Homology, Homotopy and Applications, vol. 26(1), 2024, pp.1-14

POLYNOMIAL GENERATORS OF MSU*[1/2] RELATED TO CLASSIFYING MAPS OF CERTAIN FORMAL GROUP LAWS

MALKHAZ BAKURADZE
(communicated by Nicholas J. Kuhn)

Abstract

This paper presents a commutative complex oriented cohomology theory that realizes the Buchstaber formal group law F_{B} localized away from 2. It is shown that the restriction of the classifying map of F_{B} on the special unitary cobordism ring localized away from 2 defines a four parameter genus, studied by Hoehn and Totaro.

1. Introduction

The ring of complex cobordism $\mathbf{M U}_{*}$ and the ring $\mathbf{M S U}_{*}$ of special unitary cobordism has been studied by many authors. We refer the reader to $[\mathbf{2 0}],[\mathbf{1 7}]$ for details. In particular the ring $\mathbf{M S U}_{*}$, localized away from 2, is torsion free

$$
\mathbf{M S U}_{*}[1 / 2]=\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, \ldots\right], \quad\left|x_{i}\right|=2 i
$$

and $S U$-structure forgetful homomorphism is the inclusion in complex cobordism ring

$$
\mathbf{M S U}_{*}[1 / 2] \subset \mathbf{M U}_{*}[1 / 2]=\mathbb{Z}[1 / 2]\left[x_{1}, x_{2}, x_{3}, \ldots\right] .
$$

In this paper we construct a commutative complex oriented cohomology theory (Theorem 5.1) such that the coefficient ring is the scalar ring of the Buchstaber formal group law F_{B} with inverted 2 , and show (Proposition 5.1) that after restricted to $\mathbf{M S U}_{*}[1 / 2]$, the classifying map of F_{B} can become a genus

$$
\begin{equation*}
\mathbf{M S U}_{*}[1 / 2] \rightarrow \mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right], \quad\left|x_{i}\right|=2 i \tag{1}
\end{equation*}
$$

studied by Hoehn [13] and Totaro [21].
Since MSU* is not complex oriented, it is difficult to compute the genus (1) on specific explicit elements. Using the polynomial generators of the spherical cobordism ring $W^{*}[1 / 2]$ given by Chernykh and Panov [12], we derive certain polynomial generators of $\mathbf{M S U}^{*}[1 / 2]$ in terms of the universal formal group law. This gives a new understanding of the genus (1).

In particular, the classifying map f_{B} of F_{B} is a surjection on some infinitely generated ring Λ_{B}, with kernel generated by some explicit elements (Proposition 2.1). After it is tensored with rationals it is identical (Proposition 2.2) to the complex

[^0]elliptic genus
\[

$$
\begin{equation*}
\mathbf{M U}_{*} \otimes \mathbb{Q} \rightarrow \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \tag{2}
\end{equation*}
$$

\]

defined in Hoehn's thesis [13, Section 2.5]. Here x_{1} is the image of complex projective plane $\mathbf{C P}_{1}$ and x_{2}, x_{3}, x_{4} are the images of any first three generators of the polynomial ring $\mathrm{MSU}_{*} \otimes \mathbb{Q}=\mathbb{Q}\left[x_{2}, x_{3}, x_{4}, \ldots\right]$.

By Hoehn [13], for X an $S U$-manifold of complex dimension n, the exponential characteristic class $\phi(X)$ is in fact a Jacobi form of weight n. Jacobi forms are generalizations of modular forms. See details in [21]. Hoehn showed that the Jacobi forms x_{2}, x_{3}, x_{4} arise as the elliptic genera of certain explicit $S U$-manifolds, of complex dimensions $2,3,4$, so that the homomorphism

$$
\mathbf{M S U}_{*} \rightarrow(\text { Jacobi forms over } \mathbb{Z})
$$

becomes surjective after it is tensored with $\mathbb{Z}[1 / 2]$.
In [21, Theorem 4.1] Totaro proved that the Krichever-Hoehn complex elliptic genus on complex cobordism viewed as a homomorphism (2) is surjective and the kernel is equal to the ideal of complex flops.

Then Totaro proved (Theorem 6.1) that the kernel of the complex elliptic genus on $\mathbf{M S U}_{*} \otimes \mathbb{Z}[1 / 2]$ is equal to the ideal I of $S U$-flops. Also, the quotient ring is a polynomial ring:

$$
\begin{equation*}
\mathbf{M S U}_{*}[1 / 2] / I=\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right] . \tag{3}
\end{equation*}
$$

Unfortunately MSU* ${ }^{*}$ is not complex oriented. It would be nice to develop a method for calculating (3) explicitly in terms of the universal formal group law using some generators of $\mathbf{M S U} \mathbf{U}_{*}[1 / 2]$ treated as explicit elements in $\mathbf{M U}_{*}[1 / 2]$.

This goal can be achieved as follows: in Section 5 we replace the ideal of complex flops with a more explicit ideal by considering the integral Buchstaber genus which is identical to the Krichever-Hoehn complex elliptic genus over $\mathbf{M U}_{*} \otimes \mathbb{Q}$.

In Section 6 we use the polynomial generators of the spherical cobordism ring $W_{*}[1 / 2]$ constructed in [12] and define certain polynomial generators of $\mathrm{MSU}_{*}[1 / 2]$. In particular, we use fact that $W_{*}[1 / 2]$ is generated by the coefficients of the corresponding formal group law. Given Novikov's criteria and that $W_{*}[1 / 2]$ is a free $\mathbf{M S U}_{*}[1 / 2]$ module generated by 1 and $\mathbf{C P}^{1}$, we define some generators in $\mathbf{M S U}_{*}[1 / 2]$ (Proposition 6.3) in terms of the universal formal group law. Finally the explicit quotient map of the Buchstaber formal group law (Proposition 2.1) gives the decompositions of constructed generators MSU $_{*}$ of dimensions $\geqslant 10$ in polynomial ring $\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right]$. It is a way to calculate the genus (3) in terms of the universal formal group law.

In Section 7 we consider the restriction of classifying map of the universal abelian formal group law on $\mathbf{M S U}_{*}[1 / 2]$ to define a genus with one parameter.

Acknowledgments

The author was supported by Shota Rustaveli NSF grant FR-21-4713.

2. Preliminaries

The theory W_{*} of c_{1}-spherical bordism is defined geometrically in [20, Chapter VIII]. The closed manifolds M with a c_{1}-spherical structure, consist of

- a stably complex structure on the tangent bundle $T M$;
- a CP ${ }^{1}$-reduction of the determinant bundle, that is, a map $f: M \rightarrow \mathbf{C P}{ }^{1}$ and an equivalence $f^{*}(\eta) \simeq \operatorname{det} T M$, where η is the tautological bundle over $\mathbf{C P}{ }^{1}$.

