ERRATUM TO "FROM LOOP GROUPS TO 2-GROUPS"

JOHN C. BAEZ, ALISSA S. CRANS, URS SCHREIBER and DANNY STEVENSON

(communicated by J. Daniel Christensen)

Abstract

There were a number of sign errors in our paper "From loop groups to 2-groups" [Homology Homotopy Appl. 9 (2007), 101135]. Here we explain how to correct those errors.

The following sign corrections to our paper [BCSS] make the article consistent with $[\mathrm{BC}]$ and $[\mathbf{L M}]$, in particular, by correcting our definition of morphisms between 2 -term L_{∞}-algebras. The definition given in [BC], Definition 4.3.4, was independently checked by Kevin van Helden to be consistent with the one suggested in [LM, Remark 5.3]. See also [H, Definition 2.5]. Since the main theorem of the paper involves several such morphisms, a number of signs in the data of some L_{∞}-algebra morphisms need to be changed. Moreover, the definition of the crossed module action α in Proposition 2.4 led to an inconsistency independent of the L_{∞}-algebra material, found by David Michael Roberts. The corrected sign is self-consistent, as well as agreeing with the rest of the paper. There were additionally some typos in an earlier paper [MS] leading to some innocuous sign errors that do not impact the other calculations.

All the corrections here have been made in the current arXiv version of our paper [BCSS]. All of our calculations have been independently checked by Rist, Saemann and Wolf [RSW], as well as by Roberts.

- The big commutative diagram in Definition 2.2 should be replaced by

[^0]- Equation (5) needs to be replaced by

$$
\begin{aligned}
\phi_{1}\left(l_{3}(x, y, z)\right) & -l_{3}\left(\phi_{0}(x), \phi_{0}(y), \phi_{0}(z)\right)= \\
& \phi_{2}\left(x, l_{2}(y, z)\right)+\phi_{2}\left(y, l_{2}(z, x)\right)+\phi_{2}\left(z, l_{2}(x, y)\right)+ \\
& l_{2}\left(\phi_{0}(x), \phi_{2}(y, z)\right)+l_{2}\left(\phi_{0}(y), \phi_{2}(z, x)\right)+l_{2}\left(\phi_{0}(z), \phi_{2}(x, y)\right) .
\end{aligned}
$$

- The definition of κ in equation (12) should be

$$
\kappa(f, g)=\exp \left(-2 i k \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\langle f(t)^{-1} f^{\prime}(t), g^{\prime}(\theta) g(\theta)^{-1}\right\rangle d \theta d t\right)
$$

correcting a typo in [MS].

- The definition of the normal subgroup N below equation (12) should read
"Let N be the subset of $P_{0} \Omega G \times U(1)$ consisting of pairs (γ, z) such that $\gamma:[0,2 \pi] \rightarrow \Omega G$ is a loop based at $1 \in \Omega G$ and

$$
z=\exp \left(i k \int_{D_{\gamma}} \omega\right)
$$

where D_{γ} is any disk in ΩG with γ as its boundary."
for consistency with the definition of κ above.

- The definition of $d \alpha$ in the statement of Proposition 3.1 should be

$$
d \alpha(p)(\ell, c)=\left([p, \ell], 2 k \int_{0}^{2 \pi}\left\langle\ell(\theta), p^{\prime}(\theta)\right\rangle d \theta\right)
$$

- The definition of β_{p} in the proof of Proposition 3.1 should be

$$
\beta_{p}(\xi)=2 \int_{0}^{2 \pi}\left\langle\xi(\theta), p(\theta)^{-1} p^{\prime}(\theta)\right\rangle d \theta
$$

- The definition of ϕ_{2} in the statement of Lemma 5.4 should be

$$
\phi_{2}\left(p_{1}, p_{2}\right)=k \int_{0}^{2 \pi}\left(\left\langle p_{2}, p_{1}^{\prime}\right\rangle-\left\langle p_{2}^{\prime}, p_{1}\right\rangle\right) d \theta
$$

- The definition of λ_{2} in the proof of Lemma 5.5 should be

$$
\lambda_{2}\left(\ell_{1}, \ell_{2}\right)=\left(0,2 k \int_{0}^{2 \pi}\left\langle\ell_{1}, \ell_{2}^{\prime}\right\rangle d \theta\right)
$$

With these changes, the calculations in the proofs all go through, leaving the results unchanged.

References

[BC] J. Baez and A. S. Crans, Higher-dimensional algebra VI: Lie 2algebras, Theor. Appl. Categ. 12 (2004), 492-528. Also available as arXiv:math/0307263.
[BCSS] J. C. Baez, A. S. Crans, U. Schreiber and D. Stevenson, From loop groups to 2-groups, Homology Homotopy Appl. 9 (2007), 101-135. Corrected version available as arXiv:math/0504123v3.
[H] K. S. van Helden, Classification of 2-term L_{∞}-algebras, Available as arXiv:2109.10202.
[LM] T. Lada and M. Markl, Strongly homotopy Lie algebras, Commun. Alg. 6 (1995), 2147-2161. Also available as arXiv:hep-th/9406095.
[MS] M. K. Murray and D. Stevenson, Higgs fields, bundle gerbes and string structures, Commun. Math. Phys. 243 (2003), 541-555. Also available as arXiv:math/0106179.
[RSW] D. Rist, C. Saemann and M. Wolf, Explicit non-abelian gerbes with connections. Available as arXiv:2203.00092.

John C. Baez baez@math.ucr.edu
Department of Mathematics, University of California at Riverside, USA

Alissa S. Crans acrans@1mu.edu
Department of Mathematics, Loyola Marymount University, USA

Urs Schreiber urs.schreiber@googlemail.com
Mathematics Division, New York University in Abu Dhabi, UAE

Danny Stevenson daniel.stevenson@adelaide.edu.au
School of Computer and Mathematical Sciences, The University of Adelaide, Australia

[^0]: Received August 9, 2023; published on November 22, 2023.
 2020 Mathematics Subject Classification: 18G45, 22E67, 53C08
 Key words and phrases: L_{∞}-algebra, loop group, 2-group
 Article available at http://dx.doi.org/10.4310/HHA.2023.v25.n2.a18
 Copyright © 2023, John C. Baez, Alissa S. Crans, Urs Schreiber and Danny Stevenson. Permission to copy for private use granted.

