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ADDENDUM TO “REFINEMENT INVARIANCE OF
INTERSECTION (CO)HOMOLOGIES”

MARTINTXO SARALEGI-ARANGUREN

(communicated by Graham Ellis)

Abstract
In a previous work we proved the refinement invariance of

several intersection (co)homologies existing in the literature.
Specifically, we worked with a refinement f : pX,Sq Ñ pX, T q

between two CS-sets where the strata of S were embedded in
the strata of T . However, in this paper, we establish that this
embedding condition is not a requirement for the refinement
invariance property.

1. Introduction

Let us see, in broad outline, the results obtained in [14]. We work with a CS-set
X endowed with two stratifications S and T , where the first one is finer than the
second one. We study the relationship between the intersection homology1 such that
the identity I : X Ñ X induces the isomorphism

H
p

˚
pX,Sq – H

q

˚
pX, T q, (1)

The perversity p is induced by the perversity q or vice versa.
These results encompass some other already known results about topological invari-

ance of the intersection (co)homology (cf. [11, 13, 10, 6, 7, 2, 4, 17, 5]). Recently,
the topological/refinement invariance of the intersection homology has been extended
to the more general setting of the torsion sensitive intersection homology (cf. [8, 10]).

The original proof of the classical topological invariance of the intersection homol-
ogy given by King in [13] uses the intrinsic stratification S˚. He proves that the iden-
tity map I : pX,Sq Ñ pX,S˚q induces the isomorphism (1). This gives the topological
invariance since S˚ “ T ˚. The main focus of the proof is on the local description.
Near a point x of X the identity I : pX,Sq Ñ pX,S˚q essentially becomes a stratified
map

h : Rm ˆ c̊W Ñ Rk ˆ c̊L (2)

(see for example [9, Section 5.5]). Here, W is the link of x relatively to S and L
denotes the link of x relatively to S˚.
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We do not have this nice local description for any refinement I : pX,Sq Ñ pX, T q.
The main tool used by [14] is the construction of a finite sequence of CS-sets

pX,Sq “ pX,R0q
I1

ÝÑ pX,R1q
I2

ÝÑ ¨ ¨ ¨
Iℓ´1
ÝÑ pX,Rℓ´1q

Iℓ
ÝÑ pX,Rℓq “ pX, T q,

where each step I : pX,Rj´1q Ñ pX,Rjq is a simple refinement.

In this context, any point of X has the local description (2) with the following
improvements:

a) W is a refinement of L.

b) W is a sphere and L “ H.

c) W “ Sk´m´1 ˚ L where Sk´m´1 is the pk ´m´ 1q-dimensional sphere.

The refinement notion used in [14] requires that each stratum of S is embedded in
a stratum of T . However, in this work, we show that this condition is not necessary.
Instead, we introduce the notion of w-refinement, where each stratum of T is a union
of strata of S. This involves considering homological spheres Sk instead of actual
spheres Sk in the previous local description (as noted in Remark 2.1)). We prove the
invariance of the intersection (co)homologies under w-refinement in this setting (see
Theorem 3.5 and 3.7).

Nota bene. There is an error in [14, Paragraph 5.3] that renders the proof of Corol-
lary 5.10 invalid. Specifically, the author is uncertain whether the intrinsic stratifi-
cation satisfies the required strata embedding condition to apply Theorem A, op.
cit.

Despite this, the intrinsic stratification is a w-refinement in the context of this
paper and the proof of Corollary 3.8 is correct. In simpler terms, we can deduce
topological invariance from w-refinement invariance.

For a topological space X, we denote by cX “ X ˆ r0, 1s{pX ˆ t0uq the cone on X
and c̊X “ X ˆ r0, 1r{pX ˆ t0uq the open cone on X. A point of the cone is denoted
by rx, ts. The apex of the cone is v “ r´, 0s.

We shall write Sm them-dimensional sphere and Sm anm-dimensional homological
sphere, m P N.
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2. Weak refinements

We introduce a weaker notion of refinement, as defined in [14], and work with
stratified spaces as defined in [14, Definition 2.1]. We define a stratified space pX,Sq

as a w-refinement of the stratified space pX, T q, denoted by pX,Sq đ pX, T q, if S ‰ T
and satisfies the condition

(S6w) any stratum T P T is a union of strata of S.
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Given a stratum S, we define S
I

as the unique stratum in T that contains S. There
are three important types of strata: source strata, virtual strata, and exceptional
strata. A source stratum is defined as having the same dimension as its containing

stratum S
I

, while a virtual stratum has a lower dimension than S
I

. An exceptional

stratum is a virtual stratum where S
I

is regular.
The key requirement of condition (S6w) is that each source stratum S P S is an

open subset of S
I

. In other words, each source stratum is an open subset of S
I

.

Additionally, the union of all source strata of S
I

is an open, dense subset of S
I

due
to the nature of the strata and their dimensions.

