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Abstract
Given smooth manifolds M and N , manifold calculus stud-

ies the space of embeddings Emb(M,N) via the “embedding
tower”, which is constructed using the homotopy theory of
presheaves on M . The same theory allows us to study the sta-
ble homotopy type of Emb(M,N) via the “stable embedding
tower”. By analyzing cubes of framed configuration spaces, we
prove that the layers of the stable embedding tower are tangen-
tial homotopy invariants of N .

If M is framed, the moduli space of disks EM is intimately
connected to both the stable and unstable embedding towers
through the En operad. The action of En on EM induces an
action of the Poisson operad poisn on the homology of config-
uration spaces H∗(F (M,−)). In order to study this action, we
introduce the notion of Poincaré–Koszul operads and modules
and show that En and EM are examples. As an application, we
compute the induced action of the Lie operad on H∗(F (M,−))
and show it is a homotopy invariant of M+.

1. Introduction

For fixed smooth manifolds M,N , the philosophy of manifold calculus is to approx-
imate Emb(M,N) by looking at how the presheaf Emb(−, N) behaves on the poset of
open sets of M which are diffeomorphic to ⊔iRn as i ranges from 0 to ∞. Weiss used
this approach to construct a tower of approximations, Ti(F ), for a “good” presheaf
F : Open(M)op → Top∗ [41].

Much is known about the convergence of this tower for the presheaf Emb(−, N),
in particular it converges, i.e. Emb(M,N) ≃ T∞(Emb(M,N)), if the codimension of
M and N is at least 3 [18, Corollary 4.2.4], and in the case Dim(M) = Dim(N) = 2
[23]. In the case M = S1 and Dim(N) = 4, the convergence of the tower was used
to show the homotopy type of Emb(S1, N), the space of smooth knots in M , is a
homeomorphism invariant of N , if N is simply connected [22, Theorem A]. Recently,
it was shown that for compact spin manifolds of dimension at least five, the tower for
Emb(M,M) = Diff(M) does not converge [24, Theorem C].
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The tower provides interesting information even when it does not converge. Exten-
sive calculation has been done in the case M = S1, N = R3; in particular, many clas-
sical invariants of knots can be constructed via pulling back along the approximations
Emb(S1,R3)→ Ti(Emb(S1,R3)) [13].

So what does T∞(Emb(M,N)) describe in the cases it does not converge? Boavida
de Brito and Weiss show that in the case of “context free functors” like Emb(−, N)
what the tower naturally computes is the derived mapping space of modules over
the framed little disks operad MaphEfr

n
(Efr

M , Efr
N ) [7, Proposition 8.3]. Here Efr(M)

denotes Emb(⊔i∈IRn,M) as I ranges over all finite sets. The Efr
n operad acts upon

this by precomposition. Moreover, the tower arises by considering mapping spaces of
modules over truncations of the framed disks operad. In particular, the tower only
depends on the module structures.

Kupers–Randall-Williams made complete computations of the rational homotopy
groups of BDiff∂(D

2d, D2d) outside of certain “bands” of degrees [25]. Recall that
BDiff∂(D

2d, D2d) denotes the diffeomorphisms of a disk relative the boundary. These
calculations employ an alternative theory of manifold calculus for framed manifolds
which is designed to study the space of framed embeddings, via derived maps of En-
modules MaphEn

(EM , EN ). The modules EM and EN are given by framed embeddings
of disks intoM . The addition of the framing information implies that EM ≃ F (M,−),
the collection of all ordered configurations in M .

Applying homology to EM gives the homology of configuration spaces of a framed
manifold the algebraic structure of a poisn module via the operad isomorphism
H∗(En) ∼= poisn [36]. In particular, this algebraic structure is an invariant of the
framed diffeomorphism type of M . In practical terms, this means that given an ele-
ment x ∈ H∗(F (M, I)), an element a ∈ I, and a forest of binary trees with leaves
labeled by J , we produce an element y ∈ H∗(F (M, I − {a} ⊔ J)) with some shift
of homological degree. Moreover, these operations satisfy equivariance, associativity,
Jacobi identities, and a derivation formula relating the action of a forest to the action
of its trees.

In the first half of this paper, we begin to investigate the module structure of EM .
We define notions of Poincaré–Koszul operads and Poincaré–Koszul modules and
observe the homology of these naturally comes with a Koszul self duality map. We
use an observation of Salvatore [35] that the Fulton–MacPherson compactifications
Fn,FM are naturally isomorphic to certain cofibrant replacements to deduce these
operads and modules are Poincaré–Koszul.

Theorem 1.1. For a tame, framed n-manifold M without boundary, there are iso-
morphisms of modules

H∗(EM ) ∼= s(n,n)H∗(K(EM+))

compatible with the isomorphism of operads

H∗(En) ∼= snH∗(K(En)).

As an application we show,

Corollary 1.2. For any choice of tame, framed n-manifold M , the shifted Lie module
ressnlieH∗(EM ) is a homotopy invariant of M+.
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This adds to a growing list of results about the interaction of higher algebraic struc-
tures and configuration spaces. Campos–Willwacher show a characteristic 0 cochain
version of this statement which takes into account the full action of the En operad
[9, Theorem 1]. In a different vein, Petersen shows various homotopy invariance
results for the compactly supported cohomology of configuration spaces. In particular,
H∗

c (F (X, k);Z) depends only C∗
c (X;Z) as an E∞-algebra [33, Corollary 5.16].

In the second half of this paper, we study the homotopy invariance of manifold
calculus. In the case of the presheaf Emb(−, N), or equivalently the module Efr

N , a
natural question is how the associated tower behaves under homotopy equivalence of
N . From now on we assume M,N are diffeomorphic to the interiors of the compact
manifolds with (possibly empty) boundary M̄ and N̄ .

The ith layer of the tower, defined as

Di Emb(−, N) := hofib(Ti(Emb(−, N))→ Ti−1(Emb(−, N))),

is given in terms of section spaces where the fibers are determined by cubes of framed
configuration spaces of N (if i > 2 the fibers are also determined by the unframed
configuration spaces [41, Section 9]). It is well known that in general F (N, k) is not a
homotopy invariant of N [27], so a straightforward equivalence of the layers, let alone
the towers, is out of the question.

There are, however, results about the homotopy invariance of the suspension spec-
tra of configuration spaces. Aouina and Klein gave the original nonequivariant answer
in the case of a PL manifold without boundary [1, Theorem A], and recently Knud-
sen and the author separately gave equivariant results for tame topological manifolds
[21, Theorem C] [29, Theorem 1.1]. One might conjecture that this invariance should
have consequences in stable embedding calculus, i.e. calculus applied to the functor
Ω∞(Σ∞

+ Emb(−, N) ∧ E) for some spectrum E.
While less is known about the stable embedding tower, if we assume the same

codimension restrictions, one can expect convergence of the stable embedding tower
if one manually kills off the first few terms in the tower [40, Theorem 2.2]. Arone–
Lambrechts–Volic have studied the stable embedding tower for

Ω∞(hofib(Emb(M,Rd)→ Imm(M,Rd)) ∧HQ)

and used it to show that the rational homology of (hofib(Emb(M,Rd)→ Imm(M,Rd))
for large codimension depends only on the rational homology type of M [4, Theo-
rem 1.8].

The goal of the second half of this paper is to show that the layers of the embedding
tower for any space valued presheaf of the form F ◦ Σ∞

+ Emb(−, N) are a tangential
homotopy invariant of (N̄ , ∂N̄), which, in particular, implies it is a proper tangential
homotopy invariant of N . A similar result for the stable orthogonal tower was proven
for parallelizable manifolds by Arone [2, Corollary 1.13].

We approach the problem of the tangential invariance of the layers by generalizing
the invariance of stable configurations in two ways. First, we allow for framings.
More precisely, if ξ → N is a bundle with compact manifold fibers (possibly with
boundary), then F ξ(N, k) is defined to be ξk|F (N,k). We show that Σ∞

+ F ξ(N, k) is
a relative fiberwise homotopy invariant of ξ. Second, we show that the cube J ⊂ I,
J → Σ∞

+ F ξ(N, J), with maps given by projection, is a relative fiberwise homotopy
invariant of ξ. Though there is a formidable amount of notation and bookkeeping,
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the heart of this argument is a combination of two definitions: Definition 12.4 which
allows us to use duality to pass to quotients of bundles and Definition 12.11 which
extends these quotients along a mapping cylinder.

Applying this analysis to the orthonormal frame bundle, combined with the afore-
mentioned description of the layers in terms of framed configuration spaces yields:

Theorem 1.3. For a smooth, tame n-manifold N and functor F : Sp→ Top∗ that
preserves weak equivalences, the layers of the tower for F ◦ Σ∞

+ Emb(−, N) are rela-
tive tangential homotopy invariants of (N̄ , ∂N̄).

2. (co)Operads and (co)modules

While operads have an incredibly rich and complex homotopy theory, they are
often accessible via geometric means. The interaction of operads and configuration
spaces was noticed by Cohen, who, in calculating the homology of the configuration
spaces of Rn, calculated the homology of the little disks operad En [12]. For an
account of this calculation which emphasizes the relation with the Poisson operad
poisn, see [36].

