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SZCZARBA’S TWISTING COCHAIN IS COMULTIPLICATIVE

MATTHIAS FRANZ

(communicated by Johannes Huebschmann)

Abstract
We prove that Szczarba’s twisting cochain is comultiplica-

tive. In particular, the induced map from the cobar construc-
tion ΩC(X) of the chains on a 1-reduced simplicial set X
to C(GX), the chains on the Kan loop group of X, is a quasi-
isomorphism of dg bialgebras. We also show that Szczarba’s
twisted shuffle map is a dgc map connecting a twisted Carte-
sian product with the associated twisted tensor product. This
gives a natural dgc model for fibre bundles. We apply our results
to finite covering spaces and to the Serre spectral sequence.

1. Introduction
Let X be a simplicial set and G a simplicial group. Given a twisting function

τ : X>0 → G, (1.1)

Szczarba [26] has constructed an explicit twisting cochain

t : C(X) → C(G). (1.2)

In [10, Thm. 6.2] we showed that it agrees with the twisting cochain obtained by
Shih [25, §II.1] using homological perturbation theory if one uses a slightly modified
version of the Eilenberg–Mac Lane homotopy.

In this paper we consider the associated map of differential graded algebras (dgas)

ΩC(X) → C(G) (1.3)

where ΩC(X) is the reduced cobar construction of the differential graded coalgebra
(dgc) C(X).

The diagonal of C(G) is compatible with the multiplication, meaning that C(G) is
actually a dg bialgebra. By work of Baues [1] and Gerstenhaber–Voronov [11, Cor. 6],
the same holds true for ΩC(X). Here the diagonal can be expressed via the homotopy
Gerstenhaber structure of C(X), that is, in terms of certain cooperations

Ek : C(X) → C(X)⊗k ⊗ C(X) (1.4)

with k ⩾ 0, see Section 3.
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The question arises as to whether the dga map (1.3) is comultiplicative, meaning
compatible with the diagonals. Hess–Parent–Scott–Tonks [14, Thm. 4.4] showed that
for 1-reduced X this is true up to homotopy in a strong sense, and they observed that
it holds on the nose up to degree 3. In the case where X is a simplicial suspension the
comultiplicativity was established by Hess–Parent–Scott [13, Thm. 4.11]. Our main
result says that it is true in general.

Theorem 1.1. Let X ̸= ∅ be a simplicial set, and let G and τ be as above. The dga
map ΩC(X) → C(G) induced by Szczarba’s twisting cochain t is comultiplicative.

This applies in particular to the canonical twisting cochain τX : X>0 → GX of a
1-reduced simplicial set where GX denotes the Kan loop group of X. This gives the
following.

Corollary 1.2. For 1-reduced X, the map ΩC(X) → C(GX) induced by Szczarba’s
twisting cochain t is a quasi-isomorphism of dg bialgebras.

Using Hess–Tonks’ extended cobar construction Ω̃C(X), we generalize this to
reduced simplicial sets in Proposition 7.1. After the prepublication of this article,
Medina-Mardones and Rivera showed that Ω̃C(X) and C(GX) are quasi-isomorphic
as E∞-coalgebras [19, Thm. 2]. This quasi-isomorphism involves a zigzag, however,
not the extension Ω̃C(X) → C(GX) of the map above.

Given a left G-space F , one can consider the twisted Cartesian product X ×τ F
as well as the twisted tensor product C(X) ⊗t C(F ). Dualizing a construction due
to Kadeishvili–Saneblidze [17], we turn the latter into a dgc. Szczarba also defined a
twisted shuffle map

ψ : C(X) ⊗t C(F ) → C(X ×τ F ) (1.5)

and proved that it is a quasi-isomorphism of complexes [26]. In [10, Prop. 7.1] we
showed that ψ is in fact a morphism of left C(X)-comodules, and also of right C(G)-
modules in the case F = G. We strengthen the first aspect as follows.

Theorem 1.3. Szczarba’s twisted shuffle map ψ is a quasi-isomorphism of dgcs. In
particular, the twisted tensor product C(X) ⊗t C(F ) is a dgc model for X ×τ F .

