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Abstract
We prove that the formula for the diagonal approximation

∆K on J. Stasheff’s n-dimensional associahedron Kn+2 derived
by the current authors in [7] agrees with the “magical for-
mula” for the diagonal approximation ∆′

K derived by Markl
and Shnider in [5], by J.-L. Loday in [4], and more recently by
Masuda, Thomas, Tonks, and Vallette in [6].

Dedicated to the memory of Jean-Louis Loday

1. Introduction

Recently there has been renewed interest in explicit combinatorial diagonal approx-
imations on J. Stasheff’s n-dimensional associahedron Kn+2 [8]. Markl and Shnider
(M-S) in [5], J.-L. Loday in [4], and more recently Masuda, Thomas, Tonks, and
Vallette (MTTV) in [6] constructed a diagonal ∆′

K on Kn+2 whose components are
“matching pairs” of faces, which in the words of Jean-Louis Loday, are “pairs of cells
of matching dimensions and comparable under the Tamari order.” By definition, every
component of the combinatorial diagonal ∆K on Kn+2 constructed by the current
authors (S-U) in [7] is a matching pair. In this paper we prove that every matching
pair is a component of ∆K . Thus the S-U formula for ∆K and the “magical formula”
for ∆′

K agree (see Definitions 4 and 5).

Historically, S-U were the first to derive a cellular combinatorial/differential graded
formula for ∆K , M-S were the first to prove the magical formula for ∆′

K , and MTTV
were the first to construct a point-set topological diagonal map, which descends to
the magical formula at the cellular level.

Using the geometric methods of MTTV, Laplante-Anfossi created a general frame-
work for studying diagonals on any polytope in [3]. In this framework, a choice of
diagonal on the n-dimensional permutahedron Pn+1 is given by a choice of chambers
in its fundamental hyperplane arrangement ([3], Def. 1.18). While the specific diag-
onal ∆′

P on Pn+1 studied in [3] differs from the S-U diagonal ∆P , the diagonal ∆′
K

on Kn+2 induced by ∆′
P agrees with ∆K .
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2. Diagonals induced by ∆P

Let Sn be the symmetric group on the finite set n := {1, 2, . . . , n}. The permu-
tahedron Pn is the convex hull of n! vertices {(σ(1), . . . , σ(n)) : σ ∈ Sn} ⊂ Rn. As a
cellular complex, Pn is an (n− 1)-dimensional convex polytope whose (n− p)-faces
are indexed by (ordered) partitions A1| · · · |Ap of n, 1 ⩽ p ⩽ n. Denoting the set of
ordered partitions of n by P (n) , the faces of Pn are identified with elements of P (n)
in the standard way.

Let X be an n-dimensional polytope that admits a (surjective) cellular projection
map p : Pn+1 → X and a realization as a subdivision of the n-cube In, i.e., for any
0 ⩽ k ⩽ n, each k-cell (k-subcube) of In is a union of k-cells of X, any two of which
intersect along their boundaries.

For example, X = Pn can be realized as a subdivision of In−1 inductively as fol-
lows: Identify P1 with 1 ∈ P (1). If Pn−1 has been constructed and a = A1| · · · |Ap ∈
P (n− 1) is a face, let a0 = 0, aj = #(Ap−j+1 ∪ · · · ∪Ap) for 0 < j < p, ap =∞,
and define 1

2∞ := 0. Let I (a) := I1 ∪ I2 ∪ · · · ∪ Ip, where Ij := [1− 1
2aj−1 , 1− 1

2aj ];
then Pn =

⋃
a∈P (n−1) a× I (a) , where the identification of faces with partitions is

given by

Face of a× I (a) Partition in P (n)

a× 0 A1| · · · |Ap|n
a× (Ij ∩ Ij+1) A1| · · · |Ap−j |n|Ap−j+1| · · · |Ap, 1 ⩽ j ⩽ p− 1

a× 1 n|A1| · · · |Ap,

a× Ij A1| · · · |Ap−j+1 ∪ n| · · · |Ap, 1 ⩽ j ⩽ p

(see Figures 1 and 2). We refer to a vertex common to Pn and In−1 as a cubical
vertex. Thus a is a cubical vertex of Pn if and only if a|n and n|a are cubical vertices
of Pn+1. Indeed, a cubical vertex has the form a = a1| · · · |ai−1|1|ai+1| · · · |an, where
a1 > · · · > ai−1 and ai+1 < · · · < an.