There are many equivalent ways to define a (co)operad each with its own advan-
tages. The definitions we lay out here, in terms of partial (de)composites, are particu-
larly suited for our geometric perspective. The starting point for most of these defini-
tions are symmetric sequences in a symmetric monoidal category (C,⊗). For us (C,⊗)
will usually be one of (Top,×), (Top∗,∧), (Sp,∧), (dgVectk,⊗). By (Top,×), (Top∗,∧)
we mean a convenient category of topological spaces and by (Sp,∧) we mean a sym-
metric monoidal category of spectra.

Definition 2.1. A symmetric sequence in C is a functor from the category of non-
empty finite sets and bijections to C.

Given finite sets I, J with a ∈ I, we define the infinitesimal composite I ∪a J :=
I − {a} ⊔ J . The combinatorics of infinitesimal composites will dictate the axioms of
an operad.

Definition 2.2. An operad in (C,⊗) is a symmetric sequence O in C together with
partial composites:

O(I)⊗O(J)→ O(I ∪a J)

for all a ∈ I. These satisfy straightforward equivariance, unital, and associativity
conditions.

Definition 2.3. A cooperad in (C,⊗) is a symmetric sequence P in C together with
partial decomposites:

P (I ∪a J)→ P (I)⊗ P (J)

for all a ∈ I. These satisfy straightforward equivariance, counital and coassociativity
conditions.

For a thorough introduction to (co)operads using these definitions, we refer to [10,
Section 2]. From now on we restrict to reduced (co)operads, i.e. those cooperads whose
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underlying symmetric sequence S has S({∗}) equal to the unit of ⊗. Any operad O
in (Top,×) with O({∗}) ≃ ∗ is equivalent to a reduced operad by replacing O({∗})
by the singleton set containing its unit. For example, the En operad is not reduced,
but En({∗}) ≃ ∗ with a canonical basepoint given by the identity. When we refer to
En, we implicitly make this reduction.

Definition 2.4. A right moduleR over an operadO in (C,⊗) is a symmetric sequence
R in C with partial composites:

R(I)⊗O(J)→ R(I ∪a J)

for all a ∈ I. These satisfy straightforward equivariance, unital, and associativity
conditions.

Definition 2.5. A right comodule R over a cooperad P in (C,⊗) is a symmetric
sequence R in C together with partial decomposites:

R(I ∪a J)→ R(I)⊗ P (J)

for all a ∈ I. These satisfy straightforward equivariance, counital, and coassociativity
conditions.

3. The module structure on homology

The homology of configuration spaces is intertwined with the Lie operad in two
distinct ways. Knudsen shows that the rational homology of unordered configura-
tion spaces can be calculated as the Lie algebra homology of a certain Lie algebra
associated to the manifold [20, Theorem 1.1]. However, there is also a more direct
connection between the homology of configuration spaces and the Lie operad which
we now describe.

For a fixed field k, consider the category (dgVectk,⊗) of chain complexes. We have
a few notable operads: lie, com and poisn, all endowed with the trivial differential.
The first governs graded Lie algebras with a bracket of degree −1, the middle gov-
erns graded commutative algebras, and the latter governs n-Poisson algebras which
have a Lie bracket of degree n− 1 and a graded commutative product for which the
Lie bracket is a derivation. There are maps of operads lie→ s−n poisn → s−n com,
where s−n is a shifting operation defined in Section 5 The first encodes forgetting
the commutative product and the latter encodes adding a trivial Lie bracket to a
commutative algebra. Classically, it is known if the characteristic of k is 0, there is an
equivalence between suitably connected categories of cocommutative coalgebras and
Lie algebras. This is an instance of Koszul duality, which underlies an operadic Koszul

duality functor Operad((C,⊗)) K−→ Operad((C,⊗)) where (C,⊗) = (dgVectk,⊗). For
a thorough discussion of Koszul duality for algebras and operads, we refer to [26].
There is a remarkable fact due to Getzler–Jones in [17] that

H∗(K(lie))← H∗(K(s−n poisn))← H∗(K(s−n com))

is isomorphic to

com← poisn ← sn lie .

As mentioned before, H∗(En) ∼= poisn. Hence, if R is a module over En, then
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H∗(R) is a module over poisn. We would like to construct such a module where
R(I) ≃ F (M, I), the I-labeled configurations of M . The quickest way to define such
a module is as follows:

For framed n-manifoldsM,N define Embfr(M,N) as the space of embeddings from
M to N with the information an isotopy of the framing of M to agree with its image
[30, Definition 2.8]. Ayala–Francis show the symmetric sequence Embfr(⊔i∈IRn,Rn)
forms an operad equivalent to En [5, Remark 2.10]. Then for any framed manifold M ,
the symmetric sequence Embfr(⊔i∈IRn,M) is a right module by precomposition of
framed embeddings, which as a symmetric sequence is equivalent to F (M, I). For con-
venience, we refer to these modules as EM . Applying homology endows H∗(F (M,−))
with structure of a poisn module.

We let EM+ denote the quotient of EM which collapses those configurations of disks
for which one is mapped into ∞ [30, Definition 2.14]. Again, by radial contraction,
the Ith space of this module has the homotopy type of

{(xi) ∈ (M+)∧I |xi = xj ⇒ i = j} ∪ {(∗, ∗, . . . , ∗)}.

This first half of the paper concerns the poisn module structure on H∗(F (M,−)).
In particular, we show that ressn lieH∗(F (M,−)), the module restriction along the
morphism snlie→ poisn, is a homotopy invariant of M+, which is somewhat surpris-
ing as the construction of this action makes heavy use of the locally Euclidean nature
of M .

4. Operad-cooperad duality

In this section, we explain how the notion of the Koszul dual cooperad, due to
Ching, Salvatore [10, Section 4.1] [34], factors as a composition of a homotopical
construction followed by one point compactification. Recall that one point compacti-
fications (−)+ of locally compact spaces exist and are covariant with respect to proper
maps and contravariant with respect to open inclusions. From now on, all (co)operads
are reduced.

Definition 4.1. An open operad O is an operad in (Top,×) such that all partial
compositions O(I)×O(J)→ O(I ∪a J) are open embeddings.

For example, Arone–Kankaanrinta construct operad structures on the symmetric
sequences (Rn)I/{translation} where the partial composites are homeomorphisms,
hence open embeddings. Taking one point compactifications then yields “sphere oper-
ads” which are further examples of open operads [3]. However, in general, the one
point compactification of an operad will not be an operad.

For a symmetric sequence S in (Top,×), we let S+ denote the symmetric sequence
in (Top∗,∧) given by S+(I) = S(I)+.

Proposition 4.2. Let O be an open operad. Then O+ is naturally a cooperad in
pointed spaces.

Proof. One point compactification is contravariant with respect to open embeddings,
hence we have maps O(I ∪a J)+ → (O(I)×O(J))+ = O(I)+ ∧O(J)+.
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We recall the definitions of the W-construction and bar construction for a reduced
operad O in (Top∗,∧) in terms of trees. For a quick treatment, see [11, Section 6].

The following is originally due to Boardman–Vogt [6]:

Definition 4.3. Given an operad O in (Top∗,∧), let T (O) denote the space of rooted
trees with the property that the root has a single adjacent edge and every internal
vertex has at least 2 children with labels as follows: the internal vertices are labeled
by O while nonroot and nonleaf adjacent edges are labeled by an element of [0,∞];
any tree with a vertex labeled by the basepoint is collapsed to a single point. We let
W (O) denotes the quotient of T (O) by the relation that any length 0 edge can be
collapsed by applying operadic partial composition. W (O) is an operad by grafting
trees via length ∞ edges.

In the case O is an operad in unpointed spaces, we will let W (O) denote the
operad in unpointed spaces given by W (O+)(I)− {∗}. It is well known that operad
composition induces an equivalence of operads W (O)→ O.

Definition 4.4. Given an operad O in (Top∗,∧), let B(O) denote W (O) ∧ (0,∞)+,
where the (0,∞) coordinate is interpreted a labeling of the edge adjacent to the
root, modulo the relations that any tree with an ∞ length edge is identified with the
basepoint.

This is a cooperad via returning the unique decomposition of trees compatible
with the decomposition I ∪a J (or sending to the basepoint if no such decompostion
exists).

If O is an operad in (Top,×) we let B(O) denote B(O+). An important difference
in how we define W (O) and B(O) for an operad in unpointed spaces is how we treat
basepoints. W (O) is an operad in (Top,×) while B(O) is a cooperad in (Top∗,∧).

For the rest of this section, we fix an operad O in (Top,×).

Definition 4.5. Let ∂W (O) represent the subspace of W (O) with some edge of
length ∞. We let W̊ (O) := W (O)− ∂W (O)

It is easy, but not necessary, to check that ∂W (O) is a model of the derived
decomposables of O.

Definition 4.6. Let W̊(0,∞)(O) := W̊ (O)× (0,∞). It is an operad via grafting trees
by an edge determined by the second trees (0,∞) coordinate. Similarly, define

W[0,∞] := W (O)× [0,∞]

by grafting via the [0,∞] coordinate.

As before, we think of the (0,∞) or [0,∞] factor as the weight of the root edge.

Definition 4.7. An operad O is compact if it is made up of compact spaces.

