural projection η : RHn,k → B, the subring ρ(Λ)
maps to Z and B to a Z-basis B = B0 ∪ B0θ where B0 = η(B0). It is readily seen that
|B| = |B|. We summarise this observation as a lemma.

Lemma 4.5. The set B is a Z-basis for B. Thus B is free abelian of rank 2
(
m−1
s

)
.

By Theorem 2.1, the change of rings spectral sequence collapse and we have
TorΓq (A,Z) ∼= TorΩq (B,Z), where Ω = RSpin(n)/⟨Λj −

(
n
j

)
,∆+

m − 2m−1⟩ = Z[δm] and

δm = ∆+
m −∆−

m.
Since Ω is a polynomial ring, one can use the Koszul resolution to compute

TorΩq (B,Z). The Ω-module structure on B is obtained via the algebra homomor-
phism ρ̄ : Ω→ B defined by ρ : RSpin(n)→ RHn,k. In view of Proposition 4.1, we
have ρ̄(δm) = ϵ′(θ − 1)∆s,t, where the value of ϵ′ ∈ {1,−1} depends on the value of
n modulo 8. The Koszul resolution of Z is

0→ Ω · δ d→ Ω
ε→ Z→ 0.

Here ε is the augmentation defined by ε(δm) = 0 and d(δ) = δm. Tensoring with the
Ω-module B we obtain the following chain complex whose homology is TorΩ∗ (B,Z):
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0→ Bδ
d̄→ B → 0,

where

d̄(δ) = d̄(1 · δ) = ρ̄(δm) = ϵ′(θ − 1)∆s,t ∈ B.

In particular,

TorΩq (B,Z) = 0 if q ⩾ 2, TorΩ1 (B,Z) = ker(d̄), TorΩ0 (B,Z) = B/⟨(θ − 1)∆s,t⟩.

We set

B̄ := TorΩ0 (B,Z) = B/⟨(θ − 1)∆s,t⟩. (14)

Recall from Equation (8) that

Λ′
j = θjfj where fj =

∑
0⩽p⩽j

λpµj−p ∈ RHn,k, 1 ⩽ j ⩽ m− 1,

while

λp = λk−p and µq = µn−k−q when p > s, q > t.

Denote by η : RHn,k → B the canonical quotient map and by η̄ : RHn,k → B̄ the

composition RHn,k
η→ B → B̄ where B → B̄ is the canonical quotient map. If we

have x ∈ RH, we shall denote η(x) ∈ B by the same symbol x and we shall denote
η̄(x) ∈ B̄ by [x].

Lemma 4.6. We keep the above notations. The following relations hold in B̄:

(a) 2m−1([θ]− 1) = 0, [∆s,t] = 2m−1,

(b)
∑

0⩽p⩽j [λp][µj−p] = [fj ] =
(
n
j

)
[θj ], 1 ⩽ k ⩽ m− 1,

(where [λp] = [λk−p], [µq] = [µn−k−q]),

(c) [∆2
s,t] = (

∑
0⩽p⩽s[λp])(

∑
0⩽q⩽t[µq]) = [fs,t] = 22m−2.

Proof. (a). We have, by Proposition 4.1, ρ(∆+
m) = θε∆s,t, in RHn,k where ε ∈ {0, 1}

depending on the value of n modulo 8. Since ([θ]− 1)[∆s,t] = 0 in B̄, irrespective of
the value of ε we have η̄ ◦ ρ(∆+

m) = [∆s,t] in B̄. On the other hand, since ∆+
m = 2m−1

in Ω, we obtain that 2m−1 = ηρ(∆+
m) = θε∆s,t in B. It follows that [∆s,t] = 2m−1

and so 2m−1([θ]− 1) = 0.
(b). It is clear that, when 1 ⩽ j ⩽ m− 2, the relation fj = ρ̄(Λj)θ

j =
(
n
j

)
θj holds in

B and hence in B̄ using θ2 = 1. Since ∆+
m∆−

m =
∑

1⩽j⩽m Λ2j−1 in RSpin(n), and since

η̄ ◦ ρ(∆±
m) = [∆s,t] = [θ][∆s,t] = 2m−1 in B̄, applying η̄ ◦ ρ we obtain the following

equations in B̄:

22(m−1) = η̄ ◦ ρ(∆+
m∆−

m)
= η̄ ◦ ρ(

∑
1⩽j⩽m Λ2j−1)

= [fm−1]−
(

2m
m−1

)
+

∑
1⩽j<m/2

(
2m
2j−1

)
= [fm−1]−

(
2m

2m−1

)
+ 22m/4

since
∑

1⩽j<m/2

(
2m
2j−1

)
= (1/2)

∑
1⩽j⩽m

(
2m
2j−1

)
= 22m/4. Hence [fm−1] =

(
2m
m−1

)
.

