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Abstract
Magnitude is a numerical invariant of metric spaces and

graphs, analogous, in a precise sense, to Euler characteristic.
Magnitude homology is an algebraic invariant constructed to
categorify magnitude. Among the important features of the
magnitude of graphs is its behaviour with respect to an opera-
tion known as the Whitney twist. We give a homological account
of magnitude’s invariance under Whitney twists, extending the
previously known result to encompass a substantially wider
class of gluings. As well as providing a new tool for the com-
putation of magnitudes, this is the first new theorem about
magnitude to be proved using magnitude homology.

1. Introduction

Magnitude is an isometric invariant of metric spaces, so-named for its web of
connections to ‘size-like’ quantities of significance in various corners of mathematics
[14]. The magnitude of a space X is a function

Mag(X)(−) : [0,∞)→ R

whose parameter can be thought of as controlling the scale of the metric in X. For any
given choice of the parameter, magnitude behaves in many ways like the cardinality
of finite sets: it is multiplicative with respect to ℓ1-products, additive with respect to
disjoint unions, and satisfies an inclusion-exclusion formula with respect to a more
general class of unions. Yet, unlike cardinality, magnitude is sensitive to the distances
in a space.

The three-point space X in Figure 1 is indicative of the general situation for finite
spaces. When the scale parameter t is very small, the magnitude function is close to
1, as if recognizing that ‘from far away’ X resembles a one-point space. As t increases,
it becomes possible to distinguish the point on the right, and Mag(X)(t) lingers close
to 2. Once t is sufficiently large, all three points in the space are easily distinguished
and Mag(X)(t) approaches 3. Accordingly, the magnitude function is often referred
to as counting ‘the effective number of points’ in a finite space as the scale of the
metric is varied.
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Figure 1: The magnitude function of a three-point space.
(Example 6.4.6 in Leinster [16], originally due to Willerton.)

Magnitude can be defined for many non-finite compact metric spaces, too, and
in this context it has been shown to be related to a remarkable variety of more
classical size-related quantities. Under suitable conditions, the magnitude function
records information about the intrinsic volumes of integral geometry [3, 5, 7, 22,
24], curvature and the Willmore energy [6], Minkowski dimension [23] and even a
family of indices used by biologists to quantify the diversity of ecological communities
[17, 18, 20]. (These references are far from exhaustive.)

In this paper, though, we will be concerned specifically with the magnitude of
graphs. Every undirected finite graph can be regarded as a metric space in which the
distance between any pair of vertices is the number of edges in a shortest edge-path
joining them. The magnitude of a graph is defined to be its magnitude with respect
to this metric.

In this context, magnitude is most naturally interpreted as a formal power series
with integer coefficients. Leinster [15] gives a combinatorial formula for the coefficients
in this series, revealing them to count—with appropriate signs—the paths of given
length in a graph. (This terminology will be explained in Section 2.) Observing that
the alternating sum computing each coefficient resembles the Euler characteristic of a
chain complex, Hepworth and Willerton in [10] construct a bigraded homology theory
for graphs which ‘categorifies’ their magnitude. That theory, magnitude homology, has
since been extended by Leinster and Shulman [21] to encompass all metric spaces.
In what follows we denote the magnitude homology functor by MH∗

• , with • and ∗
standing for the two distinct gradings; its construction is described in Section 2.

The magnitude homology of metric spaces has been well studied in recent years,
and has been shown to capture subtle information about the convexity of a space
[11] and the existence and uniqueness of geodesics [1, 8]. Even in the restricted
setting of graphs it has proved to be a rich invariant. Particular attention has been
paid to a class of graphs which are termed diagonal : graphs X with the property
that MHℓ

k(X) = 0 whenever k ̸= ℓ [10, 9]. Most recently, Asao [2] has established a
close relationship between magnitude homology and Grigor’yan–Muranov–Yau path
homology, exploiting this relationship to prove that every diagonal graph has trivial
reduced path homology.
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Meanwhile, various results about the formal cardinality-like properties of mag-
nitude have been recovered as the numerical ‘shadows’ of facts about magnitude
homology. In particular, Bottinelli and Kaiser [4] (following Hepworth and Willerton
[10]) have proved a Künneth-type theorem and a Mayer–Vietoris theorem for the
magnitude homology of metric spaces—categorifying, respectively, the mutiplicativ-
ity of magnitude and the inclusion-exclusion formula. This paper takes a similar form,
offering a homological account of magnitude’s behaviour with respect to an operation
on graphs known as the Whitney twist.

Magnitude and the Whitney twist In Leinster’s paper [15] initiating the
study of magnitude for graphs, there are three central results concerning magni-
tude’s behaviour under combinations such as products or gluings. The first of these,
Lemma 3.6, says that magnitude is multiplicative with respect to the operation that
graph theorists call the cartesian product, □. That is, for any graphs X and Y ,

Mag(X□Y ) = Mag(X) ·Mag(Y ). (1)

The second such result, Theorem 4.9 in [15], gives an inclusion-exclusion formula for
the magnitude of a union of graphs, subject to conditions on the subgraphs involved.
Each of these results is a specialization to graphs of a corresponding property of
metric space magnitude.

The third combination result in [15] is different. It concerns an operation known
as the Whitney twist, which can be described as follows. Given two graphs G and
H, each with two (distinct) distinguished vertices, there are two ways to form a new
graph: we can glue the distinguished vertices together one way round, or the other.
If X and Y are the graphs thus formed, one says that X and Y differ by a Whitney
twist. Leinster proves that magnitude is preserved under Whitney twists—provided
the gluing vertices happen to be adjacent.

Theorem 1.1 ([15], Theorem 5.2) Let X and Y be graphs differing by a Whitney
twist, and suppose that the two gluing vertices are adjacent in X (or equivalently
in Y ). Then

Mag(X) = Mag(Y ).

It can be seen from Example 4.16 in the same paper that magnitude need not be
preserved under Whitney twists in which the gluing vertices are not adjacent. From
this it follows that the magnitude of a graph—unlike many other graph invariants—is
not determined by the cycle matroid or the Tutte polynomial.

While multiplicativity and the inclusion-exclusion formula both lend weight to
the interpretation of magnitude as a ‘size-like’ invariant, the fact that magnitude is
preserved under certain Whitney twists but not others is intriguing, and thus far
poorly understood. In particular, it is not easy to extract from the proof of Leinster’s
Theorem 5.2 a clear understanding of what exactly it is about the adjacency of the
two gluing vertices that guarantees the result, leading one to wonder whether the
theorem might be merely an instance of a more general statement about gluings. In
this paper we prove that, in fact, it is.

Moreover, whereas the multiplicativity of magnitude and the inclusion-exclusion
formula have been categorified, respectively, by the Künneth theorem and the Mayer–
Vietoris sequence for magnitude homology, magnitude’s behaviour under Whitney
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twists has until now resisted a homological explanation. Indeed, the behaviour of
magnitude homology under Whitney twists is listed as an open question in [10].

That question is not settled here; instead we prove, by homological means, an
extension of Theorem 1.1 to a wider class of ‘twisted’ graph gluings which we term
sycamore twists (Definition 3.3). Our main theorem runs as follows.

Theorem 6.5 Let X and Y be graphs which differ by a sycamore twist. Then

Mag(X) = Mag(Y ).

As well as providing a new tool for computing magnitudes of gluings, Theorem 6.5
can be regarded as clarifying the picture of graph magnitude in two senses—and in
doing so it opens up new questions about magnitude homology.

First, the definition of a sycamore twist distills the important features of a Whitney
twist with adjacent gluing vertices and elucidates the role played by this adjacency.
Second, the proof of the theorem makes it clear that the behaviour of magnitude
under twists is intimately related to the excision theorem and the Mayer–Vietoris
sequence for magnitude homology and thereby to the inclusion-exclusion formula for
magnitude.