Proposition 4.8. W̊(0,∞)(O) is an open operad, and if O is compact then

W̊(0,∞)(O)+ ∼= B(O).
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Proof. The composition maps are clearly embeddings since if a tree can be written
via a specific partial composition then the factors are unique. This relies on the
requirement that all internal vertices have more than one child, which is also why we
require O(1) = ∗. The fact that the subset is open is also clear: the ways to perturb a
tree in W̊(0,∞)(O)(I ∪a J) are by either perturbing the vertices or by perturbing the

edge length. But the exact same is true in W̊(0,∞)(O)(I)× W̊(0,∞)(O)(J)
The second statement on the level of spaces is clear: the bar construction consists

of weighted (including the root edge) trees modulo the trees with some edge∞ or the
root edge 0. In our case, since O is compact, the noncompactness of W̊ (O)× (0,∞) is
due to the lack of length ∞ edges and the lack of length 0 root edge. If we one point
compactify, we will see that as a space we get exactly the bar construction. That the
cooperad partial decomposition maps are equal follows simply from definitions.

The bar construction exists in far more generality than the above. In particular,
it exists for operads in (Sp,∧) and results in a cooperad in (Sp,∧). We refer to [10,
Section 4] for the details of the construction, but we will only need that for an operad
in unpointed spaces O, Σ∞B(O) ≃ B(Σ∞

+ O).
Recall that for a spectrum X, the Spanier–Whitehead dual X∨ is the spectrum of

functions F (X,S0). It is straightforward to check that for a cooperad P in spectra
P∨(I) := P (I)∨ is naturally an operad. Unfortunately, the reverse is not true. The
dual of an operad is not a cooperad, in general.

Definition 4.9. For an operad O in (Sp,∧), the Koszul dual operad is

K(O) := B(O)∨.

If O is an operad in unpointed spaces, we will refer to K(Σ∞
+ O) as K(O).

Ching shows that this topological Koszul duality is a lift of classical Koszul duality,
in the sense that there is a spectral sequence

K(H∗(O)) =⇒ H∗(K(O)).

This spectral sequence collapses ifH∗(O) is Koszul [10, Proposition 9.39, 9.48]. This is
a commonly occurring property of algebraic operads see [26, Chapter 7]. In particular,
it collapses for En since poisn is Koszul.

5. Poincaré–Koszul operads

In this section, we define what it means for a topological operad to be Poincaré–
Koszul, with respect to a fixed field k. All homology is taken with respect to k. In
particular, it should imply an equivalence H∗(O) ≃ snH∗(K(O)). Informally, the pair
of O and its derived decomposables should be a Poincaré duality pair (see Section 11).
The main goal of this section is to show that the En operad is Poincaré–Koszul. In the
next section we prove analogous results for the modules EM associated to a framed
manifold.

For the remainder of this section, fix a reduced operad O in unpointed spaces such
that for all I, O(I) is homotopy equivalent to a finite complex.

Definition 5.1. The symmetric sequence ∂(W[0,∞](O)) is given by

((∂W (O)(I))× [0,∞]) ∪ (W (O)(I)× {0}) ∪ (W (O)(I)× {∞})
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Definition 5.2. A distinguished n-class of O is a homology class αI , for each non-
empty finite set I, in the relative homology

Hn|I|−n(W[0,∞](O)(I), ∂(W[0,∞](O))(I))

such that, under the isomorphism with H̄∗(B(O)), the partial decomposites act as

αI∪aJ → αI ⊗ αJ .

As a sanity check, note that

(n|I| − n) + (n|J | − n) = n(|I|+ |J | − 1)− n = n|I ∪a J | − n.

Definition 5.3. An operad O with a distinguished n-class α is Poincaré–Koszul of
dimension n if αI makes

(W[0,∞](O)(I), ∂(W[0,∞](O))(I))

into a Poincaré duality pair for all I. We refer to α as the fundamental class of the
operad.

There is a natural notion of suspension for operads in the category (dgVect,⊗).
For a chain complex A, let A[i] denotes the graded vector space where the gradings
have been shifted up i.

Definition 5.4. The operad Sn in (dgVectk,⊗) is defined by

Sn(I) := k[n|I| − n]

with partial composites determined by the canonical isomorphism k ⊗ k ∼= k.

We define the nth suspension of an operad O in (dgVect,⊗) by

snO(I) := Sn(I)⊗O(I).

This naturally forms an operad.
By unfolding definitions, one immediately obtains:

Theorem 5.5. If O is a Poincaré–Koszul operad of dimension n, then there is an
isomorphism of operads

H∗(O) ∼= snH∗(K(O)),

induced by

H∗(W[0,∞](O))
∩α−−→ s−nH̄∗(B(O)),

where we consider Hi(−) as living in degree −i. This isomorphism is natural with
respect to maps of Poincaré–Koszul operads of dimension n that preserve the funda-
mental n-class

A less important, but still relevant result, is that if we consider the suboperad of
decomposables X := decom(W[0,∞](O)), the quotient of X by the trees with an edge
of length infinity or the root edge with length 0, naturally forms a cooperad, again
by degrafting. Let’s call this quotient Y .
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Proposition 5.6. There is an isomorphism of operads H∗(X) ∼= snH∗(Y
∨).

This duality is a reflection of the fact that ∂W (O) is a Poincaré duality space.
The cooperad X+ should be thought of as a type of “dendroidal suspension” of the
derived decomposables. This Y receives a degree 1 collapse map from B(O), similar
to how, for a compact manifold N , Σ∂N receives a degree 1 map from N/∂N .

Recall that a manifold is tame if it is homeomorphic to the interior of a compact
manifold with boundary. Tameness allows us to make the identifications

H∗(Σ
∞
+ M∨) ∼= H∗(M) and H∗(Σ

∞(M+)∨) ∼= H̄∗(M+)

since it implies M and M+ are both homotopy finite.

Definition 5.7. A manifold operad O is an open operad for which all O(I) are tame
topological manifolds without boundary. We say a manifold operad is oriented (with
respect to a field k) if we are supplied with local orientations of the O(I) such that
the partial composites are orientation preserving.

Definition 5.8. The dimension of a manifold operad O is dim(O(J)), |J | = 2.

As mentioned earlier, Arone–Kankaanrinta supply an infinite family of nonisomor-
phic operad structures on the symmetric sequences

(Rn)I/{translation} and (Sn)∧I/{translation}

that yield important examples of manifold operads [3]. These operads have dimen-
sion n.

Theorem 5.9. Let O be an oriented manifold operad of dimension n. Then the homo-
logical Poincaré duality isomorphism

H∗(O) ∼= snH∗((O
+)∨)

is an isomorphism of operads.

Proof. As before, one could appeal to the naturality of the (compactly supported)
cap product. For variety, we supply an argument which suffices for manifold operads
where the underlying spaces are homeomorphic to smooth manifolds.

It suffices to show the following composite, defined via the geometric Poincaré
duality pairing [19],

H∗(O(I))⊗H∗(O(J))⊗ H̄∗(O
+(I ∪a J))

↓
H∗(O(I ∪a J))⊗ H̄∗(O

+(I ∪a J))→ Sn(I ∪a J)

is equal to the composite

H∗(O(I))⊗H∗(O(J))⊗ H̄∗(O
+(I ∪a J))

↓
H∗(O(I))⊗H∗(O(J))⊗ H̄∗(O

+(I))⊗ H̄∗(O
+(J))

↓
Sn(I)⊗ Sn(J)→ Sn(I ∪a J)
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Either composite can only be nontrivial if |x|+ |y| is complementary to |z|. In
this case, the first composite can be expressed by taking a generic representative
(x, y, z) ∈ H∗(O(I))⊗H∗(O(J))⊗ H̄∗(O

+(I ∪a J)) and pushing forward (x× y) via
the operad composition maps and counting oriented intersections with z. The bottom
composite can be described as pulling z back and counting intersections with x× y.
Since the partial composition maps are codimension 0 embeddings, these are evidently
the same.

Theorem 5.10 (Poincaré–Koszul duality of the En operad). The operad En is Poin-
caré-Koszul of dimension n. In particular, there is a canonical isomorphism of operads

H∗(En) ∼= snH∗(K(En)).

Proof. Salvatore shows that the compact model of En called Fn, the Fulton-MacPher-
son operad, has the property that W (Fn) ∼= Fn as operads [35]. Hence W̊(0,∞)(Fn)
is a manifold operad since it is automatically an open operad, and the Ith space
is homeomorphic to (Fn − ∂Fn)× (0,∞) which is a tame manifold. Orientability
follows from the fact that the boundary embeddings Fn(I)×Fn(J)→ Fn(I ∪a J)
respect the canonical local orientations of the Fn(I), in the sense that

[Fn(I)]⊗ [Fn(J)]→ ∂[Fn(I ∪a J)].

Hence, by Proposition 4.8 and Poincaré duality for manifold operads, there is an
isomorphism

H∗(W̊(0,∞)(Fn)) ∼= snH∗(K(Fn)).

However,H∗(W̊(0,∞)(Fn))∼=H∗(W[0,∞](Fn)) and the homology groups H̄∗(B(Fn))
can also be computed as

H∗((W[0,∞](Fn), ∂((W[0,∞](Fn))).