We begin with a review of the diagonal ∆P and the diagonal ∆X induced by the
projection p; then ∆K is obtained by setting X = Kn+2. Whereas the vertices of
Pn+1 are identified with the permutations in Sn+1, the weak order on Sn+1 given
by · · · |xi|xi+1| · · · < · · · |xi+1|xi| · · · if xi < xi+1 extends to a partial order (p-o) and
the associated Hasse diagram orients the 1-skeleton of Pn+1 [1]. Denote the minimal
and maximal vertices of a face e of Pn+1 by min e and max e, respectively, and define
e ⩽ e′ if there exists an oriented edge-path in Pn+1 from max e to min e′. Then p
induces a p-o on the cells of X. For example, when the faces of Pn+1 are indexed
by planar leveled trees (PLTs) with n+ 2 leaves and the faces of Kn+2 are indexed
by planar rooted trees (PRTs) with n+ 2 leaves (without levels), Tonks’ projection
p = θ given by forgetting levels [9] induces the Tamari order on the faces {θ(Ti)} of
Kn+2 given by θ(Ti) ⩽ θ(Tj) if Ti ⩽ Tj . In particular, the vertices of Kn+1 form a
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Figure 1: P3 as a subdivision of P2 × I.
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Figure 2: The facets of P4 as a subdivision of I3.

subset of the vertices of Pn and the Tamari order restricted to this subset agrees with
the weak order.

Let e be a cell of X and let |e| denote its dimension. A k-subdivision cube of
e is a set of faces of e whose union is a k-subcube of In for some k ⩽ n. For
example, when e is the top dimensional cell of P4, the facets in {2|134, 24|13} and
{2|134, 24|13, 23|14, 234|1} form 2-subdivision cubes of e, but any three in the lat-
ter do not (see Figure 2). Denote the set of vertices of e by Ve (when e = X we
suppress the subscript e). Given a vertex v ∈ Ve, let Ik1

v,1 and Ik2
v,2 be ki-subdivision

cubes of e such that max Ik1
v,1 = min Ik2

v,2 = v and k1 + k2 = |e|; then
(
Ik1
v,1, I

k2
v,2

)
is a

pair of (k1, k2)-subdivision cubes of e. Denote the set of all such pairs by ev and

let (Ik1
v,1, I

k2
v,2)e denote its unique maximal element; then

(
Ik3
v,3, I

k4
v,4

)
⊆ (Ik1

v,1, I
k2
v,2)e

for all (Ik3
v,3, I

k4
v,4) ∈ ev. For example, when e is the top dimensional cell of P4 and

v = 4|2|3|1, we have (I2v,1, I
1
v,2)e = ({2|134, 24|13} , {4|23|1}). For an explicit descrip-

tion of
(
Ik1
v,1, I

k2
v,2

)
e
when e ⊆ Pn see (3) below.
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If in addition, the cellular projection p : Pn+1 → X preserves maximal pairs of
(k1, k2)-subdivision cubes, i.e., for every cell e of Pn+1 we have

p
(
Ik1
v,1, I

k2
v,2

)
e
=
(
Ik1

p(v),1, I
k2

p(v),2

)
p(e)

,

the components of the induced diagonal ∆X on a cell f ⊆ X form the set of product
cells

∆X(f) :=
⋃

(ek1 , ek2)∈
(
I
k1
v,1,I

k2
v,2

)
f

v∈Vf

{ek1 × ek2}. (1)

In particular, p = θ preserves maximal pairs of (k1, k2)-subdivision cubes and ∆K(e)

is given by setting X = Kn+2 (see (4) below). Note that
(
ek1 , ek2

)
∈
(
Ik1
v,1, I

k2
v,2

)
X

implies ek1 ⩽ ek2 . Thus ek1 × ek2 is a “matching pair” in the sense of MTTV (see
Definition 3.1). Furthermore, since f = p (e) for some

e = Pn1
× · · · × Pns

and p (e) = p(Pn1
)× · · · × p(Pns

),

the diagonal ∆X(f) is automatically the comultiplicative extension of its values on
the factors of f , i.e.,

∆X(f) = ∆X(p(Pn1
))× · · · ×∆X(p(Pns

)).

The subset Ve ⊆ Sn determines the components of ∆P (e) in the following way: Let
σ = x1| · · · |xn ∈ Ve. Reading σ from left-to-right and from right-to-left, construct the
partitions ←−σ 1| · · · |←−σ p and −→σ q| · · · |−→σ 1 of maximal decreasing subsets and form the
Strong Complementary Pair (SCP)

aσ × bσ :=←−σ 1| · · · |←−σ p ×−→σ q| · · · |−→σ 1 ∈ P (n)× P (n).