Using cubical chains, Kadeishvili–Saneblidze [17, Sec. 6] have previously obtained
a dgc model for fibre bundles with simply connected base.1

Content and structure of this paper are as follows: We review background material
in Section 2 and homotopy Gerstenhaber coalgebras in Section 3. After establishing a
purely combinatorial result in Section 4 and discussing the Szczarba maps in Section 5
we prove Theorem 1.1 in Section 6. The generalization of Corollary 1.2 mentioned
above appears in Section 7. In Section 8 we explain how homotopy Gerstenhaber
coalgebra structures give rise to dgc structures on twisted tensor products, and in
Section 9 we prove Theorem 1.3. In Section 10 we compare Szczarba’s twisted tensor
product with a similar one due to Shih [25]. In Section 11 we deduce from our
results a dga model for finite covering spaces as well as certain spectral sequences

1The assumption of simple connectedness is omitted in the statement of [17, Thm. 6.1], but used
in the proof. That proof is actually problematic because it refers to a map of monoidal cubical
sets SingI ΩY → SingI G whose existence is doubtful.
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studied by Papadima–Suciu [21] and Rüping–Stephan [24]. In a similar vein, we
obtain the (co)multiplicative structure of the (co)homological Serre spectral sequence
in Section 12. In the first appendix we relate our diagonal on ΩC(X) to the one
defined by Baues [1] for 1-reduced X. In the second we fill a gap in the literature by
showing that Szczarba’s twisting cochain (1.2) and twisted shuffle map (1.5) are in
fact well-defined on normalized chain complexes.

Acknowledgments
The author thanks the anonymous referee for helpful suggestions and Hanibal

Medina-Mardones for explaining his work and pointers to the literature.

2. Preliminaries
2.1. Generalities

We write
[n] = {0, . . . , n} and n = {1, . . . , n}

for n ⩾ 0. We work over a commutative ring k with unit; all tensor products and chain
complexes are over k. Unless specified otherwise, all chain complexes are homological.
The degree of an element c of a graded module C is denoted by |c|. We write 1C for
the identity map of C and

TB,C : B ⊗ C → C ⊗B, b⊗ c 7→ (−1)|b||c| c⊗ b (2.1)

for the transposition of factors in a tensor product of graded modules. The suspension
and desuspension operators are denoted by s and s−1, respectively. We systematically
use the Koszul sign rule, compare [9, Secs. 2.2 & 2.3].

For clarity, we sometimes write 1A for the unit of a dga A and 1C for the unit of
a coaugmented dgc C. A dg bialgebra is a chain complex A that is both a dga and
a dgc in such a way that each pair of structure maps are morphisms with respect to
the other structure.

We write C(X) for the normalized chains on a simplicial set X. We also write ∂̃
for the last face map, that is, ∂̃x = ∂nx for x ∈ Xn with n ⩾ 1.

2.2. The cobar construction
Let C be a dgc with coaugmentation ι : k ↪→ C, so that C = k ⊕ C̄ where C̄ = ker ε.

The (reduced) cobar construction of C is

ΩC =
⊕
k⩾0

Ωk C where Ωk C = (s−1C̄)⊗k, (2.2)

compare [16, Sec. II.3] or [1, §0]. We write elements of ΩC in the form

⟨c1| . . . |ck⟩ = s−1 c1 ⊗ · · · ⊗ s−1 ck (2.3)

with c1, . . . , ck ∈ C̄. The cobar construction is an augmented dga with concatena-
tion as product and unit 1 = ⟨⟩ ∈ Ω0 C = k. The differential and augmentation are
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determined by

d ⟨c⟩ = −⟨dc⟩ + (s−1 ⊗ s−1) ∆̄ c and ε(⟨c⟩) = 0 (2.4)

for ⟨c⟩ ∈ Ω1 C, where

∆̄ : C ∆−→ C ⊗ C → C̄ ⊗ C̄ (2.5)

is the reduced diagonal.

2.3. Twisting cochains
Let C be a coaugmented dgc and A an augmented dga. Recall that the com-

plex Hom(C,A) is an augmented dga via

d(f) = dA f − (−1)|f | f dC , 1Hom(C,A) = ιA εC (2.6)
f ∪ g = µA (f ⊗ g) ∆C , ε(f) = εA f ιC(1) (2.7)

for f , g ∈ Hom(C,A). Here ιA : k → A is the unit map, ιC is the coaugmentation
of C, and εC and εA are the augmentations of C and A, respectively.