This is a natural generalization of an $S U$-structure, which can be thought of as a trivialization of the determinant bundle. The corresponding bordism theory is called c_{1}-spherical bordism and is denoted W_{*}. The unitary and special unitary bordism rings are denoted by $\mathbf{M U}_{*}$ and $\mathbf{M S U}_{*}$ respectively. We refer to [17] and [12] for details on $\mathbf{M S U}_{*}$ and W_{*} that will be used throughout the paper.

Motivated by string theory in [14], [13], [21] the universal Krichever-Hoehn complex elliptic genus $\phi_{K H}$ is defined as the ring homomorphism

$$
\begin{equation*}
\phi_{K H}: \mathbf{M U}_{*} \rightarrow \mathbb{Q}\left[q_{1}, q_{2}, q_{3}, q_{4}\right] \tag{4}
\end{equation*}
$$

associated to the Hirzebruch characteristic power series $Q(x)=\frac{x}{f(x)}$, where

$$
h(x)=\frac{f^{\prime}(x)}{f(x)}
$$

is the solution of the differential equation in $\mathbf{M U}_{*} \otimes \mathbb{Q}$

$$
\begin{equation*}
\left(h^{\prime}\right)^{2}=S(h), \tag{5}
\end{equation*}
$$

where

$$
S(x)=x^{4}+q_{1} x^{3}+q_{2} x^{2}+q_{3} x+q_{4},
$$

for some formal parameters $\left|q_{i}\right|=2 i$.
One consequence of Krichever-Hoehn's rigidity theorem [14], [13], [21], is that ([13, Kor 2.2.3]) if $F \rightarrow E \rightarrow B$ is a fiber bundle of closed connected weakly complex manifolds, with structure group a compact connected Lie group G, and if F is an $S U$-manifold, then the elliptic genus $\phi_{K H}$ satisfies $\phi_{K H}(E)=\phi_{K H}(F) \phi_{K H}(B)$. In fact, the elliptic genus is the universal genus with the above multiplicative property.

In ([21, Theorem 6.1]) Totaro gave a geometric description of the kernel ideal I of the complex elliptic genus restricted to $\mathbf{M S U}_{*}[1 / 2]$, the ideal of $S U$ flops. This kernel is equal to the ideal in $\mathbf{M S U}_{*}[1 / 2]$ generated by twisted projective bundles $\tilde{\mathbf{C P}}(A \oplus B)$ over weakly complex manifolds Z such that the complex vector bundles A and B over Z have rank 2 and $c_{1} Z+c_{1} A+c_{1} B=0$; in this case, the total space is an $S U$-manifold. Then Totaros's result says that the $I \in \mathbf{M U}_{*}[1 / 2]$ contains a polynomial generator of $\mathbf{M S U}_{*}[1 / 2]$ in real dimension $2 n$ for all $n \geqslant 5$ and

$$
\begin{equation*}
\mathbf{M S U}_{*}[1 / 2] / I \simeq \mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right] . \tag{6}
\end{equation*}
$$

In [13] by using of characteristic classes, Hoehn constructed a base sequence $W_{1}, W_{2}, W_{3}, \ldots$ of the rational cobordism ring $\mathbf{M U}_{*} \otimes \mathbb{Q}$ on which $\phi_{K H}$ has the values A, B, C, D, and 0 for W_{i} with $i>4$.

As another generalization of Oshanin's elliptic genus Schreieder in [19] studied a genus ψ with logarithmic series

$$
\log _{\psi}(x)=\int_{0}^{x} \frac{d t}{R(t)}, \quad R(t)=\sqrt{1+q_{1} t+q_{2} t^{2}+q_{3} t^{3}+q_{4} t^{4}}
$$

The genus ψ is easily calculable on cobordism classes of complex projective spaces $\mathbf{C P}_{i}$, the generators of the domain

$$
\mathbf{M U}_{*} \otimes \mathbb{Q}=\mathbb{Q}\left[\mathbf{C P}_{1}, \mathbf{C P}_{2}, \ldots\right] .
$$

This is because of the equation $\left(\log _{\psi}(x)^{\prime}\right)^{2}=1 / R^{2}(x)=\sum_{i \geqslant 1} \psi\left(\mathbf{C} \mathbf{P}_{i}\right) x^{i}$ we need only the Taylor expansion of $(1+y)^{-1 / 2}$.

It is natural to ask whether one can calculate $\phi_{K H}$ in an elementary manner, different from that relying on the formulas in [13] and [8].

Viewed as a classifying map ψ is strongly isomorphic to genus ϕ by the series $\mu(x)=\sum_{i \geqslant 0} \mathbf{C} \mathbf{P}_{i} x^{i+1}$ [4]. This gives a method for explicit calculation of $\phi_{K H}$.

In $[2,3]$ we introduced the formal power series

$$
\begin{equation*}
A(x, y)=\sum A_{i j} x^{i} y^{j}=F(x, y)(x \omega(y)-y \omega(x)) \in \mathbf{M U}^{*}[[x, y]] \tag{7}
\end{equation*}
$$

where

$$
F=F(x, y)=\sum \alpha_{i j} x^{i} y^{j}
$$

is the universal formal group law over complex cobordism ring $\mathbf{M U}^{*}$ and

$$
\omega(x)=\frac{\partial F(x, y)}{\partial y}(x, 0)=1+\sum_{i \geqslant 1} w_{i} x^{i}
$$

is the invariant differential of F.
The series $A(x, y)$ has proven to be interesting for the following reasons.
Proposition 2.1 ([3]). (i) The obvious quotient map

$$
f_{B}: \mathbf{M U}^{*} \rightarrow \mathbf{M U}^{*} /\left(A_{i j}, i, j \geqslant 3\right)
$$

classifies a formal group law which is identical to the universal Buchstaber formal group law F_{B}, the universal formal group law of the form

$$
\frac{x^{2} A(y)-y^{2} A(x)}{x B(y)-y B(x)}
$$

where $A(0)=B(0)=1$.
(ii) If $A^{\prime}(0)=B^{\prime}(0)$ then $B(x)$ is identical to the image of $\omega(x)$ under the classifying map f_{B}.

Proposition 2.2 ([4]). After it is tensored with rationals the classifying map f_{B} of the Buchstaber formal group law is identical to the Krichever-Hoehn complex elliptic genus

$$
\phi: \mathbf{M U}_{*} \otimes \mathbb{Q} \rightarrow \Lambda_{B} \otimes \mathbb{Q}=\mathbb{Q}\left[\mathbf{C P}_{1}, \mathbf{C P}_{2}, \mathbf{C P}_{3}, \mathbf{C P}_{4}\right],
$$

where $\mathbf{C P}_{i}$ are complex projective spaces.
For explicit calculation of the Krichever-Hoehn genus the following observation is helpful.

Proposition 2.3 ([4]). Over the ring $\mathbf{M U}^{*} \otimes \mathbb{Q}$ the series $\frac{x}{\omega(x)}$ is the strong isomorphism from the formal group law with logarithm series

$$
\int_{0}^{x} \frac{d t}{\sqrt{1+p_{1} t+p_{2} t^{2}+p_{3} t^{3}+p_{4}}}
$$

in [19] to the formal group law classified by f.