Indeed, the result opens up the possibility that the excision and Mayer–Vietoris
theorems might yet be strengthened, implying a more general inclusion-exclusion
principle for magnitude. This would afford efficiency in computations, but it could
also prove valuable for theoretical reasons. As things stand, the excision theorem
is not strong enough to provide an axiomatization of magnitude homology for any
class of graphs or metric spaces large enough to be interesting. A stronger excision
theorem might allow for an axiomatic theory of magnitude homology and thereby of
magnitude for finite spaces.

Finally, while various authors have obtained categorifications of known results
about magnitude—and there are many interesting results about magnitude homology
which do not appear to have immediate consequences for magnitude—to the best of
our knowledge Theorem 6.5 is the first new result about magnitude to be proved using
magnitude homology. We believe this offers reason to hope that other mysteries in
the theory of magnitude may eventually be resolvable using homological techniques.

The structure of this paper We begin, in Section 2, with an overview of mag-
nitude and magnitude homology. Section 3 introduces the main object of interest: a
pair of graphs related by a sycamore twist. Sections 4–7 are dedicated to the proof
of the main theorem.
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2. Magnitude and magnitude homology

Throughout this paper, a graph is an undirected finite graph with no loops or
multiple edges. We endow a graph X with the metric in which the distance d(u, v)
(or dX(u, v)) from a vertex u to a vertex v is the number of edges in a minimal
edge-path connecting them, or ∞ if no such edge-path exists.

Let Z[q] denote the ring of polynomials over Z in one variable, q. Given a graph
X, we construct a square matrix ZX whose rows and columns are indexed by the
vertices of X and whose (u, v) entry is

ZX(u, v) = qd(u,v) ∈ Z[q],

adopting the convention that q∞ = 0.
The diagonal entries of the matrix ZX are all equal to 1, and each of its off-diagonal

entries is either zero or qn for some natural number n ̸= 0. The determinant of ZX is
thus a polynomial in q with constant term 1, so is a unit in the ring Z[[q]] of power
series in q with integer coefficients. This ensures that ZX is invertible over Z[[q]],
allowing us to make the following definition.

Definition 2.1 (Leinster [15], Definition 2.1) The magnitude of a graph X is

Mag(X) =
∑

u,v∈X

Z−1
X (u, v) ∈ Z[[q]].

The magnitude of a graph is a specialization of an invariant defined in the vastly
greater generality of finite enriched categories ([14], Section 1). Specialized in a dif-
ferent direction, to ordinary categories, magnitude turns out to have close links to
topological Euler characteristic ([13], Propositions 2.11 and 2.12); interpreted for
posets, it extends the theory of Möbius inversion. Perhaps its most fertile environ-
ment, though, is that of metric spaces regarded as categories enriched in the poset
([0,∞],⩾) with monoidal structure given by addition. (For the classical account of
this perspective on metric spaces, see Lawvere [12].) An overview of the properties
of metric space magnitude can be found in [19].

Evaluating Mag(X) at q = e−t for all nonnegative real numbers t yields the mag-
nitude function discussed in the introduction:

Mag(X)(t) = Mag(X)|q=e−t .

In general this function may diverge at some t; Example 2.2.7 in [14] describes a
graph exhibiting this behaviour. In what follows, we will deal exclusively with the
power series Mag(X).

Given magnitude’s relationship to Euler characteristic, it is natural to ask whether
there exists an algebraic invariant which ‘categorifies’ magnitude in the sense that
singular homology categorifies the Euler characteristic of a topological space. In 2015
Hepworth and Willerton answered this question affirmatively in the case of graphs,
constructing a homology theory whose Euler characteristic recovers their magnitude
[10]; in 2017 Leinster and Shulman extended that construction to a broad class of
enriched categories, including all metric spaces [21]. In this paper we will be working
exclusively with Hepworth and Willerton’s magnitude homology for graphs, which we
now describe.
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Their construction depends on a combinatorial formula for the coefficients in the
power series Mag(X), given by Leinster in [15]. To state the formula, it will be helpful
to make the following definition.

Definition 2.2 A path, or a k-path, in a graph X is a tuple x = (x0, . . . , xk) of
vertices in X. We call x non-degenerate if x0 ̸= x1 ̸= · · · ̸= xk. The length of a
path x is

L(x) =

k−1∑
i=0

d(xi, xi+1).

Remark 2.3 Notice we do not require that consecutive vertices in a path be con-
nected by an edge; thus, every non-degenerate k-path in a graph X has length at
least k, and possibly greater. Since all our graphs are finite, there can be only finitely
many non-degenerate paths in X of any given length; moreover, there can be no
non-degenerate k-paths of length ℓ for k > ℓ.

Leinster’s formula says that calculating the magnitude of a graph X comes down
to counting non-degenerate paths in X of every possible length.

Proposition 2.4 ([15], Proposition 3.9) For any graph X,

Mag(X) =

∞∑
ℓ=0

cℓ(X)qℓ (2)

where the coefficients are given by

cℓ(X) =

ℓ∑
k=0

(−1)k#{non-degenerate k-paths of length ℓ in X}. (3)

Hepworth and Willerton proceed from Proposition 2.4, constructing an N-graded
chain complex whose Euler characteristic in grading ℓ ∈ N computes the coefficient
cℓ in Leinster’s formula.

Definition 2.5 ([10], Definition 2) The magnitude chain complex of a graph X
is the direct sum of chain complexes

MC(X) =
⊕
ℓ∈N

MCℓ
•(X)

where the chain complex MCℓ
•(X) is freely generated in degree k ⩾ 0 by the set of

non-degenerate k-paths in X whose length is ℓ. The boundary operator

d : MCℓ
k(X)→MCℓ

k−1(X)

is an alternating sum d =
∑k−1

i=1 (−1)iδi where δi is defined on generators by

δi(x0, . . . , xk) =

{
(x0, . . . , x̂i, . . . , xk) if L(x0, . . . , x̂i, . . . , xk) = ℓ

0 otherwise.
.

Here, (x0, . . . , x̂i, . . . , xk) denotes the path (x0, . . . , xi−1, xi+1, . . . , xk).
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Definition 2.6 ([10], Definition 3) The magnitude homology of a graph X is the
bigraded abelian group defined for (k, ℓ) ∈ N× N by

MHℓ
k(X) = Hk(MCℓ

•(X)).

We will refer to ℓ as the length grading and k as the homological degree of the
abelian groups MCℓ

k(X) and MHℓ
k(X).

That the magnitude of a graph can be recovered from its magnitude chain complex
follows immediately from Proposition 2.4.

Theorem 2.7 ([10], Theorem 2.8) Let X be a graph. Then

Mag(X) =
∑
ℓ∈N

χ(MCℓ
•(X))qℓ.

The construction of the magnitude chain complex–and thus magnitude homology–
is functorial with respect to morphisms of graphs which preserve or contract edges;
equivalently, vertex functions f : X → Y satisfying

dY (f(x), f(x
′)) ⩽ dX(x, x′)

for all pairs of vertices x, x′ in X. These distance-decreasing maps are especially
natural to consider when regarding a metric space as an enriched category.

The chain map induced by a distance-decreasing function f : X → Y is given on
each generator x = (x0, . . . , xk) of MC(X) by

MC(f)(x) =

{
f(x) if L(f(x)) = L(x)

0 otherwise,

where f(x) denotes the path (f(x0), . . . , f(xk)) in Y . That is,

MC(f)(x) =

{
f(x) if dY (f(xi), f(xi+1)) = dX(xi, xi+1) for 0 ⩽ i < k

0 otherwise.