(c). Since ∆2
s,t = fs,t holds in B, and since [∆s,t] = 2m−1 holds in B̄, we see that

[fs,t] = 22m−2 in B̄.
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Remark 4.7. It turns out that the relation (c) is a consequence of relations (a), (b).
Indeed, recalling that [λp] = [λk−p], [µq] = [µn−k−q] in B̄, in addition to knowing that
k = 2s+ 1, n− k = 2t+ 1, we have

fs,t = [∆2
s,t] = (

∑
0⩽p⩽s[λp])(

∑
0⩽q⩽t[µq])

= (1/4)(
∑

0⩽p⩽k[λp])(
∑

0⩽q⩽n−k[µq])

= (1/4)
∑

0⩽r⩽n(
∑

0⩽j⩽r[λj ][µr−j ])

= (1/4)
∑

0⩽r⩽n

(
n
r

)
[θ]r, using(b),

= (1/4)(1 + [θ])n.

Since [θ]2 = 1, we have (1 + [θ])2 = 2(1 + [θ]). So (1 + [θ])r = 2r−1(1 + [θ]) whenever
r ⩾ 1. Therefore, since n = 2m ⩾ 4, we have

(1/4)(1 + [θ])n = (1/4)(1 + [θ])3 · (1 + [θ])n−3

= (1 + [θ]) · (1 + [θ])2m−3

= (1 + [θ])2m−2

= 22m−3(1 + [θ])
= 22m−2,

using 22m−3[θ] = 22m−3. Therefore fs,t = 22m−2.

Lemma 4.8. With the above notations, the rank of the abelian group B̄ equals
(
m−1
s

)
.

Moreover the torsion subgroup of B̄ is generated as a B-module by (θ − 1). In partic-
ular, any torsion element has order 2r for some r ⩽ m− 1.

Proof. In view of Lemma 4.5, the set B0 ∪ B0(θ − 1) is a basis for B. Under the
quotient map B → B̄, the abelian group B̄0 generated by B0 projects isomorphically
onto a summand of B̄0. Since 2m−1([θ]− 1) = 0, the subgroup C of B̄ is generated
by ([θ]− 1)B0 consists only of elements whose (additive) order divides 2m−1. This
completes the proof.

We now turn to TorΩ1 (B,Z) = ker(d̄ : Bδ → B). Since d̄(δ) = ±(θ − 1)∆s,t, ker(d̄)
is the B-submodule J · δ where J ⊂ B is the annihilator ideal of (θ − 1)∆s,t ∈ B. It
is clear that (θ + 1) ∈ J since θ2 − 1 = 0. We claim that J equals the ideal generated
by θ + 1. In order to see this, let x ∈ J and let B̄0 = {bj}. Write

x =
∑

yjbj + θ
∑

zjbj where yj , zj ∈ Z.

Since x ∈ J , multiplying by (θ − 1)∆s,t, and using the relations ∆s,t = 2m−1θε (where
the value of ε ∈ {0, 1} depends on the parity of m) and θ(θ − 1) = 1− θ in B, we
obtain that

2m−1(θ − 1)θε
∑

yjbj − 2m−1θε(θ − 1)
∑

zjbj = 0.

Since B is a free abelian group, and since θε is invertible in B, the above equation
can be rewritten as −(

∑
(yj − zj)bj) + θ

∑
(yj − zj)bj = 0. This implies that yj = zj

for all j. Therefore x = (θ + 1)(
∑
yjbj) ∈ J .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The Hodgkin spectral sequence Tor∗RSpin(n)(RHn,k,Z) con-
verges to K∗(Gn,k). Since Tor

∗
RSpin(n)(RHn,k,Z) ∼= Tor∗Ω(B,Z), and since Tor∗Ω(B,Z)
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is generated by degree −1 elements, by the discussion in §2 we obtain that

K0(Gn,k) = Tor0Ω(B,Z) = B̄ and K−1(Gn,k) = TorΩ1 (B,Z) = Ann(θ − 1) ⊂ B.

The theorem now follows from Equation (14), Lemma 4.6, and the above discussion
that describes Ann((θ − 1)∆s,t).

