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Abstract
The global formality of Dolgushev depends on the choice of

a torsion-free covariant derivative. We prove that the global-
ized formalities with respect to two different covariant deriva-
tives are homotopic. More explicitly, we derive the statement
by proving a more general homotopy equivalence between L∞-
morphisms that are twisted with gauge equivalent Maurer–
Cartan elements.

1. Introduction
The celebrated formality theorem by Kontsevich [18] provides the existence of an

L∞-quasi-isomorphism from the differential graded Lie algebra (DGLA) of polyvector
fields Tpoly(Rd) to the DGLA of polydifferential operators Dpoly(Rd). In [7, 8] Dolgu-
shev globalized this result to general smooth manifolds M using a geometric approach.
Being a quasi-isomorphism, this formality induces a bijective correspondence

U : Def(Tpoly(M)[[ℏ]]) −→ Def(Dpoly(M)[[ℏ]]) (1)

between equivalence classes Def(Tpoly(M)[[ℏ]]) of formal Poisson structures on M ,
ℏπ ∈ Γ∞(Λ2TM)[[ℏ]], and equivalence classes Def(Dpoly(M)[[ℏ]]) of star products ⋆
on M , see also [5, 21] for more details on deformation theory. In particular, this
associates to a classical Poisson structure πcl a class of deformation quantizations
U([ℏπcl]) in the sense of the seminal paper [2]. On the other hand, it also gives a
way to assign to each star product a class of formal Poisson structures, the so-called
Kontsevich class of the star product.

However, the above mentioned globalization procedure of the Kontsevich formality
from Rd to a general manifold M discussed in [7] depends on the choice of a torsion-
free covariant derivative. More explicitly, it uses the covariant derivative to obtain
Fedosov resolutions of the polyvector fields and polydifferential operators between
which one has a fiberwise Kontsevich formality. Recently, in [3, Theorem 2.6] it has
been shown that the map U from (1) does not depend on the choice of the connection.
In this paper we investigate the role of the covariant derivative at the level of the
formality and not at the level of equivalence classes of Maurer–Cartan elements.

The key point is that changing the covariant derivative corresponds to twisting
by a Maurer–Cartan element that is equivalent to zero, see [3, Appendix C] for this
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observation and [7, 8, 12, 13] for more details on the twisting procedure. This cor-
responds to a more general observation: Let F : (g,d, [·, ·])→ (g′,d′, [·, ·]) be an L∞-
morphism between DGLAs with complete descending and exhaustive filtrations F•g
resp. F•g′. Moreover, let π ∈ F1g1 be a Maurer–Cartan element equivalent to zero via
π = exp([g, ·]) ▷ 0 with g ∈ F1g0. The element π′ =

∑∞
k=1

1
k!F

1
k (π ∨ · · · ∨ π) ∈ F1g′1

is a Maurer–Cartan element in g′ equivalent to zero. Let the equivalence be given by
g′ ∈ F1g′0, then one obtains for the twisted L∞-morphism Fπ (see Proposition 2.17)
Proposition 3.10:

Proposition 1.1. The L∞-morphisms F and e[−g′,·] ◦ Fπ ◦ e[g,·] from (g,d, [·, ·]) to
(g′,d′, [·, ·]) are homotopic, where Fπ denotes the L∞-morphism F twisted by π.

By homotopic we mean here that the two L∞-morphisms are equivalent Maurer–
Cartan elements in the convolution DGLA, compare [9, Definition 3], see also [11]
for a comparison of different notions of homotopies between L∞-morphisms.

This general statement can be applied to the globalization of the Kontsevich for-
mality. Our main result here is the following theorem, see Theorem 4.13:

Theorem 1.2. Let ∇ and ∇′ be two different torsion-free covariant derivatives. Then
the two global formalities constructed via Dolgushev’s globalization procedure are ho-
motopic.

This immediately implies that they induce the same map on the equivalence classes
of formal Maurer–Cartan elements, i.e. [3, Theorem 2.6].

Note that there are many other similar globalization procedures of formalities
based on Dolgushev’s globalization of the Kontsevich formality [7, 8], e.g. [4] for Lie
algebroids, [19] for differential graded manifolds and [6] for Hochschild chains. The
above technique can be adapted to these cases and we plan to pursue them in further
works.

Finally, we want to mention that the globalization proposed by Dolgushev is not
the first one. In fact Kontsevich himself globalized his local Formality in the same pa-
per he proved gave a construction for it, see [18, Section 7]. He is using the language
of ∞-jet spaces of polyvector fields and polydifferential operators, respectively. How-
ever, these ∞-jet spaces are (non-canonically) isomorphic as vector bundles to the
formally completed fiberwise polyvector fields and polydifferential operators, respec-
tively. The corresponding isomorphisms are constructed by the choice of a connection.
We strongly believe that the globalization procedure proposed by Kontsevich in [18]
is homotopic to the globalization from Dolgushev [7, 8] we are using in this note.

The paper is organized as follows: In Section 2 we recall the basics concerning
Maurer–Cartan elements in DGLAs and L∞-algebras, the notions of gauge and ho-
motopy equivalence as well as the twisting procedure. Then we recall in Section 3
the interpretation of L∞-morphisms as Maurer–Cartan elements and the notion of
homotopic L∞-morphisms. We show that pre- and post-compositions of homotopic
L∞-morphisms with an L∞-morphism are again homotopic, a statement that is prob-
ably well-known to the experts, but that we could not find in the literature. Moreover,
we prove here Proposition 3.10, i.e. that the twisted L∞-morphisms are homotopic
for equivalent Maurer–Cartan elements. Finally, we apply these general results to the
globalization of Kontsevich’s formality theorem, proving Theorem 4.13 and also an
equivariant version for Lie group actions with invariant covariant derivatives.
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2. Preliminaries: Maurer–Cartan elements and twisting

2.1. Maurer–Cartan elements in DGLAs
We want to recall the basics concerning differential graded Lie algebras (DGLAs),

Maurer–Cartan elements and their equivalence classes. In order to make sense of
the gauge equivalence we consider in this context DGLAs (g•,d, [·, ·]) with complete
descending filtrations

· · · ⊇ F−2g ⊇ F−1g ⊇ F0g ⊇ F1g ⊇ · · · , g ∼= lim←− g/Fng (2)

and

d(Fkg) ⊆ Fkg and [Fkg,Fℓg] ⊆ Fk+ℓg. (3)

In particular, F1g is a projective limit of nilpotent DGLAs. In most cases the filtration
will be bounded below, i.e. bounded from the left with g = Fkg for some k ∈ Z. If
the filtration is unbounded, then we assume always that it is in addition exhaustive,
i.e. that

g =
⋃
n

Fng, (4)

even if we do not mention it explicitly. Moreover, we assume that the DGLA mor-
phisms are compatible with the filtrations.

Example 2.1. One motivation to consider the case of filtered DGLAs is formal power
series g[[ℏ]] of a DGLA g with filtration Fk(g[[ℏ]]) = ℏk(g[[ℏ]]).

Definition 2.2 (Maurer–Cartan elements). Let (g,d, [ · , · ]) be a DGLA with com-
plete descending filtration. Then π ∈ F1g1 is called Maurer–Cartan element if it
satisfies the Maurer–Cartan equation

dπ +
1

2
[π, π] = 0. (5)

The set of Maurer–Cartan elements is denoted by MC(g).

Maurer–Cartan elements π lead to twisted DGLA structures (g,d + [π, ·], [·, ·]) and
one has a gauge action on the set of Maurer–Cartan elements.

Proposition 2.3 (Gauge action). Let (g,d, [ · , · ]) be a DGLA with complete descend-
ing filtration. The gauge group G0(g) = {Φ = e[g, · ] : g −→ g | g ∈ F1g0} defines an
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action on MC(g) via

exp([g, · ]) ▷ π =

∞∑
n=0

([g, · ])n

n!
(π)−

∞∑
n=0

([g, · ])n

(n+ 1)!
(dg)

= π − exp([g, · ])− id

[g, ·]
(dg + [π, g]). (6)

The set of equivalence classes of Maurer–Cartan elements in g is denoted by

Def(g) =
MC(g)

G0(g)
. (7)

Note that the gauge action is well-defined since g ∈ F1g and as the filtration is
complete. Def(g) is the orbit space of the transformation groupoid MC(g) of the gauge
action and MC(g) is also called Goldman–Millson groupoid or Deligne groupoid [16].
It plays an important role in deformation theory [21]. In particular, the definition of
the gauge action implies that twisting with gauge equivalent Maurer–Cartan elements
leads to isomorphic DGLAs.

Corollary 2.4. Let (g,d, [ · , · ]) be a DGLA with complete descending filtration and
with gauge equivalent Maurer–Cartan elements π′, π via g ∈ G0(g). Then one has

d + [π′, ·] = exp([g, · ]) ◦ (d + [π, ·]) ◦ exp([−g, · ]). (8)

In other words, exp([g, ·]) : (g,d + [π, ·], [ · , · ])→ (g,d + [π′, ·], [ · , · ]) is an isomor-
phism of DGLAs.