It is worth noting that the identity I : pX,Sq Ñ pX, T q is a stratified map, and we
also write pX,Sq đI pX, T q to emphasize this point.

Remark 2.1. The condition (S6w) introduced in this work is weaker than the con-
dition (S6) used in [14]. While both conditions require that each stratum of T is a
union of strata of S, condition (S6) imposes a specific local structure.

When condition (S6) holds, we can describe the local structure of a point x P X

belonging to the stratum S P S as follows:

$

&

%

x “ p0, vq

S “ Ra ˆ tvu

S
I

“ Ra ˆ c̊Sb´1,

where Sb´1 is the

pb´ 1q-dimensional sphere and v the apex of the cone.
See Remark 2.6 for a comparison between condition (S6) of [14] and the weaker

condition (S6w) used in this work, which allows for a more flexible local structure of
the stratification.

Every w-refinement can be decomposed into a sequence of simpler w-refinements.
To define the depth of a family of strata used in the next definition, we recall the
following notation and definitions. For a family of strata S 1 Ă S, the depth of S 1 is
denoted by depthS 1 and is defined as the supremum of all integers i such that there
exist strata S0, S1, . . . , Si in S 1 with S0 ă S1 ă ¨ ¨ ¨ ă Si. Here, the order relation
S ĺ S1 is defined as S Ă S1 on S. For further details, refer to [3, Proposition A.22].

Definition 2.2. Let V the family of virtual strata We say that the w-refinement
pX,Sq đ pX, T q is simple when depthV “ 0.

A CS-set is a stratified space that has a local conical structure. For a detailed
explanation of this concept, we refer the reader to [14, Section 3]. Using a similar
argument as in [14, Proposition 3.10], we can establish the proof of Proposition 2.3.

Proposition 2.3. A w-refinement pX,Sq đ pX, T q between two different CS-sets pos-
sesses a simple decomposition made up of CS-sets.

To describe the construction of compatible conical charts associated with a simple
w-refinement in Proposition 2.7 , we need two preliminary results. The first one is a
useful finding about cones from Stallings [16, 15], which can be found in [9, Lemma
2.10.1] for a proof.

Lemma 2.4. Let X and Y be two compact topological spaces, whose apexes are x

and y respectively. If there is an open neighborhood U of x in c̊X so that pU, xq and
p̊cY, yq are homeomorphic, then p̊cX, xq and p̊cY, yq are homeomorphic.
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Lemma 2.5. Let pX,Sq đI pX, T q be a w-refinement. Consider a stratum S P S and

a point x P S. Let us suppose b “ dimS
I

´ dimS ě 1. Then, there exists

i) an open neighborhood U Ă SI of x, as small as necessary, and

ii) two homeomorphisms pU, xq
g

ÐÝpRa ˆ c̊Sb´1, p0, vqq
f

ÝÑpRa`b, 0q with g´1pS X Uq

“ Ra ˆ tvu.

Here, a “ dimS and v is the apex of the cone c̊Sb´1.

Proof. Let g : pRa ˆ c̊L, I ˆ c̊Lq Ñ pV,Sq be a S-conical chart of x P S where V is
small as necessary. Recall that S X V “ gpRa ˆ twuq and gp0, wq “ x, where w is the

apex of c̊L. The subset g´1pV X S
I

zSq is of the form Ra ˆAˆs0, 1r for some subset

A Ă L (cf. (S6w)). We get the homeomorphism g : Ra ˆ c̊A Ñ V X S
I

. We take U “

V X S
I

. Notice that dimS “ a and dimS
I

“ a` b.
Without loss of the generality we can suppose that U is included in an open subset

of S
I

homeomorphic to Ra`b. So, the cone c̊pSa´1 ˚Aq is homeomorphic to an open
subset of c̊Sa`b´1 (cf. [14, (8)]). Then c̊pSa´1 ˚Aq is homeomorphic to c̊Sa`b´1 by
a homeomorphism preserving the apexes (cf. Lemma 2.4). This gives f . A standard
calculation gives that A is a pb´ 1q-homological sphere.

Remark 2.6. Condition (S6w) of a w-refinement gives the following local structure of

a point x P X belonging to the stratum S P S:

$

&

%

x “ p0, vq

S “ Ra ˆ tvu

S
I

“ Ra ˆ c̊Sb´1,

where Sb´1 is a

pb´ 1q-homological sphere and v is the apex of the cone. This is the difference with
the refinement of Remark 2.1.

The subset S
I

zS “ Ra ˆ Sb´1ˆs0, 1r is a union of strata Q P S. Notice that S ă Q.
Let us suppose that the w-refinement pX,Sq đI pX, T q is simple. Since depthV “ 0

then all the strata of S
I

zS are source strata. If b ą 1 then S
I

{S is just a source

stratum, when b “ 1 the subset S
I

zS is the union of two source strata.

Globally, S
I

contains a discrete family of strata of V “ M, the rest being source
strata.