Since Poincaré duality for manifolds is expressible either through compactly sup-
ported cap products or relative cap products, we deduce that, under these identifica-
tions, this isomorphism is actually a Poincaré–Koszul duality isomorphism.

6. Module-comodule duality

The story of Koszul duality for right modules is largely parallel to operads, though
there are a few differences when it comes to one point compactification. From now
on, we refer to right (co)modules over a (co)operad by the term “(co)module”.

Definition 6.1. A proper module R over a compact operad O in (Top,×) is a module
such that all partial composites are proper maps.

Proposition 6.2. If R is a proper module over the compact operad O, R+ is a module
in (Top∗,∧) over O+.

Definition 6.3. An open module R over an open operad O is a module in (Top,×)
such that all partial composites are open embeddings.

Proposition 6.4. If R is an open module over the open operad O, R+ is a comodule
over O+.
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Note that the one point compactification of a proper module is a module and the
one point compactification of an open module is a comodule. We recall the definitions
of the W -construction and bar construction of a right module, due to Ching [10].

Definition 6.5. . Given a module R in (Top∗,∧) over the operad O, let T (R) denote
the space of rooted trees such that every internal vertex has at least 2 children with
labels as follows: the root is labeled by R, the internal vertices are labeled by O,
while nonleaf adjacent edges are labeled by an element of [0,∞]; we identify any
vertex labeled by a basepoint to a single point. We let W (R) denotes the quotient of
T (R) by the relation that any length 0 edge can be collapsed by applying module or
operad partial composition. W (R) is a module over W (O) by grafting via length ∞
edges and a module over W[0,∞](O) by grafting via the [0,∞] coordinate.

If R is a module in (Top,×), let W (R) be the module given by W (R+)(I)− {∗}. It
is well known that partial composition induces an equivalence of modules W (R)→ R
compatible with the equivalence W (O)→ O.

Definition 6.6. If R is a module over O in (Top∗,∧), let B(R) denote W (R) modulo
the relations that any tree with an ∞ length edge is identified with ∗. This is a
comodule via decomposing trees, if possible, and otherwise sending to the basepoint.

As a symmetric sequence, the bar construction of a operad O in (Top∗,∧) is home-
omorphic to the bar construction of a module: B(1). Here 1 is the unique nontrivial
module over O which consists of S0 in cardinality 1, and ∗ otherwise. If R is unpointed,
we let B(R) denote B(R+). Just as in the operad case, for an unpointed module R,
W (R) lives in (Top,×) and B(R) in (Top∗,∧).

For the rest of this section, we fix a module R over O in (Top,×).

Definition 6.7. Let ∂W (R) represent the subspace of W (R) with some edge of
length ∞. We let W̊ (R) := W (R)− ∂W (R). It is a module over W̊(0,∞)(O) by graft-
ing via the (0,∞) coordinate.

It is easy, but not necessary, to check that ∂W (R) is a model of the derived
decomposables of R.

Proposition 6.8. The module W̊ (R) is an open module over W̊(0,∞)(O). If O is

compact and R is proper, W̊ (R)+ ∼= B(R+).

Proof. As before, this is an exercise in understanding why W̊ (R) is noncompact.
Since O is compact, it is not coming from the internal vertices, but only from the
lack of length∞ edges and the noncompactness of the labels of the root vertex. Thus,
one point compactification results in B(R+).

As in the case of operads, the bar construction exists for modules in (Sp,∧). See
[10, Section 7] for details. We only need to know that for a module R in (Top,×),
Σ∞B(R) ≃ B(Σ∞

+ R).

Definition 6.9. For a module R in (Sp,∧) the Koszul dual module is

K(R) := B(R)∨.

If R is a module in unpointed spaces, we will refer to K(Σ∞
+ R) as K(R).
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Again there is a spectral sequence [10, Proposition 9.39]

K(H∗(R)) =⇒ H∗(K(R)).

7. Poincaré–Koszul modules

In this section, we define what it means for a module over a Poincaré–Koszul
operad to be Poincaré–Koszul with respect to a field k. In particular, it should imply
an equivalence H∗(R) ∼= s(n,d)H∗(K(R)) where s(n,d) is a version of suspension for
modules. Informally, the pair of R and its derived decomposables should be a Poincaré
duality pair (see Section 11).

For the remainder of this section, fix an operad O and a right module R in
unpointed spaces such that for all I, O(I), R(I) are homotopy equivalent to finite
complexes. All homology is taken with respect to a fixed field k.

Definition 7.1. A distinguished (n, d)-class of a module R over an operad O with a
distinguished n-class αI is a choice of elements βI , for each nonempty finite set I, in

Hn|I|−n+d(W (R)(I), ∂W (R)(I)),

such that, under the isomorphism with H̄∗(B(R)), the partial decomposites act as

βI∪aJ → βI ⊗ αJ .

As a sanity check, note

(n|I| − n+ d) + (n|J | − n) = n(|I|+ |J | − 1)− n+ d = n|I ∪a J | − n+ d.

Definition 7.2. A module R with a distinguished class β over a Poincaré–Koszul
operad O is Poincaré–Koszul of dimension (n, d) if βI makes

(W (R)(I), ∂W (R)(I))

into a Poincaré duality pair for all I. We refer to β as the fundamental class of the
module.

Definition 7.3. The module S(n,d) over Sn is defined by

S(n,d)(I) := k[n|I| − n+ d]

with partial composites determined by the canonical isomorphism k ⊗ k ∼= k.

We define the (n, d)-suspension of a module R over the operad O in (dgVectk,⊗)
by

s(n,d)R(I) := S(n,d)(I)⊗R(I).

This naturally forms a module over snO. As such, a suspension of a module is a
“linear combination” of two natural notions of suspension: one which is internal to O
modules and one which transforms O modules to snO modules.

By unraveling definitions one immediately obtains:
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Theorem 7.4. If R is a Poincaré–Koszul module of dimension (n, d) there is an
isomorphism

H∗(R) ∼= s(n,d)H∗(K(R)).

induced by H∗(R)
∩β−−→ s(−n,−d)H̄∗(B(R)), where we use the convention that Hi(−)

lives in degree −i. This is compatible with the Poincaré–Koszul isomorphism of O.
This isomorphism is natural with respect to maps of Poincaré–Koszul modules of
dimension n that preserve the fundamental (n, d)-class

An analogous version of Proposition 5.6 holds for Poincaré–Koszul modules.

Definition 7.5. A manifold module R over a manifold operad O is an open module
where all the spaces are tame topological manifolds without boundary. We say R is
oriented (with respect to a field k) if O is oriented, and we are supplied with local
orientations of the R(I) that make the partial composites orientation preserving.

Definition 7.6. The dimension of a manifold module R over the manifold operad O
is (dim(O),dim(R({∗})).

For example, any manifold operad O is a dimension (dim(O), 0) module over itself
since our operads are reduced. Given any manifold module R of dimension (n, d)), the
symmetric sequence R× Rk is naturally a manifold module of dimension (n, d+ k).

As one expects, there is a corresponding Poincaré duality theorem for manifold
modules:

Theorem 7.7. Let R be an oriented manifold module of dimension (n, d) over an
oriented manifold operad O. Then the homological Poincaré duality isomorphism,

H∗(R) ∼= s(n,d)H∗((R
+)∨)

is an isomorphism of modules compatible with the isomorphism

H∗(O) ∼= snH∗((O
+)∨)

Theorem 7.8 (Poincaré–Koszul duality for EM ). If M is a compact, framed n-
manifold without boundary, EM is Poincaré–Koszul of dimension (n, n). If M is
tame but not necessarily compact, we still have an isomorphism of modules

H∗(EM ) ∼= s(n,n)H∗(K(EM+))

compatible with the isomorphism of operads

H∗(En) ∼= snH∗(K(En)).

Proof. It is well known that the Fulton–MacPherson compactifications FM (I) of
the configuration spaces of a framed manifold form a proper module over Fn [31,
Proposition 6.4], and that this module is equivalent to EM , compatible with the
zigzag of equivalences [34]

Fn
≃←−W (En)

≃−→ En.

This name is somewhat of a misnomer in the caseM is not compact because the result-
ing space remains noncompact. Heuristically, the Fulton-MacPherson construction
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removes noncompactness that arises from considering configurations, but not from the
noncompactness ofM . Hence, we one point compactify FM to obtain FM+ := (FM )+,
which is a model of EM+ via the above zigzag of operad equivalences.

If one examines Salvatore’s construction of the isomorphism Fn
∼= W (Fn) [35],

with minor alterations it shows FM
∼= W (FM ). Salvatore’s construction takes as input

collar neighborhoods ci of Fn([i]) and inductively constructs the homeomorphism
Fn([i+ 1]) ∼= W (Fn)([i+ 1]) by appealing to the fact that every point of ∂Fn([i+ 1])
is uniquely associated to a tree with i+ 1 leaves with nonleaf vertices labeled by ele-
ments of Fn. Salvatore uses this description to associate to a point in the collar of
∂Fn([i+ 1]) a “lower tree” and an “upper tree” which allows him to inductively con-
struct a map from Fn([i+ 1])→W (Fn)([i+ 1]) which he shows is a homeomorphism.