2.2. Maurer–Cartan elements in L∞-algebras
Let us recall the basics of L∞-algebras and L∞-morphisms. Proofs and further

details can be found in [7, 8, 13]. Note that in this work we only consider L∞-
morphisms between DGLAs.

An L∞-algebra (L,Q) is a graded vector space L together with a degree +1 codif-
ferential Q on the graded cocommutative cofree coalgebra (S(L[1]),∆) without counit
cogenerated by L[1]. We always consider a vector space over a field K of character-
istic zero. The codifferential Q is uniquely determined by the Taylor components
Qn : S

n(L[1]) −→ L[2] for n ⩾ 1. Sometimes we also write Qk = Q1
k and following

[5] we denote by Qi
n the component prSi(L[1]) ◦Q

∣∣
Sn(L[1])

: Sn(L[1])→ Si(L[1])[1] of
Q. The property Q2 = 0 implies in particular that Q1

1 : L→ L[1] is a cochain differ-
ential. Let us consider two L∞-algebras (L,Q) and (L′, Q′). A degree 0 coalgebra
morphism F : S(L[1]) −→ S(L′[1]) such that FQ = Q′F is called L∞-morphism. Just
like the codifferential also the morphism F is also uniquely determined by its Tay-
lor components Fn : S

n(L[1]) −→ L′[1], where n ⩾ 1. We write again Fk = F 1
k and

we get coefficients F j
n : S

n(L[1])→ Sj(L′[1]) of F . Note that F j
n depends only on

F 1
k = Fk for k ⩽ n− j + 1. In particular, the first structure map of F is a map of

complexes F 1
1 : (L,Q

1
1)→ (L′, (Q′)11) and one calls F L∞-quasi-isomorphism if F 1

1 is
a quasi-isomorphism of complexes. Note that in the following we use ∨ for the graded
commutative on the symmetric algebra of a vector space.

Example 2.5 (DGLA). A DGLA (g,d, [ · , · ]) is an L∞-algebra with Q1 = −d and
Q2(γ ∨ µ) = −(−1)|γ|[γ, µ], where |γ| denotes the degree in g[1].
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In order to generalize the definition of Maurer–Cartan elements we consider again
L∞-algebras with complete descending and exhaustive filtrations on L. Moreover, we
require for the codifferential Q of L

Qk(F i1L ∨ · · · ∨ F ikL) ⊆ F i1+···+ikL.

We assume again that L∞-morphisms are compatible with the filtrations.

Definition 2.6 (Maurer–Cartan elements II). Let (L,Q) be an L∞-algebra with
compatible complete descending filtration. Then π ∈ F1L[1]0 is called Maurer–Cartan
element if it satisfies the Maurer–Cartan equation∑

n>0

1

n!
Qn(π ∨ · · · ∨ π) = 0. (9)

The set of Maurer–Cartan elements is again denoted by MC(L).

Note that the sum in (9) is well-defined for π ∈ F1L1 because of the completeness
of L. We recall some useful properties from [8, Prop. 1]:

Lemma 2.7. Let F : (g, Q)→ (g′, Q′) be an L∞-morphism of DGLAs and π ∈ F1g1.
(i) dπ + 1

2 [π, π] = 0 is equivalent to Q(exp(π)) = 0, where exp(π) =
∑∞

k=1
1
k!π

∨k.
(ii) F (exp(π)) = exp(S) with S =

∑
n>0

1
n!Fn(π ∨ · · · ∨ π).

(iii) If π is a Maurer–Cartan element, then so is S.

We recall the generalization of the gauge action to an equivalence relation on the
set of Maurer–Cartan elements of L∞-algebras. We follow [5, Section 4] but adapt
the definitions to the case of L∞-algebras with complete descending and exhaustive
filtrations as in [11]. Let therefore (L,Q) be such an L∞-algebra with complete de-
scending and exhaustive filtration and consider L[t] = L⊗K[t] which has again a
descending and exhaustive filtration

FkL[t] = FkL⊗K[t].

We denote its completion by L̂[t] and note that since Q is compatible with the filtra-
tion it extends to L̂[t]. Similarly, L∞-morphisms extend to these completed spaces.

Remark 2.8. Note that one can define the completion as space of equivalence classes
of Cauchy sequences with respect to the filtration topology. Alternatively, the com-
pletion can be identified with

lim←−L[t]/FnL[t] ⊂
∏
n

L[t]/FnL[t] ∼=
∏
n

L/FnL⊗K[t]

consisting of all coherent tuples X = (xn)n ∈
∏

n L[t]/FnL[t], where

L[t]/Fn+1L[t] ∋ xn+1 7−→ xn ∈ L[t]/FnL[t]

under the obvious surjections. Moreover, FnL̂[t] corresponds to the kernel of the
projective limit lim←−L[t]/FnL[t]→ L[t]/FnL[t] and thus

L̂[t]/FnL̂[t] ∼= L[t]/FnL[t].

Since L is complete, we can also interpret L̂[t] as the subspace of L[[t]] such that
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XmodFnL[[t]] is polynomial in t. In particular, FnL̂[t] is the subspace of elements
in FnL[[t]] that are polynomial in t modulo FmL[[t]] for all m.

By the above construction of L̂[t] it is clear that differentiation d
dt and integration

with respect to t extend to it since they do not change the filtration. Sometimes we
write also Ẋ instead of d

dtX and, moreover, the evaluation

δs : L̂[t] ∋ X 7−→ X(s) = X
∣∣
t=s
∈ L

is well-defined for all s ∈ K since L is complete.

Example 2.9. In the case that the filtration of L comes from a grading L•, the com-
pletion is given by L̂[t] ∼=

∏
i L

i[t], i.e. by polynomials in each degree. A special case
is here the case of formal power series L = V [[ℏ]] with L̂[t] ∼= (V [t])[[ℏ]] as in [3,
Appendix A].

Now we can introduce a general equivalence relation between Maurer–Cartan ele-
ments of L∞-algebras.

Definition 2.10 (Homotopy equivalence). Let (L,Q) be a L∞-algebra with a com-
plete descending filtration. The homotopy equivalence relation on the set MC(L) is
the transitive closure of the relation ∼ defined by: π0 ∼ π1 if and only if there exist
π(t) ∈ F1L̂1[t] and λ(t) ∈ F1L̂0[t] such that

d

dt
π(t) = Q1(λ(t) ∨ exp(π(t))) =

∞∑
n=0

1

n!
Q1

n+1(λ(t) ∨ π(t) ∨ · · · ∨ π(t)),

π(0) = π0 and π(1) = π1.

(10)

The set of equivalence classes of Maurer–Cartan elements of L is denoted by Def(L) =
MC(L)/ ∼.

Note that in the case of nilpotent L∞-algebras it suffices to consider polynomials
in t as there is no need to complete L[t], compare [15]. We check now that this is
well-defined and even yields a curve π(t) of Maurer–Cartan elements.

Proposition 2.11. For every π0 ∈ F1L1 and λ(t) ∈ F1L̂0[t] there exists a unique
π(t) ∈ F1L̂1[t] such that d

dtπ(t) = Q1(λ(t)∨ exp(π(t))) and π(0) = π0. If π0 ∈ MC(L),
then π(s) ∈ MC(L) for all s ∈ K.

Proof. The proof for the nilpotent case can be found in [5, Prop. 4.8]. In our setting
of complete filtrations we only have to show that the solution π(t) =

∑∞
k=0 πkt

k in
the formal power series F1L1 ⊗K[[t]] is an element of F1L̂1[t]. By Remark 2.8 this
is equivalent to π(t)modFnL1[[t]] ∈ L1[t] for all n. Indeed, we have inductively

d

dt
π(t) mod F2L1[[t]] = Q1(λ(t)) mod F2L1[[t]] ∈ L1[t].

For the higher orders we get

d

dt
π(t) ≡

n−2∑
k=0

1

k!
Q1

k+1(λ(t) ∨ π(t) ∨ · · · ∨ π(t)) mod FnL1[[t]]

and thus π(t)modFnL1[[t]] ∈ L1[t].
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One can show that for DGLAs with complete filtrations the two notions of equiv-
alences are equivalent, see e.g. [21, Thm. 5.5].

Theorem 2.12. Two Maurer–Cartan elements in (g,d, [·, ·]) are homotopy equivalent
if and only if they are gauge equivalent.

One direction of this theorem can be made more explicit in the following proposi-
tion.

Proposition 2.13. Let (g,d, [·, ·]) be a DGLA with complete descending filtration.
Consider π0 ∼ π1 with equivalence given by π(t) ∈ F1ĝ1[t] and λ(t) ∈ F1ĝ0[t]. The
formal solution of

λ(t) =
exp([A(t), ·])− id

[A(t), ·]
dA(t)

dt
, A(0) = 0 (11)

is an element A(t) ∈ F1ĝ0[t] and satisfies

π(t) = e[A(t),·]π0 −
exp([A(t), ·])− id

[A(t), ·]
dA(t). (12)

In particular, for g = A(1) ∈ F1g0 one has

π1 = exp([g, ·]) ▷ π0. (13)

Proof. As formal power series in t Equation 11 has a unique solution

A(t) ∈ F1g0 ⊗K[[t]].