Proposition 2.7. Let pX,Sq đI pX, T q be a simple w-refinement between two CS-
sets. We consider a point x P X belonging to the stratum S P S. We distinguish three
cases.

a) S is a source stratum. Then there exists

– a S-conical chart pψ,W q of x P S, whose link is pL,Lq,

– a T -conical chart pψ,W q of x P S
I

, whose link is pL,L1q for some w-refine-
ment L1 of L, and

– a commutative diagram

pRa ˆ c̊L, I ˆ c̊Lq

I

��

ψ // pW,Sq

I

��
pRa ˆ c̊L, I ˆ c̊L1q

ψ // pW, T q
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b) S is an exceptional stratum. Let b “ dimS
I

´ dimS ě 1. Then there exists

– a S-conical chart pϕ,W q of x P S, whose link is pSb´1, Iq,

– a chart pψ,W q of x P S
I

, and
– a commutative diagram

pRa ˆ c̊Sb´1, I ˆ c̊Iq

f

��

ϕ // pW,Sq

I

��
pRa`b, Iq

ψ // pW, T q,

where f is a homeomorphism.

c) S is a non-exceptional virtual stratum. Let b “ dimS
I

´ dimS ě 1. Then there
exists

– a S-conical chart pϕ,W q of x P S, whose link2 is pSb´1 ˚ E, E‹b´1q,

– a T -conical chart pψ,W q of x P S
I

, whose link is pE; Eq, and
– a commutative diagram

pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q

pfˆIde qpIde ˆh´1
q

��

ϕ // pW,Sq

I

��
pRa`b ˆ c̊E, I ˆ c̊Eq

ψ // pW, T q

where h, f are defined in [14, (8)] and Lemma 2.5 respectively.

Proof. a) We consider a S-conical chart of x P S
I

:

ψ : pRa ˆ c̊L, I ˆ c̊Lq Ñ pW,Sq

Each stratum of T is a union of strata of S (cf. (S6w)). Since dimS
I

“ dimS

then S
I

XW “ ψpRa ˆ twuq “ S XW where w is the apex of the cone c̊L. The
other strata of pW, T q are of the form ψpRa ˆAˆs0, 1rq where A is a union of
some strata of L. So, there exists a filtration L1 on L such that

ψ : pRaˆs0, 1rˆL, I ˆ I ˆ L1q Ñ pW zS
I

, T q

is a stratified homeomorphism. This is also the case for

ψ : pRa ˆ c̊L, I ˆ c̊L1q Ñ pW, T q.

We get that pψ,W q is a T -conical chart of x P S
I

with link pL,L1q.

b) Take pϕ,W q “ pg, Uq and pψ,W q “ pg ˝ f´1, Uq from Lemma 2.5. Since S
I

is a
regular stratum of T , then W is an open subset of X. The pair pψ,W q is a chart

of x P S
I

.

2We find the definition of a join stratification in [14, Examples 2.2]).
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Recall that g´1pU X Sq “ Ra ˆ tvu, where v is the apex of c̊Sb´1. Then,

ϕ : pRa ˆ pSb´1ˆs0, 1rq, I ˆ Iq
f

ÝÑ pfpRa ˆ Sb´1ˆs0, 1rq, Iq
g˝f´1

ÝÝÝÝÑpUzS, T q

“pUzS,Sq

is a stratified homeomorphism (cf. Remark 2.6). We conclude that

ϕ : pRa ˆ c̊Sb´1, I ˆ c̊Iq Ñ pW,Sq

is a stratified homeomorphism and therefore pϕ,W q is a S-chart of x P S whose
link is pSb´1, Iq.
The diagram is commutative since, by construction, we have ϕ “ ψ ˝ f .

c) We define a “ dimS, which gives dimS
I

“ a` b. Let

φ : pRa`b ˆ c̊E, I ˆ c̊Eq Ñ pQ, T q

be a T -conical chart of x P S
I

. The set QX S
I

“ φpRa`b ˆ twuq, where w is the

apex of the cone c̊E, is an open neighborhood of x P S
I

. We consider pU, gq given

by Lemma 2.5 with U Ă QX S
I

. We define W “ φpprφ´1pUq ˆ c̊Eq Ă Q which
is an open subset containing x. Here pr : Ra`b ˆ c̊E Ñ Ra`b is the canonical pro-
jection. The stratified homeomorphism

γ “ φ ˝ pppr ˝ φ´1 ˝ gq ˆ Ide c̊Lq : pRa ˆ c̊Sb´1 ˆ c̊E, I ˆ I ˆ c̊Eq Ñ pW, T q,

verifies γ´1pS
I

q “ Ra ˆ c̊Sb´1 ˆ twu and γ´1pSq “ Ra ˆ tpv, wqu. We consider f
given by Lemma 2.5. Notice that

ψ “ γ ˝ pf´1 ˆ Ide q : pRa`b ˆ c̊E, I ˆ c̊Eq Ñ pW, T q

gives a T -conical chart pψ,W q of x, whose link is pE, Eq.
From Remark 2.6 we get that the stratification S induces the stratification