A twisting cochain is a map t ∈ Hom(C,A) of degree −1 (in the homological set-
ting) such that

t ιC = 0, εA t = 0, d(t) = t ∪ t. (2.8)

It canonically induces the morphism of dgas

ΩC → A, ⟨c1| . . . |ck⟩ 7→ t(c1) · · · t(ck). (2.9)

For example, the canonical twisting cochain

tC : C → ΩC, c 7→ ⟨c̄⟩ ∈ Ω1C (2.10)

corresponds to the identity map on ΩC. Here we have written c̄ = c− ι ε(c) for the
component of c in C̄.

2.4. The shuffle map
We recall the definition of the shuffle map for an arbitrary number of factors.

Given k ⩾ 1 non-negative integers q1, . . . , qk with sum q, a (q1, . . . , qk)-shuffle is a
partition α = (α1, . . . , αk) of the set [q − 1]. We write (−1)(α) = (−1)(α1,...,αk) for its
signature and Shuff(q1, . . . , qk) for the set of all such shuffles. Observe that for k = 1
there is only one (q)-shuffle.

For simplicial sets X1, . . . , Xk the shuffle map is given by

∇X1,...,Xk
: Cq1(X1) ⊗ · · · ⊗ Cqk

(Xk) → Cq(X1 × · · · ×Xk), (2.11)

x1 ⊗ · · · ⊗ xk 7→
∑

α

(−1)(α) (sᾱ1x1, . . . , sᾱk
xk)

where the sum is over all α ∈ Shuff(q1, . . . , qk), and ᾱs = [q − 1] ∖ αs for 1 ⩽ s ⩽ k.
Using the shuffle map, one turns the chain complex of a simplicial group G into a

dga. For m ⩾ 0, the m-fold iterated multiplication is given by

C(G)⊗m ∇G,...,G−−−−−→ C(G× · · · ×G) µ
[m]
∗−−−→ C(G) (2.12)

where µ[m] : G× · · · ×G → G is the m-fold product map. This gives the identity map
of C(G) for m = 1 and the unit map k ↪→ C(G) for m = 0.
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2.5. Twisted Cartesian products
Twisted Cartesian products are simplicial versions of fibre bundles, compare [18,

Sec. 18] or [26, Sec. 1]. More precisely, let X and F be simplicial sets, and assume that
the simplicial group G acts on F from the left. The twisted Cartesian product X ×τ F
differs from the usual Cartesian product X × F only by the zeroeth face map, which
is

∂0 (x, y) =
(
∂0 x, τ(x) ∂0 y

)
. (2.13)

The twisting function
τ : X>0 → G (2.14)

is of degree −1 and for any x ∈ X of dimension n > 0 satisfies

∂0 τ(x) = τ(∂0 x)−1 τ(∂1 x) if n > 1, (2.15)
∂k τ(x) = τ(∂k+1 x) for 0 < k < n, (2.16)
sk τ(x) = τ(sk+1 x) for 0 ⩽ k < n, (2.17)

and for any x ∈ X of dimension n ⩾ 0 also

τ(s0 x) = 1 ∈ Gn, (2.18)

see [26, eq. (1.1)], [18, Def. 18.3] or [15, Sec. 1.3].

2.6. Interval cut operations
Let k, l ⩾ 0, and let u : k + l → k be a surjection such that u(i) ̸= u(i+ 1) for

all 0 ⩽ i < k + l. Berger–Fresse [3, Sec. 2] have associated to u an interval cut oper-
ation

AWu : C(X) → C(X)⊗k, (2.19)

natural in the simplicial set X. On an n-simplex x ∈ X, it is given by

AWu x =
∑
p

(−1)pos(p)+perm(p) xp1 ⊗ · · · ⊗ xpk . (2.20)

Here the sum runs over all decompositions p = (0 = p0, p1, . . . , pk+l = n) of [n] into
k + l intervals. If we think of these intervals as being labelled via u, then

xps = x(pi1−1, . . . , pi1 , pi2−1, . . . , pi2 , . . . , pim−1, . . . , pim) (2.21)

where i1, . . . , im enumerate the intervals with label s. We refer to [3, §2.2.4] for
the definitions of the position sign exponent pos(p) and the permutation sign expo-
nent perm(p).