3. Some auxiliary combinatorial definitions

By Euclid's algorithm for the natural numbers $m_{1}, m_{2}, \ldots, m_{k}$ one can find integers $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$, such that

$$
\begin{equation*}
\lambda_{1} m_{1}+\lambda_{2} m_{2}+\cdots+\lambda_{k} m_{k}=\operatorname{gcd}\left(m_{1}, m_{2}, \ldots, m_{k}\right) \tag{8}
\end{equation*}
$$

Let

$$
\begin{equation*}
d(m)=\operatorname{gcd}\left\{\binom{m+1}{1},\binom{m+1}{2}, \ldots, \left.\binom{m+1}{m-1} \right\rvert\, m \geqslant 1\right\} . \tag{9}
\end{equation*}
$$

By [15] one has

$$
d(m)= \begin{cases}p, & \text { if } m+1=p^{s} \text { for some prime } p \\ 1, & \text { otherwise }\end{cases}
$$

For the coefficients of universal formal group law $F(x, y)=\sum \alpha_{i j} x^{i} y^{j}$ the elements

$$
\begin{equation*}
e_{m}=\lambda_{1} \alpha_{1 m}+\lambda_{2} \alpha_{2 m-1}+\cdots+\lambda_{m} \alpha_{m 1} \tag{10}
\end{equation*}
$$

are multiplicative generators in $\mathbf{M U}_{*}$.
By [9, Theorem 9.9], or [22]

$$
\frac{D(m)}{d(m)}= \begin{cases}d(m-1) & \text { if } m \neq 2^{k}-2, \tag{11}\\ 2 & \text { if } m=2^{k}-2\end{cases}
$$

where

$$
\begin{equation*}
D(m)=g c d\left\{\left.\binom{m+1}{i}-\binom{m+1}{i-1} \right\rvert\, 2<i \leqslant m-1, m \geqslant 5\right\} . \tag{12}
\end{equation*}
$$

Let $m \geqslant 4$ and let $\lambda_{2}, \ldots, \lambda_{m-2}$ are such integers that

$$
\begin{equation*}
d_{2}(m):=\sum_{i=2}^{m-2} \lambda_{i}\binom{m+1}{i}=g c d\left\{\binom{m+1}{2}, \ldots,\binom{m+1}{m-2}\right\} \tag{13}
\end{equation*}
$$

Then by [9, Lemma 9.7] one has for $m \geqslant 3$

$$
\begin{equation*}
d_{2}(m)=d(m) d(m-1) \tag{14}
\end{equation*}
$$

Note $d(n)$ are the Chern numbers of the generators in complex cobordism of dimension $2 n$.

For the generators

$$
A_{i j}, i, j \geqslant 3, i+j-2=m
$$

of the quotient ideal corresponding to Λ_{B}, the scalar ring of the universal Buchstaber formal group law in Proposition 2.1 and the integers $\lambda_{3}, \ldots, \lambda_{m-1}$ corresponding to (12) consider the linear combinations

$$
\begin{equation*}
T_{m}=\lambda_{3} A_{3 m-1}+\lambda_{4} A_{4 m-2}+\cdots+\lambda_{m-1} A_{m-13} \tag{15}
\end{equation*}
$$

The elements $T_{p^{s}}$, where p is a prime number, and e_{i} in (10) for $i \neq p^{s}$ will play a major role in Section 4.

4. Realization of the universal Buchstaber formal group law localized away from 2.

Let e_{i} and T_{i} be as in (10) and (15) respectively.
Let J_{B} be the ideal of $\mathbf{M} \mathbf{U}_{*}=\mathbb{Z}\left[e_{1}, e_{2}, \ldots\right]$

$$
J_{B}=\left\{A_{i j}, i, j \geqslant 3\right\},
$$

the quotient ideal of the universal Buchstaber formal group law F_{B} classified by

$$
f_{B}: \mathbf{M U}_{*} \rightarrow \mathbf{M U}_{*} / J_{B}=\Lambda_{B} .
$$

The ideal J_{B} is not prime as the quotient ring Λ_{B} is not an integral domain: it has 2 -torsion element of degree 12 [3]. Here we use the results of [9], that Λ_{B} is generated by $f_{B}\left(e_{j}\right), j=1,2,3,4$ and $j=p^{r}, r \geqslant 1, p$ is prime, and $j=2^{k}-2, k \geqslant 3$. Then the ideal $\operatorname{Tor}\left(\Lambda_{B}\right)$ is generated by the elements of order 2 , namely $f_{B}\left(e_{j}\right), j=2^{k}-2$, $k \geqslant 3$.

The ideal $\operatorname{Tor}\left(\Lambda_{B}\right)$ is prime as $\Lambda_{\mathcal{B}}$ in

$$
\begin{equation*}
f_{\mathcal{B}}: \mathbf{M U}_{*} \rightarrow \Lambda_{B} \rightarrow \Lambda_{B} / \operatorname{Tor}\left(\Lambda_{B}\right)=\Lambda_{\mathcal{B}} \tag{16}
\end{equation*}
$$

is an integral domain and so is $J_{\mathcal{B}}=f_{B}^{-1}\left(\operatorname{Tor}\left(\Lambda_{B}\right)\right)$, the preimage ideal in $\mathbf{M U}_{*}$. Then the ideal

$$
\begin{equation*}
J_{\mathcal{B}}=J_{B}+\left(e_{2^{k}-2}\right), k \geqslant 3 \tag{17}
\end{equation*}
$$

is the kernel of the composition (16). Denote by $F_{\mathcal{B}}$ the formal group law classified by $f_{\mathcal{B}}$.

Let

$$
J=\left(\mathcal{T}_{l}, l \geqslant 5\right), \text { where } \mathcal{T}_{l}= \begin{cases}T_{l}, & n=p^{s}, p \text { is a prime } \tag{18}\\ e_{l}, & \text { otherwise }\end{cases}
$$

Let $J_{\mathcal{B}}(l) \subset J_{\mathcal{B}}$, generated by those elements whose degree is greater or equal $-2 l$, and let $J(l) \subset J$ be generated by $\mathcal{T}_{5}, \ldots, \mathcal{T}_{l}$.