But one has even A(t) ∈ F1ĝ0[t] since

dA(t)

dt
≡ λ(t)−

n−2∑
k=1

1

(k + 1)!
[A(t), ·]k dA(t)

dt
mod Fng[[t]]

≡

(
λ(t)−

n−2∑
k=1

1

(k + 1)!
[A(t) mod Fn−1g[[t]], ·]k

(
dA(t)

dt
mod Fn−1g[[t]]

))
mod Fng[[t]]

is by induction polynomial in t. Note that one has

d

dt
e[A(t),·] =

[
exp([A(t), ·])− id

[A(t), ·]
dA(t)

dt
, ·
]
◦ exp([A(t), ·]). (∗)

Our aim is now to show that π′(t) = e[A(t),·]π0 − exp([A(t),·])−id
[A(t),·] dA(t), i.e. the right

hand side of (12), satisfies

dπ′(t)

dt
= −dλ(t) +

[
λ(t), e[A(t),·]π0 −

exp([A(t), ·])− id

[A(t), ·]
dA(t)

]
= −dλ(t) + [λ(t), π′(t)] ,

which is just (10) in the special case of DGLAs. Then we know π′(t) = π(t) ∈ F1ĝ1[t]
since the solution π(t) is unique by Proposition 2.11, which immediately identifies
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π′(1) = π1. At first we compute

dλ(t) =
exp([A(t), ·])− id

[A(t), ·]
d
dA(t)

dt

+

∞∑
k=0

k−1∑
j=0

1

(k + 1)!

(
k

j + 1

)[
adjAdA(t), adk−1−j

A

dA(t)

dt

]
and using (∗) we get

dπ′(t)

dt
=

[
exp([A(t), ·])− id

[A(t), ·]
dA(t)

dt
, exp([A(t), ·])π0

]
− exp([A(t), ·])− id

[A(t), ·]
d
dA(t)

dt

−
∞∑
k=0

k−1∑
j=0

1

(k + 1)!

(
k

j + 1

)[
adjA

dA(t)

dt
, adk−1−j

A dA

]

= −dλ(t) +
[
λ(t), e[A(t),·]π0 −

exp([A(t), ·])− id

[A(t), ·]
dA(t)

]
and the proposition is proven.

Remark 2.14. There are also different notions of homotopy resp. gauge equivalences
for Maurer–Cartan elements in L∞-algebras: 1 e.g. the above definition, sometimes
also called Quillen homotopy, and the gauge homotopy where one requires λ(t) = λ
to be constant, compare [9]. In [11] it is shown that these notions are also equivalent
for complete L∞-algebras, extending the result for DGLAs.

One important property is that L∞-morphisms map equivalence classes of Maurer–
Cartan elements to equivalence classes, see [5, Prop. 4.9].

Proposition 2.15. Let F : (L,Q) → (L′, Q′) be a morphism of L∞-algebras with
complete filtrations, and π0, π1 ∈ MC(L) with π0 ∼ π1 via π(t) ∈ F1ĝ1[t] along with
λ(t) ∈ F1ĝ0[t]. Then F is compatible with the homotopy equivalence relation, i.e. one
has F 1(expπ0) ∼ F 1(expπ1) via

π′(t) = F 1(exp(π(t))) and λ′(t) = F 1(λ(t) ∨ exp(π(t))).

If F is an L∞-quasi-isomorphism, then it is well-known that it induces a bijection
on the equivalence classes of Maurer–Cartan elements. Finally, recall that also the
twisting with Maurer–Cartan elements can be generalized to L∞-algebras, see [6,
Section 2.3].

Lemma 2.16. Let (L,Q) be an L∞-algebra and π ∈ F1L[1]0 a Maurer–Cartan ele-
ment. Then the map Qπ given by

Qπ(X) = exp((−π)∨)Q(exp(π∨)X), X ∈ S(L[1]) (14)

defines a codifferential on S(L[1]).

One can not only twist the DGLAs resp. L∞-algebras, but also the L∞-morphisms
between them. Below we need the following result, see [6, Prop. 2] and [8, Prop. 1].

Proposition 2.17. Let F : (g, Q)→ (g′, Q′) be an L∞-morphism of DGLAs, with
π ∈ F1g1 a Maurer–Cartan element and S = F 1(exp(π)) ∈ F1g′1.
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(i) The map
Fπ = exp(−S∨)F exp(π∨) : S(g[1]) −→ S(g′[1])

defines an L∞-morphism between the DGLAs (g,d + [π, · ]) and (g′,d + [S, · ]).
(ii) The structure maps of Fπ are given by

Fπ
n (x1, . . . , xn) =

∞∑
k=0

1

k!
Fn+k(π, . . . , π, x1, . . . , xn). (15)

(iii) Let F be an L∞-quasi-isomorphism such that F 1
1 is not only a quasi-isomorphism

of filtered complexes L→ L′ but even induces a quasi-isomorphism

F 1
1 : FkL −→ FkL′

for each k. Then Fπ is an L∞-quasi-isomorphism.

3. Relation between twisted morphisms
Here we prove the main results about the relation between twisted L∞-morphisms.

More explicitly, consider an L∞-morphism F : (g, Q)→ (g′, Q′) between DGLAs and
let π0, π1 ∈ F1g1 be two equivalent Maurer–Cartan elements via π1 = exp([g, ·]) ▷ π0.
We show that Fπ0 and Fπ1 can be interpreted as homotopic in the sense of [9,
Definition 3].

3.1. L∞-morphisms as Maurer–Cartan elements
At first, recall that we can interpret L∞-morphisms as Maurer–Cartan elements in

the convolution algebra. More explicitly, let (L,Q), (L′, Q′) be two L∞-algebras and
denote the graded linear maps by Hom(S(L[1]), L′). If L and L′ are equipped with
complete descending filtrations, then we require the maps to be compatible with the
filtration. The L∞-structures on L and L′ lead to an L∞-structure on this vector
space of maps, see [9, Proposition 1 and Proposition 2] and also [3] for the case of
DGLAs.

Proposition 3.1. The coalgebra S(Hom(S(L[1]), L′)[1]) can be equipped with a cod-
ifferential Q̂ with structure maps

Q̂1
1F = Q′1

1 ◦ F − (−1)|F |F ◦Q (16)

and
Q̂1

n(F1 ∨ · · · ∨ Fn) = (Q′)1n ◦ ∨n−1 ◦ (F1 ⊗ F2 ⊗ · · · ⊗ Fn) ◦∆
n−1

. (17)

It is called convolution L∞-algebra and its Maurer–Cartan elements are identified
with L∞-morphisms. Here |F | denotes the degree in Hom(S(L[1]), L′)[1].

Example 3.2. Let g, g′ be two DGLAs. Then Hom(S(g[1]), g′) is in fact a DGLA with
differential

∂F = d′ ◦ F + (−1)|F |F ◦Q (18)

and Lie bracket
[F,G] = −(−1)|F |(Q′)12 ◦ (F ⊗G) ◦∆. (19)

Here |F | denotes again the degree in Hom(S(g[1]), g′)[1]. This DGLA is also called



210 ANDREAS KRAFT and JONAS SCHNITZER

convolution DGLA.

We note that the convolution L∞-algebra H = Hom(S(L[1]), L′) is equipped with
the following complete descending filtration:

H =F1H ⊃ F2H ⊃ · · · ⊃ FkH ⊃ · · ·

FkH =
{
f ∈ Hom(S(L[1]), L′) | f

∣∣
S<k(L[1])

= 0
}
.

(20)

Thus all twisting procedures are well-defined and one can define a notion of homotopic
L∞-morphisms.

Definition 3.3. Two L∞-morphisms F, F ′ from (L,Q) to (L′, Q′) are called homo-
topic if they are homotopy equivalent Maurer–Cartan elements in the convolution
L∞-algebra H. In this case one writes F ∼ F ′.

Remark 3.4. Note that there are several definitions of homotopies between L∞-morph-
isms around which are in some situations equivalent, see e.g. [11], where they use a
different notion of filtered L∞-algebras which properly includes ours. More precisely
their definition of an homotopy of two L∞-morphism F0, F1 : L→ L′ is given by a
map

Ft : L→ L̂[t, dt]

such that the postcompostions with evaluations at 0 (resp. 1) is given by F0 (resp.
F1). In [11] this is called concordance. This means in particular

Ft ∈ Hom(S(L[1]), ̂L′[t, dt]) ⊇ ̂Hom(S(L[1]), L′)[t,dt],

where on the right hand side our homotopies are included. This means in particular,
that the definition of homotopy we are using is more restrictive, and hence the results
we are proving stay true for the more general definition.