Then

σ = max aσ =min bσ, min←−σ j < max←−σ j+1 for all j < p, and

min−→σ i < max−→σ i+1 for all i < q.

Thus, for σ = 2|1|3|5|4 we have ←−σ 1|←−σ 2|←−σ 3 = 21|3|54 and −→σ 3|−→σ 2|−→σ 1 = 2|135|4 so
that aσ × bσ = 21|3|54× 2|135|4.

Let a = A1| · · · |Ap ∈ P (n). For 1 ⩽ j < p, let Mj ⊆ (Aj ∖ {minAj}) such that
minMj > maxAj+1 when Mj ̸= ∅. Define the right-shift Mj action

RMj
(a) :=

{
A1| · · · |Aj ∖Mj |Aj+1 ∪Mj | · · · |Ak, Mj ̸= ∅

a, Mj = ∅.

Let M:= (M1,M2, . . . ,Mp−1) and denote the composition RMp−1 · · ·RM2RM1(a) by
RM (a) .

Dually, let b = Bq| · · · |B1 ∈ P (n). For 1 ⩽ i < q, let Ni ⊆ (Bi ∖ {minBi}) such
that minNi > maxBi+1 when Ni ̸= ∅. Define the left-shift Ni action

LNi
(b) :=

{
Bq| · · · |Bi+1 ∪Ni|Bi ∖Ni| · · · |B1, Ni ̸= ∅

b, Ni = ∅.

LetN:=(N1, N2, . . . , Nq−1)and denote the composition LNq−1
· · ·LN2

LN1
(b)byLN (b).
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Now given σ ∈ Ve and the SCP aσ × bσ, the pair RM(aσ)× LN (bσ) is a Comple-
mentary Pair (CP) on aσ × bσ. Define

Aσ ×Bσ :=
⋃
M,N

{RM(aσ)× LN (bσ)}

and

∆P (e) :=
⋃

σ∈Ve

Aσ ×Bσ. (2)

Example 2.1. On the top dimensional cell e2 ⊆ P3, ∆P (e
2) is the union of

A1|2|3 ×B1|2|3 = {1|2|3× 123} , A1|3|2 ×B1|3|2 = {1|32× 13|2} ,
A2|1|3 ×B2|1|3 = {21|3× 2|13, 21|3× 23|1} , A2|3|1 ×B2|3|1 = {2|31× 23|1},
A3|1|2 ×B3|1|2 = {31|2× 3|12, 1|32× 3|12}, A3|2|1 ×B3|2|1 = {321× 3|2|1}.

Remark 2.2. Note that the matrix representation of a CP introduced in [7] conve-
niently organizes and systematizes the combinatorial calculation of ∆P . An SCP is
represented by a step matrix and a general CP is represented by a derived matrix,
given by left-shift and down-shift actions on a step matrix.

When X = Pn+1, Formulas (1) and (2) are equivalent. The maximal (k1, k2)-
subdivision pair with respect to a vertex σ of Pn+1 is(

Ik1
σ,1, I

k2
σ,2

)
=

( ⋃
e1∈Aσ

e1,
⋃

e2∈Bσ

e2

)
. (3)

Definition 2.3. A positive dimensional face e of Pn is non-degenerate if |θ(e)| =
|e|. A positive dimensional partition a = A1| · · · |Ap ∈ P (n) is degenerate if for some
j and some k > 0, there exist x, z ∈ Aj and y ∈ Aj+k such that x < y < z; otherwise a
is non-degenerate. A CP α× β is non-degenerate if α and β are non-degenerate.

Define ∆K(Kn+1) = ∆K(θ(Pn)) := (θ × θ)∆P (Pn); then

∆K(en−1) =
⋃

non-degenerate CPs
α×β∈Aσ×Bσ

σ∈Sn

{θ (α)× θ (β)}. (4)

3. Agreement of ∆K and ∆′
K

Definition 3.1. A pair of faces a× b ⊆ Kn+1 ×Kn+1 is a Matching Pair (MP) if
a ⩽ b and |a|+ |b| = n− 1.