In other words, the induced map MC(f) : MC(X)→MC(Y ) retains information
only about those paths in X which are mapped into Y by f in a strictly length-
preserving manner.

On the other hand, lifting magnitude from an element of a ring of formal power
series to an object of a category of chain complexes grants us the ability to study it
homologically. By Remark 2.3 the chain complex MCℓ

•(X) vanishes in homological
degrees k > ℓ, while in degrees k ⩽ ℓ it is finitely generated. Standard facts of homo-
logical algebra imply, then, that the Euler characteristic of the complex MCℓ

•(X)
coincides with that of its homology. Thus, we can compute the ℓth coefficient in the
power series Mag(X) as

cℓ =

ℓ∑
k=0

(−1)krk(MHℓ
k(X)).

That is,

Mag(X) =
∑
ℓ∈N

χ(MHℓ
•(X))qℓ. (4)

With this formula, homological techniques can be used to simplify the calculation of
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the coefficients in Mag(X). This is the principle we will be applying in later sections
of this paper.

Before introducing the main object of interest, we briefly review the inclusion-
exclusion theorem for magnitude and the Mayer–Vietoris theorem for the magnitude
homology of graphs. Both theorems hold under the same conditions, captured by the
next three definitions.

Definition 2.8 ([15], Definition 4.2) A subgraph W ⊆ X is called convex if it satis-
fies dW (u, v) = dX(u, v) for all pairs of vertices u, v ∈W . In other words, W is convex
if the inclusion W ↪→ X is an isometric embedding.

Definition 2.9 Let W ⊆ X be a convex subgraph. We say that a vertex v ∈ X
projects to W if v is connected by an edge-path to some vertex in W and there
exists a vertex π(v) ∈W such that

d(v, w) = d(v, π(v)) + d(π(v), w)

for every vertex w in W . We say a subgraph Y ⊆ X projects to W if Y ∩W ̸= ∅
and every vertex in Y which is connected by an edge-path to W projects to W .

Note that, if a vertex v projects to W , then π(v) is the unique vertex of W closest
to v. Thus, writing UW for the set of vertices in X which project to W , we have a
function π : UW →W .

Definition 2.10 ([10], Definition 26) A projecting decomposition is a triple
(X;G,H) where X is a graph with subgraphs G and H such that the following
properties hold.

• X = G ∪H.

• G ∩H is convex in X.

• H projects to G ∩H.

The inclusion-exclusion formula for the magnitude of graphs (Leinster [15], The-
orem 4.9) says that if (X;G,H) is a projecting decomposition then

Mag(X) = Mag(G) +Mag(H)−Mag(G ∩H).

The Mayer–Vietoris theorem for magnitude homology (Hepworth and Willerton [10],
Theorem 29) categorifies this formula by a split short exact sequence

0→MH∗
• (G ∩H)→MH∗

• (G)⊕MH∗
• (H)→MH∗

• (X)→ 0.

Hepworth and Willerton do not attempt to categorify Leinster’s theorem concern-
ing Whitney twists (Theorem 1.1 in this paper). Instead, they pose the question: do
two graphs related by a Whitney twist along adjacent gluing vertices have isomorphic
magnitude homology?

That question will not be answered here. Rather, we will give a homological proof
of Leinster’s theorem which does not depend on the existence of an isomorphism of
magnitude homologies. Our main theorem will extend Leinster’s result to encompass
a wider class of twisted gluings we term sycamore twists. The next section introduces
these.
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3. Sycamore twists

We begin by stating the definition of a Whitney twist more formally.

Definition 3.1 Let G be a graph with two distinct distinguished vertices g+ and g−,
and H a graph with distinct distinguished vertices h+ and h−. Form a new graph
X by taking the disjoint union of G and H and identifying g+ with h+ and g− with
h−, then identifying any double edges that result. Form another graph Y in the same
manner, this time identifying g+ with h− and g− with h+. The graphs X and Y then
differ by a Whitney twist.

g0 h0

g1 k0 h1

g2 h2

g3 k1 h3

X

g0

g1 k0 h3

g2 h2

g3 k1 h1

h0 Y

Figure 2: A Whitney twist along adjacent gluing vertices. Dashed edges and their
incident vertices belong to G; dotted edges and their incident vertices belong to H;
and the solid edge and its incident vertices belong to G ∩H. Notice that the graphs
X and Y are non-isometric and that neither (X;G,H) nor (Y ;G,H) is a projecting
decomposition, since the vertices g1, g2, h1 and h2 do not project to G ∩H.

Consider the following straightforward generalization of Definition 3.1.

Definition 3.2 Let G, H and K be graphs equipped with induced subgraph inclu-
sions

G
ιG←−↩ K ιH

↪−→ H

and let α : K → K be an isometry. Form a new graph X by taking the disjoint union
G ⊔H and identifying the vertices ιG(v) and ιH(v) for each v ∈ K; wherever a double
edge is created, identify the two edges. Form another graph Y in the same way, but
identifying ιG(v) with ιH(α(v)) for each v ∈ K. We will say that X and Y differ by a
generalized Whitney twist, or just by a twist, and specify the twist by the tuple
(G,H,K, α).

There are two scenarios in which we can already be sure that two graphs differing
by a twist will have the same magnitude—indeed, the same magnitude homology. One
relates to the Mayer–Vietoris sequence. If K is convex in X and Y , and H projects to
K, then (X;G,H) is a projecting decomposition and so is (Y ;G,H). In that case the
Mayer–Vietoris sequence tells us that the homology of both X and Y is determined
by that of G, H and K; in particular, we have

MH∗
• (X) ∼= MH∗

• (Y ) (5)

and thus Mag(X) = Mag(Y ).
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On the other hand, suppose α extends to a self-isometry of H which fixes every
vertex in H\K—that is, suppose

dH(v, k) = dH(v, α(k)) (6)

for all v ∈ H\K and all k ∈ K. In this case X and Y are isometric, so certainly their
magnitude homology agrees—though in general we cannot expect to compute it from
the homologies of G, H and K.

For graphs differing by a Whitney twist—even one with adjacent gluing vertices—
neither of these scenarios necessarily applies (see Figure 2). However, a Whitney
twist along adjacent gluing vertices does satisfy a hybrid of the two conditions. In
fact, Leinster’s proof of the invariance of magnitude under such twists relies on the
observation that the vertex sets of X and Y can be partitioned into those vertices
which lie equidistant from g+ and g−, and those which lie closer to one gluing ver-
tex than the other. The first subset consists precisely of those v satisfying (6); the
second—thanks to the presence of the edge joining g+ and g−—projects to the gluing
set.

Our main theorem concerns twists that possess a relaxed version of this hybrid
property: every vertex of the subgraph H either projects to the gluing set or else
satisfies (6).

Definition 3.3 A sycamore twist is a generalized Whitney twist (G,H,K,α) sat-
isfying two additional conditions:

• K is convex in X and Y .

• Every vertex h ∈ H which does not project toK satisfies dH(h, k) = dH(h, α(k))
for every k ∈ K.

Not every pair of graphs that differ by sycamore twist can be related by a Whitney
twist, as the following example shows.

Example 3.4 Consider the graphs X and Y depicted in Figure 3. They differ by
a sycamore twist (G,H,K, α): dashed edges belong to G; dotted edges to H; and
solid edges to K = G ∩H. The map α interchanges v5 and v6, fixing v4 and v7. The
vertices v8 and v11 project to K, while v9 and v10 satisfy equation (6) with respect
to each vertex in K.

The graphs X and Y cannot be related by a Whitney twist. If they could, then
the two gluing vertices would form a vertex cut in X (and in Y ): deleting those two
vertices and their incident edges would disconnect the graph. The graph X contains
exactly 12 two-element vertex cuts. (One can count them by hand, or with a few
lines of code.) Thus, there are in principle 12 graphs to which it can be related by a
Whitney twist. However, each of those graphs is in fact isometric to X; in particular,
none of them is isometric to Y .