Remark 4.1. We note that those polynomials in $\mathbb{Z}\left[e_{1}, e_{2}, \ldots, e_{l}\right]$ that are in the kernel of $f_{\mathcal{B}}$ can be viewed as the elements of $J_{\mathcal{B}}(l)$.
Proposition 4.2. $J(l)=J_{\mathcal{B}}(l)$ for any natural $l \geqslant 5$.
Proof. It is clear that $J(l) \subset J_{\mathcal{B}}(l)$.
Let us prove $J_{\mathcal{B}}(l) \subset J(l)$ by induction on l. It is obvious for $l=5$ as $T_{5}=A_{34}$.
To prove $J_{\mathcal{B}}(l)=J_{\mathcal{B}}(l-1)+T_{l}$ note

$$
s_{i+j-2}\left(A_{i j}\right)=\binom{i+j-1}{j-1}-\binom{i+j-1}{j} .
$$

Indeed, modulo decomposable elements

$$
A_{i j}=\alpha_{i-1 j}-\alpha_{i j-1}
$$

and $s_{i+j-1}\left(\alpha_{i j}\right)=-\binom{i+j}{i}$. Now apply Euclid's algorithm for $m_{i}=s_{l}\left(A_{i, l+2-i}\right)$, fix
the integers λ_{i} and consider the elements T_{l} in (15).
The combinatorial identities in Section 3 implies that

$$
\begin{equation*}
s_{l}\left(T_{l}\right)=D(l) \tag{19}
\end{equation*}
$$

is the greatest common divisor of the integers $s_{l}\left(A_{i j}\right)$ for $A_{i j} \in J_{B} . i+j-2=l$.
It follows that

$$
A_{i j}=\frac{s_{n}\left(A_{i j}\right)}{D(l)} T_{l}+P\left(e_{1}, e_{2}, \ldots, e_{l-1}\right)
$$

for some polynomial P, i.e.,

$$
A_{i j}=P\left(e_{1}, e_{2}, \ldots, e_{l-1}\right) \text { modulo } T_{l}
$$

Therefore $P\left(e_{1}, e_{2}, \ldots, e_{l-1}\right)$ is in the kernel of $f_{\mathcal{B}}$, i.e., is in $J_{\mathcal{B}}(l-1)=J(l-1)$ by above Remark 4.1.

Let $A_{l}=\mathbb{Z}\left[e_{1}, e_{2}, \ldots, e_{l}\right]$ and $A^{l+1}=\mathbb{Z}\left[e_{l+1}, e_{l+2}, \ldots\right]$ i.e., $\mathbf{M U}_{*}=A_{l} \otimes A^{l+1}$. Let $J(l)$ as above be generated by $\mathcal{T}_{1}, \ldots, \mathcal{T}_{l}$. The preimage of $J(l)$ by obvious inclusion defines the ideal of A_{l} denoted by same symbol so that

$$
\mathbf{M U}_{*} / J(l)=A_{l} / J(l) \otimes A^{l+1} .
$$

Proposition 4.3. i) The ideal J in (18) is regular;
ii) $A_{l} / J(l)$ and $\mathbf{M} \mathbf{U}_{*} / J(l)$ are integral domains, or equivalently $J(l)$ is prime.

It is clear that ii) implies i): If $\mathbf{M U}_{*} / J(l)$ is integral domain for any $l \geqslant 5$, i.e., it has no zero divisors, then multiplication by \mathcal{T}_{l+1} is monorphism. Therefore the sequence $\mathcal{T}_{5}, \mathcal{T}_{6}, \ldots$ of generators of J is regular.

We will see that ii) follows from the proof of Proposition 6.5 in [9] and the following
Lemma 4.4. For $p^{r} \leqslant l<p^{r+1}$ the ring $A_{l} / J(l) \otimes \mathbb{F}_{p}$ is additively generated by the following monomials

For $p=2$,

$$
\alpha_{1}^{m_{1}} \beta_{2}^{m_{2}} \alpha_{3}^{m_{3}} \beta_{2}^{k_{1}} \beta_{2^{2}}^{k_{2}} \cdots \beta_{2^{r-1}}^{k_{r-1}} \beta_{2^{r}}^{m}, \quad k_{1}, k_{2}, k_{r-1}=0,1 .
$$

For $p=3$,

$$
\alpha_{1}^{m_{1}} \beta_{2}^{m_{2}} \beta_{4}^{m_{4}} \beta_{3}^{k_{1}} \beta_{3^{2}}^{k_{2}} \cdots \beta_{3^{r-1}}^{k_{r-1}} \beta_{3^{r}}^{m}, \quad k_{1}, k_{2}, k_{r-1}=0,1,2 .
$$

For prime $p>3$,

$$
\alpha_{1}^{m_{1}} \beta_{2}^{m_{2}} \alpha_{3}^{m_{3}} \beta_{4}^{m_{4}} \beta_{p}^{k_{1}} \beta_{p^{2}}^{k_{2}} \cdots \beta_{p^{r-1}}^{k_{r-1}} \beta_{p^{r}}^{m}, \quad 0 \leqslant k_{1}, k_{2}, k_{r-1} \leqslant p-1,
$$

not divisible by $\alpha_{1}^{j_{1}} \beta_{2}^{j_{2}} \alpha_{3}^{j_{3}} \beta_{4}^{j_{4}}$, where $\left(j_{1} j_{2} j_{3} j_{4}\right)$ corresponds to leading lexicographical monomial ordering for which $\lambda_{j_{1} j_{2} j_{3} j_{4}} \not \equiv 0 \bmod p$ in

$$
p \beta_{p}=\sum \lambda_{j_{1} j_{2} j_{3} j_{4}} \alpha_{1}^{j_{1}} \beta_{2}^{j_{2}} \alpha_{3}^{j_{3}} \beta_{4}^{j_{4}} .
$$

Proof. We follow the proof of Proposition 6.5 in [9]. To get the generating monomials in Lemma 4.4 we need only to modify the generating monomials of $\Lambda_{\mathcal{B}} \otimes \mathbb{F}_{p}$. In particular, in (6.17), (6.18) and (6.20) there are extra factors for $A_{l} / J(l)$, satisfying $p^{r} \leqslant l<p^{r+1}$, namely

$$
\beta_{p^{r+1}}^{k_{1}} \beta_{p^{r+2}}^{k_{2}} \cdots \beta_{p^{r+s}}^{k_{s}} \cdots, \quad k_{1}, k_{2}, \ldots \leqslant p-1
$$

We have to replace these factors by

$$
\beta_{p^{r}}^{p k_{1}+p^{2} k_{2}+\cdots+p^{s} k_{s}+\cdots}
$$

This is because of $\beta_{p^{r+1}} \notin A_{l}$. In this way for each m we keep the total number of generating monomials of $\Lambda^{-2 m} \otimes \mathbb{F}_{p}$ since there is no relation (6.2) of [9] in our ring $A_{l} / J(l) \otimes \mathbb{F}_{p}$.