The “magical formula” derived in [5] and [6] is

∆′
K

(
en−1

)
=

⋃
MPs of faces

a×b⊆Kn+1×Kn+1

{a× b}. (5)

Tonks’ projection θ sends every non-degenerate CP to an MP. The converse is our
main result: Every MP is the image of a unique non-degenerate CP under θ; thus
∆′

K and ∆K agree. Our proof of this fact views Pn as a subdivision of Kn+1.
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Definition 3.2. Let 0 ⩽ k < n. An associahedral k-cell of Pn is a k-cell of Kn+1.
A subdivision k-cell of Pn is a k-cell of some associahedral k-cell of Pn. The
maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted
by amax (respt. amin), satisfies max amax = max a (respt. min amin = min a). A non-
degenerate vertex of Pn is an associahedral vertex.

Thus a subdivision k-cell of Pn has the form A1| · · · |An−k. In fact, a vertex v of Pn

is associahedral if and only if the (n− q)-cell −→v q| · · · |−→v 1 is non-degenerate, in which

case min
→
v q > · · · > min

→
v 1. If k > 0, an associahedral k-cell a is a subdivision k-cell

if and only if a = amin.

Proposition 3.3. If a is an associahedral k-cell and u is a subdivision k-cell of a,
then

(i) amin is non-degenerate.

(ii) If u ̸= amin, then u is degenerate and u = LN (amin) for some N.

(iii) amin = RM (amax) for some M.

Proof. Set p = n− k and consider an associahedral k-cell a of Pn. If a is also a
subdivision k-cell, then a = amin = θ (a) is non-degenerate and M = ∅. Otherwise,
conclusions (i) and (ii) follow from the construction of Pn as a subdivision of Kn+1.
For part (iii), given a subdivision k-cell u = A1| · · · |Ap of a, let

Np :=
{
x ∈ Ap ∖ {minAp} : x > maxAp−1

}
.

Inductively, if 1 < i < p and Ni+1 has been constructed, let A′
i := Ai ∪Ni+1 and let

Ni := A′
i ∖
{
x ∈ A′

i ∖ {minA′
i} : x > maxAi−1

}
.

Then amax =L(Np,...,N2) (amin). SetM= (M1, . . . ,Mp−1) := (N2, . . . , Np); then amin =
RM (amax).

Example 3.4. Consider the associahedral facet

a = 1|234 ∪ 13|24 ∪ 14|23 ∪ 134|2;

then amin = 1|234 is non-degenerate,

13|24 = L{3} (amin) , 14|23 = L{4} (amin) , and amax = 134|2 = L{3,4} (amin) .

Furthermore, amin = 1|234 = R{3,4} (134|2).

Proposition 3.5. Let v be an associahedral vertex of Pn and let a = −→v q| · · · |−→v 1. If
b is a non-degenerate cell of Pn such that |b| = |a| and min a ⩽ min b, then b = LN(a)
for some N.

Proof. Let a = An−k| · · · |A1 and let ri = minAi. Since v is associahedral, it follows
that rn−k > · · · > r1. Since min a ⩽ min b, there is a product of p-o increasing trans-
positions τ := τt · · · τ2τ1 such that τ(min a) = min b and τi preserves the inequality
rj > rj−1 for 1 ⩽ i ⩽ t and 1 ⩽ j ⩽ n− k. Define τ0 := Id and consider the vertex
vi := τti · · · τ1τ0(min a) for each 1 ⩽ ti ⩽ t. For each i, there is the (possibly degener-
ate) cell ui :=

−→vi q| · · · |−→vi 1, where q ∈ {n− k, n− k + 1}. Thus there is the sequence
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{a= u0, u1, . . . , ut = b} and its subsequence of k-cells
{
a= ui0 , ui1 , . . . , uis−1

, uis = b
}
.

By construction, for 1 ⩽ j ⩽ s , there exists nj ∈ n such that uij = L{nj}(uij−1
). For

1 ⩽ i < s, let

Ni =
{
nj ∈ Ai ∪N1 ∪ · · · ∪Ni−1 : uij = L{nj}(uij−1

) for some j
}

and form the sequence of sets N := (Ns−1, . . . , N1). Since b is non-degenerate, the
action LN(a) is defined and LN(a) = b.

Identify a k-face F ⊂ Kn+1 with its corresponding associahedral k-cell of Pn and
label F with its minimal subdivision k-cell Fmin; then θ (Fmin) = F (compare Fig-
ures 2 and 3).