A similar decomposition of points in ∂FM ([i+ 1]) exists where we now label the
root by an element of FM and all other nonleaf edges are still labeled by Fn, see
[31, Section 6] and [37, Theorem 4.4]. Using the same degrafting mechanism, one
degrafts the tree into a “lower tree” and an “upper tree” and the construction pro-
ceeds as before except the lower tree analysis now uses the inductive homeomorphisms
FM ([j]) ∼= W (FM )([j]) for j < i+ 1 and the upper tree analysis uses the homeomor-
phisms Fn([j]) ∼= W (Fn)([j]) for j < i+ 1. The proof that the inductively constructed
map is a homeomorphism works equally well in this case, as it only uses the unique
tree description of the boundary.

This homeomorphism implies, by a dimension check, W̊ (FM ) is a (n, n)-manifold
module over W̊(0,∞)(Fn) where tameness of each space follows from the tameness
of M . Hence, by Proposition 6.8 and Poincaré duality for modules, there is an iso-
morphism

H∗(FM ) ∼= s(n,n)H∗(K(FM+))

If M is compact, this isomorphism is easily identified with the Poincaré–Koszul
duality isomorphism for modules, just as it was for operads.

We end the first half of this paper by using Poincaré–Koszul duality to explore
the structure of H∗(F (M,−)). Recall that the operad com in (Top∗,∧) is S0 in every
degree with all partial composites homeomorphisms.

Definition 7.9. For a pointed space X, the com module X∧ in (Top∗,∧) is

X∧(I) := X∧I

The partial composites are induced by the diagonal of X.

Proposition 7.10. For a tame framed manifold M there is an isomorphism of shifted
Lie modules

ressn lie(H∗(FM )) ∼= s(n,n)H∗(K((M+)∧))

Proof. There is a map FM+ → (M+)∧ given by collapsing infinitesimal configura-
tions. This is compatible with the map of operads (Fn)+ → com, so induces a map
B(FM+)→ B((M+)∧) between bar constructions over the operads Fn and com,
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respectively. This is known to be an equivalence as a consequence of [15, Propo-
sition 2.5] and comes down to observing

(FM (I))+/(∂FM (I))+ ∼= (M+)∧I/(∆fat((M+)∧I)),

where ∆fat(−) denotes the subspace where some points coincide. Taking duals and
applying (not necessarily compact) Poincaré–Koszul duality and the Koszul self dual-
ity of the morphisms sn lie→ poisn → com (see Section 3) yields the result since the
map K((M+)∧)→ K(FM+) is a map of K(com) modules.

Corollary 7.11. For a tame framed manifold M , the sn lie module ressn lie(H∗(FM ))
is a homotopy invariant of M+.

The effect of restriction from the n-Poisson operad to the shifted Lie operad is to
restrict action of forests of trees onH∗(F (M,−)) to forests with a single tree. Hence, if
the full poisn module structure is to distinguish homotopy equivalent, but not framed
diffeomorphic manifolds, it must be based on how the action treats disjoint unions of
trees.

8. The layers of the embedding tower

In the previous sections, we studied actions of operads on modules which increased
cardinality. This increase is a consequence of defining operads via functors out of the
category of nonempty finite sets. If we include the empty set, we must supply maps

O(I)⊗O(∅)→ O(I − {a})
R(I)⊗O(∅)→ R(I − {a})

When we require this type of map, we call the operad unitary. By a reduced unitary
operad, we mean that the underlying symmetric sequence S has S({∗}) = S(∅) = 1,
the monoidal unit. In this case, the above partial composite reduces to maps

O(I)→ O(I − {a}) and R(I)→ R(I − {a}).

For example, En can be made into a reduced unitary operad through the action
of forgetting disks, and similarly for EM . Under the homotopy equivalence EM ≃
F (M,−), these maps correspond to the projections. The techniques of the first half
of this paper are not suitable to study this extended action. For instance, the W-
construction does not have an obvious way to incorporate these types of projection
maps. Nevertheless, the study of the nonunitary modules EM is essentially equivalent
to the study of the unitary versions by a result of Lurie [28, Proposition 5.5.2.13].

We fix two compact smooth manifolds M,N , possibly of different dimensions. We
refer to the interiors by M̊, N̊ . It is a theorem of Weiss (which we will make precise)
that these projections determine the difference between the approximations Pi(F ) and
Pi−1(F ) for a presheaf F on M̊ . Our approach to understanding these projections is
via explicit models of their Spanier–Whitehead duals.

Suppose we have a “good” presheaf F : Open(M̊)op → Top∗, i.e. it takes isotopy
equivalences to weak equivalences and sends increasing unions to homotopy inverse
limits. The theory of manifold calculus, introduced by Weiss [41], associates to F a
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tower of functors approximating F which are built from the values of F on the sets
diffeomorphic to disjoint unions of Rn, where n = dim(M).

P∞(F )

. . .

P2(F )

P1(F )

F P0(F )

In [7], Boavida de Brito and Weiss show that in the case F is “context free”, this tower
agrees with the embedding calculus tower associated to a presheaf on the topological
category Diskn, or equivalently, to the corresponding right modules over the unitary
version of Efr

n .
Recall that for a set I, an I-cube is a functor S : 2I → C, from the powerset of I,

ordered by inclusion, to a category C. For a contravariant I-cube S : (2I)op → Top∗,
totfiber denotes the total homotopy fiber of the cube, i.e.

totfiber(S) := hofiber(S(I)→ holim(S|2I−I)).

Weiss proves the following result concerning the layers of the embedding tower [18,
Example 4.1.8]:

Theorem 8.1 (Weiss). For a good presheaf F on M̊ , the ith layer of the tower for F ,
Di(F ) := hofiber(Pi(F )→ Pi−1(F )), is equivalent to the space of sections of the bun-
dle over F (M̊, i)/Σi with fiber over a set {xi} given by totfiberJ⊂I(F (⊔j∈JBϵ(xj))),
where we require the section to agree with the distinguished section near the fat diag-
onal.

Here Bϵ(−) denotes a sufficiently small ball, and the distinguished section is the
section constant at the basepoint of the fibers. In the case F = Emb(−, N̊)1, the cube
we take the homotopy limit of is equivalent to the contravariant [i]-cube of framed
configurations and projections:

J ⊂ [i]

J → F fr(N̊ , J)

A notable fact is that when i > 1 this can be replaced with the cube of unframed
configurations [41, Theorem 9.2]. If i = 1, the approximation coincides with the space
of formal immersions FImm(M̊, N̊).

1One considers Emb(−, N̊) as a functor taking values in pointed spaces by fixing a distinguished

embedding M̊ → N̊ .
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For stable embedding calculus, it is convenient to instead study presheaves on
Opentame(M̊), those open subsets which are diffeomorphic to the interior of a compact
manifold with boundary. When we are in this context, we call a presheaf good if it
simply sends isotopy equivalences to weak equivalences. This relaxation is warranted
because in the tame setting infinite increasing unions are eventually homotopically
constant, i.e. eventually all the inclusions are homotopy equivalences. The calculus of
these presheaves is identical to the good presheaves on Open(M) [18, Section 4.1].

Definition 8.2. A functor F : Opentame(M̊)op → Top∗ is an N -stable embedding
functor if it is of the form G(Σ∞

+ Emb(−, N̊)) for some G : Sp→ Top∗ which preserves
weak equivalences.

Any N -stable embedding functor is automatically good because Emb(−, N) is a
good presheaf on Opentame(M). The goal of the second half of this paper is to prove:

Theorem 8.3. The layers of an N -stable embedding functor are relative tangential
homotopy invariants of (N, ∂N), i.e. invariants of homotopy equivalences of pairs
f : (N, ∂N)→ (N ′, ∂N ′) such that f∗(TN ′) ∼= TN .

9. Duality for subsets of Rn

In [14], Dold–Puppe proved the following space level generalization of Alexander
duality.

Theorem 9.1 (Dold–Puppe). Let X ⊂ Rn. Then the following pairing

X+ ∧ cone((Rn −X)→ Rn)→ cone((Rn − 0)→ Rn) ≃ Sn

(x, y, t)→ (x− y, t)

is a duality pairing if X is a compact neighborhood retract. In other words, the adjoint
Σ∞

+ X → F (Σ∞cone((Rn −X)→ Rn),Σ∞Sn) is an equivalence if X is compact and
has a neighborhood that retracts to it.

This pairing has the excellent property that it is natural with respect to inclusion,
i.e. covariant in the first variable and contravariant in the second. This makes it a
great tool to extend space level duality arguments to diagrams of spaces.

Definition 9.2. The Dold–Puppe functor is the functor DP : Open(Rn)op → Top∗
given by

U → cone((Rn − U)→ Rn)

Though only proved in the case of compact neighborhood retracts, the pairing of
Dold–Puppe is a duality pairing for more general subsets.

Definition 9.3. A subset U of Rn is behaved if the pairing

U+ ∧DP(U)→ DP(Rn − 0)

is a duality pairing.
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Excision and the theorem of Dold–Puppe easily show:

Proposition 9.4. If U ⊂ Rn is homeomorphic to the interior of a compact manifold
with boundary, then U is behaved.

