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UNSTABLE ALGEBRAS OVER AN OPERAD II
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Abstract
We work over the finite field Fq. We introduce a notion of

unstable P-algebra over an operad P. We show that the unsta-
ble P-algebra freely generated by an unstable module is itself a
free P-algebra under suitable conditions. We introduce a family
of ‘q-level’ operads which allows us to identify unstable modules
studied by Brown–Gitler, Miller and Carlsson in terms of free
unstable q-level algebras.

1. Introduction

In this article, we define unstable P-algebras over an operad P in positive charac-
teristic, and we characterise free unstable P-algebras. The mod p Steenrod algebra
A was introduced by Steenrod and Epstein [22] to study the stable operations of the
usual cohomology functors with coefficients in the finite field Fp of order p. Unstable
modules are a class of (graded) A-modules which satisfy a property called instability.
A detailed survey of unstable modules and their properties can be found in Schwartz’s
book [21]. The principal source of examples of unstable modules is precisely the mod
p cohomology of topological spaces. These unstable modules coming from topology
are endowed with an additional internal multiplication - the cup-product - which
is associative and commutative. The category U of unstable modules is understood
fairly well. It has injective cogenerators, the Brown–Gitler modules, which can be
obtained as the ‘Spanier–Whitehead dual’ to the cohomology of a spectrum - the
Brown–Gitler spectrum [1, 19]. Other injective objects of interest include the Carls-
son modules [3, 16], which are obtained as a limit of Brown–Gitler modules. The
Carlsson modules were introduced in [3] to prove the Segal conjecture for Burnside
rings of elementary abelian groups, and were used by Miller [19] to prove the Sullivan
conjecture on maps from classifying spaces. Both the Brown–Gitler and the Carls-
son modules are endowed with a multiplication which naturally arises when studying
their structure. It has been shown that certain of these modules, with their respec-
tive multiplication, are in fact free objects in a specified category of (non-associative)
algebras [5, 11].

Here, we use the notion of operads to study algebraic structures in the category
of unstable modules. As an example, the cup product equips the mod p cohomology
of any topological space with the structure of a uCom-algebra in unstable modules,
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where uCom is the operad of unital associative and commutative algebras. This result-
ing mod p cohomology ring A satisfies an additional relation, called instability, and
which reads: ∀x ∈ A,P0x = xp, where P0 is an operation obtained from the action of
the mod p Steenrod algebra. The multiplications of the Brown–Gitler and Carlsson
modules do not satisfy this instability relation as uCom-algebras in unstable modules.
However, they can be equipped with the structure of algebras in unstable modules
over a certain operad P, and as such, they satisfy a similar relation P0x = ⋆(x, . . . , x)
for a certain p-ary operation ⋆ ∈ P(p) (see [11] for the case p = 2).

In this article, we work in unstable modules over the Steenrod algebra of reduced
powers over a field of order q. We define the notion of an unstable P-algebra for
a q-ary operation ⋆ ∈ P(q). These are P-algebras A in unstable modules such that
for each x ∈ A,P0x = ⋆(x, . . . , x). In the case where q is a prime, and ⋆ is the q-ary
multiplication in uCom, we recover the usual definition of an unstable algebra. It is
important to note that, in the instability relation, the action of P0 is compatible with
the P-algebra structure. Therefore, for the instability relation to make sense, we need
the operation x 7→ ⋆(x, . . . , x) to induce a P-algebra endomorphism. To ensure this
is the case, we introduce the notion of P-centrality for operations ⋆ ∈ P(q).

The main result of this article is a characterisation for certain free unstable P-
algebras. We build a functor K⋆

P , which sends an unstable module M to the free
unstable P-algebra generated by M , and we obtain the following:

Theorem (Theorem 11.6). Let ⋆ ∈ P(q)Sq be a P-central operation. For all con-
nected reduced unstable module M , the underlying P-algebra of K⋆

P(M) is the free
P-algebra over the underlying vector space of ΣΩM .

Here, the conditions of being reduced and connected for an unstable module are
defined in 9.2. The functor Σ is the one defined in 9.2, and Ω is a left adjoint for Σ. We
warn the reader that, since we have regraded our modules using Kuhn’s convention,
following [13], the functor Σ differs from the usual suspension functor in the case
where the base field is a prime field of odd characteristic.

We then apply this result to identify some algebraic structures on analogues of the
Brown–Gitler modules, which are injective cogenerators of the category of unstable
modules, and on analogues of the Brown–Gitler algebra, the Carlsson modules and
the Carlsson algebra. We consider a q-ary operation on the Brown–Gitler modules
and on the Carlsson modules, which corresponds to the multiplication studied by
Carlsson [3] in the case where the base field is F2, and by Miller [19] in the case
where the base field is Fp for p an odd prime. This multiplication of arity q is fixed
by the action of Sq, and satisfies an additional relation of strong commutativity, but
it is not associative. In order to study this operation, we introduce an operad Levn
whose algebras are called n-level algebras, and which generalises the operad Lev of
level algebras of Chataur and Livernet [4].

We first define the set operad Levn as a suboperad of a certain operad of ordered
partitions. We then obtain a presentation of this operad which yields the following
characterisation:
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Theorem (Theorem 5.3). The operad Levn is generated by one element ⋆ ∈ Levn(n),
fixed under the action of Sn, and satisfying the following relation:

(⋆ ◦2 ⋆) ◦1 ⋆ = (⋆ ◦2 ⋆) ◦1 ⋆ · σ,

where σ ∈ S3n−2 is the transposition (n n+ 1), and ◦i is the i-th partial operadic
composition (see 2.2).

Identifying the structure of free unstable n-level algebras for n = q yields, for
instance, the following result, which is analogous to a result of Davis [5] in the case
where the base field is F2, and gives the explicit algebraic structure for the Carlsson
module of weight 1:

Theorem (Theorem 12.4). The Carlsson module of weight one K(1) over the field
Fq, with its Levq operation, is isomorphic to the free ⋆-unstable Levq-algebra generated
by F (1), where Levq denotes the linearisation of Lev.

The results obtained in this article are based on the author’s previous work [11],
which they generalise. In contrast with this previous work, the approach we chose
here is somewhat more straightforward, and relies on the algebraic and categorical
framework which we study in more detail.

The notions introduced in this article give an opportunity to revisit classical results
on unstable modules and algebras from the point of view of operads. For instance,
we have obtained results concerning free P-algebras generated by unstable modules
equipped with an unstable ‘twisted’ action which generalise results of Campbell–
Selick [2] and Duflot–Kuhn–Winstead [6]. These results are available in former ver-
sions of the present article, and we hope to publish them in future works. Other
possible applications of these result stay open, including the link between unstable
P-algebras and the analytic functors viewpoint of Henn–Lannes–Schwartz [10], or
with the generic representations viewpoint of [13, 14].

Notation.

• Our base field will be denoted by F. Unless clearly defined otherwise, it has
characteristic p and order q = pα.

• The category of F-vector space will be denoted by VectF.

• The set {1, . . . , n} will be denoted by [n].

• The symmetric group on n letters (or permutation group of [n]) will be denoted
by Sn.
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Part 1. Algebraic background

In this first part of the article, we review the algebraic structures necessary to study
unstable algebras over an operad. We introduce the notion of P-central operation
for an operad P, and we define a family of operads Levn, for which we obtain a
presentation in Theorem 5.3.

2. Recollections about operads

In this section we present the notions of symmetric sequences, operads, and their
algebras in a category C. We assume that the reader has some basic familiarity with
these notions. Our main references on the subject are the two books [17, 7], as well
as the article [9]. Later in this article, we will be interested in operads and algebras in
the category of sets, in the category VectF of F-vector spaces, in the category of left
modules over a (cocommutative) F-bialgebra, and in the category U(q) of unstable
modules.

For this section, fix a symmetric monoidal category (C,⊗, I) with all small colimits
and all small limits. Assume that ⊗ preserve colimits. In particular, if G is a group,
we can define the notion of a G-object in C as objects of C with an action of G. For
a G-object X, we can define the object of G-orbits XG, and if H < G is a subgroup,
we have a restriction functor ResGH from G-objects to H-objects, and this functor has
a left adjoint IndGH called induction, which can be obtained as a Kan extension. For
more details on this, we refer the reader to [7, Chapter 2]. For clarity, we will assume
that it is suitable to talk about elements for the objects of the category C.

Definition 2.1 (Symmetric sequences [7, Section 2.1]). A symmetric sequence M
is a sequence (M(n))n∈N of objects in C such that, for all n ∈ N, the symmetric group
Sn acts on M(n) on the right. M(n) is said to be the object of arity n. Symmetric
sequences form a category Sym. This category is endowed with a tensor product ⊗Sym

such that, if M and N are two symmetric sequences, then(
M⊗Sym N

)
(n) =

∐
i+j=n

IndSn

Si×Sj
M(i)⊗N (j),

where IndSn

Si×Sj
will denote the induced representation from the Young subgroup

Si ×Sj of the group Sn.
The category of symmetric sequences is endowed with another monoidal product

◦, called the composition of symmetric sequences, given by:

(M◦N ) (n) =
∐
k⩾0

(
M(k)⊗ (N⊗Symk(n))

)
Sk

,

with unit the object I of C concentrated in arity 1. By a slight abuse of notation, I
will both denote the unit of ⊗ and the unit of ⊗Sym. If µ ∈ M(k), and for all i ∈ [k]
νi ∈ N (ni), let (µ; ν1, . . . , νk) denote the element

[µ⊗ ν1 ⊗ · · · ⊗ νk]Sk
∈ M ◦N (n1 + · · ·+ nk).

Definition 2.2 (Operads [7, Section 3.1]). An operad is a monoid object in the
monoidal category of symmetric sequences (Sym, ◦, I). For an operad P, we denote
its composition morphism γP : P ◦ P → P, and 1P : I → P its unit.
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For µ ∈ P(k), ν1, . . . , νk ∈ P, let µ(ν1, . . . , νk) denote the element

γP(µ; ν1, . . . , νk) ∈ P.

The partial compositions in an operad P are maps

− ◦i − : P(k)⊗ P(n) → P(k + n− 1)

defined by:

P(k)⊗ P(n) ∼= P(k)⊗

I ⊗ · · · ⊗ P(n)︸ ︷︷ ︸
i-th input

⊗ · · · ⊗ I


→ P(k)⊗

(
P(1)⊗ · · · ⊗ P(n)⊗ · · · ⊗ P(1)

)
→ P ◦ P(n+ k − 1) → P(n+ k − 1),

for all n ∈ N, i ∈ {1, . . . , k}, where the first arrow uses the unit 1P of the operad and
the third arrow uses the compositions γP .