Example 3.6. Consider the associahedral vertex v = 5|3|1|2|4|6, the associated 3-cell
a = −→v 3|−→v 2|−→v 1 = 5|3|1246 and the non-degenerate 3-cell b = 56|34|12. Then

min a = 5|3|1|2|4|6 < 5|6|3|4|1|2 = min b,

and there is the product of p-o increasing transpositions

τ = τ6 · · · τ1 := (3, 6) (4, 6) (1, 6) (2, 6) (1, 4) (2, 4)

such that{
v1 = τ1(min a) = 5|3|1|4|2|6, v2 = τ2(v1) = 5|3|4|1|2|6, v3 = τ3(v2) = 5|3|4|1|6|2,

v4 = τ4(v3) = 5|3|4|6|1|2, v5 = τ5(v4) = 5|3|6|4|1|2, v6 = τ6(v5) = 5|6|3|4|1|2
}
.

There is the sequence of cells{
u0 = 5|3|1246, u1 = 5|3|14|26, u2 = 5|34|126, u3 = 5|34|16|2,

u4 = 5|346|12, u5 = 5|36|4|12, u6 = 56|34|12
}

and its subsequence of 3-cells{
u0 = 5|3|1246, u2 = 5|34|126, u4 = 5|346|12, u6 = 56|34|12

}
.

Thus

N1 =
{
nj ∈ A1 : uij = L{nj}

(
uij−1

)
for some j

}
= {4, 6} ,

and

N2 =
{
nj ∈ A2 ∪N1 : uij = L{nj}

(
uij−1

)
for some j

}
= {6} .

Conclude that 56|34|12 = L({4,6},{6})(5|3|1246).

Theorem 3.7. Let F ×G ⊂ Kn+1 ×Kn+1 be an MP. Then Fmin ×Gmin ⊂ Pn × Pn

is a CP and F ×G = θ (Fmin)× θ (Gmin). Consequently, the diagonals ∆′
K and ∆K

agree.

Proof. Let σ = maxF ; then Fmax =←−σ 1| · · · |←−σ p for some p and Fmin = RM (Fmax)
for some M by Proposition 3.3. Let β = −→σ q| · · · |−→σ 1 and consider the SCP Fmax × β.



148 SAMSON SANEBLIDZE and RONALD UMBLE

• •

• • • • • •
• •

• •

• •• • • •

• •

4|123

123|4

12|34

34|12

2|134
3|124

234|1

23|41
1|234

Figure 3: The facets of K5 labeled with their minimal subdivision 2-cells in P4.

Since σ is an associahedral vertex and minβ ⩽ minGmin the hypotheses of Propo-
sition 3.5 is satisfied; hence Gmin = LN(β) for some N. Therefore Fmin ×Gmin =
RM (Fmax)× LN(β) is a CP and F ×G = θ (Fmin)× θ (Gmin).

Example 3.8. Consider the diagonal component

F ×G = (• • •) • • × •(• • (••))

of ∆′
K(K5). Then F = 21|43 ∪ 421|3 is an associahedral 2-cell, σ = maxF = 4|2|1|3

is an associahedral vertex,

Fmax =←−σ 1|←−σ 2 = 421|3, and Fmin = 21|43 = R{4} (421|3) .

Furthermore,

β = −→σ 3|−→σ 2|−→σ 1 = 4|2|13, minβ1 = 4|2|1|3 = maxF, and

Gmin = L{3}(4|2|13) = 4|23|1.

Thus F ×G = θ (21|43)× θ (4|23|1).

Addendum. After this paper was written, B. Delcroix-Oger, G. Laplante-Anfossi, V.
Pilaud, and K. Stoeckl proved that ∆P can be recovered from ∆′

P by an appropriate
choice of chambers in the fundamental hyperplane arrangements of the permutahedra
(see [2]). The fact that all known diagonals on the associahedra agree (up to mirror
symmetry) follows immediately.
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(Ljubljana), Séminaire Lotharingien de Combinatoire 82B, 76 (2019).



COMPARING DIAGONALS ON THE ASSOCIAHEDRA 149

[2] Delcroix-Oger, B., Laplante-Anfossi, G., Pilaud, V., and Stoeckl, K.,: Cellular
diagonals of permutahedra. arXiv:2308.12119

[3] Laplante-Anfossi, G.: The diagonal of the operahedra. Adv. Math. 405, 1-50
(2022).

[4] Loday, J.-L.: The diagonal of the Stasheff polytope. In: Higher structures in
Geometry and Physics, Progr. Math. 287, Birkhäuser/Springer, New York, 269–
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