10. Fibrations over fibrations and invariance of bundles over
configuration spaces

In this section, we study the combinatorics of fibrations over fibrations where we
allow relativity in the base space and the fibers of either fibration. As an application,
one can quickly generalize the homotopy invariance of stabilized configuration spaces
to bundles over configuration spaces.

Definition 10.1. A relative fibration (E, e)→ X is a fibration E → X such that the
restriction e→ X is a fibration.

If the underlying fibration of a relative fibration is a fiber bundle, we may also refer
to it as a relative fiber bundle. We will use the notation ∂̂ to indicate the subfibration
of a relative fibration; we reserve the unadorned ∂ to refer to the boundary of a
manifold. Notably, if ξ →M is a manifold bundle with manifold fibers and ∂̂ξ is
the fiberwise boundary fibration, it only agrees with ∂ξ if M is a manifold without
boundary.

Definition 10.2. Given a relative fibration (E, ∂̂E)→ X and A ⊂ X, define the rel-
ative Thom space

(X,A)E := E ∪ cone(E|A ∪ ∂̂E).

Similarly, the reduced relative Thom space

(X,A)Ē := E/(E|A ∪ ∂̂E).

In this notation, the subfibration ∂̂E is implicit. Some basic homotopy theory tells
us:

Proposition 10.3. For a relative fibration (E, ∂̂E)→ X with distinguished A ⊂ X,

if the inclusion E|A ∪ ∂̂E → E is a cofibration, then there is an equivalence of the
form (X,A)E ≃ (X,A)Ē.

Definition 10.4. A relative fibration over a fibration is a relative fibration
(E, ∂̂E)→ ξ together with a relative fibration (ξ, ∂̂ξ)→ X and a subspace A ⊂ X.

We emphasize that the above definition is relative in three ways: the total space
of E, the total space of ξ, and the space X. We will refer to such relative fibrations
over fibrations by (E, ∂̂E)→ (ξ, ∂̂ξ)→ (X,A), but be warned that projections are

not maps of relative spaces, and (E, ∂̂E) is not the relative fiber of (ξ, ∂̂ξ).
Let I be a finite set.

Definition 10.5. Given a relative fibration (ξ, ∂̂ξ)→ X, we define

(ξI , ∂̂(ξI)) := (ξI , {(pi) ∈ ξI |∃pi ∈ ∂̂ξ}).

This is a fibration over XI in the obvious way.
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Given a fibration over a fibration

(E, ∂̂E)→ (ξ, ∂̂ξ)→ (X,A),

we may take external products to obtain another relative fibration over a fibration

(Ei, ∂̂(EI))→ (ξI , ∂̂(ξI))→ (XI , {(xi)|∃xi ∈ A}).

Definition 10.6. Given (E, ∂̂E)→ (ξ, ∂̂ξ)→ (X,A) we define

(ξ, ∂̂ξ)E
I/∆fat

:= (ξI , ∂̂(ξI) ∪ ξI |∆fat(XI)∪{(xi)|∃xi∈A})
EI

Similarly,

(ξ, ∂̂ξ)Ē
I/∆fat

:= (ξI , ∂̂(ξI) ∪ ξI |{(xi)|∃xi∈A})
ĒI

∪ cone(EI |∆fat(XI))

Colloquially, these constructions are killing the boundary fibration of EI , EI

restricted to the boundary of ξI , anything over the fat diagonal of X, and anything
over a tuple which has an element in A.

The construction (ξ, ∂̂ξ)Ē
I/∆fat

is a reduced version of (ξ, ∂̂ξ)E
I/∆fat

, and these
constructions will be interchangeable when certain cofibrancy conditions are met. It

should be noted a cone still appears in the definition of (ξ, ∂̂ξ)Ē
I/∆fat

; this avoids
potentially technical questions about whether certain fat diagonals include as cofi-
brations.

Proposition 10.7. Given (E, ∂̂E)→ (ξ, ∂̂ξ)→ (X,A) such that E|ξ|A∪∂̂ξ ∪ ∂̂E in-

cludes into E as a cofibration, then (ξ, ∂̂ξ)E
I/∆fat ≃ (ξ, ∂̂ξ)Ē

I/∆fat

.

These constructions are preserved under a suitable notion of equivalence (which
can surely be relaxed):

Proposition 10.8. Suppose we have a map of relative fibrations over fibrations:

(E, ∂̂E) (E′, ∂̂E′)

(ξ, ∂̂ξ) (ξ′, ∂̂ξ′)

(X,A) (X ′, A′)

where the bottom most horizontal map is the inclusion of a relative deformation
retract, the middle horizontal map is the inclusion of a relative deformation retract for
which the deformation covers the bottom deformation retraction, and the top most hor-
izontal map is an inclusion covering the middle, and, when considered as an inclusion
into (E′, ∂̂E′)|ξ, is a fiberwise relative deformation retract which covers the identity
of ξ.

Supposing this, the inclusion (ξ, ∂̂ξ)E
I/∆fat → (ξ′, ∂̂ξ′)E

′I/∆fat

is a homotopy equiv-
alence.
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Proof. What is necessary to check is that (E′, ∂̂E′) deformation retracts to (E, ∂̂E)
in a manner that preserves all the fiber and relativity conditions. To construct such
a deformation retraction, we start by considering the given deformation retraction
H : (ξ′, ∂̂ξ′)× I → (ξ′, ∂̂ξ′). By choosing a relative isomorphism

(H∗(E′), H∗(∂̂E′)) ∼= (E′ × [0, 1], ∂̂E′ × [0, 1]),

we may construct a fiberwise relative deformation retraction of (E′, ∂̂E′) to (E′, ∂̂E′)|ξ
which covers the deformation retraction of ξ′ to ξ. Composing with the given defor-
mation retraction of (E′, ∂̂E′)|ξ to (E, ∂̂E) finishes our argument.

Definition 10.9. Given relative fibrations (ξi, ∂̂ξi)→ (Xi, Ai) a relative fiberwise
map is a pair of relative maps

f : (X1, A1)→ (X2, A2)

g : (ξ1, ∂̂ξ1)→ (ξ2, ∂̂ξ2)

such that g is a lift of f .

Definition 10.10. Given relative fibrations (ξi, ∂̂ξi)→ (Xi, Ai), a relative fiberwise

homotopy equivalence (ξ1, ∂̂ξ1)→ (ξ2, ∂̂ξ2) is a relative fiberwise map which admits
an inverse up to homotopy through relative fiberwise maps.

In order to get used to some of the combinatorics of relative fibrations over fibra-
tions, we first state a relaxed version of Proposition 12.8 which follows from an analog
of [29, Lemma 5.3] in the setting of relative fibrations over fibrations. Proposition 12.8
will ultimately be proven in a more technical way by analyzing mapping cylinders
of fiberwise homotopy equivalences. If ξ is a bundle with smooth manifold fibers, we
will always let ∂̂ξ denote the bundle of fiberwise boundaries.

Proposition 10.11. Let (ξ, ∂̂ξ)→ (M,∂M) be a smooth, relative fiber bundle. Fix
a boundary preserving embedding of the manifold ξ into RN−1 × [0,∞) with tubular
neighborhood µ. There is an equivariant equivalence

Σ∞
+ (ξk|F (M̊,k)) ≃ ΣNk((Σ∞(ξ, ∂̂ξ)µ

k/∆fat

)∨),

and thus, Σ∞
+ (ξk|F (M̊,k)) is a relative fiberwise homotopy invariant of the relative fiber

bundle (ξ, ∂̂ξ)→ (M,∂M).

A similar result appeared in work of Moriya which additionally takes into account
action of the E1 operad on the left hand side [32, Theorem 1.1].

The right-hand side of this equivalence certainly looks complicated, but it arises
from simply keeping track of the boundary of the restriction of µk to ξk|F (M̊,k) as

a subset of RN and applying Dold–Puppe duality. Before extending this result to
include projections, we give two example applications of this proposition.

First, we can recover the main theorem of [29], that Σ∞
+ F (M̊, k) is a proper homo-

topy invariant, by taking ξ = M
id−→M and appealing to the following:

Proposition 10.12. If M̊1 is properly homotopy equivalent to M̊2, then there is a
relative equivalence

(M1, ∂M1) ≃ (M2, ∂M2).
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Proof. Let Ai denote the space of paths [0,∞]→M+
i such that the preimage of∞ is

∞; this is sometimes called the space of ends of M . Let Xi denote the cylinder of the
evaluation cyl(Ai

ev0−−→Mi). Evidently, there is an equivalence (X1, A1) ≃ (X2, A2).
Fixing homeomorphisms M+

i
∼= Mi ∪ cone(∂Mi), we may include ∂Mi → Ai as the

space of paths starting at z ∈ ∂Mi and flowing up the cone lines. It is straightforward
to see that this is a deformation retract. This implies (M1, ∂M1) ≃ (M2, ∂M2).

Definition 10.13. Given smooth manifolds with boundary M1,M2 a relative tan-
gential homotopy equivalence f : M1 →M2 is a relative homotopy equivalence such
that f∗(TM2) ∼= TM1.