Ra ˆ tpv, wqu,Ra ˆ pSb´1qccˆs0, 1rˆtvu

on γ´1pS
I

q. In other words, the map

γ : pRa ˆ c̊Sb´1 ˆ twu, I ˆ c̊I ˆ Iq Ñ pW X S
I

,Sq

is a stratified homeomorphism. Since all the strata of pW zS,Sq are source strata

then S “ T on W zS
I

. This gives that

γ : pRa ˆ c̊Sb´1 ˆ Eˆs0, 1r, I ˆ I ˆ E ˆ Iq Ñ pW zS
I

,Sq

is a stratified homeomorphism. Combining these two results, we get that

γ : pRa ˆ p̊cSb´1 ˆ c̊Eq, I ˆ pI ˆ c̊Eqpv,wqq Ñ pW,Sq

is a stratified homeomorphism. Finally, using the stratified homeomorphism h (cf.
[14, (8)]) we get the conical chart

ϕ “ γ ˝ pId ˆ h´1q : pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q Ñ pW,Sq

whose link is pSb´1 ˚ E, E‹b´1q.
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The diagram is commutative since, by construction, we have

ψpf ˆ Ide qpIde ˆ h´1q “ γpf´1 ˆ Ide qpf ˆ Ide qpIde ˆ h´1q

“ γpIde ˆ h´1q “ ϕ.

We can consider b) as a special case of c) by taking E “ H.

Suppose we have a simple w-refinement with only one virtual stratum V P S. We
describe the local situation around a point x belonging to a stratum S P S. We have
several possibilities

– S ă V . The local description is the same as in case a) with L1 ‰ L.

– S “ V . The local description is that of item b) (if dimS
I

“ dimX) or that of

c) (if dimS
I

ă dimX).

– S ł V . The local description is the same as in case a) with L1 “ L. In fact, on
the open subset XzV , the stratifications S and T are equal.

2.1. (Co)homologies

The main aim of this paper is to prove the invariance of intersection (co)homologies
and related (co)homologies under w-refinement. These (co)homologies are associated
with a perverse CS-set pX,S, pq (refer to [14, Section 3.1]) and are as follows:

H
p

˚
pX;Sq Intersection homology

H
˚

p
pX;Sq Intersection cohomology

H
BM,p

˚
pX;Sq Borel-Moore intersection homology

H
˚

p,c
pX;Sq Intersection cohomology with compact supports

H
p

˚
pX;Sq Tame intersection homology

H
˚

p
pX;Sq Tame intersection cohomology

H
BM,p

˚
pX;Sq Borel-Moore tame intersection homology

H
˚

p,c
pX;Sq Tame intersection cohomology with compact supports

H
˚

p
pX;Sq Blown-up intersection cohomology

H
˚

p,c
pX;Sq Blown-up intersection cohomology with compact supports

The (co)homologies under discussion arise when investigating the Poincaré duality
concerning pseudo-manifolds. For a comprehensive presentation of these notions, we
refer to [14, Section 1]. Because of the new local description of the conical chart for
a point of a virtual stratum (cf. Lemma 2.7) we require the subsequent computation.

Let pX,Sq be a CS-set. We consider a perversity p on the join Sm ˚X (cf. [14,
Examples 2.2]) taking the same value ppSmq on each connected component pSmqcc of
Sm. A such perversity is determined by a perversity p on the cone c̊X. It also defines
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a perversity p on X and c̊X as follows

ppSmq “ ppvq and pp̊cSm ˆ Sq “ ppSˆs0, 1rq “ ppSq

where v is the apex of the cone c̊X and S P S. Since codim Sm˚XSm “ codim c̊Xtvu

and codim Sm˚X p̊cSm ˆ Sq “ codim c̊XpSˆs0, 1rq “ codimXS then

DppSmq “ Dppvq and Dpp̊cSm ˆ Sq “ DppSˆs0, 1rq “ DppSq.

Lemma 2.8. Let pX,Sq be a CS-set. Consider p a perversity on the join Sm ˚X for
some integer m P N. We suppose that p takes the same value ppSmq on each connected
component pSmqcc of Sm. We have

H
p

k
pSm ˚X,S‹mq “

$

’

’

&

’

’

%

H
p

k
pX,Sq if k ď DppSmq,
G if 0 “ k ą DppSmq,
0 if DppSmq ă kďDppSmq`m`1, k ‰ 0

rH
p

k´m´1
pX,Sq if k ě DppSmq `m` 2, k ‰ 0

H
p

k
pSm ˚X,S‹mq “

$

’

&

’

%

H
p

k
pX;Sq if k ď DppSmq, ,
0 if DppSmq ă k ď DppSmq `m` 1,

H
p

k´m´1
pX,Sq if k ě DppSmq `m` 2,

H
k

p
pSm ˚X,S‹m`1q “

$

’

&

’

%

H
k

p
pX,Sq if k ď ppSmq,

0 if ppSmq ă k ď ppSmq `m` 1,

H
k´m´1

p
pX,Sq if k ě ppSmq `m` 2,

where the first line isomorphisms come from the natural inclusion X ãÑ Sm ˚X.