Let ξ = ξn,k be the Hopf line bundle over Gn,k. It is associated to the double cover

G̃n,k → Gn,k. If η is a real vector bundle, we denote by ηC the complexification of η.
Note that ηC, regarded as a real vector bundle via restriction of scalars, is isomorphic
to η ⊕ η. See [MS, p. 176].

Proposition 4.9. Let n = 2m, k = 2s+ 1. If n ≡ 0 (mod 4), k ≡ 1 (mod 2) as well
as k(n− k) < 2m, then

2mξ ∼= 2mϵR where n = 2m, but [2m−2ξ] ̸= 2m−2 in KO(Gn,k).

If n ≡ 0 (mod 8) and k(n− k) < 2m−1, then 2m−1ξ ∼= 2m−1ϵR.

Proof. Since

2m−1[ξC] = 2m−1θ = 2m−1 ∈ K(Gn,k),

it follows that 2m[ξ] = 2m ∈ KO(Gn,k). If dimGn,k = k(n− k) < 2m = rank(2mξ),
then equality of the classes of the vector bundles [2mξ] and [2mϵR] = 2m in KO(Gn,k)
implies the isomorphism of the vector bundles: 2mξ ∼= 2mϵR. See [H, Theorem 1.5,
Chapter 8].

When n ≡ 0 (mod 8), the representations ∆+
m,∆

−
m ∈ RSpin(n) are real, that is,

they arise as complexification of real representations ∆+
m,R,∆

−
m,R of Spin(n). See [H,

§12, Chapter 13]. Evidently θ is real. Indeed θ = χ⊗R C of Hn,k where

χ : Hn,k → O(1) is defined by the projection Hn,k → Hn,k/H
0
n,k
∼= O(1).

The line bundle associated to χ is isomorphic to ξ whereas the bundle associated
to ∆−

m,R equals the trivial real vector bundle of rank 2m−1. This can be shown to

imply that 2m−1[ξ] = 2m−1 ∈ KO(Gn,k). As before, this leads to the isomorphism
2m−1ξ ∼= 2m−1ϵR when k(n− k) < 2m−1.

As for the torsion part of K0(Gn,k), it has no p-torsion for any odd prime p. For
any n, k, the element [Λk(γCn,k)]− 1 = [ξC]− 1 ∈ K(Gn,k) generates a finite cyclic
subgroup of order 2r for some r. There are the obvious inclusions

i : Gn,k ↪→ Gn+1,k+1, j : Gn,k ↪→ Gn+1,k,

which have the property that i∗(γn+1,k+1) ∼= γn,k ⊕ ϵR and j∗(γn+1,k) = γn,k.

Theorem 4.10. Suppose that n = 4l + j, k = 2s+ ε, 1 ⩽ j ⩽ 3, ε ∈ {0, 1}. Let 2r be
the order of [ξC] ∈ K(Gn,k). Then 2l − 1 ⩽ r ⩽ 2l + 1.

Proof. Suppose ε = 1. Then we have inclusions G4l,k
j0
↪→ G4l+j,k

j1
↪→ G4l+4,k where

j∗1 (ξ4l+4,k) = ξn,k, j
∗
0 (ξn,k) = ξ4l,k. The bounds for r now follow from Theorem 1.1.

When ε = 0, we use the inclusions G4l,2s−1
i0
↪→ Gn,k

i1
↪→ G4l+4,2s+1. When s = 1,

G4l,2s−1 = RP 4l−1 and the order of the bundle [ξC]− 1 is known to be 22l−1 from the
work of Adams [A, Theorem 7.3]. Now we proceed exactly as in the case ε = 1.
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5. K-theory of Gn,k for arbitrary values of n, k

In this section we shall prove Theorem 1.2. The proof will make use of the Chern
character ch: K∗(Gn,k)⊗Q→ H∗(Gn,k;Q). We begin by recalling, in Theorem 5.1
and the following paragraph, the rational cohomology algebra of the Grassmann man-
ifolds. We refer the reader to [MS, §15] for the definition and properties of Pontr-
jagin classes. We shall write k = 2s+ ε, n− k = 2t+ η where ε, η ∈ {0, 1} so that
n = 2s+ 2t+ ε+ η.