Denote by $\left[\mathcal{T}_{i}\right]$ the cobordism class representing the generator \mathcal{T}_{i} of the ideal J. Consider the sequence

$$
\Sigma_{T}=\left(\left[\mathcal{T}_{5}\right],\left[\mathcal{T}_{6}\right], \ldots\right)
$$

The Sullivan-Baas construction [1] of cobordism with singularities Σ_{T} gives a cohomology theory $\mathbf{M} \mathbf{U}_{\Sigma_{T}}^{*}(-)$ which by regularity of the ideal J has a scalar ring

$$
\mathbf{M} \mathbf{U}_{\Sigma_{T}}^{*}(p t)=\mathbf{M} \mathbf{U}_{*} / J=\Lambda_{\mathcal{B}}
$$

By Mironov [16, Theorem 4.3 and Theorem 4.5] $\mathbf{M U}_{\Sigma_{T}}^{*}(-)$ admits an associate multiplication and all obstructions to commutativity are in $\Lambda_{\mathcal{B}} \otimes \mathbb{F}_{2}$. Therefore after localization away from 2 all obstructions vanish and we get a commutative cohomology

$$
h_{\mathcal{B}}^{*}(-):=\mathbf{M U}_{\Sigma_{T}}^{*}[1 / 2](-) .
$$

Here we recall that $\Lambda_{B}[1 / 2]=\Lambda_{\mathcal{B}}[1 / 2]$ by definition of $\Lambda_{\mathcal{B}}$.
It is clear that $h_{\mathcal{B}}^{*}(-)$ is complex oriented since the Atiyah-Hirzebruch spectral sequence $H^{*}\left(-, h_{\mathcal{B}}^{*}(p t)\right) \Rightarrow h_{\mathcal{B}}^{*}(-)$ collapses for $\mathrm{BU}(1) \times \mathrm{BU}(1)$.

Thus we can state
Theorem 4.5. There exist a commutative complex oriented cohomology $h_{\mathcal{B}}^{*}(-)$ with scalar ring isomorphic to $\Lambda_{\mathcal{B}}[1 / 2]$, the ring of coefficients of the universal Buchstaber formal group law localized away from 2.

This result without a complete proof, was announced in short communications of MMS [5].

5. The restriction of the Buchstaber genus on $\mathrm{MSU}_{*}[1 / 2]$

Taking into account [18] that after localized away from 2, the forgetful map from the special unitary cobordism $\operatorname{MSU}_{*}[1 / 2]=\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, \ldots\right]$ to complex cobordism $\mathbf{M U}_{*}[1 / 2]$ is an injection, define the following ideal extensions in $\left.\mathbf{M} \mathbf{U}_{*}\right][1 / 2]$:
$J_{S U}^{e}$, generated by any polynomial generators x_{n} of $\mathbf{M S U}_{*}[1 / 2], n \geqslant 5$ viewed as elements in $\mathbf{M U}_{*}[1 / 2]$ by forgetful injection map;
J_{T}^{e}, generated by $S U$-flops [21] of dimension $\geqslant 10$ again viewed as elements in $\mathbf{M U}_{*}[1 / 2]$;
J_{B}^{e}, the contraction ideal by the obvious inclusion $\mathbf{M U}_{*} \rightarrow \mathbf{M U}_{*}[1 / 2]$ of the ideal J_{B} of $\mathbf{M} \mathbf{U}_{*}$ generated by the elements $\left\{A_{i j}, i, j \geqslant 3\right\}$, defined in Section 3.

Proposition 5.1. i) $J_{B}^{e}=J_{T}^{e}$; ii) When restricted on $\mathbf{M S U}_{*}[1 / 2]$ the classifying map of the Buchstaber formal group law localized away from 2, gives a genus with the scalar ring $\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right],\left|x_{i}\right|=2 i$.

One motivation is the restricted Krichever-Hoehn complex elliptic genus below, studied in [13] and [21]. Another construction with the scalar ring $\mathbb{Z}_{(2)}[a, b],|a|=2$, $|b|=6$ see in [6].
Proof. $J_{T}^{e} \subseteq J_{B}^{e}$: The homomorphism

$$
\mathbf{M U}_{*} \xrightarrow{f_{B}} \Lambda_{B} \xrightarrow{C} \Lambda_{B} \otimes \mathbb{Q}=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]
$$

is a specialization of the complex elliptic genus

$$
\mathbf{M U}_{*} \xrightarrow{\subset} \mathbf{M U}_{*} \otimes \mathbb{Q} \rightarrow \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]
$$

by [2], therefore vanishes on the kernel of the complex elliptic genus which is the ideal I of complex flops by [21, Theorem 4.1]. On the other hand the ring $\Lambda_{B}[1 / 2]$ is torsion free and injected in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ by [9]. So the ring homomorphism $\mathbf{M U}_{*}[1 / 2] \xrightarrow{f_{B}} \Lambda_{B}[1 / 2]$ vanishes on I, therefore it vanishes on $S U$-flops. Moreover by [21] the ideal of $S U$-flops J_{T} in $\mathbf{M S U}_{*}[1 / 2]$ contains the polynomial generators $x_{n}, n \geqslant 5$ constructed by using Euclid's algorithm and $S U$-flops. Therefore $J_{T}=$ $\left(x_{5}, \ldots\right)$ and $J_{T}^{e} \subseteq J_{B}^{e}$.

To prove $J_{B}^{e} \subseteq J_{T}^{e}$ note by (19) T_{n} satisfies the criteria for the membership of the set of polynomial generators in

$$
\operatorname{MSU}^{*}[1 / 2]=\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, \ldots\right],\left|x_{i}\right|=2 i
$$

described by Novikov in [18]. In particular, an $S U$-manifold M of real dimension $2 n$, $n \geqslant 2$ is a polynomial generator if and only if $s_{n}(M)$, the main Chern characteristic number is as follows

$$
s_{n}(M)= \begin{cases} \pm 2^{k} p & \text { if } n=p^{l}, p \text { is odd prime } \tag{20}\\ \pm 2^{k} p & \text { if } n+1=p^{l}, p \text { is odd prime } \\ \pm 2^{k} & \text { otherwise }\end{cases}
$$

It follows that the generators $A_{i j}$ of J_{B}, with $i+j=n+2$ and the generators x_{n} of J_{T}^{e} are related as follows $A_{i j} \equiv \frac{s_{n}\left(A_{i j}\right)}{D(n)} T_{n}, \quad T_{n} \equiv \pm 2^{k(n)} x_{n}, \quad \bmod$ decomposables. Therefore we can proceed as in the proof of Proposition 4.2.

Recall also that $\Lambda_{B}[1 / 2]=\Lambda_{\mathcal{B}}[1 / 2]$ is an integral domain. Note that Proposition 4.3 implies
Proposition 5.2. Let $J_{S U}^{e}$ be the ideal as before. The sequence $\left\{x_{n}\right\}, n \geqslant 5$ of any polynomial generators in $\mathbf{M S U}_{*}[1 / 2]$ viewed as elements in $\mathbf{M U}_{*}[1 / 2]$ by forgetful map is regular. Moreover, the ideal $J_{S U}^{e}$ is prime.