Proof. The three cases use the same technics: Mayer–Vietoris and local calculations.
We prove just the first one. The join stratification is S‹m “ tpSmqcc, c̊Sm ˆ S | S P Su.

We consider the open covering Sm ˚X “ U Y V where

U “ pSm ˚XqzSm “ c̊Sm ˆX and V “ pSm ˚XqzX “ Sm ˆ c̊X.

This last equality comes from the homeomorphism rrz, ts, ys ÞÑ pz, ry, 1 ´ tsq. We have
U X V “ Smˆs0, 1rˆX. The inclusion U X V ãÑ U induces the morphism

pr˚ : H
p

˚
pSm ˆX, I ˆ Sq Ñ H

p

˚
pX,Sq,

where pr : Sm Ñ X is la projection canonic, and the inclusion U X V ãÑ V induces
the morphism I˚ : H

p

˚
pSm ˆX, I ˆ Sq Ñ H

p

˚
pSm ˆ c̊X, I ˆ c̊Sq, where

I : Sm ˆX ãÑ Sm ˆ c̊X

is the inclusion pθ, xq ÞÑ pθ, rx, 1{2sq (cf. [5, Corollary 3.14]).
Applying Mayer–Vietoris (cf. [5, Proposition 4.1]) we get the short exact sequence

0 Ñ CokerFk Ñ H
p

k
pSm ˚X,S‹mq Ñ KerFk´1 Ñ 0,

for each k P Z, where

Fk “ prk ‘ Ik : H
p

k
pSm ˆX, I ˆ Sq Ñ H

p

k
pX,Sq ‘H

p

k
pSm ˆ c̊X, I ˆ c̊Sq.

Intersection homology verifies Kunneth (cf. [5, Proposition 4.7]), so this maps becomes

Fk “ H
p

k
pX,Sq ‘H

p

k´m
pX,Sq Ñ H

p

k
pX,Sq ‘H

p

k
p̊cX, c̊Sq ‘H

p

k´m
p̊cX, c̊Sq
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where

Fkpa, bq “

"

pa, Jkpaq, Jk´mpbqq if m ‰ 0,
pa´ b, Jkpaq, Jkpbqq if m “ 0.

Here, Jℓ : H
p

ℓ
pX,Sq Ñ H

p

ℓ
p̊cX,Sq is induced by the inclusion x ÞÑ rx, 1{2s. Notice

that KerFk “ Ker Jk´m and CokerFk “ H
p

k
p̊cX, c̊Sq ‘ Coker Jk´m.

Let us consider the long exact sequence associated to the pair p̊cX,Xq

¨ ¨ ¨H
p

k´1
p̊cX,X, c̊Sq Ñ H

p

k
pX,Sq

J˚
ÝÝÑ H

p

k
p̊cX, c̊Sq Ñ H

p

k
p̊cX,X, c̊Sq Ñ ¨ ¨ ¨

(cf. [5, Definition 4.4]). Notice that for each k P Z
– the map Fk´1 is a monomorphism or the map Fk is an epimorphism and

– the map Jk´1 is a monomorphism or the map Jk is an epimorphism

We conclude that

H
p

k
pSm ˚X,S‹mq “CokerFk ‘ KerFk´1 “H

p

k
p̊cX, c̊Sq ‘ Coker Jk´m ‘ Ker Jk´m´1

“ H
p

k
p̊cX, c̊Sq ‘H

p

k´m
p̊cX,X, c̊Sq

“p1q

$

&

%

H
p

k
pX,Sq if k ď DppSmq

0 if 0 ‰ k ą DppSmq

G if 0 “ k ą DppSmq

‘

"

0 if k ď DppSmq `m` 1
rH

p

k´m´1
pX,Sq if k ě DppSmq `m` 2

which gives the claim. Here, p1q is given by [5, Proposition 5.2, Corollary 5.3].

When k ď DppSmq the isomorphism H
p

k
pX,Sq “ H

p

k
pSm ˚X,S‹mq comes from the

map X
f

ÝÑ U
g

ÝÑ Sm ˚X with fpxq “ prz, 0s, xq and gprz, ts, xq “ rrz, ts, xs. In other
words, the natural inclusion X ãÑ Sm ˚X, x ÞÑ rrz, 0s, xs.

3. Refinement invariance for CS-sets

Our primary focus in this work is to demonstrate the w-refinement invari-
ance of all the homologies and cohomologies listed in Paragraph 2.1. We
have accomplished this via Theorem 3.5 for w-coarsenings and Theo-
rem 3.7 for w-refinements. To apply the former, we rely on a specific variant
of perversities called K-perversities.