Equally, not every Whitney twist is a sycamore twist. An example is given by any
Whitney twist in which the gluing vertices are non-adjacent yet are connected by an
edge-path in X (or equivalently in Y )—for in this case, the subgraph on the gluing
vertices is not convex. However, in a Whitney twist along adjacent vertices, this sub-
graph is guaranteed to be convex. Indeed, by the discussion preceding Definition 3.3,
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v0 v8

v5

v1 v2 v3 v4

v7 v9 v10 v11

X v6

v0

v5 Y

v1 v2 v3 v4

v7 v9 v10 v11

v6

v8

Figure 3: A sycamore twist which is not a Whitney twist. The sycamore twist is
named after the winged seed pod of the sycamore tree, which twists in the air as
it falls. (British schoolchildren call these ‘helicopters’.) The idea is that the vertices
which project to K resemble wings projecting from a central core.

any such twist is a sycamore twist with respect to the subgraph K comprising the
two gluing vertices and the edge between them; the map α flips the vertices of K.

This paper’s main Theorem (Theorem 6.5) says that magnitude is invariant under
sycamore twists. Example 3.4 shows that this is a proper generalization of Leinster’s
result. We will prove it using a homological argument, but the proof will not imply
that magnitude homology is invariant under sycamore twists. Instead, the homological
algebra serves to simplify the counting of paths in X and Y . After establishing, in
Section 4, a few basic facts about the metrics onX and Y , we partition the set of paths
in each graph into those which are ‘twistable’—meaning that there is a particular
bijection between the vertices of X and Y which preserves their length—and those
which are not. (This is the subject of Section 5.) By showing that non-twistable paths
generate a chain complex which is contractible, we discover (in Sections 6 and 7) that
we can discount them when it comes to calculating magnitude.

4. Properties of sycamore twists

This section establishes those properties of a sycamore twist which will facilitate
our analysis of its magnitude. We begin by fixing notation and recording basic infor-
mation about the distance functions on the twisted graphs X and Y . We will see
that the set of non-gluing vertices in H can be partitioned into two subsets, each
with a convenient property derived from the defining properties of a sycamore twist.
Finally, we relate X and Y by two functions on their vertex sets which restrict locally
to isometries; in Section 5 these functions will be used to establish a relationship
between the magnitude complexes of X and Y .

Definition 4.1 (Notation for gluing vertices) Let (G,H,K,α) be a sycamore twist.
Given a vertex v ∈ K, we denote its image ιG(v) in G simply by v, and do the same
for its image ιH(v) in H. We also use v to denote the vertex ιG(v) = ιH(v) in X and
the vertex ιG(v) = ιH(α(v)) in Y .

Using this notation, for all g ∈ G, v ∈ K and h ∈ H we have

dX(g, v) = dG(g, v) and dX(h, v) = dH(h, v)

while for g ∈ G, v ∈ K and h ∈ H\K we have

dY (g, v) = dG(g, v) and dY (h, v) = dH(h, α(v)).
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It will be useful to record a description of the other distances in X and in Y .

Lemma 4.2 Given vertices u and v in X we have

dX(u, v) =


dG(u, v) u, v ∈ G

dH(u, v) u, v ∈ H\K
mink∈K(dG(u, k) + dH(k, v)) u ∈ G and v ∈ H\K.

Given vertices u and v in Y we have

dY (u, v) =


dG(u, v) u, v ∈ G

dH(u, v) u, v ∈ H\K
mink∈K(dG(u, k) + dH(α(k), v)) u ∈ G and v ∈ H\K.

Proof. The statements concerning u, v ∈ G and u, v ∈ H\K follow from Lemma 4.3
in [15], which says that if K = G ∩H is convex in X (or in Y ) then both G and H
are also convex in X (respectively in Y ). Take u ∈ G and v ∈ H\K; we want to see
that

dX(u, v) = min
k∈K

(dG(u, k) + dH(k, v)) (7)

and

dY (u, v) = min
k∈K

(dG(u, k) + dH(α(k), v)). (8)

Let k be any vertex in K. Suppose there exists an edge-path in G between u and
k, and an edge-path in H between k and v: the concatenation of any such pair of
paths gives an edge path from u to v in X, so all three distances are finite and we
have

dX(u, v) ⩽ dG(u, k) + dH(k, v).

On the other hand, if there is no edge-path in G between u and k then dG(u, k) =∞
and the inequality still holds; the same is true if there is no edge-path in H between
k and v. Thus

dX(u, v) ⩽ min
k∈K

(dG(u, k) + dH(k, v)).

For the reverse inequality, we may assume dX(u, v) is finite. Let x = (x0, . . . , xn)
be a minimal edge path from u to v in X. Any path between a vertex in G and one in
H must pass through at least one vertex in K (this is Lemma 4.4 in [15]). Let xi be
such a vertex in x. Then (x0, . . . , xi) is a minimal edge path between u and xi in X,
and as G is convex in X this implies dG(u, xi) = dX(u, xi) = i. Similarly, dH(xi, v) =
dX(xi, v) = n− i. So dX(u, v) = dG(u, xi) + dH(xi, v) for some vertex xi ∈ K, and
hence

dX(u, v) ⩾ min
k∈K

(dG(u, k) + dH(k, v)).

This proves that (7) holds; the same argument establishes (8), after making use of
the fact that dY (k, v) = dH(α(k), v) for all k ∈ K and v ∈ H\K.

Definition 4.3 Let (G,H,K, α) be a sycamore twist. The vertices of K are the glu-
ing vertices. Vertices in H\K which project to K will be called biased vertices;
we will denote the set of biased vertices by H∗. A vertex v in H\K which does not
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project to K will be called α-neutral or just neutral; we will denote the set of
neutral vertices by H0.

The terminology is motivated by Lemma 4.4, which says that neutral vertices do
not notice the difference between the metrics in X and in Y . Lemma 4.6 tells us that
biased vertices have a complementary property: in both X and Y the vertices in H∗
project to G.

Lemma 4.4 Let (G,H,K, α) be a sycamore twist and let v be a neutral vertex in H.
For every u ∈ G ∪H we have

dX(u, v) = dY (u, v).

Proof. By the definition of a sycamore twist, each neutral vertex v satisfies

dH(k, v) = dH(α(k), v)

for all k ∈ K. The result follows upon comparing the expressions for dX(u, v) and
dY (u, v) in Lemma 4.2.

Definition 4.5 A vertex w in a graph G is between vertices u and v if

dG(u, v) = dG(u,w) + dG(w, v).

Lemma 4.6 Let (G,H,K,α) be a sycamore twist. Then h ∈ H projects to K in H if
and only if h projects to G in X and in Y .

Proof. The “if” statement is clear; we must prove the converse. Suppose h ∈ H
projects to K in H, and let g be a vertex in G. If g is a gluing vertex then

dX(h, g) = dH(h, g) = dH(h, π(h)) + dH(π(h), g) = dX(h, π(h)) + dX(π(h), g),

so we need to see that in X the vertex π(h) lies between h and every non-gluing
vertex of G. Take g ∈ G\K. Via Lemma 4.2 we have

dX(g, h) = min
k∈K

(dG(g, k) + dH(k, h))

= min
k∈K

(dG(g, k) + dH(k, π(h)) + dH(π(h), h))

= min
k∈K

(dG(g, k) + dH(k, π(h))) + dH(π(h), h)

= dX(g, π(h)) + dX(π(h), h)

as required. Thus, h projects to G in X.