Corollary 5.3. After restriction on $\mathbf{M S U}_{*}[1 / 2]$ the Buchsteber genus $f_{\mathcal{B}}$ gives a cohomology theory $\mathbf{M S U}_{\Sigma}^{*}[1 / 2]$ with singularities $\Sigma=\left(x_{5}, \ldots\right)$, with the scalar ring

$$
\mathbb{Z}[1 / 2]\left[x_{2}, x_{3}, x_{4}\right], \quad\left|x_{i}\right|=2 i .
$$

6. The ring $\operatorname{MSU}_{*}[1 / 2]$

Let $F_{U}(x, y)=\sum \alpha_{i j} u^{i} v^{j}$ be the universal formal group law. Recall the idempotent in [7], [12]

$$
\pi_{0}: \mathbf{M U}_{*} \rightarrow \mathbf{M U}_{*}: \quad \pi_{0}=1+\sum_{k \geqslant 2} \alpha_{1 k} \partial_{k}
$$

and the projection $\pi_{0}: \mathbf{M U}_{*} \rightarrow W_{*}=\operatorname{Im} \pi_{0}$.
Then W_{*} is a ring with multiplication $*$ and $\pi_{0}(a \cdot b)=a * b$. By [12, Proposition 2.15] the multiplication $*$ is given by

$$
a * b=a b+2[V] \partial a \partial b,
$$

where $[V]=\alpha_{12} \in \mathbf{M U}_{4}$ is the cobordism class $\mathbf{C P}_{1}^{2}-\mathbf{C P}_{2}$.
W_{*} is complex oriented and by [12, Proposition 3.12] the ring $W_{*}[1 / 2]$ is generated by the coefficients of the formal group law

$$
F_{W}=F_{W}(x, y)=\sum w_{i j} x^{i} y^{j}
$$

Following [7], [12] one can calculate $w_{i j}$ in terms of $\alpha_{k l}$ as follows. Consider the multiplicative cohomology theory Γ with

$$
\pi_{*}(\Gamma)=\mathbf{M} \mathbf{U}_{*}[t] /\left(t^{2}-\alpha_{11} t-2 \alpha_{21}\right)
$$

the free $\mathbf{M U}_{*}$ module generated by 1 and t.
There is a natural multiplicative transformation $\phi: W \rightarrow \Gamma$ given by

$$
\phi_{*}(x)=x+t \partial x,
$$

for $x \in W_{*}$. The restriction of $\phi_{*}[1 / 2]$ on MSU $_{*}[1 / 2]$, the subring in $W_{*}[1 / 2]$ of cycles of ∂, is the natural inclusion in $\mathbf{M U}_{*}[1 / 2]$.

Then

$$
\phi_{*} F_{W}=u+v+\sum_{i, j \geqslant 1}\left(w_{i j}+t \partial w_{i j}\right) u^{i} v^{j}
$$

is strongly isomorphic to F_{U} (considered as a formal group low over $\pi_{*}(\Gamma)$ via the natural inclusion) by a series γ^{-1}, i.e.,

$$
\begin{equation*}
u+v+\sum_{i, j \geqslant 1}\left(w_{i j}+t \partial w_{i j}\right) u^{i} v^{j}=\gamma F_{U}\left(\gamma^{-1}(u), \gamma^{-1}(v)\right) . \tag{21}
\end{equation*}
$$

Finally, we need to apply for γ in (21) Lemma 3 in [7], which says that any orientation $w \in W_{2}$ gives the following identity in $\pi_{*}(\Gamma)$

$$
\begin{equation*}
\gamma(u)=\phi_{*}(w)=\pi_{0}(u)+t \partial u=u+t u \bar{u}+\sum_{i \geqslant 2} \alpha_{i 1} u \bar{u}^{i} . \tag{22}
\end{equation*}
$$

By [12] one can specify an orientation of W such that

$$
\operatorname{gcd}\left(w_{i j}, i+j-1=k\right)=d(k) d(k-1)
$$

modulo a power of 2 . This allows to construct the generators of $W_{*}[1 / 2]$.
In particular, one can calculate main Chern numbers $s_{k}\left(w_{i j}\right)$ in terms of main Chern numbers of $\alpha_{i j}$ as follows. By [12, Lemma 3.5] any orientation $w \in W_{2}$ gives $w_{i} \in W_{2 i}$ and $\lambda \in \mathbf{M U}_{2}=W_{2}$ such that one has in $\pi_{*}(\Gamma)$

$$
\gamma(u)=u-(\lambda+(2 l+1) t) u^{2}+\sum_{i \geqslant 2} \gamma_{i+1} u^{i+1} \bmod J^{2}+t J,
$$

where $2 l=\partial \lambda, l \in \mathbb{Z}, \gamma_{i+1}=(-1)^{i} \alpha_{1 i}+w_{i}, J$ is the ideal in $\mathbf{M U}_{*}$ of elements of positive degree.

Lemma 6.1. Let $k=i+j-1 \geqslant 3$ is not of the form $k=2^{l}=p^{s}-1$ for some odd prime p. There is a choice of complex orientation w for the theory W such that

$$
s_{k}\left(w_{i j}\right)= \begin{cases}p s_{k}\left(\alpha_{i j}\right) & \text { if } k=p^{s}, p \text { is any prime, } s>0 \\ s_{k}\left(\alpha_{i j}\right) & \text { otherwise. }\end{cases}
$$

Proof. By using (22) it is proved in [12, Lemma 3.9] that for $k \geqslant 3$ one has modulo decomposable elements

$$
\begin{align*}
& \phi_{*}\left(w_{1 k}\right)=\alpha_{1 k}+(k+1)\left((-1)^{k} \alpha_{1 k}+w_{k}\right) \tag{23}\\
& \phi_{*}\left(w_{i j}\right)=\alpha_{i j}+(-1)^{k}\binom{k+1}{i} \alpha_{1 k}+\binom{k+1}{i} w_{k} \tag{24}
\end{align*}
$$

Choose a complex orientation w for the theory W such that elements w_{k} satisfy the following conditions

$$
\begin{equation*}
1+(-1)^{k}(k+1)-s_{k}\left(w_{k}\right)=d(k-1) . \tag{25}
\end{equation*}
$$

The it is easily checked that w_{k} indeed belongs to W_{*}, that is $s_{k}\left(w_{k}\right)$ is divisible by $d(k-1) d(k)$.