3.1. K-perversities
The specific types of perversities that satisfy w-refinement invariance are referred

to as K-perversities. In essence, they are perversities formulated on the left-hand
side of a w-refinement pX,Sq đ pX, T q, wherein their restriction to the strata of the
right-hand side conforms to a classical perversity and meets the growing condition of
a Goresky–MacPherson perversity.

Definition 3.1. Let pX,Sq đ pX, T q be a w-refinement. A perversity p on pX,Sq is
a K-perversity if it verifies conditions (K1) and (K2).

(K1) We have, for any strata S,Q P S with S ĺ Q and S
I

“ Q
I

,

ppQq ď ppSq ď ppQq ` tpSq ´ tpQq, (3)
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(K2) We have, for any strata S,Q P S with dimS “ dimQ and S
I

“ Q
I

,

ppQq “ ppSq, (4)

Remark 3.2.

i) Notice these two conditions are equivalent to conditions

DppQq ď DppSq ď DppQq ` tpSq ´ tpQq and DppQq “ DppSq. (5)

Also, the condition (3) holds for all regular strata S and Q. If the stratum Q is
regular and the stratum S is singular (i.e., S is an exceptional stratum), then
the condition (3) is replaced by

0 ď ppSq ď tpSq. (6)

In particular, the existence of aK-perversity implies the absence of 1-exceptional
strata, since it is not possible to have 0 ď tpSq “ ´1.

ii) Let W be an open subset as in Proposition 2.7 (c). The S-stratification on W is
given by the family

tS XW, pS
I

zSqcc XW u.

Let p be a K-perversity on pX,Sq. Condition (4) implies that p takes the same

value on each pS
I

zSqcc. In other words, the value of pppSb´1qccq does not depend
on the choice of connected component.

Before presenting the main results of this work, it is necessary to establish some
technical lemmas regarding pull-back and push-forward perversities. These lemmas
can be found in [14, Lemma 5.3, 5.4, and 5.5].

Lemma 3.3. Let pX,Sq đI pX, T q be a w-refinement. Let p be a K-perversity. Then

i) I‹ppT q “ ppSq for each T P T where S P S is a source stratum of T .

ii) I‹DI‹p ď Dp.

iii) I‹I‹p ď p.

Lemma 3.4. Let pX,Sq đI pX,Rq đJ pX, T q be two w-refinements. For any choice of
K-perversity p on pX,Sq, relatively to the w-refinement E “ J ˝ I, we have

a) p is a K-perversity, relatively to the w-refinement I, and

b) I‹p is a K-perversity, relatively to the w-refinement J .

3.2. Main results

We give the two invariance results of the various intersection (co)homologies: by
w-coarsening and by w-refinement.

Theorem 3.5 (Invariance by w-coarsening). Let pX,Sq đ pX, T q be a w-refinement
between two CS-sets. For any K-perversity p on pX,Sq the identity I : X Ñ X induces
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the isomorphisms

(R1) H
p

˚
pX;Sq – H

I‹p

˚
pX; T q, (R2) H

˚

p
pX;Sq – H

˚

I‹p
pX; T q,

(R3) H
˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q, (R4) H

p

˚
pX;Sq – H

I‹p

˚
pX; T q,

(R5) H
˚

p
pX;Sq – H

˚

I‹p
pX; T q, (R6) H

˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q.

If in addition, X is second countable then

(R7) H
BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q, (R8) H

BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q,

(R9) H
˚

p
pX;Sq – H

˚

I‹p
pX; T q, (R10) H

˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q.

Proof. Proceeding as in [14, Theorem 5.7] it suffices to consider the cases (R1), (R4)
and (R9) supposing that the w-refinement is simple. We verify the conditions of [14,
Proposition 4.5], for (R1) and (R4), and [14, Proposition 4.6], for (R9). The functor
Φ comes from I : X Ñ X.

a) Consider the Mayer–Vietoris sequences coming from [5, Proposition 4.1] and [2,
Corollary 10.1].3

b) Since chains have compact support we get (R1), (R4). The case (R9) is straight-
forward.

d) Since SU “ I implies TU “ I then property (d) becomes a tautology.

c) Consider a singular point x P X. We assume that we have a chart containing x
that is small enough, as discussed in [14, Remark 4.7]. We distinguish three cases
based on this assumption.

(C-a) x P S, source stratum of S. We can use Proposition 2.7 (a) and the local
calculations from [5, Corollary 3.14, Proposition 5.1] and [2, Theorems D, E]
to restate question (c) in terms of three implications: (R1), (R4), and (R9).
These implications are as follows:
Considering Proposition 2.7 (a) and using the local calculations [5, Corol-
lary 3.14, Proposition 5.1]) and [2, Theorems D, E]) we can restate question
(c) in terms of three implications, denoted as (R1), (R4), and (R9). The impli-
cations are as follows:

pR1q H
p

˚
pL,Lq–H

I‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–H

I‹p

˚
p̊cL, c̊L1q

pR4q H
p

˚
pL,Lq–H

I‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–H

I‹p

˚
p̊cL, c̊L1q

pR9q H
p

˚
pL,Lq–H

I‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–H

I‹p

˚
p̊cL, c̊L1q.