Whenever we talk about the length of an interval [pi−1, . . . , pi] in this paper, we
always mean its naive length pi − pi−1, not the possibly different length defined in [3,
§2.2.3] to compute the position and permutation sign exponents.

3. Homotopy Gerstenhaber coalgebras
Homotopy Gerstenhaber coalgebras (hgcs) are defined such that their duals are

homotopy Gerstenhaber algebras (hgas), see Remark 3.2 below and also [17, p. 223].
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More precisely, an hgc is a coaugmented dgc C together with a family of cooperations

Ek : C → C⊗k ⊗ C (3.1)

for k ⩾ 0 such that

E0 = 1C , (3.2)
imEk ⊂ C̄⊗k ⊗ C̄ for k > 0, (3.3)

Ek(c) = 0 for |c| < k. (3.4)

Recall that C̄ = ker ε is the augmentation ideal and c̄ = c− ι ε(c) the component of c
in C̄. There are further conditions on the maps Ek. Defining

Ek : C → (s−1 C̄)⊗k ⊗ s−1 C̄ = ΩkC ⊗ Ω1C ⊂ ΩC ⊗ ΩC (3.5)

for k ⩾ 0 via
s⊗(k+1) Ek(c) = Ek(c̄), (3.6)

the assignment

E : C → ΩC ⊗ ΩC, (3.7)

c 7→ ⟨c̄⟩ ⊗ 1 +
∞∑
k=0

Ek(c) = ⟨c̄⟩ ⊗ 1 + 1 ⊗ ⟨c̄⟩ +
∞∑
k=1

Ek(c)

is well-defined by (3.4). We require E to be a twisting cochain and the associated dga
map

∆: ΩC → ΩC ⊗ ΩC,
〈
c1
∣∣ . . . ∣∣ ck 〉 7→ E(c1) · · · E(ck) (3.8)

to be coassociative, so that ΩC becomes a dg bialgebra.
It will be convenient to rephrase these conditions in terms of the function

E : C → ΩC ⊗ C, (3.9)

c 7→ (1 ⊗ pC) E(c) + 1 ⊗ ι ε(c) = 1 ⊗ c+ (1 ⊗ pC)
∞∑
k=1

Ek(c)

of degree 0 where
pC : ΩC −→ Ω1C = s−1C̄

s−→ C̄ ↪→ C (3.10)

is the composition of the canonical projection, the suspension map and the canonical
inclusion. Like the suspension map, pC is of degree 1.

Lemma 3.1. Let E and E be as in (3.7) and (3.9).
(i) That E is a twisting cochain is equivalent to the two identities

d(E) = (µΩC ⊗ 1C)(tC ⊗ E) ∆C − (µΩC ⊗ 1C) (1ΩC ⊗ TC,ΩC) (E ⊗ tC) ∆C ,

(1ΩC ⊗ ∆C)E = (µΩC ⊗ 1C ⊗ 1C) (1ΩC ⊗ TC,ΩC ⊗ 1C) (E ⊗ E) ∆C .

(ii) Assume that E is a twisting cochain. The coassociativity of the diagonal (3.8)
then is equivalent to the formula

(∆ΩC ⊗ 1C)E = (1ΩC ⊗ E)E.
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Proof. For the first part, we note that both sides of the twisting cochain condition
d(E) = E ∪ E only have components in ΩC ⊗ Ωl C with l ⩽ 2. We project onto these
components separately. The projections for l = 0 are always equal. A direct calcula-
tion shows that the projections for l = 1 and l = 2 correspond to the two identities
for E given above. It is helpful to distinguish the two cases c = 1 and c ∈ C̄, and in
the second one to split up the diagonal as ∆ c = c⊗ 1 + 1 ⊗ c+ ∆̄ c where ∆̄ is the
reduced diagonal (2.5). For the first identity one also uses d(pC) = 0.

The second claim follows similarly by projecting the coassociativity condition

(∆ ⊗ 1) ∆ = (1 ⊗ ∆) ∆ to ΩC ⊗ ΩC ⊗ Ω1 C.