The argument for Y is essentially the same. If g ∈ G is a gluing vertex, then

dY (g, h) = dH(α(g), h) = dH(α(g), π(h)) + dH(π(h), h)

= dY (g, α
−1(π(h))) + dY (α

−1(π(h)), h)

so we need to see that α−1(π(h)) lies between h and every non-gluing vertex of G.
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Take g ∈ G\K. We have

dY (g, h) = min
k∈K

(dG(g, k) + dH(α(k), h))

= min
k∈K

(dG(g, k) + dH(α(k), π(h)) + dH(π(h), h))

=

(
min
k∈K

(dG(g, k) + dH(α(k), π(h)))

)
+ dY (α

−1(π(h)), h)

=

(
min
k∈K

(dY (g, k) + dY (k, α
−1(π(h))))

)
+ dY (α

−1(π(h)), h)

= dY (g, α
−1(π(h))) + dY (α

−1(π(h)), h),

where the final line holds by the triangle inequality in Y , since α−1(π(h)) belongs
to K. Thus, if h projects to K in H, it projects to G in X and in Y .

Whenever X and Y differ by a twist (G,H,K, α) we can define bijective functions
τG, τH from the vertex set of X to that of Y by

τG(v) = v for all v ∈ X

and

τH(v) =

{
v if v is not a gluing vertex

α−1(v) if v is a gluing vertex.

(Here, as above, we are using the notation for gluing vertices established in Defini-
tion 4.1.)

The function τG can be thought of as fixing the subgraph G and twisting H, while
τH fixesH and twists G. Except in degenerate cases, neither τG nor τH defines a graph
homomorphism on the whole of X. Rather, they are constructed so that, provided the
twist is a sycamore twist, each map is a graph homomorphism—in fact, a bijective
isometry—when restricted to one part of the cover {G ∪H0, H}.

Lemma 4.7 Let (G,H,K, α) be a sycamore twist. Then the function τG restricts to
an isometry on G ∪H0 and τH restricts to an isometry on H.

Proof. It is clear that τG restricts to an isometry on G and on H0 separately, and
Lemma 4.4 tells us that for all g ∈ G and h ∈ H0 we have

dY (τG(g), τG(h)) = dX(g, h),

so τG restricts to an isometry on G ∪H0.
Similarly, it is clear that τH restricts to an isometry on H\K. It also restricts to

an isometry on K: given any k, k′ ∈ K, we have

dY (τH(k), τH(k′)) = dY (α
−1(k), α−1(k′))

= dH(α(α−1(k)), α(α−1(k′)))

= dH(k, k′)

= dX(k, k′)

as required. Finally, if h ∈ H\K and k ∈ K then

dY (τH(h), τH(k)) = dY (h, α
−1(k)) = dH(h, α(α−1(k))) = dH(h, k) = dX(h, k).
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Thus, τH restricts to an isometry on H.

Section 5 will make use of one more lemma which, although we state it in the
notation of our present setup, is a general and elementary fact about projection.

Lemma 4.8 Suppose u, v ∈ G and w ∈ H∗. Then v lies between u and w if and only
if it lies between u and π(w).

Proof. Since π(w) is between u and w, we have

d(u, π(w)) = d(u,w)− d(π(w), w).

If, and only if, v is between u and w, we can rewrite the right hand side as d(u, v) +
d(v, w)− d(π(w), w). Since π(w) is between v and w, this yields

d(u, π(w)) = d(u, v) + d(v, π(w)) + d(π(w), w)− d(π(w), w) = d(u, v) + d(v, π(w)).

g0 h0

g1 k0 h1

g2 h2

g3 k1 h3

X

g0

g1 k0 h3

g2 h2

g3 k1 h1

h0 Y

Figure 4: The subgraphs G′ (shaded in light gray) and H ′ (shaded in dark gray) do
not cover X or Y as graphs: the edges (h0, h1) and (h2, h3) are missing from G′ ∪H ′.

Remark 4.9 Given a sycamore twist (G,H,K, α), let G′ denote the subgraph of X
whose vertices are those in G ∪H0 and let H ′ denote the subgraph whose vertices
are those in H∗ ∪K. Then the vertex sets of G′ and H ′ cover the vertex set of X,
and every vertex in H ′ projects to G′ ∩H ′ = K.

If (X;G′, H ′) were a projecting decomposition, and the same were true for the
similar triple (Y ;G′, H ′), then our main theorem would follow from the inclusion-
exclusion formula. But this is not the case. In general G′ and H ′ do not cover X as
graphs: there may exist edges (u, v) in X such that u belongs to G′\(G′ ∩H ′) and v
belongs to H ′\(G′ ∩H ′), in which case (u, v) does not appear in G′ ∪H ′. Figure 4
provides an example.

5. Twistable and non-twistable paths

Consider the graphs X and Y in Figure 5. There are evident differences in the sorts
of paths that exist in each graph: for instance, Y has two 1-paths of length 3—the
paths (g0, h1) and (h1, g0)—while X has none. On the other hand, the two graphs also
have many paths in common. For example, any path which never visits the biased
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vertex h1 evidently has the same length whether it is regarded as belonging to X or to
Y . And the same is true for any path which never visits h1 without visiting the neutral
vertex h0 immediately beforehand and immediately afterwards—this follows from the
fact, characteristic of neutral vertices, that dX(h0,−) = dY (h0,−) (Lemma 4.4).

g0 h1 g0

X k0 k0 Y

g1 h0 g1 h0

k1 k1

h1

Figure 5: The graphs X and Y differ by a sycamore twist along the graph k0–k1.

Proposition 5.6, below, extrapolates from examples of this type. We use the vertex
functions τG and τH defined in Section 4 to construct a length-preserving bijection
between those paths in X and Y which never cross from G to H∗ (or vice versa)
without passing through a neutral vertex. Paths with this property will be called
‘twistable’; the next few definitions formalize this notion.

Definition 5.1 Let X be any graph and U a subset of its vertices. A path x =
(x0, . . . , xk) inX will be said to visit n vertices in U if there are n indices, i1, . . . , in,
such that the vertex xij belongs to U . We will say x is contained in U if every vertex
x0, . . . , xk belongs to U . A subpath of x is a string (xi, xi+1, . . . , xj) of consecutive
vertices in x, where 0 ⩽ i ⩽ j ⩽ k.

Definition 5.2 Let (G,H,K, α) be a sycamore twist, and let x = (x0, . . . , xk) be a
path in X (or in Y ). We will say x is flat if it is contained in G ∪H0 or contained
in H.

Every flat path can be mapped in a length-preserving manner from X to Y using
one or other of the vertex functions τG and τH .

Lemma 5.3 Suppose X and Y differ by a sycamore twist. For each k ⩾ 0 there is a
length-preserving bijection between flat k-paths in X and flat k-paths in Y .

Proof. Given a flat path x in X, let T (x) be the path in Y defined by

T (x) =

{
τG(x) if x is contained in G ∪H0

τH(x) otherwise.

Clearly, if x is a k-path then T (x) is a k-path too. Since τG restricts to an isometry
on G ∪H0 and τH restricts to an isometry on H (by Lemma 4.7), the path T (x) is
flat and its length is the same as that of x.

Thus, we have a length-preserving function

T : {flat k-paths in X} → {flat k-paths in Y }.

We can construct a function T ′ in the other direction in the same manner, replacing
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τG by τ−1
G and τH by τ−1

H . The maps T and T ′ are mutually inverse, proving the
lemma.

g0 h0

g1 k0 h1

g2 h2

g3 k1 h3

X

w

x

g0

g1 k0 h3

g2 h2

g3 k1 h1

h0 Y

T (w)

T (x)

Figure 6: On the left we see two flat paths in the graph X from Figure 2. The path
w (dashed) is contained in G ∪H0 and the path x (solid) is contained in H. On the
right we see their images T (w) and T (x) in Y .