Since the perversity p verifies ppSq “ I‹ppS
I

q (cf. Lemma 3.3 i), we have
ppvq “ I‹ppvq (cf. [14, (17)]). The result follows directly from the above local
calculations.

(C-b) x P S, exceptional stratum of S. We can restate question (c) in terms of
three implications, denoted as (R1), (R4), and (R9), by using Proposition 2.7

3Notice that X is second countable, Hausdorff and locally compact ([14, Remark 4.7]). Then, the
pseudomanifold X is paracompact (cf. [1, II.12.12]).
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(b) and the local calculations mentioned above. The implications are as fol-
lows:

pR1q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR4q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR9q H
˚

p

`

c̊Sb´1, c̊I
˘

–R.

Here, b “ codimS ě 1. Since

0 ď ppSq ď tpSq “ b´ 2

(as given by equation (6)), we have 0 ď ppuq ď b´ 2 (cf. [14, (18)]). The result
follows directly from the local calculations mentioned above.

(C-c) x P S, non-exceptional virtual stratum of S. To address question (c)
using Proposition 2.7 (c), we can use the local calculations above to rephrase
it in the following forms:

pR1q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq

pR4q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq

pR9q H
˚

p

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
˚

I‹p
p̊cE, c̊Eq,

where b “ dimS
I

´ dimS ě 1.
Since S ĺ pS

I

zSqcc (cf. Remark 2.6) and

pppS
I

zSqccq ď ppSq ď pppS
I

zSqccq ` b

(cf. (3)) then we have pppSb´1qccq ď ppuq ď pppSb´1qccq ` b and

DpppSb´1qccq ď Dppuq ď DpppSb´1qccq ` b

(cf. (5)).

On the other hand, we have I‹ppwq “ I‹ppS
I

q “ pppS
I

zSqccq “ pp
`

Sb´1
˘

cc
q (cf.

Lemma 3.3 i) and (cf. [14, (19)]). Since

dimpRa ˆ Sb´1ˆs0, 1rq “ dimpRa`b ˆ twuq

then DI‹ppwq “ Dpp
`

Sb´1
˘

cc
q. We conclude that

DI‹ppwq ď Dppuq ď DI‹ppwq ` b.

By utilizing the previous local computations and Lemma 2.8(see Remark3.2 ii)
for more details), we can reformulate question (c) in the following manner:

pR1q H
p

˚
pE, Eq–H

I‹p

˚
pE, Eq, pR4q H

p

˚
pE, Eq–H

I‹p

˚
pE, Eq

pR9q H
˚

p
pE, Eq–H

˚

I‹p
pE, Eq,

Any other stratum R P S verifying S ă R is a source stratum (cf. Defini-
tion 2.2). So, ppRq “ I‹ppRq (cf. Lemma 3.3 i) and we get p “ I‹p on E (see
[14, (20)]). The claim is proved.

Remark 3.6. Note that the above isomorphisms may not hold if there exist 1-excep-
tional strata (see also Remark 3.2). This is the case for (R4), . . . (R10). For example,

H
0

˚

`

c̊S0, c̊I
˘

“ 0 ‰ G “ H
0

˚
ps ´ 1, 1r, Iq.

But we have H
0

˚

`

c̊S0
˘

“ G “ H
0

˚
ps ´ 1, 1r, I, c̊Iq. In fact, the local calculations
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H
p

0

`

c̊S0,S
˘

and H
p

0

`

c̊S0;S
˘

are different:

H
p

0

`

c̊S0, c̊I
˘

“

"

H0pS0q if Dppvq ě 0
G if Dppvq ă 0

H
p

0

`

c̊S0, c̊I
˘

“

"

H
0
pS0q if Dppvq ě 0
0 if Dppvq ă 0.

We note that the condition H
p

˚

`

c̊S0, c̊I
˘

–G in (C-c) is never satisfied, while only

Dppvq ă 0 is required for H
p

˚

`

c̊S0, c̊I
˘

–G to hold in (C-c).
We can relax condition (3) for cases (R1), (R2), and (R3) in the presence of an

1-exceptional stratum S. In these cases, it suffices to require that DppSq ă 0, which
means that ppSq ě 0, rather than 0 ď ppSq ď tpSq. Thus, 1-exceptional strata are
allowed in (R1), (R2), and (R3).

Theorem 3.7 (Invariance by w-refinement). Let pX,Sq đ pX, T q be a w-refinement
between two CS-sets. We assume that there are no 1-exceptional strata. Then, for
any perversity q on pX, T q, the identity map I : X Ñ X induces the following iso-
morphisms:

(R1) H
I‹q

˚
pX;Sq – H

q

˚
pX; T q, (R2) H

˚

I‹q
pX;Sq – H

˚

q
pX; T q,

(R3) H
˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q, (R4) H

I‹q

˚
pX;Sq – H

q

˚
pX; T q,

(R5) H
˚

I‹q
pX;Sq – H

˚

q
pX; T q, (R6) H

˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q.