If we let ξ be the orthonormal frame bundle and apply Proposition 10.11, we
conclude:

Corollary 10.14. If M1 is relatively tangentially homotopy equivalent to M2, then

Σ∞
+ F fr(M̊1, k) ≃ Σ∞

+ F fr(M̊2, k),

where F fr(−, k) denotes the configurations of k points with a framing at each point.

11. Spivak normal fibrations

LetM1,M2 be compact smooth manifolds with boundary with a relative homotopy
equivalence f : (M1, ∂M1) ≃ (M2, ∂M2). Let ξi →Mi be two bundles with compact,
smooth manifold fibers, and a relative fiberwise homotopy equivalence covering f ,
F : (ξ1, ∂̂ξ1)→ (ξ2, ∂̂ξ2).

For convenience, we assume that F is a map of simplicial complexes for some
triangulation of the ξi. Our strategy to prove that the I-cubes

J → Σ∞
+ F ξ(M̊i, J),

for J ⊂ I, are equivalent will be to construct a zigzag of equivalences passing through a
cube associated to the relative fiberwise equivalence F : ξ1 ≃ ξ2. In order to do this,
we will have to recall some facts about regular neighborhoods of Poincaré duality
pairs. The homotopical nature of such neighborhoods was first studied by Spivak
[38].

Definition 11.1. A pair (X,A) is an n-dimensional Poincaré duality pair if there is
an α ∈ Hn(X,A) so that

H∗(X)
∩α−−→ Hn−∗(X,A)

H∗(X,A)
∩α−−→ Hn−∗(X)

H∗(A)
∩∂α−−−→ Hn−∗+1(A)

are all isomorphisms. Here ∂ denotes the connecting homomorphism in homology for
the pair (X,A).

Let r : cyl(f)→M2 be the collapse map. We define (ξcyl, ∂̂ξcyl) := (r∗(ξ2), r
∗(∂̂ξ2)).
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Let

∂ξcyl = ξcyl|cyl(f |∂M1
) ∪ ξcyl|M1

∪ ξcyl|M2
∪ ∂̂ξcyl.

We observe that the pair (ξcyl, ∂ξcyl) forms a Poincaré duality pair, since it is equiv-
alent to (ξi × [0, 1], ∂(ξi × [0, 1])) which is a manifold and its boundary.

We fix an embedding ξcyl → DN × [0, 1), avoiding ∂DN × (0, 1), which sends only
∂ξcyl intoD

N × {0}, and sends only ∂(ξcyl|M1
⊔ ξcyl|M2

) into ∂DN × {0}. This embed-
ding can be assumed to be simplicial via our assumption that F is simplicial, so it
has a regular neighborhood we call p : (µcyl, ∂̂µcyl)→ ξcyl. Restricting our embedding
to ξcyl|Mi , yields embeddings into DN which send ∂(ξcyl|Mi) into ∂Dn. These have

regular neighborhoods given by p|ξcyl(f)|Mi
. We call these (µi, ∂̂µi). Note that the µi

are honest disk bundles via the tubular neighborhood theorem, but µcyl is possibly
not even a fibration.

Recall that a point inside PathFib(g : X → Y ) consists of a pair (x, γ) of a point
x ∈ X and a path γ in Y such that γ(0) = g(x). There is a fibration

evg : PathFib(g : X → Y )→ Y

(x, γ)→ γ(1).

Definition 11.2. If (X,A)→ (Dd, ∂Dd) is an embedding of an n-dimensional Poin-

caré duality pair with closed regular neighborhood (µ, ∂̂µ), then the Spivak normal
fibration is

(PathFib(µ→ X),PathFib(∂̂µ→ X))→ (X,A).

It is a theorem of Spivak [38] that this relative fibration has a fiber homotopy
equivalent to (Dd−n, Sd−n−1).

Let (νcyl, ∂̂νcyl) denote the Spivak normal pair for the regular neighborhood µcyl

of (ξcyl, ∂ξcyl). By the construction of the path fibration, there are maps µi → νcyl
via inclusion of the constant paths.

Proposition 11.3. The following diagram is a zigzag of equivalence of relative fibra-
tions over fibrations in the sense of Proposition 10.8:

(µ1, ∂̂µ1) (νcyl, ∂̂νcyl) (µ2, ∂̂µ2)

(ξcyl|M1 , ∂̂ξcyl|M1) (ξcyl, ∂̂ξcyl) (ξcyl|M2 , ∂̂ξcyl|M2)

(M1, ∂M1) (cyl(f), cyl(f |∂M1
) ∪ ∂M2) (M2, ∂M2)

≃ ≃

≃ ≃

≃ ≃

Proof. It is classical that the bottom is a zigzag of inclusions of relative deformation
retracts. Standard arguments with fiber bundles will allow us to lift these relative
deformation retracts to relative fiberwise deformation retracts of the center row. The
top zigzag follows from four facts. First, the (µi, ∂̂µi) are defined as the restriction of

(µcyl, ∂̂µcyl) to ξcyl(f)|Mi
. Second, (νcyl, ∂̂νcyl) is defined as the path fibration replace-

ment of (µcyl, ∂̂µcyl). Third, the (µi, ∂̂µi) are relative fibrations (in particular disk
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bundles). Fourth, the path fibration replacement of a relative fibration deformation
retracts (relatively and preserving the fibers) onto the constant paths.

Lemma 11.4. The relative fibrations of the previous lemma satisfy the cofibrancy
hypothesis of Proposition 10.7. Hence,

(ξcyl|Mi
, ∂̂ξcyl|Mi

)ν̄
I
i /∆

fat

≃ (ξcyl, ∂̂ξcyl)
ν̄I
cyl/∆

fat

.

Proof. We demonstrate the cofibrancy hypothesis for the relative fibration over a
fibration over the mapping cylinder; it is made difficult by the necessity of taking
path space fibrations. The other two follow from an easier, more direct argument.

By [39, Theorem 2], a closed inclusion W ⊂ X is a cofibration, if and only if,
there is an open subset U ⊃W with a deformation retraction H : U × [0, 1]→ X
onto W , as well as a continuous function ϕ : X → [0, 1] such that ϕ−1(0) = W and
ϕ(X − U) = 1.

Suppose we have a map f : E → X such that f−1(A)→ E is a cofibration for a
subspace A ⊂ X. We wish to show that

(evf )−1(A)→ PathFib(f)

is a cofibration. Suppose

U ⊃ f−1(A), H : U × [0, 1]→ E, ϕ : E → [0, 1]

is the information witnessing that f−1(A)→ E is a cofibration. We know (evf )−1(U)
is an open set which deformation retracts to (evf )−1(A) in PathFib(f) as follows:
For a path γ ending in U , let γ′

t denote the concatenation of γ, scaled to have
domain [0, 1− .5tϕ(γ(1))], with the path γ(1) follows under H until time t, scaled to
have domain [1− .5tϕ(γ(1)), 1]. Then the deformation retraction from (evf )−1(U) to
(evf )−1(A) is

((x, γ), t)→ (x, γ′
t)

And similarly, we can define a lift of ϕ to PathFib(f) by

(x, γ)→ ϕ(γ(1)).

By construction, these satisfy the requirements to show

(evf )−1(A)→ PathFib(f)

is a cofibration. Hence, by the definition of

(νcyl, ∂̂νcyl)→ (ξcyl, ∂̂ξcyl)→ (cyl(f), cyl(f |∂M1
) ∪ ∂M2),

to demonstrate the necessary cofibrancy of Proposition 10.7 it suffices to show the
corresponding result for regular neighborhoods. Explicitly, that

µcyl|(ξcyl|(cyl(f|∂M1
)∪∂M2)∪∂̂ξcyl)

∪ ∂̂µcyl ⊂ µcyl

is a cofibration. One could directly argue from the simplicial hypothesis on F that all
of these subsets have regular neighborhoods which is enough to construct the neces-
sary deformation retraction of [39, Theorem 2] mentioned above. We find it simpler to
appeal to the classification of finite dimensional ANR’s as locally contractible spaces
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[8, Page 240], and the fact that a closed subspace of an ANR is an ANR, if and only
if, the inclusion is a cofibration [16, Proposition A.6.7]. Since this inclusion is a closed
inclusion of locally contractible, finite dimensional spaces, we conclude that it is a
cofibration.

With the cofibrancy hypothesis demonstrated, we may now apply Proposition 10.7
to the diagram of Proposition 11.3 which yields the claimed equivalences.

12. Cubes of configuration spaces

In order to understand the layers of the embedding tower, it is apparent that
we need to study cubes of framed configuration spaces. In section 10, we sketched an
argument using the Dold–Puppe functor DP, that the stabilized framed configuration
spaces were tangential homotopy invariants. However, the functor DP is natural only
with respect to embeddings, so we must find a cube of inclusions which is equivalent to
the cube of configuration space projections. In order to attack this, we make repeated
use of the bundle and fibration constructions of the previous two sections.

Let (ξ, ∂̂ξ)→ (M,∂M) be a relative smooth manifold bundle over a compact,
smooth manifold M with a fixed embedding (ξ, ∂ξ)→ (DN , SN−1) preserving the
boundary. Fix a normal embedded disk bundle ι : µ→ Dn for this embedding.

Definition 12.1. The contravariant I-cube of ξ-framed configurations F ξ(M, 2I) is
defined by

K ⊂ J

(ξJ)|F (M,J)
prK−−→ (ξK)|F (M,K).