We collect a few immediate consequences of Definition 3.3:

Proposition 3.5. Let F, F ′ be two homotopic L∞-morphisms from (L,Q) to (L′, Q′).
(i) F 1

1 and (F ′)11 are chain homotopic.
(ii) If F is an L∞-quasi-isomorphism, then so is F ′.
(iii) If L = g, L′ = g′ are two DGLAs equipped with complete descending filtrations,

then F and F ′ induce the same maps from Def(g) to Def(g′).
(iv) In the case of DGLAs g, g′, compositions of homotopic L∞-morphisms with a

DGLA morphism of degree zero are again homotopic.

Proof. The first three points are proven in [3] and the last one follows directly.

We now aim to generalize the last point of the previous proposition to compositions
with L∞-morphisms. We start with the post-composition:

Proposition 3.6. Let F0, F1 be two homotopic L∞-morphisms between (L,Q) and
(L′, Q′). Let H be an L∞-morphism from (L′, Q′) to (L′′, Q′′) and let G be an L∞-
morphism from (L′′′, Q′′′) to (L,Q), then HF0 ∼ HF1 and F0G ∼ F1G.
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Proof. The proof for pre-composing is a rather simple computation and does not
involve any subtle points and this is why we omit it here. On the other hand there
are some subtleties for the post-composition: For F ∈ Hom(S(L[1]), L′)1 we define
Ĥ(F ) : S(L[1])→ L′′[1] via

(Ĥ(F ))n = (HF )1n =

n∑
ℓ=1

H1
ℓ F

ℓ
n =

n∑
ℓ=1

H1
ℓ

(
1

ℓ!
F 1 ∨ · · · ∨ F 1

)
◦∆ℓ−1

.

Here the ∨-product of maps is given by

F ∨G = ∨ ◦ (F ⊗G) : S(L[1])⊗ S(L[1])→ S(L′[1]).

Writing ∆
•
=
∑∞

k=0 ∆
k

and defining all maps to be zero on the domains on which
they were previously not defined, we can rewrite this as

ĤF = H1 ◦ expF ◦∆•
.

Let

F (t) ∈ ̂(Hom(S(L[1]), L′)[1])0[t], and

λ(t) ∈ ̂(Hom(S(L[1]), L′)[1])−1[t]

describe the homotopy equivalence between F0 and F1. Then

ĤF (t) ∈ ̂(Hom(S(L[1]), L′′)[1])−1[t]

satisfies

d

dt
ĤF (t) =

∞∑
ℓ=1

H1
ℓ

d

dt

(
1

ℓ!
F (t) ∨ · · · ∨ F (t)

)
◦∆l−1

= H1 ◦
(
Q̂1(λ(t) ∨ exp(F (t)) ∨ exp(F (t))

)
◦∆•

.

As in [5, Lemma 4.1] one can check

Q̂(λ(t) ∨ exp(F (t))) = exp(F (t)) ∨ Q̂1(λ(t) ∨ exp(F (t)))

− λ(t) ∨ exp(F (t)) ∨ Q̂1(exp(F (t)))

= exp(F (t)) ∨ Q̂1(λ(t) ∨ exp(F (t)))

since F (t) is a Maurer–Cartan element. This gives the equality

d

dt
ĤF (t) = H1 ◦

(
Q̂(λ(t) ∨ exp(F (t)))

)
◦∆•

= H1 ◦Q′ ◦ (λ(t) ∨ exp(F (t))) ◦∆•
+H1 ◦ (λ(t) ∨ exp(F (t))) ◦∆• ◦Q

= (Q′′)1 ◦H ◦ (λ(t) ∨ exp(F (t))) ◦∆•
+H1 ◦ (λ(t) ∨ exp(F (t))) ◦∆• ◦Q

= (Q̂′)11

(
H1 ◦ (λ(t) ∨ exp(F (t))) ◦∆•)

+

∞∑
ℓ=2

(Q′′)1ℓ ◦Hℓ ◦ (λ(t) ∨ exp(F (t))) ◦∆•
.
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Since F and H are of degree zero we get for the last term
1

k!
Hℓ

k+1 ◦ (λ(t) ∨ F (t) ∨ · · · ∨ F (t)) ◦∆k
(X)

=
1

k!ℓ!
(H1 ∨ · · · ∨H1) ◦∆ℓ−1 ◦ (λ(t) ∨ F (t) ∨ · · · ∨ F (t)) ◦∆k

(X)

=
1

k!ℓ!
(H1 ∨ · · · ∨H1) ◦

∑
i1+···+iℓ=k+1

ij⩾1

∑
σ∈Sh(i1,...,iℓ)

σ ◁
(
(λ(t) ∨ F (t) ∨ · · · ∨ F (t)) ◦∆k

(X)
)

=
ℓ

k!ℓ!
(H1 ∨ · · · ∨H1) ◦

∑
i1+···+iℓ=k+1

ij⩾1

∑
σ∈Sh(i1,...,iℓ)

σ(1)=1

σ ◁
(
(λ(t) ∨ F (t) ∨ · · · ∨ F (t)) ◦∆k

(X)
)

=
1

(ℓ− 1)!

∑
i1+···+iℓ=k+1,ij⩾1

( 1

(i1 − 1)!
H1

i1(λ ∨ F · · · ∨ F ) ◦∆i1−1 ∨ 1

i2!

H1
i2(F ∨ · · · ∨ F ) ◦∆i2−1 ∨ · · · ∨ 1

iℓ!
H1

iℓ
(F ∨ · · · ∨ F ) ◦∆iℓ−1

)
◦∆ℓ−1

(X).

Here we wrote

σ ◁ (x1 ∨ · · · ∨ xk+1) = ϵ(σ)xσ(1) ∨ · · · ∨ xσ(i1) ⊗ · · · ⊗ xσ(k+1−iℓ+1) ∨ · · · ∨ xσ(n)

with Koszul sign ϵ(σ). Therefore, it follows

d

dt
ĤF (t) = (Q̂′)11

(
H1 ◦ (λ(t) ∨ exp(F (t))) ◦∆•)

+

∞∑
ℓ=2

(Q̂′)1ℓ ◦
(
(H1 ◦ (λ(t) ∨ expF ) ◦∆•

) ∨ exp(ĤF )
)
,

which is just the desired (10) with λ(t) = H1 ◦ (λ(t) ∨ expF ) ◦∆•
and the statement

is shown.

3.2. Homotopy classification of L∞-algebras
The above considerations allow us to understand better the homotopy classification

of L∞-algebras from [5, 18], which will help us in the application to the global
formality. We define:

Definition 3.7. Two L∞-algebras (L,Q) and (L′, Q′) are said to be homotopy equiv-
alent if there are L∞-morphisms F : (L,Q)→ (L′, Q′) and G : (L′, Q′)→ (L,Q) such
that F ◦G ∼ idL′ and G ◦ F ∼ idL. In such case F and G are said to be quasi-inverse
to each other.

This definition coincides indeed with the usual definition of homotopy equivalence
via L∞-quasi-isomorphisms from [5].

Proposition 3.8. Two L∞-algebras (L,Q) and (L′, Q′) are homotopy equivalent if
and only if there exists an L∞-quasi-isomorphism between them.
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Proof. Due to [5, Prop. 2.8] every L∞-algebra L is isomorphic to the product of
a linear contractible one and a minimal one (L,Q) ∼= (V ⊕W, Q̃). This means one
has L ∼= V ⊕W as vector spaces, such that V is an acyclic cochain complex with
differential dV and W is an L∞-algebra with codifferential QW with Q1

W,1 = 0. The
codifferential Q̃ on S((V ⊕W )[1]) is given on v1 ∨ · · · ∨ vm with v1, . . . , vk ∈ V and
vk+1, . . . , vm ∈W by

Q̃1(v1 ∨ · · · ∨ vm) =


−dV (v1), for k = m = 1

Q1
W (v1 ∨ · · · ∨ vm), for k = 0

0, else.

This implies in particular that the canonical maps

IW : W −→ V ⊕W and PW : V ⊕W −→W

are L∞-morphisms. We want to show now that IW ◦ PW ∼ id. Choose a contracting
homotopy hV : V → V [−1] with hV dV + dV hV = idV and define the maps

P (t) : V ⊕W ∋ (v, w) 7−→ (tv, w) ∈ V ⊕W

and

H(t) = H : V ⊕W ∋ (v, w) 7−→ (−hV (v), 0) ∈ V ⊕W.