Suppose we are given a flat path x = (x0, . . . , xk) which is contained in G ∪H0

and a flat path x′ = (x′
0, . . . , x

′
n) which is contained in H, with the property that

xk = x′
0 and this vertex is neutral. Then we can concatenate the paths x and x′ in

X, and since τG(xk) = τH(x′
0) (as τG and τH agree on all but the gluing vertices) we

can also concatenate the paths T (x) and T (x′) in Y . Length sums over concatenation
of paths, so we have that

L(T (x) ∗ T (x′)) = L(T (x)) + L(T (x′)) = L(x) + L(x′) = L(x ∗ x′).

By the same reasoning, T can be extended in a length-preserving manner to any
sequence of finitely many flat paths concatenated at neutral vertices. We now give a
name to such concatenations.

Definition 5.4 Let (G,H,K,α) be a sycamore twist. A path x in X (or in Y ) is
twistable if it can be decomposed as a concatenation of paths

x = x0 ∗ x2 ∗ · · · ∗ xm

such that each path xi is flat and each point of concatenation is a neutral vertex. We
will call such a decomposition a maximal decomposition into flat subpaths if
every neutral vertex visited by x is a point of concatenation.

In order to extend the function T in a canonical manner from flat to twistable
paths, we need to specify a canonical decomposition of each twistable path into flat
subpaths. The following lemma says that this is possible.

Lemma 5.5 Every twistable path has a unique maximal decomposition into flat sub-
paths.

Proof. Let x be a twistable path in X. If x visits no neutral vertices then x itself
must be flat, and in this case there is nothing to show. On the other hand, if x visits
at least one neutral vertex, we can decompose it as follows.
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Extract the ordered list of neutral vertices visited by x—say,

(xi0 , . . . , xik).

Let x0 be the subpath (x0, . . . , xi0) of x, let xk be the subpath (xik , . . . , xn), and for
each 0 < j < k let xj be the subpath (xij , . . . , xij+1

). Then

x = x0 ∗ · · · ∗ xk (9)

and in this decomposition each point of concatenation is neutral, while every neutral
vertex visited by x occurs as a point of concatenation. We just need to see that every
subpath xj is flat.

As x is twistable we can find some decomposition of x into flat subpaths:

x = x′
0 ∗ · · · ∗ x′

m (10)

Since each point of concatenation in (10) is neutral, each of the paths x0, . . . ,xk in (9)
must be a subpath of x′

i for some 0 ⩽ i ⩽ m. And since each subpath x′
i in (10) is

flat—that is, contained either in G ∪H0 or in H—the same must be true for each xj .
Thus, (9) is a maximal decomposition into flat subpaths, and this decomposition is
evidently unique as such.

Lemma 5.5 lets us extend the bijection T established in Lemma 5.3 to a bijection
between the twistable paths in X and those in Y .

Proposition 5.6 Suppose X and Y differ by a sycamore twist. Then for each k ⩾ 0
there is a length-preserving bijection between twistable k-paths in X and twistable
k-paths in Y .

Proof. Given a twistable k-path x in X, let

x = x0 ∗ · · · ∗ xm

be its maximal decomposition into flat subpaths. Let T (x) be the k-path in Y defined
by

T (x) = T (x0) ∗ · · · ∗ T (xm) (11)

where T (xi) is specified, for each flat subpath xi, as in the proof of Lemma 5.3.
Since τG preserves the vertex set G ∪H0 and τH preserves the vertex set H, and

both maps fix the neutral vertices, (11) is a decomposition of T (x) into flat sub-
paths and thus T (x) is twistable. Indeed, since all its neutral vertices are points of
concatenation, (11) is the maximal decomposition of T (x) into flat subpaths.

Moreover, we have

L(T (x)) =

m∑
i=0

L(T (xi)) =

m∑
i=0

L(xi) = L(x),

which says that the map

T : {twistable k-paths in X} → {twistable k-paths in Y }

is length-preserving. We can construct map T ′ in the other direction by extending,
in the same fashion, the function T ′ of Lemma 5.3. The maps T and T ′ are mutually
inverse, proving the proposition.
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Having established a bijection between the twistable paths in X and those in Y ,
our aim in Sections 6 and 7 is to prove that every path which is not twistable can be
disregarded for the purposes of calculating magnitude. For this, we will need a more
positive characterization of the ‘non-twistable’ paths. The remainder of this section
provides that characterization.

Definition 5.7 A path x = (x0, . . . , xk) in X or Y is said to be sticky if x0 is a
vertex in G\K and xk is a vertex in H∗, or vice versa, and x1, . . . , xk−1 are all gluing
vertices.

Since a sticky path always visits both G\K andH∗, no flat path can have a subpath
which is sticky. A partial converse also holds:

Lemma 5.8 Let x be a path which is not flat and which visits no neutral vertices
except perhaps its endpoints. Then x has a sticky subpath.

Proof. As it is not flat, the path x = (x0, . . . xk) must visit at least one vertex in
G\K and at least one vertex in H∗. Identify vertices xi ∈ G\K and xj ∈ H∗ in x
such that |j − i| is minimal. We may assume without loss of generality that i < j. As
|j − i| is minimal, the vertices xi+1, . . . , xj−1 must all belong to K ∪H0; in fact, as x
visits no neutral vertices (except perhaps its endpoints), they must all belong to K.
Thus, the subpath (xi, . . . xj) is sticky.

Using the lemma, we can characterize the ‘non-twistable’ paths in X and Y as
those which possess at least one sticky subpath.

Proposition 5.9 A path is twistable if and only if has no sticky subpath.

Proof. First, suppose x is a twistable path, and let x = x0 ∗ · · · ∗ xk be a decompo-
sition into flat subpaths. If x were to have a sticky subpath, say w, then—as a sticky
path visits no neutral vertices—w must be a subpath of xi for some 0 ⩽ i ⩽ k. But
no flat path can have a sticky subpath; thus, x has no sticky subpath.

Conversely, suppose x has no sticky subpath. If x visits no neutral vertices, then
Lemma 5.8 implies that x must be flat. On the other hand, if x visits at least one
neutral vertex, we can decompose it by concatenating at every neutral vertex as in
Lemma 5.5 (equation (9)). To see that every subpath xj in this decomposition is flat,
observe that for each j we either have xj = (xj0 , xj1) where xj0 and xj1 are both neu-
tral, or else xj = (xj0 , . . . , xjm) where m > 1 and none of the vertices xj1 , . . . , xjm−1

is neutral. In the first case xj is contained in H0, so is flat. In the second case, xj is
flat by Lemma 5.8.

Thus we have a decomposition into flat subpaths, so x is twistable.

6. Magnitude is invariant under sycamore twists

Having established that the twistable paths of a given length in X correspond
bijectively with those in Y , we would like to be able to disregard the paths that are
not twistable; by Proposition 5.9, the non-twistable paths are those which possess at
least one sticky subpath.
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Ideally, one might hope to show that the non-twistable paths span an acyclic
subcomplex of the magnitude complex and thus do not contribute to its homology—
or, therefore, to its Euler characteristic. The trouble is that the non-twistable paths
do not span a subcomplex of MC(X) or MC(Y ), acyclic or otherwise. A sticky
subpath can easily be destroyed, for instance if removing one of its endpoints brings
its gluing vertices into contact with a neutral vertex; Figure 7 gives an example.
Consequently, the subset of generators which contain a sticky subpath is not closed
under the boundary operator.

g0 h0

g1 k0 h1

g2 h2

g3 k1 h3

x

g0 h0

g1 k0 h1

g2 h2

g3 k1 h3

δ3(x)

Figure 7: Here we see two paths (dashed) in the graph X from Figure 2. In the path
x on the left there is a sticky subpath, (g0, k0, h3). On the right is the path δ3(x),
which is flat: it is contained in G ∪H0.