For any operad P, let S(P,−) denote the associated functor C → C, defined on
objects by:

S(P, X) =
∐
n⩾0

P(n)⊗Sn X
⊗n.

It can also be defined as S(P, X) = P ◦X where X is considered as a symmetric
sequence concentrated in arity 0.

The unit and compositions in P induce a monad structure on S(P,−).

Definition 2.3 (Algebras over an operad [7, Section 3.2]). For an operad P, a P-
algebra is an algebra over the monad S(P,−). In other words, a P-algebra is a
pair (A, θ) where A is an object of C and θ : S(P, A) → A is compatible with the
composition and unit of P.

For (A, θ) a P-algebra, µ ∈ P(n) and a1, . . . , an ∈ A, let µ(a1, . . . , an) denote the
element θ(µ; a1, . . . , an) ∈ A. In the case where a = a1 = · · · = an, we use the notation
aµn for the elements (µ; a, . . . , a) ∈ S(P, A) and θ(µ; a, . . . , a) ∈ A depending on the
context.

Let Palg denote the category of P-algebras.

Example 2.4. Here are basic example in the category Set of sets, with tensor product
given by the Cartesian product:

• There is an operad uCom such that, for all n, uCom(n) is a singleton {∗n}
equipped with a trivial action of Sn, with unit ∗1 ∈ uCom(1) and with compo-
sition given by identities of singletons. uCom-algebras are exactly unital, com-
mutative, associative monoids.

• If A is a unital, associative monoid, then A can be considered as an operad
concentrated in arity 1. A-algebras correspond to sets with a (left) A-action.

Extending the examples of operads in set by linearity induce examples of operads in
F-vector spaces. Here are some basic examples of operads in F-vector spaces:

• Denote by uCom = FuCom, the linearisation of uCom. One has uCom(n) = F for
all n ∈ N, the unit of this operad is 1 ∈ F = uCom(1), compositions are given
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by identities of F, and uCom-algebras are unital, associative, commutative F-
algebras. Let Xn ∈ uCom(n) denote the generator of the vector space uCom(n).

• If A is a unital, associative F-algebra, then A can be considered as an operad
concentrated in arity 1. A-algebras correspond to the usual notion of A-(left)-
modules.

We now recall the notion of a distributive law for composition products of operads
[17, Section 8.6.1].

Definition 2.5 (Distributive Law). Let P, Q be two operads. A distributive law
is a morphism λ : Q ◦ P → P ◦ Q in Sym such that the symmetric sequence P ◦ Q,
with unit (1P ;1Q), and with composition map given by:

P ◦ Q ◦ P ◦ Q P◦λ◦Q // P ◦ P ◦ Q ◦ Q
γP ◦γQ // P ◦ Q ,

is an operad.

Examples of distributive laws on operads are given in 3.5 and 4.6.

3. Modules over a bialgebra

In this section, we study the category of (left) modules over an F-bialgebra. This
category is classically equipped with a tensor product which is symmetric as soon as
the bialgebra is cocommutative. This will allow us to study operads in this category,
and their algebras. Our main reference for the notion of bialgebras and their modules
is the book [12]. Note that here, our bialgebras are not required to come equipped
with a structure of Hopf algebra: they are not necessarily equipped with an antipode.

Definition 3.1 (Bialgebra [12, Section III.2]). An F-bialgebra (or simply, bialge-
bra) is a quintuple (B,µ, η,∆, ϵ) where (B,µ, η) is a unital associative F-algebra,
(B,∆, ϵ) is a counital, coassociative F-coalgebra, such that ϵ and ∆ satisfy compati-
bility conditions that make them into algebra morphisms.

The category of (left) modules over a bialgebra B will be denoted by Bmod.

Definition 3.2 (Tensor product of B-modules [12, III.5]). Let M and N be two
B-modules. We define a B-module structure on M ⊗N by:

B ⊗M ⊗N
∆⊗M⊗N // B ⊗B ⊗M ⊗N

B⊗τ⊗N
��

B ⊗M ⊗B ⊗N // M ⊗N,

where τ : B ⊗M →M ⊗B is the symmetry isomorphism of the tensor product in
VectF and the last map is given by the B-module structures on M and N .

This provides a tensor product that we still denote by ⊗ on B-modules.

Lemma 3.3 ([12, Proposition 111.5.1]). If B is cocommutative, then (Bmod,⊗,F) is
a symmetric monoidal category.
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Definition 3.4 (P-algebras in B-modules). Let B be a cocommutative bialgebra,
and P be an operad in F-vector spaces. Consider P as an operad in the symmetric
monoidal category Bmod using the trivial action ε⊗ P : B ⊗ P → P. A P-algebra in
B-modules is an algebra over the resulting operad in Bmod

P-algebras in B-modules form a category denoted by PBalg.

Remark 3.5. P-algebras in B-modules can also be defined as P ◦B algebras with a
certain distributive law λ : B ◦ P → P ◦B.

Denote by ∆n−1 = (B⊗n−2 ⊗∆) ◦ · · · ◦ (B ⊗∆) ◦∆: B → B⊗n the n− 1-th iter-
ated coproduct. In arity n, the map λ : (B ◦ P)(n) → (P ◦B)(n) is the composite:

(B ◦ P)(n) = B ⊗ P(n) // P(n)⊗B

P⊗∆n−1

��
P(n)⊗B⊗n // P(n)⊗Sn B

⊗n = (P ◦B)(n),

where the first arrow is the symmetry of the tensor product, and the third map is
the projection on orbits by the action of Sn.

We now present a basic example of bialgebra and identify the associated modules
and P-algebras. This example and all the variations introduced here are fundamental
for the rest of this article. In particular, the bialgebras TsD, QsD and D± will appear
in Section 12 to compare certain unstable algebras to known unstable modules. Here,
s designates any positive integer. A more involved example of bialgebra is given by
the Steenrod algebra. This example is discussed in Section 9.

Example 3.6. Let D = F[d] denote the polynomial algebra in one indeterminate d.
Following [12, III.2.Example 2], we can equip D with a bialgebra structure such that
d is grouplike (that is, ∆(d) = d⊗ d). The D-modules are vector spaces V equipped
with a linear map d : V → V . The P-algebras in D-modules are the P-algebras A
equipped with a P-algebra morphism d : A→ A.

We can construct many variations of the previous example. For instance:

• Let TsD denote the quotient of D by the ideal generated by ds+1. The bialgebra
structure of D induces a bialgebra structure on TsD. TsD-modules (resp. P-
algebras in TsD-modules) are D-modules (resp. P-algebras in D-modules) such
that d is nilpotent of degree s+ 1.

• Let QsD denote the quotient of D by the ideal generated by ds − 1. The bialge-
bra structure of D induces a bialgebra structure on QsD. QsD-modules (resp.
P-algebras in QsD-modules) are D-modules (resp. P-algebras in D-modules)
such that d is cyclic of degree s+ 1.

• Let D± = F[d, d−1], the algebra of Laurent polynomials in one indeterminate.
The bialgebra structure of D extends into a bialgebra structure on D±. D±-
modules (resp. P-algebras in D±-modules) are D-modules (resp. P-algebras in
D-modules) on which d acts bijectively.
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4. Operad of partitions

In this section, we introduce and study a particular example of set operad, the
operad of (ordered) partitions Π. We show that this operad is isomorphic to a com-
position product uCom ◦D of two operads equipped with a distributive law, for which
Π provides a useful combinatoric description. This operad Π will be crucial in order
to define the operad of q-level algebras in Section 5.

In this section, the base category is the category Set of sets, equipped with the
symmetric tensor product provided by the Cartesian product.

Definition 4.1. An ordered partition J of the set [n] = {1, . . . , n} is a sequence
J = (Ji)i∈N of piecewise disjoint subsets of [n] such that

⋃
i∈N Ji = [n].

Since [n] is finite, there is an integer s such that Js ̸= ∅ and Js′ = ∅ for all s′ > s.
We will often write J = (J0, . . . , Js), omitting the empty sets that follow.

Let j, k, l be three positive natural number such that l ⩽ j. Denote by

λjl,k : [j] → [j − 1 + k]

the set map defined by

λjl,k(m) =

{
m, if m ⩽ l,

m− 1 + k if m > l.

In other words, λjl,k “skips” all numbers between l + 1 and l − 1 + k.

Definition 4.2 (The operad of partitions Π). There is an operad Π in sets, called
the operad of partitions, such that, for all n ∈ N, Π(n) is the set of ordered partitions
J = (Ji)0⩽i⩽s of the set [n]. The unit of the operad is the partition ({1}) ∈ Π(1) of
[1], and the partial compositions are induced by:

(J ◦l K)i =


λjl,k(Ji), if l ∈ Ji′ with i

′ > i,

λjl,k(Ji) \ {l} ∪ (K0 + l − 1) if l ∈ Ji,

λjl,k(Ji) ∪ (Ki−i′ + l − 1), if l ∈ Ji′ with i
′ < i,

where K is a partition of [k], J is a partition of [j], l ∈ [n] and for a subset S of N
and an integer m ∈ N, let S +m be the set {x+m : x ∈ S}.

Remark 4.3. One can alternatively define Π(n) as the set of functions f : [n] → N.
Then, The action of the symmetric group is given by (σf)(i) = f(σ−1i). The unit
1Π : [1] → N ∈ Π(1) satisfies 1Π(1) = 0, and the partial compositions are given by:

f ◦l g(i) =


f(i), if i < l,

f(l) + g(i− l + 1), if l ⩽ i ⩽ l + k − 1,

f(i− k + 1), if l + k ⩽ i ⩽ l + k − 1,

where k is the arity of g.

We give two example of composition of ordered partitions. The second example
will be of key importance later in this section.
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Example 4.4. Consider J = ({2}, {1, 3}) ∈ Π(3) and K = (∅, {1, 2}) ∈ Π(2). Let us
compute J ◦1 K. For this, notice that λ31,2 : [3] → [4] sends 1 to 1, 2 to 3 and 3 to 4.
So, λ31,2(J0) = {3}, λ31,2(J1) = {1, 4}, K0 = K0 + 1− 1 = ∅, λ31,2(J2) = ∅, as well as
K1 + l − 1 = K1 = {1, 2}, so finally,

J ◦1 K = ({3}, {4}, {1, 2}).

Example 4.5. Consider J = (∅, [q]) ∈ Π(q) for a certain integer q ⩾ 2. We want to
compute (J ◦2 J) ◦1 J . Note first that λq2,q sends 1 to 1, 2 to 2, and all n ∈ {3, . . . , q} to
n+ q − 1. So, λq2,q(J0) = ∅, λq2,q(J1) = {1, 2, q + 2, q + 3, . . . , 2q − 1}, J0 + 2− 1 = ∅,
and J1 + 2− 1 = J1 + 1 = {2, 3, . . . , q + 1}. So,

J ◦2 J = (∅, {1, q + 2, q + 3, . . . , 2q − 1}, {2, 3, . . . , q + 1}).