Note that P (t) is a path of L∞-morphisms by the explicit form of the codifferential.
We clearly have

d

dt
P 1
1 (t) = prV = Q̃1

1 ◦H(t) +H(t) ◦ Q̃1
1 = Q̂1

1(H(t))

since hV is a contracting homotopy. This implies
d

dt
P (t) = Q̂1 (H(t) ∨ exp(P (t)))

since im(H(t)) ⊆ V and as the higher brackets of Q̃ vanish on V . Since P (0) = IW ◦
PW and P (1) = id we conclude that IW ◦ PW ∼ id. We choose an analogue splitting
for L′, i.e. L′ = V ′ ⊕W ′ such that V ′ is an acyclic cochain complex with differential
dV ′ and such that W ′ is an L∞-algebra with codifferential QW ′ with Q1

W ′,1 = 0. Let
us now consider an L∞-quasi-isomorphism F : L→ L′. Since IW , IW ′ , PW and PW ′

are L∞-quasi-isomorphisms, we know that

FW = PW ′ ◦ F ◦ IW : W −→W ′

is an L∞-quasi-isomorphism. But since W and W ′ are minimal its first Taylor coef-
ficient F 1

W,1 is even an isomorphism. By [5, Corollary 2.3] it follows that FW is an
L∞-isomorphism and we denote the inverse by GW ′ . We define now

G = IW ◦GW ′ ◦ PW ′ : L′ −→ L.

Since by Proposition 3.6 compositions of homotopic L∞-morphisms with an L∞-
morphism are again homotopic, we get

F ◦G = F ◦ IW ◦GW ′ ◦ PW ′ ∼ IW ′ ◦ PW ′ ◦ F ◦ IW ◦GW ′ ◦ PW ′

= IW ′ ◦ FW ◦GW ′ ◦ PW ′ = IW ′ ◦ PW ′ ∼ id
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and similarly G ◦ F ∼ id.
The other direction follows from Proposition 3.5. If F ◦G ∼ id and G ◦ F ∼ id,

then we know that F 1
1 ◦G1

1 and G1
1 ◦ F 1

1 are both chain homotopic to the identity.
Therefore, F and G are L∞-quasi-isomorphisms.

Proposition 3.6 directly imply the uniqueness of quasi-inverses up to homotopy.

Corollary 3.9. Let F : (L,Q)→ (L′, Q′) be an L∞-quasi-isomorphism with two given
quasi-inverses G,G′ : (L′, Q′)→ (L,Q) in the sense of Definition 3.7. Then one has
G ∼ G′.

Proof. One has G ∼ G ◦ (F ◦G′) = (G ◦ F ) ◦G′ ∼ G′.

3.3. Homotopy equivalence between twisted morphisms
Let now F : (g, Q)→ (g′, Q′) be an L∞-morphism between DGLAs with complete

descending and exhaustive filtrations. Instead of comparing the twisted morphisms
Fπ and Fπ′

with respect to two equivalent Maurer–Cartan elements π and π′, we
consider for simplicity just a Maurer–Cartan element π ∈ F1g1 equivalent to zero via
π = exp([g, ·]) ▷ 0, i.e. λ(t) = g = Ȧ(t) ∈ F1ĝ0[t], where we use the notation from Sec-
tion 2. Then we know that 0 and S =

∑
n>0

1
n!Fn(π

∨n) are equivalent Maurer–Cartan
elements in (g′,d′). Let the equivalence be implemented by an A′(t) ∈ F1(̂g′)0[t] as
in Proposition 2.13. Then we have the diagram

(g′,d′)

(g,d) (g′,d′ + [S, ·])

(g,d + [π, ·])

e[A
′(1),·]

F

e[A(1),·]
Fπ

(21)

where e[A(1),·] and e[A
′(1),·] are well-defined by the completeness of the filtrations, and

where we omit the Lie brackets. In the following we prove one of our main results,
stating that this diagram commutes up to homotopy, which is indicated by the vertical
arrow:

Proposition 3.10. The L∞-morphisms F and e[−A′(1),·] ◦ Fπ ◦ e[A(1),·] are homo-
topic, i.e. gauge equivalent Maurer–Cartan elements in Hom(S(g[1]), g′).

The candidate for the path between F and e[−A′(1),·] ◦ Fπ ◦ e[A(1),·] is

F (t) = e[−A′(t),·] ◦ Fπ(t) ◦ e[A(t),·].

However, F (t) is not necessarily in the completion ̂Hom(S(g[1]), g′)1[t] with respect
to the filtration from (20) since for example

F (t) mod F2Hom(S(g[1]), g′)[[t]] = e[−A′(t),·] ◦ Fπ(t)
1 ◦ e[A(t),·]

is in general not polynomial in t. To solve this problem we introduce a new filtration
on the convolution DGLA h = Hom(S(g[1]), g′) that takes into account the filtrations
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on S(g[1]) and g′:

h =F1h ⊃ F2h ⊃ · · · ⊃ Fkh ⊃ · · ·

Fkh =
∑

n+m=k

{
f ∈ Hom(S(g[1]), g′) | f

∣∣
S<n(g[1])

= 0 and f : F• → F•+m
}
.

(22)

Here the filtration on S(g[1]) is the product filtration induced by

Fk(g[1]⊗ g[1]) =
∑

n+m=k

im (Fng[1]⊗Fmg[1]→ g[1]⊗ g[1]) ,

see e.g. [12, Section 2].

Proposition 3.11. The above filtration (22) is a complete descending filtration on
the convolution DGLA Hom(S(g[1]), g′).

Proof. The filtration is obviously descending and h = F1h since we consider in the
convolution DGLA only maps that are compatible with respect to the filtration. It is
compatible with the convolution DGLA structure and complete since g′ is complete.

Thus we can finally prove Proposition 3.10.

of Prop. 3.10. The path F (t) = e[−A′(t),·] ◦ Fπ(t) ◦ e[A(t),·] is an element in the com-

pletion ̂(Hom(S(g[1]), g′)[1])0[t] with respect to the filtration from (22). This is clear
since A(t) ∈ F1ĝ0[t], A′(t) ∈ F1(̂g′)0[t] and π(t) ∈ F1ĝ1[t] imply that

n−1∑
i=1

e[−A′(t),·] ◦ Fπ(t)
i ◦ e[A(t),·] mod Fn(Hom(S(g[1]), g′)[1])[[t]]

is polynomial in t. Moreover, F (t) satisfies by (11)

dF (t)

dt
= − exp([−A′(t), ·]) ◦ [λ′(t), ·] ◦ Fπ(t) ◦ e[A(t),·]

+ e[−A′(t),·] ◦ Fπ(t) ◦ [λ(t), ·] ◦ e[A(t),·] + e[−A′(t),·] ◦ dF
π(t)

dt
◦ e[A(t),·].

But we have

dF
π(t)
k

dt
(X1 ∨ · · · ∨Xk) = F

π(t)
k+1 (Q

π(t),1
1 (λ(t)) ∨X1 ∨ · · · ∨Xk)

= F
π(t)
k+1 (Q

π(t),k+1
k+1 (λ(t) ∨X1 ∨ · · · ∨Xk)) + F

π(t)
k+1 (λ(t) ∨Q

π(t),k
k (X1 ∨ · · · ∨Xk))

= Q
S(t),1
1 F

π(t),1
k+1 (λ(t) ∨X1 ∨ · · · ∨Xk) +Q

S(t),1
2 F

π(t),2
k+1 (λ(t) ∨X1 ∨ · · · ∨Xk)

− F
π(t),1
k ◦Qπ(t),k

k+1 (λ(t) ∨X1 ∨ · · · ∨Xk) + F
π(t)
k+1 (λ(t) ∨Q

π(t),k
k (X1 ∨ · · · ∨Xk)).

Setting now λF
k (t)(· · · ) = F

π(t)
k+1 (λ(t) ∨ · · · ) we get

dF
π(t)
k

dt
= Q̂t,1

1 (λF
k (t)) + Q̂t,1

2 (λF (t) ∨ Fπ(t))− F
π(t)
k ◦ [λ(t), ·] + [λ′(t), ·] ◦ Fπ(t)

k .
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Thus we get

dF (t)

dt
= e[−A′(t),·] ◦

(
Q̂t,1

1 (λF (t)) + Q̂t,1
2 (λF (t) ∨ Fπ(t))

)
◦ e[A(t),·]

= Q̂1
1(e

[−A′(t),·]λF (t)e[A(t),·]) + Q̂1
2(e

[−A′(t),·]λF (t)e[A(t),·] ∨ F (t))

since exp([A(t), ·]) and exp([A′(t), ·]) commute with the brackets and intertwine the
differentials. This is the desired homotopy equivalence between F (0) = F and F (1)
as in (10) with λ(t) = e[−A′(t),·]λF (t)e[A(t),·]. By Theorem 2.12 F and F (1) are also
gauge equivalent.

4. Application: homotopic globalizations of the Kontsevich
formality

Now we want to apply the above general results to the globalization of the Kont-
sevich formality to smooth real manifolds M . More precisely, the globalization proce-
dure proved by Dolgushev in [7, 6] depends on the choice of a torsion-free covariant
derivative on M and we show that the globalizations with respect to two different
covariant derivatives are homotopic. Note that we are not aiming to give a complete
overview on Dolgushev’s construction, since this would go beyond the scope of this
note. The actual aim is to quickly arrive to the point of the construction where we
can use the above results.