To circumvent this problem we are going to filter the magnitude complex in such a
way that, when we consider any term-by-term subquotient of the filtration, the non-
twistable paths do span a subcomplex. That subcomplex will turn out to be acyclic.
The proof of its acyclicity, which is inspired by Hepworth and Willerton’s proof of
the excision theorem for magnitude chains ([10], Theorem 28), is given in Section 7.

The idea behind the filtration is as follows. Since a sticky subpath may be destroyed
by removing one of its endpoints, and since the endpoints of a sticky subpath always
belong to the vertex set X\(H0 ∪K), we would like to engineer things so that remov-
ing a vertex in X\(H0 ∪K) from a generator always has the effect of sending that
generator to zero. To achieve this, we filter the magnitude chains by the number of
vertices they visit in X\(H0 ∪K).

Formally, for each m ∈ N, let TX
m denote the subcomplex of MC(X) spanned in

degree k ∈ N by k-paths that visit at most m vertices in X\(H0 ∪K). We can filter
MC(X) by these subcomplexes—

0 ⊆ TX
0 ⊆ TX

1 ⊆ · · ·TX
m ⊆ · · · ⊆MC(X) (12)

—and we can filter MC(Y ) in a similar manner. We have TX
m,k = MCk(X) for all

k < m, and the same for Y . What’s more, in any given length grading ℓ the magnitude
chain complex vanishes above homological degree k = ℓ (since any k-path in a graph
has length at least k), so in every length grading ℓ this filtration stabilizes after the
ℓth term.

For eachm, writeQX
m = TX

m /TX
m−1. The complexQX

m is freely generated in degree k
by paths x = (x0, . . . , xk) that visit exactly m vertices in X\(H0 ∪K). The boundary
map is

d =

k−1∑
i=1

(−1)iδi
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where δi removes the vertex xi unless xi belongs to X\(H0 ∪K) or removing it
reduces the length of the path; in either of those cases, δi(x) = 0.

Lemma 6.1 For each m ∈ N, the set of non-twistable paths in X which visit exactly
m vertices in X\(H0 ∪K) spans a subcomplex of QX

m.

Proof. Let x = (x0, . . . , xk) be a generator of QX
m in degree k. By Proposition 5.9, x

has at least one sticky subpath; let (xi, . . . , xj) be a sticky subpath.
Removing any of the vertices xp for p < i or p > j will return a path still contain-

ing the sticky subpath (xi, . . . , xj), provided it does not send the generator to zero.
Meanwhile, removing any of the vertices xi+1, . . . , xj−1 will return a sticky subpath
with one fewer vertex, unless it sends the generator to zero. And since the endpoints
xi and xj belong to X\(H0 ∪K), removing either one of them will certainly send
the generator to zero. Thus, for every p ∈ {1, . . . , k − 1}, either δp(x) has a sticky
subpath or δp(x) = 0.

Exactly same argument proves the same lemma for Y :

Lemma 6.2 For each m ∈ N, the set of non-twistable paths in Y which visit exactly
m vertices in Y \(H0 ∪K) spans a subcomplex of QY

m.

At heart of the main theorem is the following proposition, which says that the
subcomplexes spanned by the non-twistable paths are acyclic. The proof is given in
Section 7.

Proposition 6.3 Let EX
m denote the subcomplex of QX

m spanned by non-twistable
paths, and define EY

m similarly for Y . For every m ∈ N, the complexes EX
m and EY

m

are both acyclic.

Corollary 6.4 In each length grading ℓ we have χ(QX,ℓ
m ) = χ(QY,ℓ

m ).

Proof. Proposition 6.3 tells us that for each m and ℓ the subcomplex EX,ℓ
m of QX,ℓ

m

is acyclic; consequently, its Euler characteristic vanishes. This lets us write

χ(QX,ℓ
m ) = χ(QX,ℓ

m )− χ(EX,ℓ
m )

and thus, counting generators,

χ(QX,ℓ
m ) =

∞∑
k=0

(−1)k#
{
k-paths of length ℓ in X which visit
exactly m vertices in X\(H0 ∪K)

}

−
∞∑
k=0

(−1)k#
{
non-twistable k-paths of length ℓ in X which

visit exactly m vertices in X\(H0 ∪K)

}

=

∞∑
k=0

(−1)k#
{
twistable k-paths of length ℓ in X which
visit exactly m vertices in X\(H0 ∪K)

}
. (13)

By the same reasoning,

χ(QY,ℓ
m ) =

∞∑
k=0

(−1)k#
{
twistable k-paths of length ℓ in Y which
visit exactly m vertices in Y \(H0 ∪K)

}
. (14)

Since τG and τH each fix every vertex outside K and map K to itself, both functions
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preserve the vertex set H0 ∪K and its complement. Consequently, the bijection

T : {twistable k-paths in X} → {twistable k-paths in Y }

constructed in Proposition 5.6 preserves, as well as the length of a path, the number of
vertices it visits outside H0 ∪K. Using T to compare each summand in (13) and (14),
we can conclude that χ(QX,ℓ

m ) = χ(QY,ℓ
m ).

We are now equipped to prove the main theorem.

Theorem 6.5 Let X and Y be graphs which differ by a sycamore twist. Then

Mag(X) = Mag(Y ).

Proof. By Theorem 2.7 we have

Mag(X) =
∑
ℓ∈N

χ(MCℓ
•(X))qℓ (15)

and

Mag(Y ) =
∑
ℓ∈N

χ(MCℓ
•(Y ))qℓ. (16)

As the filtration

0 ⊆ TX
0 ⊆ TX

1 ⊆ · · ·TX
m ⊆ · · · ⊆MC(X)

and the similar filtration of MC(Y ) both stabilize, in any given length grading ℓ,
after the ℓth term, the additivity of Euler characteristic implies that we can calculate
the ℓth coefficient in (15) as

χ(MCℓ
•(X)) = χ(TX,ℓ

ℓ ) =

ℓ∑
k=0

χ(QX,ℓ
k )

the ℓth coefficient in (16) as

χ(MCℓ
•(Y )) = χ(TY,ℓ

ℓ ) =

ℓ∑
k=0

χ(QY,ℓ
k ).

Now Corollary 6.4 tells us that for every k, ℓ ∈ N we have χ(QX,ℓ
k ) = χ(QY,ℓ

k ) and
hence χ(MCℓ

•(X)) = χ(MCℓ
•(Y )) for every ℓ. The theorem follows on comparing

coefficients in (15) and (16).

7. Proof of Proposition 6.3

It remains to prove that for each m ∈ N the subcomplex of QX
m spanned by the

non-twistable paths is acyclic. The main idea of this proof is adapted from Hepworth
and Willerton’s Lemma 9.2 in [10], a central component of their excision theorem:
it exploits the projection property of vertices in H∗ to construct a contracting chain
homotopy.
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Essentially, given a non-twistable generator x whose first sticky subpath(xi, . . . , xj)
crosses from H∗ to G\K—meaning that xi belongs to H∗ and xj belongs to G\K—
the homotopy s inserts the vertex π(xi) immediately after xi. By definition of sticki-
ness, the vertex xi+1 must belong to G, so π(xj) lies between xi and xi+1 and thus
we have

δi+1(s(x)) = x. (17)

If, instead, the first sticky subpath in x crosses from G\K to H∗, then s inserts π(xj)
immediately before xj , and we have

δj(s(x)) = x. (18)

Ultimately the fact that s is a contraction comes down to equations (17) and (18).

Proposition 6.3 Let EX
m denote the subcomplex of QX

m spanned by non-twistable
paths, and define EY

m similarly. For every m ∈ N, the complexes EX
m and EY

m are both
acyclic.