Now, note that λ2q−1
1,q : [2q − 1] → [3q − 2] send 1 to 1 and all n ∈ {2, 3, . . . , 2q − 1}

to n+ q − 1. So, λ2q−1
1,q ((J ◦2 J)0) = ∅,

λ2q−1
1,q ((J ◦2 J)1) = {1, 2q + 1, 2q + 2, . . . , 3q − 2},

λ2q−1
1,q ((J ◦2 J)2) = {q + 1, q + 2 . . . , 2q}. Since J0 + 1− 1 = ∅ and J1 + 1− 1 = J1 =

{1, . . . , q), we conclude:

(J ◦2 J) ◦1 J = (∅, {2q + 1, 2q + 2, . . . , 3q − 2}, {1, 2, . . . , 2q}).

Alternatively, using the approach of Remark 4.3, this J corresponds to the function
f : [q] → N which is constant with f(i) = 1 for all i ∈ [q]. Then

f ◦2 f : [2q − 1]→ N

i 7→

{
1, if i = 1 or i > q + 1,

2, if i ∈ {2, 3, . . . , q}

and

(f ◦2 f) ◦1 f : [3q − 2]→ N

i 7→

{
1, if i > 2q,

2, if i ⩽ 2q.

The operad Π can be identified to a composition product of operads with dis-
tributive law (see Definition 2.5). Recall from Example 2.4 that there is an operad
uCom in sets whose algebras are unital, associative, commutative monoids. Denote
by D the unital, associative monoid whose underlying set is {di}i∈N with multipli-
cation di · dj = di+j . According to Example 2.4, D can be seen as an operad in Set
concentrated in arity 1. We prove the following:

Proposition 4.6. The composition product uCom ◦D is endowed with an operad
structure with the distributive law λ : D ◦ uCom → uCom ◦D such that:

λ(dj ; ∗n) = (∗n, dj , . . . , dj︸ ︷︷ ︸
n

).

There is an morphism of operads: φ : uCom ◦D → Π sending (∗n; di1 , . . . , din) to the
unique partition J ∈ Π(n) satisfying j ∈ Jij for all j ∈ [n].

The morphism φ is an isomorphism of operads.
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Proof. Verifying that λ above satisfies the definition of a distributive law is straight-
forward, and left to the reader.

Note that uCom is generated as an operad by ∗2, and D is generated by d1. This
implies that uCom ◦D is generated by (∗2; d0, d0) and (∗1; d1). Let us define a mor-
phism of operads φ : uCom ◦D → Π, induced by

φ(∗2; d0, d0) = ({1, 2}) ∈ Π(2), φ(∗1; d1) = (∅, {1}) ∈ Π(1).

Since φ is a morphism of operads, it is compatible to operadic composition and actions
of the symmetric group. It is then easy to check that φ(∗n; di1 , . . . , din) is the unique
partition J ∈ Π(n) satisfying j ∈ Jij for all j ∈ [n], and that we have described a
bijection between uCom ◦D and Π compatible with composition.

From this proposition we obtain the straightforward corollary:

Corollary 4.7. A Π-algebra in Set is a commutative monoid equipped with a monoid
endomorphism.

Remark 4.8. We can transfer the preceding construction to the category of F-vector
spaces using linearisation. Recall from Example 2.4 that the linearisation of uCom
is the operad uCom of unital, associative, commutative F-algebras. Note that the
linearisation of D is D, the polynomial algebra in one indeterminate d. The previ-
ous result yields an isomorphism of operads between uCom ◦D, equipped with the
distributive law of 3.5 (with B = D seen as a bialgebra using Example 3.6), and the
linearisation FΠ of Π.

5. The operad of n-level algebras

In this section, we introduce the set operad Levn of n-level monoids and its lin-
earisation Levn. This is a new construction which generalises the operad Lev of level
algebras defined by Chataur and Livernet [4]. Intuitively, a n-level algebra is a vector
space endowed with a n-ary operation which is strongly commutative in a certain
sense, but which is not associative.

Definition 5.1 (The operads Levn, Levn). For all integers n > 1, the operad of n-
level monoids is the sub-operad Levn ⊆ Π generated by the element (∅, [n]) ∈ Π(n).

The operad of n-level algebras is the linearisation Levn = FLevn of the operad
of n-level monoids.

As suggested in the name of this operad, we will call n-level algebras the algebras
over the operad Levn.

Remark 5.2. Since Levn is generated by an element of arity n, Levn(k) is empty
whenever k ̸≡ 1 mod n− 1.

Recall that operads can be described by generators and relations [17, 5.4.5]. We
now present one of our main new results, which gives a presentation for the operad
Levn, and by linearisation, for the operad Levn:
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Theorem 5.3. The operad Levn is generated by one element ⋆ ∈ Levn(n), fixed under
the action of Sn, and satisfying the following relation:

(⋆ ◦2 ⋆) ◦1 ⋆ = (⋆ ◦2 ⋆) ◦1 ⋆ · σ,

where σ ∈ S3n−2 is the transposition (n n+ 1).

The proof of this result, which is somewhat long and technical, is postponed to
Section 6.

Let’s illustrate the notion of n-level algebra through examples:

Example 5.4. Consider the set ZN of sequences of relative integers. Fix a positive
integer n > 0. Then ZN is endowed with a structure of n-level monoid such that, if
ui = (uij)j∈N for all i ∈ [n],

⋆(u1, . . . , un) =
(
u1j + · · ·+ unj − 1

)
j∈N .

There are several possible variants of this example. Note that the linearisation of this
particular example gives an n-level algebra similar to the n-level algebra structure of
the Carlsson algebra described in Theorem 12.4.

Remark 5.5. The operad Lev2 is the operad Lev of level algebras of [4].

We now construct a cofiltration of Levn using a notion of truncation. This new
family of operads will be used in Section 12 to identify certain unstable modules.

For all s > 0, k ∈ N, denote by Lev>sn (k) the subset of Levn(k) of partitions J such
that there exists i > s such that Ji ̸= ∅. It is easy to check that Lev>sn ⊂ Levn forms
an operadic ideal (see [17, 5.2.16]), which allows us to define an operad structure on
the quotient Levn/Lev

>s
n .

Definition 5.6. The s-truncation of Lev is the quotient operad

TsLevn = Levn/Lev
>s
n .

The s-truncation of Lev is the quotient operad Ts Levn = Levn /Lev
>s
n , where

Lev>sn = FLev>sn .

Remark 5.7. Since we have a filtration Lev>1
n ⊃ Lev>2

n ⊃ · · · whose limit is ∅, we
obtain a cofiltration of Levn:

Levn // . . . // Ts+1 Levn // Ts Levn // . . . (∗)

6. Proof of Theorem 5.3

This section is devoted to the proof of Theorem 5.3, which gives a presentation of
the operad Levn of Definition 5.1, and gives us insights on its associated algebras.
This proof uses the description of free operads using trees (see, for example, [17],
section 5.4). Before proving this theorem, we need one preliminary result:

Lemma 6.1. As a subset of Π(k), Levn(k) is the set of all ordered partitions J =
(Ji)0⩽i⩽s of [k] such that:

s∑
i=0

|Ji|
ni

= 1. (∗∗)
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Proof. By induction on k. Since Levn(k) is generated by a single element (∅, [n]) of
arity n, Levn(0) = ∅, Levn(1) is equal to {1Π} = {([1])}, Levn(n) is equal to {(∅, [n])},
and Levn(i) = ∅ for all 1 < i < n. It is easy to see that ([1]) is the only partition of
[1] satisfying equation (∗∗), that (∅, [n]) is the only partition of [n] satisfying equa-
tion (∗∗), and that no partition of ∅ = [0], and no partition of [2], [3], . . . , [n− 1] can
satisfy equation (∗∗).

Suppose now that k > n and that we have proven that Levn(k − n+ 1) is the set
of all ordered partitions J = (Ji)0⩽i⩽s of [k − n+ 1] satisfying equation (∗∗).

On one hand, let J = (Ji)0⩽i⩽s a partition of [k], and suppose that J ∈ Levn(k).

Then, since k > n and Levn is spanned by (∅, [n]), there exist a partition Ĵ = (Ĵi)0⩽i⩽s
of [k − n+ 1], an integer l ∈ [k − n+ 1], and a permutation σ ∈ Sk such that J =
Ĵ ◦l (∅, [n]) · σ. By the induction hypothesis, Ĵ satisfies equation (∗∗). Denote by i0
the unique integer such that l ∈ Ĵi0 . Then,

s∑
i=0

|Ji|
ni

−
s∑
i=0

|Ĵi|
ni

=
1

ni0
− n

ni0+1
= 0,

so J satisfies equation (∗∗).
On the other hand, let J = (Ji)0⩽i⩽s be a partition of [k], and suppose that J

satisfies equation (∗∗). One can assume that Js is non-empty without loss of generality.

Then, since
∑s
i=0

|Ji|
ni = 1 and k > n, this implies that s > 1, and

|Js| = ns

1−
s−1∑
i=0

|Ji|
ni

 = n

ns−1 −
s−1∑
i=0

|Ji|ns−1−i

 .

So |Js| is a multiple of n. In particular, since Js ̸= ∅, |Js| ⩾ n. There exists a permu-
tation σ ∈ Sk such that {k − n+ 1, . . . , k} ∈ (J · σ)s. Let J̄ ∈ Π(k − n+ 1) be the
partition of [k − n+ 1] such that J̄i = (J · σ)i for all i < s− 1, J̄s−1 = {k − n+ 1} ∪
(J · σ)s−1, and J̄s = ∅. Then, one has:

s∑
i=0

|J̄i|
ni

=

 s∑
i=0

|Ji|
ni

− n

ns
+

1

ns−1
= 1,

so, by the induction hypothesis, J̄ ∈ Levn(k − n+ 1), and, since

J = (J̄ ◦k−n+1 (∅, [n])) · σ−1,

we conclude that J ∈ Levn(k).