4.1. Preliminaries: globalization procedure
Starting points are the DGLA of polyvector fields (Tpoly(M), 0, [·, ·]S) on a smooth

manifold M with zero differential and Schouten bracket, and the DGLA of polydif-
ferential operators (Dpoly(M), ∂, [·, ·]G) with Hochschild differential and Gerstenhaber
bracket.

The idea of Dolgushev in [7, 6] was to replace the algebra of functions C∞(M) by
the completed symmetric algebra of the cotangent bundle

SM :=
∏
i

Γ∞(SiT ∗M).

In a coordinate chart SM looks like formal power series of dimM variables with
coefficients valued in the smooth function on M . This algebra behaves now well
enough to apply the local Kontsevich formality. Let us briefly recall the construction
in [7, 6] in order to set up notation.

• T k
poly denotes the bundle of formal fiberwise polyvector fields of degree k over

M . Its sections are C∞(M)-linear operators v : Λk+1Γ∞(SM)→ Γ∞(SM) of
the local form

v =

∞∑
p=0

vj0...jki1...ip
(x)yi1 · · · yip ∂

∂yj0
∧ · · · ∧ ∂

∂yjk

and with the fiberwise Schouten bracket one obtains a DGLA structure.

• Analogously, the sections of formal fiberwise differential operators Dk
poly are
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C∞(M)-linear operators X :
⊗k+1

Γ∞(SM)→ Γ∞(SM) of the local form

X =
∑

α0,...,αk

∞∑
p=0

Xα0...αk
i1...ip

(x)yi1 · · · yip ∂

∂yα0
⊗ · · · ⊗ ∂

∂yαk
.

Here Xα0...αk
i1...ip

are symmetric in the indices i1, . . . , ip and α are multi-indices α =

(j0, . . . , jk). Moreover, the sum in the orders of the derivatives is finite. Together
with the fiberwise Hochschild differential ∂M and the fiberwise Gerstenhaber
bracket one also obtains a DGLA structure.

• D = −δ +∇+ [A, ·] = d + [B, ·] is the Fedosov differential, where δ = [dxi ∂
∂yi , ·],

∇ = dxi ∂
∂xi − [dxiΓk

ij(x)y
j ∂
yk , ·] with Christoffel symbols Γk

ij of a torsion-free
connection on M with curvature R = − 1

2dx
idxj(Rij)

k
l (x)y

l ∂
∂yk , and A ∈

Ω1(M, T 0
poly) ⊆ Ω1(M,D0

poly) is the unique solution of
δ(A) = R+∇A+ 1

2 [A,A],

δ−1(A) = r,

σ(A) = 0.

Here r ∈ Ω0(M, T 0
poly) is arbitrary but fixed and has vanishing constant and

linear term with respect to the y-variables. We refer to (∇, r) as globalization
data.

• τ : Γ∞
δ (Tpoly)→ Z0(Ω(M, Tpoly), D) ⊂ Ω(M, Tpoly) denotes the Fedosov Taylor

series, given by

τ(a) = a+ δ−1(∇τ(a) + [A, τ(a)]).

Here one has Γ∞
δ (Tpoly) = {v =

∑
k v

j0...jk(x) ∂
∂yj0
∧ · · · ∧ ∂

∂yjk
}, analogously for

the polydifferential operators.

• The isomorphism ν : Γ∞
δ (Tpoly)→ Tpoly(M) is given by

ν(w)(f0, . . . , fk) = σw(τ(f0), . . . , τ(fk)) for f1, . . . , fk ∈ C∞(M),

where σ : Ω(M, Tpoly)→ Γ∞
δ (Tpoly) sets the dxi and yj coordinates to zero, anal-

ogously for the polydifferential operators.

• UB is the fiberwise formality of Kontsevich U twisted by

B = D − d = −dxi ∂

∂yi
− dxiΓk

ij(x)y
j ∂

∂yk
+
∑
p⩾1

dxiAk
ij1...jp(x)y

j1 · · · yjp ∂

∂yk
.

By the properties of the Kontsevich formality the first two summands do not
contribute, i.e. UB = UA.

One obtains the diagram

Tpoly(M)
τ◦ν−1

−→ (Ω(M, Tpoly), D)
UB

−→ (Ω(M,Dpoly), D + ∂M )
τ◦ν−1

←− (Dpoly(M), ∂),
(23)

where τ ◦ ν−1 are quasi-isomorphisms of DGLAs and where UB is an L∞-quasi-
isomorphism, where the Lie brackets on each term in (23) were defined above. In a
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next step, the morphism UB ◦ τ ◦ ν−1 is modified to a quasi-isomorphism

U : (Tpoly(M), 0, [·, ·]S) −→ (Z0
D(Ω(M,Dpoly)), ∂M , [ · , · ]G),

see [7, Prop. 5]. By [9, Lemma 1] we know that UB ◦ τ ◦ ν−1 and U are homotopic.
The desired quasi-isomorphism

U (∇,r) = ν ◦ σ ◦ U : (Tpoly(M), 0, [·, ·]S) −→ (Dpoly(M), ∂, [·, ·]G) (24)

is then the composition of U with the DGLA isomorphism

ν ◦ σ : (Z0
D(Ω(M,Dpoly)), ∂M , [ · , · ]G) −→ (Dpoly(M), ∂, [·, ·]G).

Corollary 4.1. The formality U (∇,r) induces a one-to-one correspondence between
equivalent formal Poisson structures on M and equivalent differential star products
on C∞(M)[[ℏ]], i.e. a bijection

U (∇,r) : Def(Tpoly(M)[[ℏ]]) −→ Def(Dpoly(M)[[ℏ]]). (25)

4.2. Explicit construction of the projection L∞-morphism
As an alternative to the modification of the formality in [7, Prop. 5] we want to

construct the L∞-quasi-inverse of τ ◦ ν−1 on the polydifferential operator side of (23).
We want to use the construction from [14, Prop. 3.2] that gives a formula for the
L∞-quasi-inverse of an inclusion of DGLAs, see also [20] for the existence in more
general cases. In our setting we have the contraction

(Dpoly(M), ∂) (Ω(M,Dpoly), ∂M +D) ,
τ◦ν−1

ν◦σ
h (26)

where the homotopy h with respect to ∂M +D is constructed as follows: As in the
Fedosov construction in the symplectic setting one has a homotopy D−1 for the
differential D, see also [7, Thm. 3]:

Proposition 4.2. The map

D−1 = −δ−1 1

id− [δ−1,∇+ [A, ·]]
= − 1

id− [δ−1,∇+ [A, ·]]
δ−1 (27)

is a homotopy between the identity and τσ on Ω(M,Dpoly), i.e. one has

X = DD−1X +D−1DX + τσ(X). (28)

Proof. The proof is the same as in the symplectic setting, see e.g. [24, Prop. 6.4.17].

If this homotopy is also compatible with the Hochschild differential ∂M , then we
can indeed apply [14, Prop. 3.2] to describe the L∞-morphism extending ν ◦ σ. Let
us denote by (D−1)k+1 the extended homotopy on Sk+1(Ω(M,Dpoly)[1]) and let us
write QDpoly

, QDpoly
for the induced codifferentials on the symmetric algebras. Then

we get:
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Proposition 4.3. The homotopy D−1 anticommutes with ∂M , whence it is also a
homotopy for ∂M +D. Therefore, one obtains an L∞-quasi-isomorphism

P : S(Ω(M,Dpoly)[1])→ S(Dpoly(M)[1])

with recursively defined structure maps

P 1
1 = ν ◦ σ and P 1

k+1 = (Q1
Dpoly,2

◦ P 2
k+1 − P 1

k ◦Qk
Dpoly,k+1) ◦ (D−1)k+1.

(29)

Proof. The fact that D−1 anticommutes with ∂M is clear as ∇+ [A, ·] and δ−1 anti-
commute with ∂, and the rest follows directly from [14, Prop. 3.2].

Summarizing, we obtain another global formality:

Corollary 4.4. Given globalization data (∇, r) there exists an L∞-quasi-isomorphism

F (∇,r) = P ◦ UB ◦ τ ◦ ν−1 : (Tpoly(M), 0, [·, ·]S) −→ (Dpoly(M), ∂, [·, ·]G) (30)

with F 1
1 being the Hochschild–Kostant–Rosenberg map.

Proof. We immediately get

F
(∇,r),1
1 = P 1

1 ◦ (UB)11 ◦ τ ◦ ν−1 = ν ◦ σ ◦ U1
1 ◦ τ ◦ ν−1

and the statement follows since U1
1 is the fiberwise Hochschild–Kostant–Rosenberg

map.

The higher structure maps of P 1
k+1 of the L∞-projection contain copies of the

homotopy D−1 that decrease the antisymmetric form degree. Therefore, they vanish
on Ω0(M,Dpoly) and are needed to get rid of the form degrees arising from the twisting
with B, analogously to the modifying of the formality from UB ◦ τ ◦ ν−1 to U .