Remark 3.2. Let A = Hom(C,k) be the augmented dga dual to the coaugmented
dgc C. For k ⩾ 0 define the transpose

Ek : A⊗k ⊗A → A (3.11)

of the cooperation Ek by〈
Ek(a1, . . . , ak; b), c

〉
= (−1)k(|a1|+···+|ak|+|b|) 〈a1 ⊗ · · · ⊗ ak ⊗ b, Ek(c)

〉
(3.12)

for c ∈ C, compare [9, eq. (4)]. The operations Ek then form an hga structure on A
that satisfies the analogues of the identities stated in [8, Sec. 6.1]. Note that in [8]
operations of the form Ek(a; b1, . . . , bk) are used; see [8, Rem. 6.1] for their relation to
the braces used by Gerstenhaber–Voronov [11]. The explicit signs given there remain
unchanged, except for an additional overall minus sign in the formula for d(Ek).

Let t : C → A be a twisting cochain, where C is an hgc and A a dg bialgebra.
We say that t is comultiplicative if the induced dga map ΩC → A is a morphism of
dgcs and therefore of dg bialgebras. This definition is dual to Kadeishvili–Saneblidze’s
notion of a multiplicative twisting cochain [17, Def. 7.2]. For example, the canonical
twisting cochain tC : C → ΩC is comultiplicative.

The normalized chains C(X) on a simplicial set X ̸= ∅ form an hgc in a natural
way, for any coaugmentation k ↪→ C(X) sending 1 ∈ k to some basepoint x0 ∈ X. In
terms of interval cut operations, the structure maps are given by

Ek = (−1)k AWek
, (3.13)

that is,
Ek = (−1)k(k−1)/2 (s−1)⊗(k+1) AWek

(3.14)

where
ek = (k + 1, 1, k + 1, 2, k + 1, . . . , k + 1, k, k + 1). (3.15)

The sign difference in (3.14) compared to (3.13) stems from the fact that the (de)sus-
pension operators have degree ±1, so that

(s−1)⊗(k+1) s⊗(k+1) = (−1)k(k+1)/2 (3.16)

because the sign changes each time an s−1 is moved past an s for a different tensor
factor. Note that AWe0 is the identity map as required by condition (3.2). A look
at the formula (2.21) moreover shows that the intervals labelled 1, . . . , k in the
surjection must have length at least 1 in order for the last factor xpk+1 of each term in
the sum (2.20) for AWek

to be non-degenerate, which confirms (3.4) and also (3.3).
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Explicitly, the induced diagonal on ΩC(X) can be written as

∆ ⟨x⟩ = E(x) = ⟨x⟩ ⊗ 1 +
n∑
k=0

∑
p

(−1)ε(p) 〈xp1 ∣∣ . . . ∣∣ xpk 〉⊗
〈
xpk+1

〉
(3.17)

for x ∈ Xn, where p runs through the cuts of [n] prescribed by ek. The sign exponent
is given by

ε(p) = k(k − 1)
2 + des(p) + pos(p) + perm(p) (3.18)

where

des(p) =
k∑
s=1

(k + 1 − s) |xps | =
k∑
s=1

(k + 1 − s)(p2s − p2s−1) (3.19)

is the sign exponent incurred by the desuspension operators in (3.7). Note that for n=0
the formula (3.17) boils down to ∆ ⟨x⟩ = ⟨x⟩ ⊗ 1 + 1 ⊗ ⟨x⟩, so that ⟨x⟩ is primitive
for any 0-simplex x ∈ X0.2

In Appendix A we show that for 1-reduced X the diagonal (3.17) on ΩC(X) agrees
with those defined by Baues [1] and Hess–Parent–Scott–Tonks [14].

Lemma 3.3. Let k, n ⩾ 1, and let p = (p0, . . . , p2k+1) be an interval cut of [n] for
the surjection ek such that all intervals with label k + 1 have length 0. Then

ε(p) ≡
k∑
s=1

(s− 1)(p2s − p2s−1 − 1) (mod 2).

Proof. Modulo 2, we have

pos(p) = p1 + p3 + · · · + p2k−1, (3.20)
perm(p) = (p3 − p1) + 2 · (p5 − p3) + · · · + k · (p2k+1 − p2k−1) (3.21)

≡ p1 + p3 + · · · + p2k−1 + nk,

des(p) =
k∑
s=1

(k + 1 − s)(p2s − p2s−1) (3.22)

≡ nk +
k∑
s=1

(s− 1)(p2s − p2s−1),

k(k − 1)
2 =

k∑
s=1

(s− 1), (3.23)

which gives the desired result.