Proof of Theorem 5.3. By definition, as a suboperad of Π, Levn is generated by an
operation ⋆ of arity n fixed by the action ofSn. As a partition, recall from Example 4.5
that (⋆ ◦2 ⋆) ◦1 ⋆ = (∅, {2n+ 1, . . . , 3n− 2}, {1, . . . , 2n}), so ⋆ satisfies the relation

(⋆ ◦2 ⋆) ◦1 ⋆ = (⋆ ◦2 ⋆) ◦1 ⋆ · (n n+ 1). (∗ ∗ ∗)

Let MagComn be the free operad generated by an arity n operation µ fixed by the
action of Sn. Let ψ : MagComn → Levn be the unique operad morphism sending µ
to ⋆. Denote by Magn the free operad generated by an arity n operation ν, this time
with Sn acting freely on ν. There is a unique operad morphism Magn ↠ MagComn
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sending ν ∈ Magn to µ ∈ MagComn. The operad Magn admits a characterisation
using planar n-ary trees (see, for example, [8, Section 6.1.2], for the case n = 2).
Using this characterisation, Magn(k) is the set of planar n-ary trees (all vertices are
either the root, leaves, or have n incoming edges) with k leaves labelled by the set
[k]. The generator µ ∈ Magn(n) is identified with the corolla with n leaves labelled
1 to n. The unit 1Magn

is identified with the tree which consists of just the root and
no leaves. Using the surjection Magn ↠ MagComn, we will consider the elements of
MagComn as (classes of) trees.

For a tree t∈MagComn(k), ψ(t)∈Levn(k)⊂Π(k) is a partition ψ(t) = (ψ(t)i)0⩽i⩽s
of [k] where ψ(t)i is the set of labels of leaves of t at height i. Since Π(k) is the set
of ordered partitions of [k], this implies that two trees t, t′ ∈ MagComn(k) have the
same image under ψ if and only if for all i, t and t′ have the same set of labels for
their leaves of height i, the height being the distance (number of edges) from the root.
So, the stabiliser of ψ(t) is generated by the transpositions that permute two leaves
in t of same height.

Denote by ≈ the relation generated by (µ ◦2 µ) ◦1 µ ≈ (µ ◦2 µ) ◦1 µ · (n n+ 1)
under operadic composition and action of the symmetric groups.

Thus, in order to prove that Levn admits the presentation suggested, we have to
prove that ψ is surjective, and that ≈ allows permutations of leaves of same height,
that is: if τ ∈ Sk is a transposition which permutes two leaves of same height in
t ∈ MagComn(k), then τt ≈ t.

The morphism ψ is surjective: Let J ∈ Levn(k). Like in 4.1, we will denote s
the smallest integer such that Js′ = ∅ for all s′ > s. We will prove, by induction on
s, that J is in the image of ψ.

In the case where s = 0, then necessarily, J = ({0}) = 1Levn
= ψ(1MagCom).

Suppose the result proven in the case where s = l for a certain l ∈ N and suppose
now that s = l + 1. The condition ∗∗ implies that |Js| is divisible by n, say |Js| =
mn. Since Js ̸= ∅, m > 0. There is a σ ∈ Sk such that σJs = {k −mn+ 1, . . . , k}.
Consider a partition J̄ such that:

J̄i =


σJi, if i < s− 1,

σJs−1 ∪ {k −mn+ 1, . . . , k −m(n− 1)}, if i = s− 1,

∅, if i ⩾ s.

One can easily show that J̄ satisfies ∗∗, and J̄s′ = ∅ for all s′ > s− 1, so by induction
hypothesis, there is a tree t ∈ MagComn(k −m(n− 1)) such that ψ(t) = J̄ . One then
has:

ψ(t(1×k−mnMagComn
, µ×m)) = J̄(1×k−mnLevn

, ∗×m),

which is equal to σJ . Finally, this implies that:

ψ(σ−1t(1×k−mnMagComn
, µ×m)) = J,

so we have proven that J is in the image of ψ.

We have proven by induction on s that all J ∈ Levn(k) are in the image of ψ.
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The relation ≈ allows permutation of leaves of the same height: Let
t ∈ MagComn(k) be a tree with k leaves, and let τ be a permutation of leaves of the
same height. Denote by s the height of t, that is, the maximum of the heights of
leaves of t. For all i ∈ {0, . . . , s} let αi = |ψ(t)i|. There exists a σ ∈ Sk such that

ψ(σt)s = {1, . . . , αs}, ψ(σt)s−1 = {αs + 1, . . . , αs + αs−1}, . . . ,

ψ(σt)i = {αs + αs−1 + · · ·+ αi+1 + 1, . . . , αs + · · ·+ αi}.

Denote by ρ the permutation στσ−1. Then ρ acts on σt by permuting two leaves of
same height, so ρ is a transposition in Sαs

×Sαs−1
× · · · ×Sα0

. Since t is of height
s, αs > 0. Since all vertices of t have n incoming edges, this implies that αs = ln for
an integer l > 0. Without loss of generality, we can assume that we have chosen σ
such that, for all j ∈ [l], the leaves of σt labelled {jn+ 1, . . . , (j + 1)n} are connected
to the same internal vertex of height s− 1.

We will now prove that ≈ allows permutation of leaves of same height by recurrence
on the height s. From what precedes, ρ admits a decomposition

ρ = ρs × ρs−1 × · · · × ρ0

where ρi ∈ Sαi
is either the neutral permutation, or a transposition.

If s = 0, then t = 1MagComn
and there is nothing to prove.

Suppose that we have proven that ≈ allows permutation of leaves of same height
of all trees t of height s = β for a certain integer β, and suppose now that s = β + 1.

Let t̄ be the tree obtained from σt by removing the ingoing edges of all the inner
vertices of height s− 1 (there are l such vertices), relabelling these vertices with
{1, . . . , l}, and relabelling the other leaves in t labelled i by i− αs + l for all i > αs.
We have described an element t̄ ∈ MagComn(k − αs + l) of height s− 1, such that
σt = t̄(µ×l, 1×k−αs

MagComn
) (this is t̄ composed with µ in the l first inputs). Denote by

t̂ = (id[l] ×ρs−1 × · · · × ρ0)t̄. By the induction hypothesis, we know that t̄ ≈ t̂, so,
composing by µ in the l first input, σt ≈ (id[αs] ×ρs−1 × · · · × ρ0)t.

It remains to prove that ρσt ≈ (id[αs] ×ρs−1 × · · · × ρ0)t, or equivalently, that
ρsσt ≈ σt, where we identified ρs with ρs × id[αs−1] × · · · × idα0

. From what precedes,
ρs is either neutral or a transposition. If it is neutral, there is nothing to prove. Sup-
pose now that ρs is a transposition (i1 i2).

If i1, i2 ∈ {jn+ 1, . . . , (j + 1)n} for a certain j ∈ [l], then since µ ∈ MagComn(n)
is fixed by Sn, ρst = t. Suppose now that there exists j1, j2 ∈ [l] with j1 ̸= j2, such
that j1n+ 1 ⩽ i1 ⩽ (j1 + 1)n and j2n+ 1 ⩽ i2 ⩽ (j2 + 1)n. Since µ ∈ MagComn(n)
is fixed by Sn, we can assume that i1 = (j1 + 1)n and i2 = j2n+ 1

Since t̄ is a tree of height s− 1 then l is again a multiple of n, l = nl′, and since
we have assumed that l > 1, l′ > 0.

By the induction hypothesis, (j2 2)(j1 1)t̄ ≈ t̄. We can again suppose, without loss
of generality, that we have chosen σ such that the leaves of (j2 2)(j1 1)t̄ labelled
{jn+ 1, . . . , (j + 1)n} are the leaves of the same internal vertex of height s− 2 for
all j ∈ [l′]. Composing with µ in the l first inputs of (j2 2)(j1 1)t̄ and t̄ then yields
σ′σt ≈ σt, where σ′ is a block permutation, where the blocks have size n, and σ′

transpose the j1-th block with the first block and the j2-th block with the second
block. Then, σ′ρs(σ

′)−1 is the transposition (n n+ 1). I pretend to be certain that
σ′σt ≈ (nn+ 1)σ′σt = σ′ρsσt.
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Let ū be the tree obtained from (j2 2)(j1 1)t̄ by collapsing the leaves labelled 1 to
n, relabelling the new leaf of level s− 2 by 1, and relabelling all other leaves labelled
i in (j2 2)(j1 1)t̄ by i− n+ 1. Then ū is a new element in MagComn(k − αs + l) such
that (j2 2)(j1 1)t̄ = ū ◦1 µ. Denote by u = s̄(1MagComn

, µ×l−1, 1×k−αs

MagComn
) (that is ū

composed by µ in the inputs 2, 3 . . . , l). We then have:

σ′σt = u ◦1
(
. . .

(
(((µ ◦2 µ) ◦1 µ) ◦2n+l−2 µ) ◦2n+l−3 µ

)
· · · ◦2n+1 µ

)
,

and

(n n+ 1)σ′σt

= u ◦1
(
. . .

(
((((µ ◦2 µ) ◦1 µ)(n n+ 1)) ◦2n+l−2 µ) ◦2n+l−3 µ

)
· · · ◦2n+1 µ

)
.

Since ≈ is generated by (µ ◦2 µ) ◦1 µ ≈ ((µ ◦2 µ) ◦1 µ)(n n+ 1), this shows that

σ′σt ≈ (nn+ 1)σ′σt = σ′ρsσt.

So, applying (σ′)−1 on both sides, we get ρsσt ≈ σt, which, from what precedes,
implies that ρσt ≈ σt, and since ρ = στσ−1, that implies στt ≈ σt. Finally, applying
σ−1 to both sides, we get τt ≈ t, which is what we wanted to prove.

7. ⋆-powers in P-algebras

In this section, we work over the finite field Fq of order q, and we study the ⋆-
power operation x 7→ ⋆(x, . . . , x) in P-algebras, where P is an operad equipped with
an q-ary operation ⋆. We observe that, when the operation ⋆ is symmetric, the ⋆-
power induces a linear map on all P-algebras. We build a functor ψ!, which to each
D-module M , produces a P-algebra containing M and in which dx = ⋆(x, . . . , x) for
all x ∈M .

Recall that D = Fq[d] is the polynomial algebra in one indeterminate d (see Exam-
ple 3.6).

Fix an operad P and a symmetric arity q operation ⋆ ∈ P(q)Sq .

Notation 7.1. Let ⋆k ∈ P(qk) denote the operation inductively defined by:

⋆0 = 1P and ⋆k+1 = ⋆(⋆k, . . . , ⋆k︸ ︷︷ ︸
q

).

In particular, ⋆1 = ⋆. The associativity of the composition in P implies that

⋆i(⋆j , . . . , ⋆j︸ ︷︷ ︸
qi

) = ⋆j(⋆i, . . . , ⋆i︸ ︷︷ ︸
qj

) = ⋆i+j .

For all vector spaces V , we define a map ψV : D⊗V → S(P, V ) by ψV (d
k ⊗ v) =

v⋆kq
k

, where the notation aµn was introduced in Definition 2.3, and extending by
linearity on D.