As a last point, we want to remark that we can use the L∞-projection P to obtain
a splitting of Ω(M,Dpoly) similar to the one used in the proof of Proposition 3.8:
Instead of splitting into the product of the cohomology as minimal L∞-algebra and
a linear contractible one, we can prove in our setting:

Lemma 4.5. One has an L∞-isomorphism

L : (Ω(M,Dpoly), D + ∂M , [·, ·]G) −→ Dpoly(M)⊕ im[D,D−1]. (31)

Here the L∞-structure on Dpoly(M) is the usual one consisting of Gerstenhaber
bracket and Hochschild differential ∂ and on im[D,D−1] the L∞-structure is just
given by the differential ∂M +D. The L∞-structure on Dpoly(M)⊕ im[D,D−1] is the
product L∞-structure.

Proof. Using Proposition 4.3, we already have an L∞-morphism

P : Ω(M,Dpoly)→ Dpoly(M)

with first structure map ν ◦ σ. Now we construct an L∞-morphism

F : Ω(M,Dpoly)→ im[D,D−1].

We set F 1
1 = DD−1 +D−1D and F 1

n = −D−1 ◦ F 1
n−1 ◦ (QDpoly

)n−1
n for n ⩾ 2 and

note that in particular F 1
k = 0 for k ⩾ 3 by D−1D−1 = 0. In the following, we denote
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by QDpoly
the L∞-structure on Ω(M,Dpoly) and by Q̃ the L∞-structure on im[D,D−1]

with Q̃1
1 = −(∂M +D) as only vanishing component. We have F 1

n = D−1 ◦ L∞,n with
L∞,n = −F 1

n−1 ◦ (QDpoly
)n−1
n . By [14, Lemma 3.1] we know that if F is an L∞-

morphism up to order n, i.e. if (Q̃F )1k = (FQDpoly
)1k for all k ⩽ n, then one has

Q̃1
1 ◦ L∞,n+1 = −L∞,n+1 ◦ (QDpoly

)n+1
n+1. By Proposition 4.3 we know that F is an

L∞-morphism up to order one. Assuming it defines an L∞-morphism up to order n,
then we get with (28)

Q̃1
1 ◦ F 1

n+1 = −(∂M +D) ◦D−1 ◦ L∞,n+1

= D−1 ◦ ∂M ◦ L∞,n+1 − L∞,n+1 +D−1 ◦D ◦ L∞,n+1 + τ ◦ σ ◦ L∞,n+1

= −L∞,n+1 −D−1 ◦ Q̃1
1 ◦ L∞,n+1

= −L∞,n+1 + F 1
n+1 ◦ (QDpoly

)n+1
n+1.

Thus F is an L∞-morphism up to order n+ 1 and therefore an L∞-morphism.
The universal property of the product gives the desired L∞-morphism L = P ⊕ F

which is even an isomorphism since its first structure map (ν ◦ σ)⊕ (DD−1 +D−1D)
is an isomorphism with inverse (τ ◦ ν−1)⊕ id, see e.g. [5, Prop. 2.2].

4.3. Homotopic global formalities
The above globalization of the Kontsevich Formality depends on the choice of a

covariant derivative. We want to show that globalizations with respect to different
covariant derivatives are homotopic in the sense of Definition 3.3. The ideas are
similar to those in the proof of [3, Theorem 2.6]: observe that changing the covariant
derivative corresponds to twisting with a Maurer–Cartan element which is equivalent
to zero, and apply Proposition 3.10.

Remark 4.6 (Filtrations on Fedosov resolutions). In order to apply Proposition 3.10
we need complete descending and exhaustive filtrations on the Fedosov resolutions.
As in [3, Appendix C] we assign to dxi and yi the degree 1 and to ∂

∂yi the degree
−1 and consider the induced descending filtration. The filtration on Ω(M, Tpoly) is
complete and bounded below since

Ω(M, Tpoly) ∼= lim←−Ω(M, Tpoly)/FkΩ(M, Tpoly) and Ω(M, Tpoly) = F−dΩ(M, Tpoly),

where d is the dimension of M . In the case of the differential operators the filtra-
tion is unbounded in both directions. Instead of Dpoly we consider from now on its
y-adic completion without changing the notation. This is the completion with re-
spect to the filtration induced by assigning yi the degree 1 and ∂

∂yi the degree −1.
The globalization of the formality works just the same and one obtains the desired
properties

Ω(M,Dpoly) ∼= lim←−Ω(M,Dpoly)/FkΩ(M,Dpoly) and

Ω(M,Dpoly) =
⋃
k

FkΩ(M,Dpoly).

Let (∇′, r′) be a second pair of globalization data, then, analogously to (23), there
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is a second diagram

Tpoly(M)
τ ′◦ν−1

−→ (Ω(M, Tpoly), D
′)

UB′

−→ (Ω(M,Dpoly), D
′ + ∂M )

τ ′◦(ν′)−1

←− (Dpoly(M), ∂),

where
D′ = −δ +∇′ + [A′, ·] = d + [B′, ·],

and where A′ is the unique solution of
δ(A′) = R′ +∇′A′ + 1

2 [A
′, A′],

δ−1(A′) = r′,

σ(A′) = 0.

In the case of polyvector fields one easily sees that ν = ν′. Note

∇′ −∇ =

[
−dxiyj(Γ′k

ij − Γk
ij)

∂

∂yk
, ·
]
= [δs, ·]

for s = − 1
2y

iyj(Γ′k
ij − Γk

ij)
∂

∂yk . Thus we get

D′ = −δ +∇+ [A′ + δs, ·] = −δ +∇+ [Ã, ·] (32)

and since R′ = R+∇δs+ 1
2 [δs, δs] we know that Ã = A′ + δs is the unique solution

of 
δ(Ã) = R+∇Ã+ 1

2 [Ã, Ã],

δ−1(Ã) = r′ + s,

σ(Ã) = 0.

As in [3, Appendix C] one can now show that B and B′ can be interpreted as
equivalent Maurer–Cartan elements:

Proposition 4.7. There exists an element

h ∈ F2Ω0(M, T 0
poly) ⊂ F2Ω0(M,D0

poly) (33)

that is at least quadratic in the fiber coordinates y such that one has

B′ −B = Ã−A = −exp([h, ·])− id

[h, ·]
Dh ∈ F1Ω1(M, T 0

poly) ⊂ F1Ω1(M,D0
poly) (34)

and
exp([h, ·]) ◦D ◦ exp([−h, ·]) = D′. (35)

Thus the difference B′ −B is gauge equivalent to zero in (Ω(M, Tpoly), D) as well as
in (Ω(M,Dpoly), D + ∂M ), where h implements in both cases the gauge equivalence.

Proof. For the existence of the element h ∈ F1Ω0(M, T 0
poly) encoding the gauge equiv-

alence in the polyvector fields see [3, Appendix C]. Thus we have a path

B(t) = −exp([th, ·])− id

[th, ·]
D(th) ∈ F1 ̂Ω1(M, T 0

poly)[t]

that satisfies B(0) = 0, B(1) = B′ −B and

dB(t)

dt
= Q1(λ(t) ∨ exp(B(t))) with λ(t) = h.
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The formality UB satisfies in the notation of Proposition 2.15

B̃(t) = UB,1(exp(B(t))) = B(t) and λ̃(t) = UB,1(h ∨ exp(B(t))) = h

since the higher orders of the Kontsevich formality vanish if one only inserts vector
fields. Thus h implements indeed the gauge equivalence between 0 and B′ −B in
both DGLAs, in the fiberwise polyvector fields and in the fiberwise polydifferential
operators.

Remark 4.8. Note that one can show that the constructed h from Proposition 4.7 is
unique, since it is given by a recursion formula (in symmetric degrees). Using the fact
that F2Ω0(M, T 0

poly) acts as a group via the Baker–Campbell–Hausdorff formula on
Maurer–Cartan elements, one can show that the assignment

((∇, r), (∇′, r′)) 7→ (B,B′, h)

(with the notation as in Proposition 4.7) is canonical in the following way: given three
globalization data (∇i, ri) for i = 1, 2, 3, with

((∇i, ri), (∇j , rj)) 7→ (Bi, Bj , hij)

we get

h13 = BCH(h12, h23),

where BCH is the Baker–Campbell–Hausdorff series.

Now it follows directly from Proposition 3.10 and (UB)B
′−B = UB′

that the twisted
formalities are homotopic.

Corollary 4.9. The L∞-morphisms UB and e−[h,·] ◦ UB′ ◦ e[h,·] are homotopic.

Moreover, the Fedosov Taylor series is compatible in the following sense:

Corollary 4.10. For all X ∈ Tpoly(M) one has

e[h,·] ◦ τ ◦ ν−1(X) = τ ′ ◦ (ν′)−1(X). (36)

Proof. By the above proposition exp([h, ·]) maps the kernel of D into the kernel of D′.
Therefore,

e[h,·] ◦ τ ◦ ν−1(X) = τ ′ ◦ σ ◦ e[h,·] ◦ τ ◦ ν−1(X) = τ ′ ◦ ν−1(X)

since h is at least quadratic in the y coordinates.