If in addition, X is second countable then

(R7) H
BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q, (R8) H

BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q,

(R9) H
˚

I‹q
pX;Sq – H

˚

q
pX; T q, (R10) H

˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q

Proof. Apply Theorem 3.5 and proceed as in the proof of [14, Theorem 5.9].

In cases (R1), (R2), and (R3), it is possible for 1-exceptional strata S to appear if
ppSq ě 0 (see Remark 3.6).

3.3. Topological invariance
One of the most important properties of intersection homology is its topological

invariance, which has been well established in [11].
The following Corollary demonstrates that in certain cases, w-refinement invari-

ance implies topological invariance. Specifically, we establish the well-known topologi-
cal invariance of intersection homology [11] (also see [13, 10]) and of tame intersection
homology [6] (for closed supports) and [7] (for compact supports). Additionally, we
obtain the topological invariance of blown-up intersection cohomology [2, Theorem G]
(for closed supports) and [4, Theorem A] (for compact supports).

Before presenting the result, it is important to highlight two key tools.

‚ Intrinsic stratification (cf. [12, 13]). Any stratified space pX,Sq has a smallest
w-refinement: the intrinsic stratified space pX,S˚q. It is a canonical object: we
have S˚ “ T ˚ for any stratification T defined on X. If pX,Sq is a CS-set then
pX,S˚q is also a CS-set.
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‚ Classical perversities versus perversities. The former depend on the codimension
of the strata while the latter are defined on the strata themselves.
A King perversity is a map p : N Ñ Z verifying pp0q “ 0 and

ppkq ď ppk ` 1q ď ppkq ` 1

for each k P N˚ (cf. [13]). It verifies

ppkq ď ppℓq ď ppkq ` ℓ´ k, (7)

if 1 ď k ď ℓ. A King perversity p induces a perversity, still denoted by p: ppSq “

ppcodimSq.
A Goresky–MacPherson perversity is a King perversity p with pp0q “ pp1q “

pp2q “ 0 (cf. [11]). It verifies, for each k ě 2,

0 ď ppkq ď k ´ 2 “ tpkq (8)

Corollary 3.8. Let pX,Sq be a CS-set endowed with a positive King perversity p.
Consider the intrinsic w-refinement pX,Sq đ pX,S˚q. The identity map I : X Ñ X
induces the isomorphisms

H
p

˚
pX;Sq – H

p

˚
pX;S˚q H

˚

p
pX;Sq – H

˚

p
pX;S˚q H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if ppℓq ě 0 when ℓ is the codimension of an exceptional stratum. We also have

H
p

˚
pX;Sq – H

p

˚
pX;S˚q H

˚

p
pX;Sq – H

˚

p
pX;S˚q H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if 0 ď ppℓq ď tpℓq. If in addition, X is second countable then we have

H
˚

p
pX;Sq – H

˚

p
pX;S˚q, H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

H
BM,p

˚
pX;Sq – H

BM,p

˚
pX;S˚q.

Proof. Same proof as in reference [14, Corollary 5.10].

Remark 3.9.

i) Consider a CS-set pX,Sq equipped with a Goresky–MacPherson perversity p,
where p ě 0 (cf. (8)). As a consequence of the previous Corollary, it follows

that the cohomologies H
p

˚
pX;Sq, H

˚

p
pX;Sq and H

˚

p,c
pX;Sq are independent of

the stratification S. However, we cannot extend this result to tame intersec-
tion homologies, since the condition 0 ď p ď t (cf. (8)) implies that the tame
intersection homology coincides with the usual intersection homology.
Assuming X is second countable and there are no 1-exceptional strata, we can
apply the aforementioned Corollary to conclude that each of the cohomologies

H
˚

p
pX;Sq, H

˚

p,c
pX;Sq and H

BM,p

˚
pX;Sq are stratification-independent (cf. (8)).

ii) Consider a K-perversity, denoted as p. Condition (K2) implies that the restric-
tion of p to the S-stratification lying on each stratum T P T is actually a classical
perversity, except for the condition pp0q “ 0. Meanwhile, property (K1) can be
thought of as a growing condition of type (7), but even weaker. Although not
entirely precise, we can understand a K-perversity as a perversity whose restric-
tion to any stratum T P T is a King perversity.
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iii) There is a mistake in [14, Paragraph 5.3] that renders the proof of Corollary 5.10,
op. cit., incorrect. In fact, it is unclear whether the intrinsic stratification satisfies
the strata embedding condition necessary to apply Theorem A, op. cit., according
to the author. However, Corollary 3.8 demonstrates that changing the refinement
to a w-refinement is sufficient to obtain topological invariance.
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