Lemma 7.2. Let ⋆ ∈ P(q)Sq . The map ψV : D ⊗ V → S(P, V ) defined above is lin-
ear and natural in V . Moreover, the natural transformation ψ : D⊗− → S(P,−) is
monadic.
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Proof. To show that ψV is linear, it suffices to show, by induction on k, that v 7→ v⋆kq
k

is linear in v. If k = 0, the linearity is evident, let us prove the case k = 1. Let u, v ∈ V
and λ ∈ Fq. One has:

(u+ λv)⋆q = (⋆;u+ λv, . . . , u+ λv) =
∑
i+j=q

∑
σ∈Sq/Si×Sj

(⋆;σ(u×i, (λv)×j)).

Since ⋆ ∈ P(q)Sq , we deduce:

(u+ λv)⋆q =
∑
i+j=q

∑
σ∈Sq/Si×Sj

(⋆;u×i, (λv)×j) =
∑
i+j=q

(
q

i

)
λj(⋆;u×i, v×j).

Since
(
q
i

)
is divisible by q for all i ∈ {1, . . . , q − 1}, we then get:

(u+ λv)⋆q = (⋆;u×q) + λq(⋆; v×q).

Finally, since λq = λ in Fq,

(u+ λv)⋆q = u⋆q + λv⋆q.

Suppose that we have proven that v 7→ v⋆kq
k

is linear in v. Then, by definition
of ⋆q,

(u+ λv)⋆k+1q
k+1

= (⋆k+1; (u+ λv)×q
k+1

)

= (⋆(⋆k, . . . , ⋆k); (u+ λv)×q
k+1

) = ⋆((u+ λv)⋆kq
k

, . . . , (u+ λv)⋆kq
k

),

so, by induction hypothesis,

(u+ λv)⋆k+1q
k+1

= (⋆;u⋆kq
k

+ λv⋆kq
k

, . . . , u⋆kq
k

+ λv⋆kq
k

) =
(
u⋆kq

k

+ λv⋆kq
k
)⋆q

.

But, we have shown above that v 7→ v⋆q was linear in v. So,

(u+ λv)⋆k+1q
k+1

=
(
u⋆kq

k

,
)⋆q

+ λ
(
v⋆kq

k
)⋆q

= u⋆k+1q
k+1

+ λv⋆k+1q
k+1

.

The map ψV is clearly natural in V . To show that ψ : D⊗− → S(P, V ) induces a
monad morphism, we need to check that it is compatible with the unit and com-
position of the monads D ⊗− and S(P,−). For the unit, note that 1D = d0, so
ψV (ηD(v)) = ψV (1D ⊗ v) = v⋆01 = (1P ; v) = ηP(v). Since the composition of D⊗−
is induced by di ⊗ dj ⊗ v 7→ di+j ⊗ v, the fact that ψV is compatible with the com-

position is a straightforward consequence of
(
v⋆jq

j
)⋆iqi

= v⋆i+jq
i+j

.

The monad morphism ψ induces a functor ψ∗ : Palg → Dmod on the categories of
algebras which restricts the structure along ψ.

Proposition 7.3. The functor ψ∗defined above admits a left adjoint ψ! : Dmod→Palg.

Proof. One can build the desired left adjoint using left Kan extensions (see [18,
Chapter X]). Explicitly, for a D-module M , the P-algebra ψ!(M) is obtained as a
coequaliser between two P-algebra morphisms S(P,D⊗M) → S(P,M). The first of
these P-algebra morphisms is given by the D-action D⊗M →M . The second is given
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by the composition:

S(P,D⊗M)
S(P,ψM ) // S(P, S(P,M))

(γP)M // S(P,M) ,

where the first map is ψ applied to the underlying vector space of M , and the second
map is the composition of the monad S(P,−). In other words, ψ!(M) is the quotient
of the free P-algebra S(P,M) by the P-ideal generated by the elements dnm−m⋆nq

n

for m ∈M and n ∈ N (see [9, 2.3.1] for the notion of ideal in a P-algebra). The proof
that this provides indeed a left adjoint to ψ∗ is left as an exercise.

Proposition 7.4. Let ⋆ ∈ P(q)Sq . There is a natural isomorphism:

ψ! ◦ (D ⊗−) ∼= S(P,−).

Proof. Consider the following diagram of categories and adjunctions:

VectF

S(P,−) //

⊢ D⊗−

��

Palg
⊥

Forget
oo

ψ∗
⊥

wwDmod

Forget

OO

ψ!

77 ,

where Forget denotes all the right adjoints that extract underlying vector spaces. One
can easily check that the composite Forget ◦ψ∗ : Palg → VectF is naturally isomorphic
to Forget : Palg → VectF. Since ψ! ◦ (D⊗−) is a left adjoint of Forget ◦ψ∗, it is also a
left adjoint of Forget : Palg → VectF. Left adjoints being unique up to natural isomor-
phisms, we obtain the desired natural isomorphism ψ! ◦ (D ⊗−) ∼= S(P,−).

8. P-central operations

In this section,, we work over the finite field Fq of order q, and we introduce the
notion of central operation in an operad. A central operation is an operation which
satisfies a certain interchange relation with respect to all other operations in the
operad. The condition of centrality is the minimal condition on ⋆ which ensures that
the ⋆-power is always a P-algebra endomorphism. This notion of centrality generalises
the notion of centrality for binary commutative operations defined in [11, Definition
5.2]. Since we want the ⋆-power to be linear over Fq, we restrict ourselves to the case
of symmetric operations ⋆ of arity q.

Given a central operation ⋆ of arity q, we construct a functor ψ! which takes a
vector space V with a linear self-map d and produces a P-algebra in D-modules over
V satisfying dv = ⋆(v, . . . , v). This construction allows us to produce free unstable
algebras over an unstable module in Section 9. The results of the present section,
in particular the commutative diagram D1 of 8.4, are crucial to the proof of Theo-
rem 11.6 on the structure of free unstable algebras.

Recall the construction of the functors ψ∗ and ψ! from Section 7. We equip the
P-algebra ψ!(M) with a D-module structure through ψ∗. This way, ψ!(M) is a P-
algebra and a D-module, but it is not necessarily a P-algebra in D-modules as defined
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in 3.4. To extend ψ! into a functor Dmod → PD
alg, we need ⋆ to satisfy an additional

condition, which we call P-centrality.

Definition 8.1 (P-central operations). An operation ⋆ ∈ P(q)Sq is said to be P-
central if, for all µ ∈ P(m),

⋆(µ, . . . , µ) = µ(⋆, . . . , ⋆) · σq,m, (I)

where σq,m ∈ Sqm sends (i− 1)m+ k to (k − 1)q + i for all i ∈ [q], k ∈ [m]. Under
the usual identifications [qm] ∼= [q]× [m] and [qm] ∼= [m]× [q] the permutation σq,m
corresponds to the transposition [q]× [m] → [m]× [q], (i, k) 7→ (k, i).

Example 8.2. Consider the operation Xq ∈ uCom(q), where uCom is the operad de-
fined in 2.4. Note that any operation in Com(n) is of the type λXm with λ ∈ Fq. One
has Xq(λXn, . . . , λXn) = λqXqm = λXqm, and since Xqm is fixed under the action of
Sqm, we then deduce that Xq(λXm, . . . , λXm) = λXqm · σq,m = λXm(Xq, . . . , Xq) ·
σq,m, and so, Xq is uCom-central.

We get the following result:

Lemma 8.3. Let ⋆ ∈ P(q)Sq . The functor ψ! : Dmod → Palg defined in 7.3 can be
extended into a functor ψ! : Dmod → PD

alg if and only if ⋆ is P-central. In other words,
the operation ⋆ is P-central if and only if there is a diagram of functors that commutes
up to natural isomorphism:

Palg

Dmod

ψ!

<<

ψ! // PD
alg

U

OO
,

were U is the forgetful functor that extracts the underlying P-algebra.

Proof. Fix an element µ ∈ P(m). Let V be an F-vector space spanned by elements
x1, . . . , xm. According to Proposition 7.3, the P-algebra ψ!(D⊗V ) is isomorphic to
S(P, V ). Using the definition of ψ∗, the D-module structure on this P-algebra gives
d(µ;x1, . . . , xm) = (µ;x1, . . . , xm)⋆q and dxi = x⋆qi for all i. Suppose that d induces a
P-algebra morphism on ψ!(D⊗V ). Then, one has:

(⋆(µ, . . . , µ);x1, . . . , xm, x1, . . . , xm, . . . , xm) = (µ;x1, . . . , xm)⋆q

= d(µ;x1, . . . , xm) = µ(dx1, . . . , dxm) = µ(x⋆q1 , . . . , x
⋆q
m ),

= (µ(⋆, . . . , ⋆);x1, . . . , x1, x2, . . . , x2, . . . , xm),

= (µ(⋆, . . . , ⋆) · σq,m;x1, . . . , xm, x1, . . . , xm, . . . , xm).

Since x1, . . . , xm are independent, this implies that ⋆(µ, . . . , µ) and µ(⋆, . . . , ⋆) · σq,m
are equal up to a permutation σ ∈

∏m
i=1 S{i+(k−1)m:k∈[q]}. But, since ⋆ is stable under

the action ofSq, µ(⋆, . . . , ⋆) · σq,m is stable under the action of
∏m
i=1 S{i+(k−1)m:k∈[q]}.

So ⋆(µ, . . . , µ) = µ(⋆, . . . , ⋆) · σq,m. This holds for all µ ∈ P(m), and so, ⋆ is P-central.

Inversely, ifM is a D-module, recall that ψ!(M) is a quotient of S(P,M). Supposing
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that ⋆ is P-central, then for all µ ∈ P(m) and x1, . . . , xm ∈M , the action of d yields

d(µ;x1, . . . , xm) = (µ;x1, . . . , xm)⋆q = (⋆(µ, . . . , µ);x1, . . . , xm, x1, . . . , xm, . . . , xm),

and,

µ(dx1, . . . , dxm) = µ(x⋆q1 , . . . , x
⋆q
m ) = (µ(⋆, . . . , ⋆);x1, . . . , x1, x2, . . . , x2, . . . , xm)

= (µ(⋆, . . . , ⋆) · σq,m;x1, . . . , xm, x1, . . . , xm, . . . , xm).

Now, using the P-centrality of ⋆, we conclude that d is compatible with µ. Since this
is true for all µ, we then conclude that d is a P-algebra morphism.

We now prove the main result of this section, which will allow us to prove Theo-
rem 11.6.

Combining Lemma 8.3 and Proposition 7.4, one gets the following:

Proposition 8.4. Let ⋆ ∈ P(q)Sq be a P-central operation. The following diagram
of functors commutes up to natural isomorphism:

VectF

D⊗−
��

S(P,−) // Palg

Dmod
ψ! // PD

alg

U

OO
. (D1)

The next proposition allows one to check, from a presentation of an operad P, if
an operation ⋆ ∈ P(q)Sq is P-central.