Similarly, one has on the differential operator side the following identity:

Lemma 4.11. For all X ∈ Z0
D′(Ω(M,Dpoly)) one has

ν ◦ σ ◦ e−[h,·](X) = ν′ ◦ σ(X). (37)

Proof. Using the definition of ν, we compute for f1, . . . , fn ∈ C∞(M) and for any
X ∈ Z0

D′(Ω(M,Dn−1
poly ))
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(ν ◦ σ ◦ e−[h,·]X)(f1, . . . , fn) = σ((σ ◦ e−[h,·]X)(τ(f1), . . . , τ(fn)))

= σ(e−h(X(ehτ(f1), . . . , e
hτ(fn))))

= σ((σ ◦X)(τ ′(f1), . . . , τ
′(fn)))

= (ν′ ◦ σX)(f1, . . . , fn)

and the statement is shown.

As a last preparation we want to compare the two different L∞-projections P ′ and
P ◦ e−[h,·] from (Ω(M,Dpoly), ∂M +D′) to (Dpoly(M), ∂).

Lemma 4.12. The L∞-projections P ′ and P ◦ e−[h,·] are homotopic.

Proof. Since the higher structure maps of P and P ′ vanish on the zero forms, we
have by Lemma 4.11

P ◦ e−[h,·] ◦ τ ′ ◦ (ν′)−1 = ν ◦ σ ◦ e−[h,·] ◦ τ ′ ◦ (ν′)−1 = ν′ ◦ σ ◦ τ ′ ◦ (ν′)−1 = idDpoly(M).

Instead of directly using Proposition 3.8, we recall the splitting from Lemma 4.5 and
adapt the proof of Proposition 3.8. Define

M(t) : Dpoly(M)⊕ im[D,D−1] ∋ (D1, D2) 7−→ (D1, tD2) ∈ Dpoly(M)⊕ im[D,D−1]

which is an L∞-morphism with respect to the product L∞-structure. Setting

H(t) : Dpoly(M)⊕ im[D,D−1]∋ (D1, D2) 7−→ (0,−D−1D2)∈Dpoly(M)⊕ im[D,D−1]

we obtain again
d

dt
M(t) = prim[D,D−1] = 0⊕ (DD−1 +D−1D)

= −∂ ⊕ (∂M +D) ◦H(t)−H(t) ◦ (∂ ⊕ (∂M +D))

= Q̂1(H(t) ∨ exp(M(t))).

Therefore, it follows that

L(t) = L−1 ◦M(t) ◦ L : Ω(M,Dpoly) −→ Ω(M,Dpoly)

encodes the homotopy between

L(0) = τ ◦ ν−1 ◦ P and L(1) = id.

But this implies with Proposition 3.6

P ◦ e−[h,·] ∼ P ◦ e−[h,·] ◦ τ ′ ◦ (ν′)−1 ◦ P ′ = P ′

and the statement is shown.

Combining all the above statements we can show that the globalizations with
respect to different covariant derivatives are homotopy equivalent.

Theorem 4.13. Let (∇, r) and (∇′, r′) be two pairs of globalization data. Then the
formalities constructed via Dolgushev’s globalization as in (24) and the globalized
formalities via the L∞-projection as in (30) are all homotopic, i.e. one has

U (∇,r) ∼ F (∇,r) ∼ F (∇′,r′) ∼ U (∇′,r′). (38)
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Proof. By Proposition 3.5 we already know that compositions of homotopic L∞-
morphisms with DGLA morphisms are homotopic, which yields

U ∼ UB ◦ τ ◦ ν−1 ∼ e−[h,·] ◦ UB′
◦ e[h,·] ◦ τ ◦ ν−1

= e−[h,·] ◦ UB′
◦ τ ′ ◦ (ν′)−1 ∼ e−[h,·] ◦ U ′,

where we used Corollary 4.9. It follows from Lemma 4.12 and Proposition 3.6

U (∇,r) = ν ◦ σ ◦ U = P ◦ U ∼ P ◦ UB ◦ τ ◦ ν−1

= F (∇,r) ∼ P ◦ e−[h,·] ◦ UB′
◦ τ ′ ◦ (ν′)−1 ∼ P ′ ◦ UB′

◦ τ ′ ◦ (ν′)−1

= F (∇′,r′) ∼ P ′ ◦ U ′ = ν′ ◦ σ ◦ U ′ = U (∇′,r′)

and the theorem is shown.

Remark 4.14. It is not clear to us how canonical the homotopies are: given three glob-
alization data (∇i, ri) we can construct hij ∈ Hom(S(Tpoly(M)[1]), Dpoly(M)) with
|hij | = 0 such that

F (∇i,ri) = hij ▷ F (∇j ,rj).

It would be desirable to have hij = BCH(hik, hkj) in order to show that the chosen
homotopies are in some sense natural. Remark 4.8 gives already a hint that it might be
possible, but in some of the parts of the construction afterwards there were choices
involved and abstract arguments were used to show that there are homotopies at
all (i.e. the homotopy between P ′ and P ◦ e−[h,·] in Lemma 4.12): Nevertheless, we
strongly believe that one can construct the hijs in a coherent manner.

Corollary 4.15. Let M be a smooth manifold and let (∇, r) be a globalization data.
For every coordinate patch (U, x)

F (∇,r)
∣∣
U
∼ K

∣∣
U
,

holds, where K denotes the Kontsevich formality on Rd, and where d is the dimension
of M .

Proof. The formalities themselves are differential operators and can therefore be re-
stricted to open neighbourhoods. Moreover, the Kontsevich formality coincides with
the Dolgushev formality on Rd for the choice of the canonical flat covariant derivative
and r = 0.

This allows us to recover [3, Theorem 2.6], i.e. that the induced maps on equiva-
lence classes of Maurer–Cartan elements are independent of the choice of the covariant
derivative. It implies in particular that globalizations with respect to different covari-
ant derivatives lead to equivalent star products.

Corollary 4.16. The induced map

Def(Tpoly(M)[[ℏ]]) −→ Def(Dpoly(M)[[ℏ]])

does not depend on the choice of a covariant derivative.

Proof. The statement follows directly from Theorem 4.13 and Proposition 3.5.
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Remark 4.17. Note that 4.16 does not use the full strength of our results, in fact since
one can easily adapt our proofs to the case of Q-manifolds, we get even an equivalence
of derived deformation functors à la Pridham, see [23].

Finally, note that Theorem 4.13 also holds in the equivariant setting of an action
of a Lie group G on M with G-invariant torsion-free covariant derivatives ∇ and ∇′.

Proposition 4.18. Let G act on M and consider two pairs of globalization data
(∇, r) and (∇′, r′), where ∇ and ∇′ are two G-invariant torsion-free covariant deriva-
tives and where r and r′ are G-invariant. Then the formalities are equivariant and
equivariantly homotopic

U (∇,r) ∼G F (∇,r) ∼G F (∇′,r′) ∼G U (∇′,r′), (39)

i.e. all paths encoding the equivalence relation from (10) are G-equivariant.

Proof. The formalities are equivariant since all involved maps are [7, Theorem 5].
Moreover, UB and e−[h,·] ◦ UB′ ◦ e[h,·] are equivariantly homotopic by the explicit
form of the homotopy from Proposition 3.10. Moreover, again by [7, Theorem 5] we
know that U and UB ◦ τ ◦ ν−1 are equivariantly homotopic, the same holds for the
(∇′, r′) case. Thus by Theorem 4.13 it only remains to show that P ◦ e−[h,·] and P ′ are
equivariantly homotopic. But this follows directly from Lemma 4.12 since all involved
maps are equivariant.

In the case of proper Lie group actions one knows that invariant covariant deriva-
tives always exist and one has even an invariant Hochschild–Kostant–Rosenberg the-
orem, compare [22, Theorem 5.11]. Thus the L∞-morphisms from (39) restrict to
the invariant DGLAs and one obtains homotopic formalities from (Tpoly(M))G to
(Dpoly(M))G.

5. Final remarks
A lot of work has been done on the classification of formality morphisms from

Tpoly(Rd) to Dpoly(Rd) or their formal counterparts up to homotopy and remarkable
results have been achieved, see e.g. [1], [10], [25] and references therein.

Our above discussion shows now that globalizing does not produce any new homo-
topy classes, note that in fact we did not use the exact shape of the local Kontsevich
formality, but rather one specific property of it, which makes possible to globalize à
la Dolgushev (see [7, Theorem 1, property 4]). In fact, in [17] the author shows that
the L∞-part of Tamarkin’s Gerstenhaber up to homotopy quasi-isomorphism can be
globalized in this way.

Note that however, one can show that there are more formality maps, at least if
one requires that their Taylor coefficients are local, on a manifold with non-trivial
second de Rham cohomology than globalized ones.
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