Definition 12.2. We define the contravariant I-cube of open ξ-framed configurations
F̊ ξ(M, 2I) as the restriction of the cube of manifolds F ξ(M, 2I) to their interiors.

Clearly, the open versions obtained by restriction to the interiors are equivalent to
the closed versions of these cubes.

We are to study the situation of Section 11, where we have a relative fiber-
wise equivalence F : ξ1 → ξ2 covering f : (M1, ∂M1)→ (M2, ∂M2). Unfortunately,
the mapping cylinder of F is not obviously a fibration over cyl(f), so instead we
will work with the bundle ξcyl, defined in the previous section as the pullback of

ξ2 to cyl(f). Define (ξ′i, ∂̂ξ
′
i) as the restriction (ξcyl|Mi

, ∂̂ξcyl|Mi
) which appears in

Proposition 10.8.

Proposition 12.3. There are equivalences of cubes

F ξi(Mi, 2
I) ≃ F ξ′i(Mi, 2

I),

F̊ ξi(Mi, 2
I) ≃ F̊ ξ′i(Mi, 2

I).

Proof. By the definition of ξcyl, if i = 2, F ξi(Mi, 2
I) = F ξ′i(Mi, 2

I). If i = 1, it fol-

lows since (ξ1, ∂̂ξ1) ≃ (ξ2, ∂̂ξ2) through F . The statement for open configurations is
analogous.

The following cube is the key to allowing us to apply Dold–Puppe duality. It
models the homotopy type of the projection maps between configuration spaces by
open inclusions.
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Definition 12.4. The contravariant cube µ2I is defined by

K ⊂ J

µJ × (DN )I−J

∏
k∈K idµ ×

∏
j∈J−K ι×

∏
i∈I−J idDn

−−−−−−−−−−−−−−−−−−−−−−−−→ µK × (DN )I−K

Definition 12.5. The contravariant cube µ̊2I

conf is defined by the restriction of µ2I (J)
to

(µJ − ∂̂(µJ))|F̊ ξ(M,2I)(J) × (DN − SN−1)I−J .

Note, this cube is actually a cube in Open(RNI).

Proposition 12.6. There is an equivalence of cubes

F̊ ξ(M, 2I) ≃ µ̊2I

conf .

Proof. The former includes into the latter as the inclusion of a space into a disk
bundle over that space, hence it is an equivalence.

Definition 12.7. The covariant cube (ξ, ∂̂ξ)µ
2I /∆fat

is given by DP(µ̊2I

conf).

We justify this name by observing that, objectwise, there is an equivalence

DP(µ2I

conf)(J) ≃ (ξ, ∂̂ξ)µ
J/∆fat

∧ (SN )∧I−J

which comes from examining the boundary of µ̊2I

conf(J) as a subspace of RNI .

Proposition 12.8. There is an equivalence of cubes

Σ∞
+ µ̊2I

conf ≃ ΣNI(Σ∞(ξ, ∂̂ξ)µ
2I /∆fat

)∨).

Proof. This follows from the naturality of the Dold–Puppe pairing and the fact that

µ̊2I

conf(J) is behaved by Proposition 9.4 since it is a bundle over F (M̊, J), which is the
interior of the Fulton–MacPherson compactification of F (M,J).

Definition 12.9. The covariant cube (ξ, ∂̂ξ)µ̄
2I /∆fat

at J ⊂ I is given by collapsing

the subspace of (ξ, ∂̂ξ)µ
2I /∆fat

(J) in which a coordinate labeled by an element of J
is in ∂µ or a coordinate labeled by an element of J − I is in SN−1.

This name is justified because there is a homeomorphism

(ξ, ∂̂ξ)µ̄
2I /∆fat

(J) ∼= (ξ, ∂̂ξ)µ̄
J/∆fat

∧ (SN )I−J .

By Lemma 11.4 and Proposition 10.7 we see:

Proposition 12.10. The collapse map (ξ, ∂̂ξ)µ
2I /∆fat → (ξ, ∂̂ξ)µ̄

2I /∆fat

is an equiva-
lence.
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At this point, Proposition 12.8 allows us to conclude a point-set model of the
Spanier–Whitehead dual of the cube of ξi-framed configurations is

Σ∞(ξ′i, ∂̂ξ
′
i)

µ̄2I /∆fat

.

This means that there is a zigzag of equivalences of contravariant cubes

Σ∞
+ F ξ1(M1, 2

I) ≃ · · · ≃ Σ∞
+ F ξ2(M2, 2

I),

if and only if, there is a zigzag of equivalences of covariant cubes

Σ∞(ξ′1, ∂̂ξ
′
1)

µ̄2I

1 /∆fat

≃ · · · ≃ Σ∞(ξ′2, ∂̂ξ
′
2)

µ̄2I

2 /∆fat

.

Recall that (νcyl, ∂̂νcyl) is the path fibration of the projection of a regular neigh-

borhood p : (µcyl, ∂̂µcyl)→ ξcyl. In other words, the points consist of pairs (x, γ) of a
point x ∈ µcyl and a path γ : [0, 1]→ ξcyl(f) such that γ(0) = p(x). The projection to
ξcyl(f) is defined to be γ(1).

We reiterate that for a relative fibration over a fibration

(E, ∂̂E)→ (ρ, ∂̂ρ)→ (X,A)

the notation (ρ, ∂̂ρ)Ē
J/∆fat

makes both ∂̂E and A implicit. Our next definition con-
cerns the relative fibration over a fibration

(νcyl, ∂̂νcyl)→ (ξcyl, ∂̂ξcyl)→ (cyl(f), cyl(f |∂M1
) ∪ ∂M2)

Definition 12.11. The covariant cube (ξcyl, ∂̂ξcyl)
ν̄2I

cyl/∆
fat

is given by

K ⊂ J

(ξcyl, ∂̂ξcyl))
ν̄K
cyl/∆

fat

∧ (((DN − SN−1)× [0, 1])+)I−K

↓

(ξcyl, ∂̂ξcyl))
ν̄J
cyl/∆

fat

∧ (((DN − SN−1)× [0, 1])+)I−J

We use the convention that elements not in the coned subspace have a cone coordinate
of 0. The function is given coordinate wise as follows:

• The function acts as the identity on the cone coordinate.

• If k ∈ K, the kth coordinate of a point in the domain is represented by a point
in νcyl which consists of an element xk of µcyl and a path γk : [0, 1]→ ξcyl such
that γk(0) = p(xk). The kth coordinate of the image will be the same element
xk and the same path γk.

• If j ∈ J −K, the jth coordinate of a point in the domain is represented by
a point xj in ((DN − SN−1)× [0, 1])+. If xj ∈ µcyl, the jth coordinate of the
image will be the pair of the element xj and the constant path at p(xj). Other-
wise it will be the basepoint.

• If i ∈ I − J , the ith coordinate is represented by a point xi in(
(DN − SN−1)× [0, 1]

)+
,

and the image will be xi.
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Continuity of the above construction is straightforward. There are two things to
check: if (γk(1))k∈K projects to ∆fat(cyl(f)K), then the J-labeled coordinates of the
image must project to ∆fat(cyl(f)J); and if xj for j ∈ J −K is near ∂µcyl, then the

image is near ∗ ∈ (ξcyl, ∂̂ξcyl))
ν̄J
cyl/∆

fat

∧ (((DN − SN−1)× [0, 1])+)I−J .
The first is immediate from the definition of the fat diagonal. The second is true

because on these coordinates the map is the one point compactification of an open
inclusion (together with the information of the constant path p(xj) if j ∈ J −K).

Theorem 12.12. If ξ →M is a fiber bundle with compact manifold fibers over a
smooth manifold M , the cube Σ∞

+ F ξ(M, 2I) is a relative fiberwise homotopy invariant

of (ξ, ∂̂ξ)→ (M,∂M).

Proof. There is a zigzag of inclusions

Σ∞(ξ′1, ∂̂ξ
′
1)

µ̄2I

1 /∆fat ≃−→ Σ∞(ξcyl, ∂̂ξcyl)
ν̄2I

cyl/∆
fat ≃←− Σ∞(ξ′2, ∂̂ξ

′
2)

µ̄2I

2 /∆fat

which are weak equivalences by Lemma 11.4, so we are done.

Theorem 12.13. The layers of any N -stable embedding tower are a relative tangen-
tial homotopy invariant of (N, ∂N).

Proof. Suppose our functor is of the form G(Σ∞
+ Emb(−, N̊)). The kth layer of the

tower is classified by the bundle over F (M̊, k)/Σk with fibers over {xi} given by
totfib(G(Σ∞

+ F fr(N̊ , 2{xi})). By applying G to the constructions of this section and
letting ξ be the frame bundle, we have that the cube

J ⊂ {xi}
J → G(Σ∞

+ F fr(N̊ , J)),

and thus its total homotopy fiber, are relative tangential homotopy invariants of
(N, ∂N).

As the argument for the invariance of the cube depended only on a fixed embedding
of ξcyl, and nothing about the set I itself, we can parametrize this over the cardinal-

ity k subsets of M̊ , and we deduce the classifying fibration is a relative tangential
homotopy invariant which yields the result.
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