Proposition 8.5. Let ⋆ ∈ P(q)Sq . Let F be a sub-symmetric sequence of P. Suppose
that F generates the operad P. The operation ⋆ is P-central if and only if it satisfies
relation (I) of Definition 8.1 for all µ ∈ F .

Proof. This is a fairly straightforward generalisation of [11, Proposition 5.7].

Proposition 8.5 allows us to describe further example of operads equipped with a
central operation.

Proposition 8.6. The generator ⋆ ∈ Levq(q)
Sq of the operad Levq defined in Defi-

nition 5.1 is Levq-central.

Proof. In Π, note that ⋆(⋆, . . . , ⋆) is the partition (∅, ∅, [q2]) of [q2], which is fixed
under the action of Sq2 . In particular, ⋆ ∈ Levq(q) satisfies the relation I with µ = ⋆.
According to Proposition 8.5, this implies that ⋆ is Levq-central.

We describe one more example which we will refer to in Section 12:

Example 8.7. Denote by Ts Levq the image of the composite

Levq ↪→ Π ∼= uCom ◦D → uCom ◦TsD .

The operadic generator ⋆ ∈ Levq(q) yields a Ts Levq-central operation (one can show
this using Proposition 8.5). Similarly, the operation (Xq; d

×q), where Xq is the gen-
erator of the arity module uCom(q), is a uCom ◦D-central operation, a uCom ◦D±-
central operation, and a uCom ◦QsD-central operation. More generally, if ⋆ ∈ P(q)Sq

is P-central, then (di)⋆q is P ◦D, P ◦D±, and P ◦QsD-central, for all i ∈ N.
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Part 2. Unstable modules, unstable P-algebras

We now turn to unstable modules and algebras over the Steenrod algebra. The main
result of this part of the article is Theorem 11.6, which characterise certain free
unstable algebras over operads.

9. The Steenrod algebra, unstable modules, P-algebras in un-
stable modules

The Steenrod algebra is a central object in homotopy theory and algebraic topol-
ogy. It was built to represent the natural operations in cohomology that are stable
under the suspension operation. As such, the cohomology of any topological space can
be seen as a module over the Steenrod algebra. Unstable modules are modules over
the Steenrod algebra satisfying an additional property which models the behaviour
of these cohomology modules.

In this section, we describe the Steenrod algebra A(q) of reduced q-th powers
(without the Bockstein operator). In the case where the base field is a prime field
Fp, this algebra is a sub-bialgebra of the usual Steenrod algebra. This algebra can be
presented in various equivalent ways, including the presentation given by [20], and
more recently [13]. For the sake of clarity of our argument, we will give our own
presentation, which is again equivalent. The statements for A(q) and the category
U(q) of unstable modules are well known to easily lead to results on the Steenrod
algebra and its unstable modules (see for example [16, appendix A.1]). At the end of
this section, we study algebras over an operad in the category of A(q)-modules, and
in the category U(q), using the notions introduced in Section 3.

We recall that, throughout this paper, F is a field of characteristic p and order
q = pα. For the definitions of the category of unstable modules over this algebra,
we will rely on the very detailed book [21]. The definitions in [21] concern unstable
modules over the Steenrod algebra, but extend readily to the unstable modules over
the sub-bialgebra of reduced powers.

Definition 9.1 (The Steenrod algebra of reduced powers [13, Definition 6.5]). The
Steenrod algebra of q-th reduced powers (without Bockstein operator, with
grading divided by 2 if p > 2), is the bialgebra A(q) generated, as a unital associative
algebra, by elements P i for all i > 0 of degree (q − 1)i, satisfying relations called
Adem relations. The coproduct in A(q) is given by:

∆(P i) =
∑
j+k=i

P j ⊗ P k,

where P 0 is understood to be the unit of A(q).

Definition 9.2 (Unstable modules over the Steenrod algebra, reduced modules, con-
nected modules, the suspension). A graded A(q)-module M = (M i)i∈N is unstable
if for all x ∈M i, P jx = 0 whenever j > i. Let U(q) denote the full subcategory of
A(q)mod with objects the unstable A(q)-modules.

For any A(q)-module M , and any element x ∈M i, let P0x = P ix. This induces
an endomorphism P0 : M →M which multiplies the degree by q.

An unstable module M is said to be reduced if P0 is injective.
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An unstable module M is said to be connected if M0 = 0.
Let M be an A(q)-module. The suspension of M is the A(q)-module ΣM such

that (ΣM)0 = 0 and (ΣM)i =M i−1 for all i > 0, and such that P i(σx) = σ(P ix),
where σx ∈ (ΣM)j+1 denotes the element representing x ∈M j .

Remark 9.3. Our definition of a reduced unstable module differs from the usual notion
of reduced unstable module over the Steenrod algebra [21, p. 47]. However, [21,
Lemma 2.6.4] shows that the two notions are equivalent.

If M is unstable, ΣM is also unstable. This induces a functor Σ: U(q) → U(q).

Proposition 9.4 ([21, p. 28]). The suspension functor Σ: U(q) → U(q) admits a left
adjoint Ω: U(q) → U(q). Moreover, for all unstable modules M ,

ΣΩM =M/P0M,

where P0M ⊆M denotes the unstable submodule which is the image of the top oper-
ation P0.

Definition 9.5 (Free unstable modules, see [21, pp. 19, 23, 25]). For n ∈ N, let F (n)
denote the free unstable module generated by one element ιn of degree n. One has
HomU(q)(F (n),M) ∼=Mn.

The following assertions are all consequences of the definition of F (n): As a con-
sequence of Proposition 9.4, for all n > 0, there is an isomorphism in U(q):

ΩF (n) ∼= F (n− 1).

Indeed, for M an unstable module, there is a one-to-one correspondence (natural in
M):

HomU(q)(ΩF (n),M) ∼= HomU(q)(F (n),ΣM)
∼= (ΣM)

n

∼=Mn−1

∼= HomU(q)(F (n− 1),M).

We now study P-algebras in A(q)-modules and P-algebras in U(q).

Proposition 9.6. A P-algebra in A(q)-module (see Definition 3.4) is a P-algebra M
endowed with an action of A(q) that satisfies the (generalised) Cartan formula, that
is, for all µ ∈ P(n), (xi)1⩽i⩽n ∈M×n,

P iµ(x1, . . . , xn) =
∑

i1+···+in=i
µ(P i1x1, . . . , P

inxn).

Proof. This is an easy verification, noting that the n− 1-th iterated coproduct
∆n−1 : A(q) → A(q)⊗n sends P i to

∑
i1+···+in=i P

i1 ⊗ · · · ⊗ P in .

Definition 9.7. A P-algebra in A(q)-modules which is unstable as an A(q)-module
is called a P-algebra in unstable module.

Let PU(q)
alg denote the full subcategory of PA(q)

alg with objects the P-algebras in
unstable modules.

We then obtain the following straightforward result:
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Proposition 9.8. If M is an unstable module, then S(P,M) is a P-algebra in unsta-

ble modules. The forgetful functor PU(q)
alg → U(q) admits as left adjoint the functor

S(P,−) : U(q) → PU(q)
alg .

10. Unstable algebras over the Steenrod algebra

The classical notion of an unstable algebra over the Steenrod algebra is that of
a unital, commutative, associative algebra A, which is also an unstable module over
the Steenrod algebra, and satisfies the Cartan formula and the additional relation

P0x = xq, also called instability. In our terminology, this is an object of uCom
U(q)
alg

satisfying the instability relation. A variant of this notion is the notion of unstable
level algebra due to [4]. Here we generalise the notion of unstable algebra to algebras
over any operad P equipped with a q-ary operation ⋆.

In this section, we introduce the Brown–Gitler and Carlsson modules and algebra.
We choose to define these objects using their algebraic structures. They are identified
with injective objects, as is shown in [14], see also [1, 19, 3], and [21]. These objects
come equipped with a q-ary operation, but are not unstable algebras in the usual
sense: in the Brown–Gitler algebra and Carlsson algebra for example, P0x is not
equal to xq, but instead, P0x = ϕ(x)q where ϕ is a certain endomorphism. These
provide examples of unstable q-level algebras, where this notion has been introduced
in Section 5. In Section 12, we will see that some of those objects are in fact free, as
unstable algebras over certain operads.

Definition 10.1 (⋆-Unstable P-algebras). Let ⋆∈ P(q)Sq . A ⋆-unstable P-algebra
is a P-algebra A in U(q) such that P0a = ⋆(a, . . . , a) for all a ∈ A.

The ⋆-unstable P-algebras form a full subcategory of PU(q)
alg which is denoted by

K⋆P .
As an example, an unstable q-level algebra is a ⋆-unstable Levq-algebra, where

Levq is defined in 5.1 and ⋆ ∈ Levq is the operadic generator.

When P = uCom and ⋆ = Xq (see Example 2.4), we recover the classical notion
of unstable algebras from, for example, [14].

Let us give some examples of ⋆-unstable P-algebras that appear in literature for
different operads P and operations ⋆. The classic example is the following:

Example 10.2. Let X be a topological space. Taking q = p, the cohomology of X
with coefficients in Fp inherits an unstable A(p)-action (see, for example, [21, The-
orem 1.1.1.]). The cup-product endows H∗(X,Fp) with the structure of a unital,
commutative, associative algebra in U(p), with the additional relation P0x = xp. In
other words, H∗(X,Fp) is an Xp-unstable uCom-algebra (see Example 2.4 for the
definition of uCom and Xp).

Definition 10.3 (Brown–Gitler modules and algebra, Carlsson modules and alge-
bra). The Brown–Gitler algebra J is the uCom-algebra in U(q) whose underlying
uCom-algebra is the polynomial algebra F[xi, i ∈ N], with |xi| = 1, endowed with the
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(unstable) action of A(q) induced on generators by:

P jxi =


xi, if j = 0,
xqi−1, if j = 1,
0, otherwise,

(1)

where we set x−1 = 0.
The Brown–Gitler algebra is equipped with a second grading w called the weight,

which is additive with respect to multiplication, and such that w(xi) = qi.
The Brown–Gitler module of weight n is the submodule J(n) ⊆ J of homo-

geneous elements of weight n.
The Carlsson algebra K is the uCom-algebra in U(q) whose underlying uCom-

algebra is the polynomial algebra F[xi, i ∈ Z], with |xi| = 1, endowed with the (unsta-
ble) action of A(q) induced on generators by:

P jxi =


xi, if j = 0,
xqi−1, if j = 1,
0, otherwise.

(2)

There is a canonical algebra morphism K → J sending xi ∈ K to xi ∈ J if i ⩾ 0,
and sending xi ∈ K to 0 if i < 0. This morphism is clearly compatible with the A(q)-
action.