We denote by βn,k the canonical (n− k)-plane bundle over Gn,k whose fibre over
L ∈ Gn,k is the vector space L⊥ ⊂ Rn. We have γn,k ⊕ βn,k ∼= nϵR, and, (denoting
the complexification γn,k ⊗ C by γCn,k etc.,) we obtain

γCn,k ⊕ βC
n,k = nϵC. (15)

Let pj = pj(γn,k) ∈ H4j(Gn,k;Z[1/2]), 1 ⩽ j ⩽ s, be the jth (rational) Pontrjagin
class of γn,k, and let qj = pj(βn,k), 1 ⩽ j ⩽ t. Since γn,k ⊕ βn,k ∼= nϵR, we have, for
1 ⩽ r ⩽ s+ t, ∑

0⩽j⩽s

pjqr−j = 0, (16)

where it is understood that p0 = q0 = 1, pi = 0, qj = 0 if i > s, j > t. In fact, the coho-
mology algebra H∗(Gn,k;Z[1/2]) has the following description. It can be derived from

the known description of H∗(G̃n,k;Z[1/2]) as the fixed subring under the action of the

deck transformation group of the double covering G̃n,k → Gn,k. We refer the reader

to [MS, Theorem 15.9] for the description of H∗(G̃n,k;Z[1/2]).

Theorem 5.1. With the above notations, we have

H∗(Gn,k;Z[1/2]) = Z[1/2][p1, . . . , ps; q1, . . . , qt, vn−1]/J, (17)

where degree of vn−1 = n− 1, and the ideal J is generated by the following elements:

(i)
∑

0⩽j⩽r pjqr−j , 1 ⩽ r ⩽ s+ t,

(ii) vn−1 if n is odd or k is even; v2n−1 if n is even and k odd.

As a consequence we note that H∗(Gn,k;Z) has no p-torsion except when p = 2.
Denote by Pn,k ⊂ H∗(Gn,k;Q) the even-graded subalgebra, namely,

Hev(Gn,k;Q) = ⊕r⩾0H
2r(Gn,k;Q) = Q[p1, . . . , ps; q1, . . . , qt]/∼ .

Then Pn,k depends only on s, t and not on the values of ε, η ∈ {0, 1}, along with
dimQ Pn,k =

(
s+t
s

)
. Moreover, Pn,k = H∗(Gn,k;Q), except when n = 2s+ 2t+ 2 is

even and k = 2s+ 1 is odd. When n = 2s+ 2t+ 2, k = 2s+ 1, we have

Hodd(Gn,k;Q) = vn−1Pn,k
∼= Pn,k as a Pn,k-module.

We have a natural Z2-gradation on H∗(Gn,k;Q) defined by the parity of the degree.
Recall the Chern character map ch: K∗(Gn,k)⊗Q→ H∗(Gn,k;Q), which is an

isomorphism of Z2-graded rings. So K0(Gn,k) has rank equal to dimQ Pn,k =
(
s+t
s

)
.

In case n is odd or k is even, we have Hodd(Gn,k;Q) = 0 and so K1(Gn,k) is a finite
abelian group. When n is even and k is odd, K1(Gn,k) has rank equal to that of
K0(Gn,k).
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We now turn to the proof of Theorem 1.2. We shall denote by ϕ the inclusion map
Kn,k ↪→ K(Gn,k).

Proof of Theorem 1.2. The inclusion ϕ : Kn,k ↪→ K(Gn,k) induces an inclusion

ϕ⊗ 1: Kn,k ⊗Q→ K(Gn,k)⊗Q.

We need to show that the composition ch ◦ (ϕ⊗ 1) : Kn,k ⊗Q→ Pn,k is surjective.
Note that, in view of Equation (16), Pn,k is generated by pj , 1 ⩽ j ⩽ s. So we need
only show that the pj ∈ Pn,k are in the image of ch ◦ (ϕ⊗ 1).

We have a formal expression of pj = pj(γn,k) in terms of the Chern ‘roots’

xj ,−xj , 1 ⩽ j ⩽ s, of γCn,k

given as pj = (−1)jej(x21, . . . , x2k), 1 ⩽ j ⩽ s, where ej denotes the jth elementary
symmetric polynomial in the indicated arguments. (See [MS, §15].) From the defini-
tion of Chern character we have

ch(γCn,k) = k + 2
∑
m⩾1

∑
1⩽j⩽s

x2mj /(2m)! = k + 2
∑
m⩾1

um/(2m)!,

where um :=
∑

1⩽m⩽s x
2m
j for m ⩾ 1. The symmetric polynomials can be expressed

as polynomials in the power sums over Q and so we have

(−1)jpj = uj/j + Fj(u1, . . . , uj−1), 1 ⩽ j ⩽ s, (18)

where u0 = k and

Fj(u1, . . . , uj−1) ∈ H4j(Gn,k;Q) is a suitable polynomial in u1, . . . , uj−1.