We will prove the statement for EX
m . The same proof goes through for EY

m, since
it depends only on the common properties of X and Y established in Section 4—in
particular, the fact that vertices in H∗ project, in both X and Y , to G.

Proof. First, observe that EX
m
∼= EX

m(G,H)⊕ EX
m(H,G) where EX

m(G,H) is spanned
by paths whose first sticky subpath crosses from G\K to H∗, and EX

m(H,G) is
spanned by paths whose first sticky subpath crosses from H∗ to G\K. We are going
to establish that for every m ∈ N the complexes EX

m(G,H) and EX
m(H,G) are both

acyclic. We prove it in full for EX
m(H,G) and sketch the proof for EX

m(G,H).
Given a generator x of EX

m(H,G), denote the index of the first point of its first
sticky subpath by Fx. For each i ⩾ 0, let N•(i) be the subcomplex of EX

m(H,G)
spanned by paths x such that Fx ⩽ i. (That is, such that the subpath (x0, . . . , xi)
overlaps with the first sticky subpath.) For every i we have Nk(i) = EX

m,k(H,G) for
all k ⩽ i, and for each i there is an inclusion N•(i) ⊆ N•(i+ 1). Indeed, we can filter
EX

m(H,G) as

0 = N•(−1) ⊆ N•(0) ⊆ N•(1) ⊆ · · · ⊆ N•(i) ⊆ · · · ⊆ EX
m(H,G)

and again this filtration stabilizes in every length grading. We will show that for each
i ⩾ 0 the quotient N•(i)/N•(i− 1) is contractible. Thus, on passing to homology, each
of these inclusions becomes an isomorphism and we can conclude that EX

m(H,G) is
acyclic.
The complexN•(i)/N•(i− 1) is freely generated in degree k by pathsx=(x0, . . . , xk)

such that Fx = i; that is, paths whose first sticky subpath begins with the ith vertex.
To understand the boundary operator, notice that removing any one of the vertices
x0, . . . , xi−1 from x yields a path whose first sticky subpath begins with the (i− 1)th

vertex; this goes to zero in the quotient. Since xi is the endpoint of a sticky subpath,
it belongs to X\(K ∪H0), so removing it also sends the generator to zero. Thus, d =∑k−1

j=i+1(−1)jδj where δj removes xj unless xj belongs to X\(K ∪H0) or removing
it reduces the length of the path; in either of those cases δj(x) = 0.

Define a map s : Nk(i)/Nk(i− 1)→Nk+1(i)/Nk+1(i− 1) on generators (x0, . . . , xk)
as follows. As xi belongs to H∗, it projects to G in X. Let π(xi) denote the gluing



128 EMILY ROFF

vertex it projects through, and put

s(x0, . . . , xk) =

{
(−1)i+1(x0, . . . , xi, π(xi), xi+1, . . . , xk) if xi+1 ̸= π(xi)

0 if xi+1 = π(xi).

I claim that this is a contracting chain homotopy: that s ◦ d+ d ◦ s is the identity on
Nk(i)/Nk(i− 1), or equivalently, for every generator x = (x0, . . . , xk) we have

k−1∑
j=i+1

(−1)jsδkj (x) +
k∑

j=i+1

(−1)jδk+1
j s(x) = x. (19)

For j = i+ 2, . . . , k − 1 we have sδkj (x) = δk+1
j+1 s(x), so most terms on the left

of (19) cancel, leaving

(−1)i+1sδki+1(x) + (−1)i+1δk+1
i+1 s(x) + (−1)i+2δk+1

i+2 s(x). (20)

If xi+1 = π(xi), the second and third terms of (20) vanish, leaving

(−1)i+1sδki+1(x0, . . . , xk) = (−1)i+1s(x0, . . . , xi, xi+2, . . . xk)

= (−1)2(i+1)(x0, . . . , xi, π(xi), xi+2, . . . xk)

= (x0, . . . , xi, xi+1, xi+2, . . . xk).

Here, the first equation holds since xi+2 is in G—it’s either a gluing vertex, or it’s
the other end of the sticky subpath—so xi+1 = π(xi) lies between it and xi.

Suppose xi+1 ̸= π(xi); then xi+1 may be a gluing vertex, or it may be the other end
of the sticky subpath. In the latter case it belongs to G\K, so δki+1(x) = 0 = δk+1

i+2 s(x)
and (20) reduces to

(−1)i+1δk+1
i+1 s(x0, . . . , xk) = (−1)2(i+1)δk+1

i+1 (x0, . . . , xi, π(xi), xi+1, . . . , xk)

= (x0, . . . , xi, xi+1, . . . , xk)

where the second equation holds because xi+1 ∈ G.
Finally, suppose xi+1 is a gluing vertex (but not the vertex π(xi)); then xi+2 is

either a gluing vertex or an element of G\K. There are two cases to consider: either
xi+1 ∈ K lies between xi+2 ∈ G and xi ∈ H∗, or it doesn’t. In the former case, by
Lemma 4.8 and Lemma 4.6, xi+1 must also lie between xi+2 and π(xi); in the latter
case, it must not. Thus, in the former case we have

(−1)i+1sδki+1(x) + (−1)i+1δk+1
i+1 s(x) + (−1)i+2δk+1

i+2 s(x)

= (−1)i+1s(x0, . . . , xi, xi+2, . . . , xk)

+ (−1)2(i+1)δk+1
i+1 (x0, . . . , xi, π(xi), xi+1, . . . , xk)

+ (−1)2i+3δk+1
i+2 (x0, . . . , xi, π(xi), xi+1, . . . , xk)

= (−1)2i+2(x0, . . . , xi, π(xi), xi+2, . . . , xk)

+ (−1)2(i+1)(x0, . . . , xi, xi+1, . . . , xk)

+ (−1)2i+3(x0, . . . , xi, π(xi), xi+2, . . . , xk)

= (x0, . . . , xk)

as required, while in the latter case we have δki+1(x) = 0 = δk+1
i+2 s(x), and (20) reduces
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again to

(−1)i+1δk+1
i+1 s(x0, . . . , xk) = (−1)2(i+1)δk+1

i+1 (x0, . . . , xi, π(xi), xi+1, . . . , xk)

= (x0, . . . , xk).

In every case equation (19) holds, and we can conclude that the complex EX
m(H,G)

is acyclic.
The proof for EX

m(G,H) is very similar; we will sketch the set-up to highlight
where things differ. This time, given a generator x, denote the index of the last point
of its first sticky subpath by Lx, and for each i ⩾ 0 let M•(i) be the subcomplex of
EX

m(G,H) spanned by paths x such that Lx ⩾ k − i. (That is, such that the subpath
(xk−i, . . . , xk) overlaps with the first sticky subpath.) Thus we obtain a filtration

0 = M•(−1) ⊆M•(0) ⊆M•(1) ⊆ · · · ⊆M•(i) ⊆ · · · ⊆ EX
m(G,H), (21)

which stabilizes in every length grading as before.
Now, for each i, define a map s : Mk(i)/Mk(i− 1)→Mk+1(i)/Mk+1(i− 1) on gen-

erators (x0, . . . , xk) as follows. As xk−i belongs to H∗, it projects to G in X. Let
π(xk−i) denote the gluing vertex it projects through, and put

s(x0, . . . , xk) =

{
(−1)k−i(x0, . . . , xk−i−1, π(xk−i), xk−i, . . . , xk), xk−i−1 ̸= π(xk−i)

0, xk−i−1 = π(xk−i).

An argument mirroring the one above proves that s is a contracting chain homotopy.
Thus, on passing to homology, each inclusion in (21) becomes an isomorphism, and
we can conclude that EX

m(G,H) is acyclic.
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