The Carlsson algebra is equipped with a second grading w called the weight,
additive with respect to multiplication, with w(xi) = qi. Note that this weight has
range N[ 1q ].

The Carlsson module of weight n is the submodule K(n) ⊆ K of homogeneous
elements of weight n.

Remark 10.4. Consider the algebra endomorphism ϕ : J → J sending xi to xi−1. This
induces morphisms of unstable modules J(qn) → J(n). For n ∈ N, the Carlsson mod-
ule K(n) is isomorphic to the limit in U(q) of the diagram:

J(n) J(qn)
ϕoo J(q2n)

ϕoo · · ·oo .

This implies that there are isomorphisms K(n) ∼= K(qn). In fact, these isomorphisms
are induced by the algebra isomorphism ϕ : K → K sending xi to xi−1.

From the very definition of these objects, it is clear that neither the Brown–Gitler
algebra nor the Carlsson algebra are Xq-unstable uCom-algebras. However, we have
the following:

Lemma 10.5. The Brown–Gitler algebra and the Carlsson algebra are equipped with
a ⋆-unstable Levq-algebra structure, where ⋆ and Levq are defined in 5.1.

Proof. Note that ϕ : J → J and ϕ : K → K defined above are endomorphisms of
uCom-algebras in U(q). So, J and K, endowed with ϕ, form two uCom ◦D-algebras,
where uCom ◦D is defined in 4.8 and D acts by d = ϕ. Since uCom ◦D is isomorphic
to FΠ (see 4.8), and Levq is defined as a suboperad of FΠ (see 5.1), it ensues that J
and K can be equipped with the structure of a Levq-algebra in U(q) by restriction of



60 SACHA IKONICOFF

structure. Since Levq is generated by the element ⋆ = (∅, [q]) ∈ FΠ(q), which corre-
sponds to the operation (Xq; d, . . . , d) under the isomorphism FΠ ∼= uCom ◦D, these
Levq-algebra structures on J and K are defined by:

⋆(a1, . . . , aq) = ϕ(a1) · · ·ϕ(aq),

for all elements a1, . . . , aq of J , or of K. To show that J and K are ⋆-unstable, it
suffices to check that P0xi = ⋆(xi, . . . , xi) on the generators xi. But P0xi = xqi−1, and
⋆(xi, . . . , xi) = ϕ(xi)

q = xqi−1.

Lemma 10.6. The Levq-operation ⋆ defined above on J and K preserve the weight.

Proof. Note that ϕ divides the weight by q, so, if a1, . . . , aq all have weight n,
⋆(a1, . . . , aq) = ϕ(a1) · · ·ϕ(aq) is a product of q elements of weight n/q, which is then
of weight n.

11. Free unstable P-algebras

The aim of this section is to prove our main result, Theorem 11.6, which identifies
free unstable algebras generated by certain unstable modules to free algebras. More
precisely, given an operad P equipped with a P-central operation ⋆ ∈ P(q)Sq (see
Definition 8.1), we will build a diagram of categories:

VectF

D⊗−
��

S(P,−) // Palg

Dmod
ψ! // PD

alg

OO

U(q)

φ

OO

K⋆
P // K⋆P

φP

OO

, (D2)

where the top square is the diagram D1 from Proposition 8.4, and where the bottom
functor, K⋆

P : U(q) → K⋆P , is left adjoint to the forgetful functor K⋆P → U(q). Here,
the functor φ : U(q) → Dmod sends an unstable module to its underlying vector space
equipped with a linear self-map provided by the top operation P0. We show that the
P-centrality of ⋆ implies that φ extends to a functor φP : K⋆P → PD

alg. We show that
the bottom square of this diagram commutes up to natural isomorphism.

We will then show that the image of certain unstable modules (namely, the con-
nected, reduced unstable modules) under φ : U(q) → Dmod, are in the essential image
of D ⊗− : VectF → Dmod.

For any unstable moduleM , denote by φM the D-module whose underlying vector
space is M and such that dx = P0M . This induces a functor φ : U(q) → Dmod.

Lemma 11.1. Let A be a P-algebra in U(q). Then, P0 is a P-algebra endomorphism

of A. In other words, the functor φ: U(q)→Dmod extends to a functor φP : PU(q)
alg →PD

alg.

For all ⋆ ∈ P(q)Sq , this restricts to a functor φ̄P : K∗
P → PD

alg.

Proof. This is a straightforward generalisation of [11, Corollary 2.7], which covers
the case q = 2.
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Recall that, for any ⋆ ∈ P(q)Sq , we built, in Section 7, a functor ψ! : Dmod → Palg

that sends a D-module M to the free P-algebra over M modulo the relation dx =
⋆(x, . . . , x) for all x ∈M .

Proposition 11.2. The functor ψ! ◦ φ : U(q) → Palg, sending M to

S(P,M)/(P k0 x− ⋆k(x, . . . , x), x ∈M,k ∈ N),

extends into a functor K⋆
P : U(q) → PU(q)

alg .
Additionally, if ⋆ is P-central (see Definition 8.1), then K⋆

P restricts into a functor
K⋆

P : U(q) → K⋆P .

Proof. Note that S(P,M) is also the free P-algebra in U(q) generated byM . In other
words, S(P,M) can be equipped with an unstable A(q)-action by:

P i · (µ;x1, . . . , xn) =
∑

j1+···+jn=i
(µ;P j1x1, . . . , P

jnxn).

To make sure that this induces an unstable A(q)-action on:

S(P,M)/(P k0 x− ⋆k(x, . . . , x), x ∈M,k ∈ N),

it suffices to check that the set X = {P k0 x− ⋆k(x, . . . , x), x ∈M,k ∈ N} is stable
under the action of A(q). For all k, i ∈ N and x ∈M , one can show that

P iP k0 x =

P k0 P
i

qk x, if qk|i,
0, otherwise.

See for example, [21, Section 1.7].
We will show, by induction on k, that,

P ix⋆kq
k

=


(
P

i

qk x

)⋆kqk
, if qk|i,

0, otherwise.

(Qk)

For the case k = 0, there is nothing to prove. Suppose Qk proven. Denote by t = x⋆kq
k

Then,

P ix⋆k+1q
k+1

= P i ⋆ (t, . . . t)

=
∑

j1+···+jq

⋆(P j1 t, . . . , P jq t).

Fix j′1 ⩽ · · · ⩽ j′q ∈ N such that j′1 + · · ·+ j′qk = i. Suppose that we have:

j′1 = j′2 = · · · = j′r1 < j′r1+1 = · · · = j′r1+r2
< · · · < j′r1+···+rs−1+1 = · · · = j′r1+···+rs ,

with r1 + · · ·+ rs = q, that is, r1 + · · ·+ rs is the coarsest partition of the integer q
such that j′l = j′l′ if and only if there exists m ∈ [s] such that

r1 + · · ·+ rm−1 < l, l′ < r1 + · · ·+ rm.
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Since ⋆ is fixed under the action of Sq, the term ⋆(P j
′
1s, . . . , P j

′
qs) appears in the

above sum exactly q!
r1!...rs!

times. This integer is divisible by q unless s = 1, in which
case, r1 = q, and the condition j′1 + · · ·+ j′q = i implies that i ≡ 0 [q] and j′1 = · · · =
j′q =

n
q .

This implies that

P i ⋆ (t, . . . , t) =

⋆
(
P i/qt, . . . , P i/qt

)
, if i ≡ 0 [q]

0, otherwise.

Now, the induction hypothesis gives:

P i/qt = P i/q(⋆k;x, . . . , x) =


(
⋆k;P

i/qk+1

x, . . . , P i/q
+1x

)
, if qk+1|i

0, otherwise,

and so:

P ix⋆k+1q
k+1

=


(
⋆k+1;P

i/qk+1

x, . . . , P i/q
+1x

)
, if qk+1|i

0, otherwise.

We have provenQk for all k ∈ N. Since both 0 and P0P
i

qk x−
(
⋆k;P

i/qkx, . . . , P i/q
k

x
)

belong to X, we conclude that X is stable under the action of A(q). So, we defined an
unstable A(q)-action on ψ! ◦ φ(M) which is compatible with the P-algebra structure.

To prove the second assertion of our proposition, suppose now that ⋆ is P-central.
We want to show that ψ! ◦ φ(M), with the above A(q)-action, is ⋆-unstable. In other
words, we want to show that, for all µ ∈ P(n), x1, . . . , xn ∈M , one has:

P0(µ;x1, . . . , xn) ∼X ⋆((µ;x1, . . . , xn)
×q) = (⋆(µ×q);x1, . . . , xn, . . . , x1, . . . , xn),

where ∼X denotes the equivalence relation defined by the quotient by the P-ideal
generated by X. From Lemma 11.1, we deduce that:

P0(µ;x1, . . . , xn) = (µ;P0x1, . . . , P0xn).

But, one has:

(µ;P0x1, . . . , P0xn) ∼X (µ, ⋆(x×q1 ), . . . , ⋆(x×qn )).

This last element is equal to:

(µ(⋆×n);x×q1 , . . . , x×qn ).

Using the fact that ⋆ is P-central, µ(⋆×n) = ⋆(µ×q) · σ−1
q,n, so,

(µ(⋆×n);x×q1 , . . . , x×qn ) = (⋆(µ×q);x1, . . . , xn, . . . , x1, . . . , xn).

This concludes our proof.

Proposition 11.3. Let ⋆ ∈ P(q)Sq be a P-central operation. Then K⋆
P(M) is the

free ⋆-unstable P-algebra over M . In other words, K⋆
P : U(q) → K⋆P is a left adjoint

to the forgetful functor K⋆P → U(q).
Proof. This is a somewhat straightforward generalisation of [11, Proposition 6.7].
Since we are using different constructions in this article, let us give the detailed
proof.
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Let M be an object in U(q), A an object in K⋆P . We show that there is a bijection
HomU(q)(M,A) ∼= HomK⋆

P
(K⋆

P(M), A).
Recall from the construction of K⋆

P that there is a surjective morphism

S(P,M) → K⋆
P(M)

in U(q) (see the proof of 11.2). The unit of the monad S(P,−) provides a morphism
of unstable modules M → S(P,M). To any morphism f : K⋆

P(M) → A in K⋆P , we
associate the morphism in U(q) which is the following composition:

f̄ : M // S(P,M) // K⋆
P(M)

f // A.