So it suffices to show that the uj are in the image of ch ◦ (ϕ⊗ 1). To see this, it is
convenient to use the Adams operations ψr. Note that Kn,k contains Λj(γ

C
n,k) and

so it also contains ψr(γCn,k) for all integers r ⩾ 1 since the ψr can be expressed (with

Z-coefficients) in terms of the exterior power operations. Although ψr(γCn,k) is only
a virtual bundle, its Chern characters are easy to compute since rxj ,−rxj are its
Chern roots. Thus, writing d = ⌊k(n− k)/2⌋, we have, for r ∈ Z,

vr := ch([ψr(γCn,k)]− k)
= 2

∑
m⩾1(

∑
1⩽j⩽s r

2mx2mj /(2m)!)

= 2
∑

1⩽m⩽d r
2mum/(2m)!.

(19)

We obtain the equation 2uM = v where M = (mij) is the d× d matrix defined as
mij = j2i, and u = (u1/2!, u2/4!, . . . , ud/(2d)!), v = (v1, . . . , vd) are regarded as (row)
vectors in the d-fold direct sum (Hev(Gn,k;Q))d. Since M is invertible and since
the vj are in the image of ch ◦ (ϕ⊗ 1), it follows that the uj/(2j)! are also in the
image of ch ◦ (ϕ⊗ 1) for 1 ⩽ j ⩽ d. So u1, . . . , us are in the image of ch ◦ (ϕ⊗ 1).
This completes the proof.

We conclude by giving, in Proposition 5.5, a description of Kn,k as a quotient of a
ring Kn,k, explicitly described in terms of generators and relations, with finite kernel.
It seems plausible that Kn,k is isomorphic to Kn,k but we have not been able to prove
this.

The operator Λt =
∑

r⩾0 Λ
rtr, which is a formal power series in the indeterminate
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t whose coefficients are exterior power operators, has the property Λt(ω0 ⊕ ω1) =
Λt(ω0) · Λt(ω1) for any two complex vector bundles ω0, ω1. So we have

Λt(γ
C
n,k) · Λt(β

C
n,k) = (1 + t)n since Λt(ϵC) = (1 + t).

Equivalently, for any r ⩾ 1, we have∑
p+q=r

Λp(γCn,k)⊗ Λq(βC
n,k) =

(
n

r

)
. (20)

We know that 2rξC is stably trivial for some r where ξ = ξn,k denotes the Hopf
line bundle over Gn,k = SO(n)/S(O(k)×O(n− k)). By Theorem 4.10, one may take
r = m+ 1. We let ν be the least positive integer for which this happens. Then
(1− [ξC])ν+1 = 2ν(1− [ξC]) = 0 in K(Gn,k). Note that ξ = Λk(γn,k) = Λn−k(βn,k) is
associated to the character

χ : S(O(k)×O(n− k))→ O(1) defined as
(
A 0
0 B

)
7→ det(A).

We let θ be the complexification of χ so that ξC is associated to θ. We shall denote
[ξC] ∈ K(Gn,k) by [θ].

For any real vector space V of dimension k, one has a functorial non-degenerate
bilinear pairing Λp(V )× Λk−p(V )→ Λk(V ) defined as (u, v) 7→ u ∧ v. If V is an inner
product space, then we have the induced inner product

Λq(V )× Λq(V )→ R defined as (u1 ∧ · · · ∧ uq, v1 ∧ · · · ∧ vq) 7→ det((ui, vj)).

Thus, we obtain a natural isomorphism Λp(V ) ∼= Λk−p(V )⊗ Λk(V ). This yields an
isomorphism Λp(γn,k) ∼= Λk−p(γn,k)⊗ ξ of real vector bundles. See [MS, §2]. A similar
isomorphism holds for βn,k as well. Complexifying we obtain the following isomor-
phisms for 1 ⩽ p ⩽ k, 1 ⩽ q ⩽ n− k:

Λp(γCn,k)
∼= ξC ⊗ Λk−p(γCn,k), Λ

q(βC
n,k)
∼= ξC ⊗ Λn−k−q(βC

n,k). (21)

We are now ready to define the ring Kn,k.