Then by (23) and (24) we have for $k=p^{s}$

$$
\begin{aligned}
w_{1 k} & =-k \alpha_{1 k}+(k+1) w_{k}=-k \alpha_{1 k}+\alpha_{1 k}\left(p^{s}+p\right)=p \alpha_{1 k} ; \\
w_{i j} & =\alpha_{i j}-\binom{k+1}{i} \alpha_{1 k}+\binom{k+1}{i} w_{k} \\
& =\alpha_{i j}-\alpha_{i j}(k+1)+\alpha_{i j}(k+p)=p \alpha_{i j} .
\end{aligned}
$$

For $k=2^{l}$ one has

$$
\begin{aligned}
& w_{1 k}=(2+k) \alpha_{1 k}+(k+1) w_{k}=(2+k) \alpha_{1 k}-\alpha_{1 k} k=2 \alpha_{1 k} \\
& w_{i j}=\alpha_{i j}+\binom{k+1}{i} \alpha_{1 k}-\binom{k+1}{i} w_{k}=\alpha_{i j}+\alpha_{i j}(k+1)-k \alpha_{i j}=2 \alpha_{i j} .
\end{aligned}
$$

Similarly for other cases.
If $k=2^{l}=p^{s}-1 \geqslant 3$ for some odd prime p, then by [12, Lemma 3.15] one has $k=8$ or $k=2^{2^{n}}$. We have to replace $d(k-1)=2$ in (25) by 4 , if $k=8$ to get $\phi_{*}\left(w_{i 9-i}\right)=4 \alpha_{i 9-i}$ and by $-2^{2^{n}}$, if $k=2^{2^{n}}$ to get $\phi_{*}\left(w_{i 2^{2^{n}}+1-i}\right)=-2^{2^{n}} \alpha_{i 2^{2^{n}+1-i}}$.

Together with Lemma 6.1, this implies
Corollary 6.2. Let $k \geqslant 3$. By (8) and (9) let λ_{i} be such that the linear combination $\mathbf{a}_{k}=\sum_{i=1}^{k} \lambda_{i} \alpha_{i k+1-i}$ is a polynomial generator in $\mathbf{M} \mathbf{U}_{2 k}$. Then

$$
\mathbf{b}_{k}=\sum_{i=1}^{k} \lambda_{i} w_{i k+1-i} .
$$

is a polynomial generator in $W_{2 k}[1 / 2]$.
Then $\mathbf{M S U}_{*}[1 / 2]$ is a subring of cycles of the boundary operation ∂ in $W_{*}[1 / 2]$ with multiplication *

$$
\partial(a * b)=a * \partial b+\partial a * b-\mathbf{C} \mathbf{P}_{1} \partial a * \partial b .
$$

One has $\partial \mathbf{C P}_{1}=2$ and $a * b=a \cdot b$ whenever $a \in \operatorname{Im} \partial$ or $b \in \operatorname{Im} \partial$. Therefore

$$
\partial\left(\mathbf{C} \mathbf{P}_{1} * \alpha\right)=2 \alpha-\mathbf{C} \mathbf{P}_{1} \cdot \partial \alpha, \forall \alpha \in W
$$

As mentioned in $[\mathbf{1 7}]$ this implies that

$$
\begin{equation*}
\alpha=1 / 2 \partial\left(\mathbf{C P}_{1} * \alpha\right)+1 / 2 \mathbf{C P}_{1} \cdot \partial \alpha \tag{26}
\end{equation*}
$$

and therefore $W[1 / 2]$ is generated by 1 and $\mathbf{C P}_{1}$ as a $\mathbf{M S U}_{*}[1 / 2]$ module. It is easily checked that this module is free.

Proposition 6.3. Let \mathbf{b}_{k} be as in Corollary 6.2. Then

$$
\mathbf{M S U}_{*}[1 / 2]=\mathbb{Z}[1 / 2]\left[x_{2}, x_{k}: k \geqslant 3\right],
$$

where

$$
\begin{aligned}
& x_{2}=\mathbf{C} \mathbf{P}_{2}-9 / 8 \mathbf{C P}_{1}^{2}, \\
& x_{k}:=\partial\left(\mathbf{C P}_{1} * \mathbf{b}_{k}\right)=2 \mathbf{b}_{k}-\mathbf{C} \mathbf{P}_{1} \cdot \partial \mathbf{b}_{k} .
\end{aligned}
$$

Proof. One has for the values of the Chern numbers

$$
c_{1} c_{1}\left[\mathbf{C} \mathbf{P}_{1}^{2}\right]=8, \quad c_{1} c_{1}\left[\mathbf{C P}_{2}\right]=9, \quad c_{2}\left[\mathbf{C P}_{1}^{2}\right]=4, \quad c_{2}\left[\mathbf{C} \mathbf{P}_{2}\right]=3
$$

This imply that $c_{1} c_{1}\left[\mathbf{b}_{2}\right]=0$. There are no more Chern numbers having c_{1} as a factor and $s_{2}\left[\mathbf{b}_{2}\right]=s_{2}\left[\mathbf{C} \mathbf{P}^{2}\right]=3$. Therefore \mathbf{b}_{2} forms a generator of $\mathbf{M S U}_{4}[1 / 2]$.

Apply (26). The main Chern number vanishes on the second (decomposable) component of

$$
\mathbf{b}_{k}=1 / 2 \partial\left(\mathbf{C} \mathbf{P}_{1} * \mathbf{b}_{k}\right)+1 / 2 \mathbf{C} \mathbf{P}_{1} \cdot \partial \mathbf{b}_{k},
$$

i.e., the first component x_{k} has the main Chern number $2 s_{k}\left(\mathbf{b}_{k}\right)$.

7. The restriction of the classifying map of $F_{A b}$ on $\mathrm{MSU}^{*}[1 / 2]$.

As above let $F_{U}=\sum \alpha_{i j} x^{i} y^{j}$ be the universal formal group law. By definition the coefficient ring of the universal abelian formal group law $F_{A b}$ is the quotient ring

$$
\begin{equation*}
\Lambda_{A b}=\mathbf{M U}_{*} / I_{A b}, \text { where } I_{A b}=\left(\alpha_{i j}, i, j>1\right) \tag{27}
\end{equation*}
$$

Let us apply Euclid's algorithm for the Chern numbers $s_{m-1}\left(\alpha_{i, m-i}\right)$ in (13)
Let

$$
z_{k}=\sum_{i=2}^{k-1} \lambda_{i} \alpha_{i k+1-i}, \quad k \geqslant 3
$$

By [10], [11] one has $I_{A b}=I_{A B}=\left(z_{k}, k \geqslant 3\right)$.
Consider the composition

$$
\begin{equation*}
r_{A b}: \mathbf{M S U}_{*}[1 / 2] \xrightarrow{C} \mathbf{M U}_{*}[1 / 2] \xrightarrow{f_{A b}} \Lambda_{A b}[1 / 2], \tag{28}
\end{equation*}
$$

where \subset is forgetful map.
Proposition 7.1. One has the following polynomial generators in $\mathbf{M S U}_{*}[1 / 2]$ viewed as the elements in $\mathbf{M U}_{*}[1 / 2]$

$$
x_{2}=\mathbf{C P}_{2}-\frac{9}{8} \mathbf{C P}_{1}^{2}, \quad x_{3}=-\alpha_{22}, \quad x_{4}=-\alpha_{23}-\frac{3}{2} x_{3} \mathbf{C P}_{1}
$$

To prove this we have to check that all Chern numbers of x_{i} having factor c_{1} are zero. Then we have to check the main Chern number $s_{i}\left(x_{i}\right)$ for Novikov's criteria.