Now suppose g : M → A is a morphism in U(q). Then there is a unique morphism

g : S(P,M) → A in PU(q)
alg . For any x ∈M and k ∈ N, since g′ is compatible with the

action of A(q), g′(P k0 x) = P k0 g
′(x). Since g′ is compatible with the P-algebra struc-

tures, one has g′(⋆k(x, . . . , x)) = ⋆k(g
′(x), . . . , g′(x)). Finally, since A is ⋆-unstable,

P k0 g
′(x) = ⋆k(g

′(x), . . . , g′(x)). So, for any x ∈M and k ∈ N, g′(P k0 x− ⋆k(x, . . . , x)) =
0, which implies that g′ passes to the quotient into a morphism

ĝ : S(P,M)/(P k0 x− ⋆k(x, . . . , x), x ∈M,k ∈ N) → A

in PU(q)
alg , which can be seen as a morphism ĝ : K⋆

P(M) → A. Showing that the asso-

ciations f 7→ f̄ and g 7→ ĝ provide inverse bijections between HomU(q)(M,A) and
HomK⋆

P
(K⋆

P(M), A) is a straightforward verification that is left to the reader.

Remark 11.4. The construction of the categories PU(q)
alg , K⋆P and of the functor K⋆

P
are natural with respect to P, and to ⋆, in the following sense: let f : P → Q be an

operad morphism. Then, f induces a restriction functor f∗ : QU(q)
alg → PU(q)

alg . One can

readily check that, for all ⋆ ∈ P(q)Sq , this restricts into a functor: f∗ : Kf(⋆)Q → K⋆P .
In this same setting, f : P → Q also induces a morphism

f∗ : K
⋆
P(M) → f∗

(
K
f(⋆)
Q (M)

)
,

natural in M .

Lemma 11.5. For any connected reduced unstable moduleM , φ(M) is isomorphic to
D ⊗ Forget(ΣΩM), where Forget : U(q) → VectF is the forgetful functor that extracts
the underlying vector space of an unstable module. This isomorphism is not unique
in general.

Proof. The unit of the adjunction Σ ⊣ Ω from Proposition 9.4 now provides a map
M → ΣΩM =M/P0M . Pick any linear section s : M/P0M →M (this is not a mor-
phism in U(q)). The fact that M is reduced connected and that P0 is injective and
multiplies the degree by q then implies that M is freely generated by s(ΣΩM) under
the action of P0.

We now obtain our main result as an easy consequence of the preceding results:

Theorem 11.6. Let ⋆ ∈ P(q)Sq be a P-central operation. For all connected reduced
M, the underlying P-algebra of K⋆

P(M)∈K⋆P(M) is isomorphic to S(P,Forget(ΣΩM)).
This isomorphism is not unique in general.
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Proof. Consider the diagram of categories D2 from the beginning of the present sec-
tion. Proposition 8.4 shows that the top square commutes up to natural isomorphism.
The functor K⋆

P has been constructed in Proposition 11.2 so that the bottom square
commutes up to natural isomorphism.

Let M be a connected, reduced unstable module. Lemma 11.5 shows that φ(M) =
D ⊗ Forget(ΣΩM). So, the P-algebra in D-modules φ ◦K⋆

P(M) is isomorphic to
ψ!(D ⊗ Forget(ΣΩM)). Its underlying P-algebra is then isomorphic to the free P-
algebra S(P,Forget(ΣΩM)). Since the underlying P-algebra of φ ◦K⋆

P(M) is also
the underlying P-algebra of K⋆

P(M), we obtain the result.

12. Applications

In this section, we apply our result to free unstable modules to obtain a description
of the free ⋆-unstable P-algebra generated by one element. This allows us identify
certain Brown–Gitler modules and Carlsson modules from Section 10 to free unstable
algebras over certain operads.

Theorem 11.6 shows that, for ⋆ ∈ P(q)Sq a P-central operation, the free ⋆-unstable
P-algebra generated by a connected, reduced unstable module M is itself free as a
P-algebra, generated by the underlying vector space of ΣΩM . In particular, if ΣΩM
comes with a natural choice of linear basis, and when the operad P comes itself with
a basis, we can give a basis of the P-algebra K⋆

P(M).
Recall from Section 9 that the free unstable module F (n) over an element of

degree n satisfies ΣΩF (n) ∼= ΣF (n− 1). In particular, the underlying vector space of
ΣΩF (1) ∼= ΣF (0) is one dimensional, concentrated in degree 1. We then get:

Proposition 12.1. Let ⋆ ∈ P(q)Sq be a P-central operation. Then, K⋆
P(F (1)) is the

P-algebra in U(q) whose underlying P-algebra is freely generated by one element ι1
of degree 1, endowed with the unstable action of A(q) induced by:

P jι1 =

 ι1, if j = 0,
⋆(ι1, . . . , ι1), if j = 1,
0, otherwise.

Proof. This is a straightforward generalisation of [11, Proposition 8.4], which treats
the case q = 2. In particular, since ΣΩF (1) ∼= ΣF (0), and applying Theorem 11.6,
we know that K⋆

P(F (1)) is a ⋆-unstable P-algebra whose underlying P-algebra is
generated by one element ι1 of degree 1. Since K⋆

P(F (1)) is a P-algebra in U(q), it
suffices to inspect the action of A(q) on ι1, and the instability relation reads P iι1 =
0 for all i > 1. Since K⋆

P(F (1)) is ⋆-unstable, we necessarily have P 1ι1 = P0ι1 =
⋆(ι1, . . . , ι1).

Example 12.2. When P = uCom and ⋆ = Xq, the functor KuCom
Xq

corresponds to the

functor denoted by U in [15]. In this case, Theorem 11.6 corresponds to a remark
of Kuhn [15, p. 4223]. In [15, Theorem 1.6], Kuhn identifies a large family of free
unstable algebras generated by unstable modules defined as representations of sym-
metric powers. This contains, for example, the computation of the mod 2 cohomology
of Eilenberg–MacLane spaces of finite elementary abelian 2-groups [15, Remark 1.8
(2)].
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Theorem 12.3 (Compare with [11, Proposition 9.10]). The Carlsson algebra K (see
Definition 10.3) with the multiplication of monomials and the operator ϕ, is isomor-
phic to the free (Xq; d, . . . , d)-unstable uCom ◦D±-algebra generated by F (1).

Proof. This is a straightforward generalisation of the proof of the first assertion of [11,
Proposition 9.10], which treats the case q = 2.

From Theorem 12.3, we deduce:

Theorem 12.4. The Carlsson module of weight one K(1) (see Definition 10.3) with
its Levq operation from Lemma 10.6, is isomorphic to the free ⋆-unstable Levq-algebra
generated by F (1).

Proof. We use the naturality of K⋆
P (see remark 11.4). In particular, recall from 5.1

the definition of the operad Levq as a suboperad of FΠ. Proposition 4.8 then implies
that we have an injective operad morphism Levq → uCom ◦D, and uCom ◦D embeds
in uCom ◦D±. Hence, following remark 11.4, the resulting morphism of operads
f : Levq → uCom ◦D± induces an injective morphism of ⋆-unstable Levq-algebras

K⋆
Levq

(F (1)) → f∗
(
K

(Xq ;d,...,d)

uCom ◦D± (F (1))
)
. Using Theorem 12.3, we can therefore view

f∗
(
K

(Xq ;d,...,d)

uCom ◦D± (F (1))
)
as the ⋆-unstable Levq-algebra given by the Carlsson algebra

K and with q-level multiplication as in Lemma 10.5. We want to identify the image
of K⋆

Levq
(F (1)) as a sub-q-level algebra of K. For this, recall (see Lemma 6.1) that

Levq is spanned, as a suboperad of uCom ◦D±, by elements

(Xm; di1 , . . . , dim) ∈ uCom ◦D±(m)

such that
∑m
j=1

1
qij

= 1. According to Proposition 12.1, K⋆
Levq

(F (1)) is then spanned

by the elements ((Xm; di1 , . . . , dim); ι1, . . . , ι1). Using the operad morphism f , these
are identified with the monomials xi1 · · ·xim in K such that

∑m
j=1

1
qij

= 1, that is,

all the monomials of weight 1.

Proposition 12.5. The Carlsson module K(1) is the limit of the Brown–Gitler mod-
ule J(qs) in the category of ⋆-unstable Levq-algebras.

Proof. Recall from Remark 10.4 that K(1) is isomorphic to the limit of the following
diagram in U(q):

J(n) J(qn)
ϕoo J(q2n)

ϕoo · · ·oo .

Following Lemmas 10.5 and 10.6, J(qs) is equipped with a ⋆-unstable Levq-algebra
structure for all s. Since the map ϕ : J(qs+1) → J(qs) sends xs+1 to xs, and is compat-
ible with the Levq-algebra structures, the diagram above is a diagram in ⋆-unstable
Levq-algebras. Hence, K(1) is the limit of this diagram in the category of ⋆-unstable
Levq-algebras.

Theorem 12.6. For all s ⩾ 1, the Brown–Gitler module J(qs), with its Levq opera-
tion from Lemma 10.6, is isomorphic to the free ⋆-unstable Ts Levq-algebra (see 5.6)
generated by F (1).
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Proof. Consider the diagram of operads (∗) of 5.7. Using the naturality of our con-
structions (see remark 11.4), we get, for all s ⩾ 1, a surjective morphism of ⋆-unstable
q-level algebras K⋆

Levq
(F (1)) → K⋆

Ts Levq
(F (1)). By the identification K⋆

Levq
(F (1)) ∼=

K(1) as above, one can check that K⋆
Ts Levq

(F (1)) is, as a q-level algebra, the quotient

of K(1) by all xi such that i > s. It follows that K⋆
Ts Levq

(F (1)) is isomorphic, as a

q-level algebra (and so, as a Ts Lev-algebra), to the Brown–Gitler module J(qs). In
fact, the diagram of ⋆-unstable q-level algebras:

J(n) J(qn)
ϕoo J(q2n)

ϕoo · · ·oo ,

whose limit is K(1), is exactly the diagram of ⋆-unstable q-level algebras obtained
from the diagram (∗) of 5.7 by naturality of our constructions.

Remark 12.7. Theorem 12.4 shows that the Carlsson algebraK can be identified with
the free dX2-unstable uCom ◦D±-algebra generated by F (1). Restriction along the
inclusion of operads Π = uCom ◦D → uCom ◦D± makes K a (non-free) dX2-unstable
Π-algebra, and the quotient of K by the ideal generated by xi for all i < 0 yields the
Brown–Gitler algebra J , seen as a Π-algebra. As a Π-ideal, this ideal is generated by
the unique element x−1 = dι1.

Similarly, when q = 2 considering KdX2

uCom ◦D±(F (n)) as a dX2-unstable Π-algebra,
and quotienting by the ideal generated by dιn, yields a description of the algebras
denoted by H∗(T (n, ∗),F2) in [15]. As the notation suggests, these algebras are
obtained as the cohomology of a spectrum, which is related to the Eilenberg–MacLane
spaces K(V, n).
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