Definition 5.2. Let A = Z[θ]/⟨θ2 − 1, 2ν(1− θ)⟩. Then A ∼= Z⊕ Z2ν (1− θ). Write
k = 2s+ ε, n− k = 2t+ η where ε, η ∈ {0, 1} so that n = 2s+ 2t+ ε+ η. We define
Kn,k := A[λ1, . . . , λk, µ1, . . . , µn−k]/I, the quotient of the polynomial algebra over A
where the ideal I is generated by the following elements:

(i) λk−p − θλp, µk−q − θµq for 1 ⩽ p ⩽ k, 1 ⩽ q ⩽ n− k,
(ii) Qr(λ, µ)−

(
n
r

)
for 1 ⩽ r ⩽ n whereQr(λ, µ) :=

∑
p+q=r,0⩽p⩽k,0⩽q⩽n−k λpµq, for

1 ⩽ r ⩽ n.

Remark 5.3.

(a) The A-algebra Kn,k is generated by λ1, . . . , λs, µ1, . . . , µt. This is immediate
from the relations 5.2(i).

(b) In fact, using the relations 5.2 (ii), (and (a)), we see that µ1 = n− λ1, and,
if 2 ⩽ r ⩽ t, then µr can be expressed in terms of the λ1, . . . , λs, µ1, . . . , µr−1

(with coefficients in A). So, by induction, the µr can be expressed in terms of
λ1, . . . , λs. Hence Kn,k is generated by λp, 1 ⩽ p ⩽ s.

(c) One has a ring homomorphism A→ Z which maps θ to 1 with kernel the ideal
A(1− θ).
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Set

K̄n,k := Kn,k ⊗A Z = Kn,k/(1− θ)Kn,k = Z[λ1, . . . , λs, µ1, . . . , µt]/I0,

where I0 is the ideal generated by the elements listed in Definition 5.2 (ii), and where
λp = λk−p, µq = µn−k−q for p > s, q > t.

Lemma 5.4. One has the following isomorphisms of rings:

K̄2s+2t+2,2s+1
α0→ K̄2s+2t+1,2s+1

α1→ K̄2s+2t,2s, (22)

where, α0(λp) = λp, α0(µq) = µq + µq−1, and, α1(λp) = λp + λp−1, α1(µq) = µq, for
all p ⩽ k, q ⩽ n− k. (It is understood that λ0 = 1 = µ0.) As an abelian group K̄n,k is
free of rank

(
s+t
s

)
where

(n, k) = (2s+ 2t+ 2, 2s+ 1), (2s+ 2t+ 1, 2s+ 1), (2s+ 2t, 2s).

Proof. It is readily verified that α0, α1 are surjective homomorphisms. We need to
show that they are injective as well.

Consider β0 : K̄2s+2t+1,2s+1 → K̄2s+2t+2,2s+1, and, β1 : K̄2s+2t,2s → K̄2s+2t+1,2s+1

defined as follows: for p ⩽ s, q ⩽ t,

β0(λp) = λp, β0(µq) =
∑

0⩽j⩽q

(−1)q−jµj , and

β1(λp) =
∑

0⩽j⩽p

(−1)p−jλj , β1(µq) = µq.

Straightforward verification, using the identity
∑

0⩽j⩽r(−1)j
(

n
r−j

)
=

(
n−1
r

)
, shows

that β0 and β1 are well-defined homomorphisms of rings. Again, these are surjective,
since the generators λp (resp. µq) are in the image of β0 (resp. β1).

We claim that α0, β0 (resp. α1, β1) are inverses of each other. Indeed,

β0 ◦ α0(λp) = λp for all p ⩽ s and α0 ◦ β0(λp) = λp for all p.

By Remark 5.3(b) above, our claim follows. Similarly α1, β1 are inverses of each other.
For the last assertion, we need only consider the case(n, k)=(2s+ 2t+ 2,2s+ 1).

The ring K̄2s+2t+2,2s+1 is isomorphic to the quotient ring R/I ∼= H∗(CGs+t,s;Z)
considered in Remark 4.3(ii). Hence K̄2s+2t+2,2s+1 is a free abelian group of rank(
s+t
s

)
.

Proposition 5.5. One has a surjective homomorphism of rings κ : Kn,k → Kn,k with
finite kernel, defined as κ(λj) = [Λj(γCn,k)], 1 ⩽ j ⩽ k.

Proof. In view of Equations (20) and (21), κ is a well-defined ring homomorphism.
Clearly κ(λj) = [Λj(γCn,k)] for all j and so, by the definition of Kn,k, κ is surjective.
Since both Kn,k,Kn,k have the same (finite) rank, it follows that ker(κ) is finite.
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