We already did this for x_{2} in the proof of Proposition 6.3. Then by definition x_{3} is the coefficient $-\alpha_{22} \in I_{A B}$ of the universal formal group law. In $\mathbf{M} \mathbf{U}_{*}$ one has

$$
\begin{aligned}
& 2 \alpha_{22}=-3 \mathbf{C P}_{3}+8 \mathbf{C P}_{1} \mathbf{C P}_{2}-5 \mathbf{C} \mathbf{P}_{1}^{3}, \\
& \alpha_{23}=2 \mathbf{C P}_{1}^{4}-7 \mathbf{C P}_{1}^{2} * \mathbf{C P}_{2}+3 \mathbf{C} \mathbf{P}_{2}^{2}+4 \mathbf{C P}_{1} \mathbf{C P}_{3}-2 \mathbf{C P}_{4} .
\end{aligned}
$$

Let us compute the Chern numbers of $x_{3}=-\alpha_{22}$. One has

X	$c_{3}(X)$	$c_{1} c_{2}(X)$	$c_{1} c_{1} c_{1}(X)$
$\mathbf{C P}_{3}$	4	24	64
$\mathbf{C P}_{1} \mathbf{C P}_{2}$	6	24	54
$\mathbf{C P}_{1}^{3}$	8	24	48.

It follows all Chern numbers of α_{22} having factor c_{1} are zero. Then α_{22} forms a generator in $\mathbf{M S U}_{6}[1 / 2]$ as $s_{3}\left[-2 \alpha_{22}\right]=4 \cdot 3$.

Similarly for x_{4} : the main Chern number $s_{4}\left(x_{4}\right)=2 \cdot 5$ fits for Novikov's criteria and one has

X	$c_{1} c_{1} c_{1} c_{1}(X)$	$c_{1} c_{1} c_{2}(X)$	$c_{1} c_{3}(X)$
$\mathbf{C P}_{1}^{4}$	384	192	64
$\mathbf{C P}_{1}^{2} \mathbf{C P}_{2}$	432	204	60
$\mathbf{C P}_{2}^{2}$	486	216	54
$\mathbf{C P}_{1} \mathbf{C P}_{3}$	512	224	56
$\mathbf{C P}_{4}$	625	250	50.

Note $F_{A b}$ is a specialization of the Buchstaber formal group law F_{B}. In particular one can put $A(x)=B(x)^{2}$ in Proposition (2.1) to specify F_{B} to $F_{A b}$ over torsion free ring $\Lambda_{A b}[1 / 2]$. Then Proposition 5.2 implies

Proposition 7.2. After restriction on $\mathbf{M S U}_{*}[1 / 2]$ the classifying map of the universal abelian formal group law becomes the one-parameter genus

$$
r_{A b}: \mathbf{M S U}_{*}[1 / 2] \rightarrow \mathbb{Z}[1 / 2]\left[x_{2}\right]
$$

References

[1] N. Baas, On bordism theory of manifolds with singularities, Math. Scand., 33 (1973), 279-302.
[2] M. Bakuradze, On the Buchstaber formal group law and some related genera, Proc. Steklov Inst. Math., 286 (2014), 7-21.
[3] M. Bakuradze, Formal group laws by Buchstaber, Krichever and Nadiradze coincide, Russian Math. Surveys, 68:3 (2013), 571-573.
[4] M. Bakuradze, Computing the Krichever genus, J. Homotopy Relat. Struct., 9:1 (2014), 85-93.
[5] M. Bakuradze, Cohomological realization of the Buchstaber formal group law, Uspekhi Mat. Nauk, 77:5 (2022), 949-951, Translation in Russian Math. Surveys.
[6] V. M. Buchstaber, E. Yu. Netay, $C P(2)$-multiplicative Hirzebruch genera and elliptic cohomology, Russian Math. Surveys, 69:4 (2014), 757-759.
[7] V. M. Buchstaber, Projectors in unitary cobordisms that are related to SUtheory, Uspekhi Mat. Nauk, 27:6(168) (1972), 231-232.
[8] V. Buchstaber, T. Panov, N. Ray, Toric genera, Int. Math. Res. Not. IMRN, 16 (2010), 3207-3262.
[9] V. Buchstaber, K. Ustinov, Coefficient rings of Buchstaber formal group laws, Math. Notices, 206:11 (2015), 19-60.
[10] V. M. Bukhshtaber, A. N. Kholodov, Formal groups, functional equations, and generalized cohomology theories,(English. Russian original), Math. USSR, Sb., 69:1 (1991), 77-97.
[11] Ph. Busato, Realization of Abel's universal formal group law, Math. Z., 239 (2002), 527-561.
[12] G. Chernykh, T. Panov, $S U$-linear operations in complex cobordism and the c_{1}-spherical bordism theory, Izv. Ross. Akad. Nauk Ser. Mat., 87:4 (2023).
[13] G. Höhn, Komplexe elliptische Geschlechter und S^{1}-äquivariante Kobordismustheorie, 2004, arXiv:math/0405232.
[14] I. Krichever, Generalized elliptic genera and Baker-Akhiezer functions, Math. Notes, 47 (1990), 132-142.
[15] E. E. Kummer, Uber die Erganzungssatze zu den allgemeinen Reciprocitatsgesetzen, J. Reine Angew. Math., 44 (1852), 93-146.
[16] O. K. Mironov, Multiplications in cobordism theories with singularities, and Steenrod - tom Dieck operations, Math. USSR, Izv., 13 (1979), 89-106.
[17] I. Yu. Limonchenko, T. E. Panov, G. S. Chernykh, SU-bordism: structure results and geometric representatives, Russian Math. Surveys, 74:3 (2019), 461-524.
[18] S. P. Novikov, Homotopy properties of Thom complexes (Russian), Mat. Sb., 57 (1962), 407-442.
[19] S. Schreieder, Dualization invariance and a new complex elliptic genus, 2012, arXiv:1109.5394 [math.AT].
[20] R. E. Stong, Notes On Cobordism Theorey, Princeton University Press and University of Tokyo Press, 1968.
[21] B. Totaro, Chern numbers for singular varieties and elliptic homology, Ann. Math., 151 (2000), 757-792.
[22] Zhi Lu, T. Panov, On toric generators in the unitary and special unitary bordism rings, Algebr. Geom. Topol., 16:5 (2016), 2865-2893.

Malkhaz Bakuradze malkhaz.bakuradze@tsu.ge
Faculty of Exact and Natural Sciences, A. Razmadze Math. Institute, Iv. Javakhishvili Tbilisi State University, Georgia

[^0]: Received April 27, 2022, revised November 19, 2022; published on January 24, 2024. 2020 Mathematics Subject Classification: 55N22, 55N35.
 Key words and phrases: complex bordism, $S U$-bordism, formal group law, complex elliptic genus. Article available at http://dx.doi.org/10.4310/HHA.2024.v26.n1.a1
 Copyright © 2024, International Press. Permission to copy for private use granted.