Lemma 3.4. Let 0 ⩽ m ⩽ k and n ⩾ 1, and let

p : p0
k+1 p1

1 · · · m p2m
k+1

p2m+1
m+1 · · · k p2k

k+1 p2k+1

be an interval cut of [n] corresponding to the surjection ek. Assume that the interval
corresponding to the (m+ 1)-st occurrence of k + 1 (highlighted above) has length at

2Strictly speaking, we should write ⟨x̄⟩, so that ⟨x̄⟩ = 0 for the basepoint x = x0.
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least 1. Let p′ be the interval cut for ek+1 that is obtained from p by replacing this
interval by

· · · m p2m
k+2

q
m+1

q + 1 k+2
p2m+1

m+2 · · ·

for some p2m ⩽ q < p2m+1. Then

ε(p′) = ε(p).

Proof. One verifies directly that modulo 2 the exponent for the position sign changes
by q, the one for the permutation sign by

p0 + · · · + p2m + q +m+ 1, (3.24)

the one coming from desuspensions by

p0 + · · · + p2m + k +m+ 1 (3.25)

and the one for the explicit sign by k. Hence there is no sign change in total.

4. A bijection
For 0 ⩽ l ⩽ n we define

Sn,l =
{
i = (i1, . . . , il) ∈ Nl

∣∣ 0 ⩽ is ⩽ n− s for any 1 ⩽ s ⩽ l
}

(4.1)
= [n− 1] × [n− 2] × · · · × [n− l]

as well as Sn = Sn,n. The degree of an element i ∈ Sn,l is

|i| = i1 + · · · + il. (4.2)

Note that Sn,n has n! elements, and Sn,0 has the empty sequence ∅ as unique element.
Let 1 ⩽ k ⩽ n and p = (p0, . . . , pk) where 0 = p0 < p1 < · · · < pk = n. We set l =

n− k and define

Sn−1(p) =
{
i ∈ Sn−1,l

∣∣ ∂il+1 · · · ∂i1+1 [n] = p
}
. (4.3)

Here [n] denotes the standard n-simplex, to which the given face operators are applied
in the specified order. We also set qs = ps − ps−1 for 1 ⩽ s ⩽ k.

We define a function

Ψp : Sn−1(p) → Shuff(q1 − 1, . . . , qk − 1) × Sq1−1 × · · · × Sqk−1 (4.4)
i 7→

(
α = (α1, . . . , αk), j1, . . . , jk

)
as follows: Considering the condition (4.3), we think of an element i ∈ Sn−1(p) as
describing a way of removing the l = n− k elements not appearing in the sequence p
from the n-simplex [n]. For 1 ⩽ s ⩽ k the element js ∈ Sqs−1 similarly records the
order in which the elements between ps−1 and ps are removed by i, ignoring all other
removed elements. The shuffle α keeps track of how the element removals of the
intervals (ps−1, . . . , ps) are interleaved. More precisely, we declare q − 1 ∈ αs if and
only if the face operator ∂iq+1 in (4.3) removes an element between ps−1 and ps.

Example 4.1. Take n = 7, k = 3, p = (0, 3, 4, 7) and i = (5, 0, 0, 2). The missing ele-
ments in (0, 3, 4, 7) are removed in the order 6, 1, 2, 5. Those missing in (0, 3)



296 MATTHIAS FRANZ

are removed in the order 1, 2, and those missing in (4, 7) in the order 6, 5. We
therefore have j1 = (0, 0), j2 = ∅ and j3 = (1, 0) as well as α1 = {1, 2}, α2 = ∅
and α3 = {0, 3}.

Note that for k = 1 the map Ψp boils down to the identity map on Sn−1 because
Shuff(n− 1) is a singleton. Moreover, for k = 2 we have Sn−1,l = Sn−1,n−2 ∼= Sn
(since any i ∈ Sn−1 ends in in−1 = 0), and the maps Ψp with 0 < p1 < n combine to
the bijection

Sn−1 ∼=
⋃

q1+q2=n
Shuff(q1 − 1, q2 − 1) × Sq1−1 × Sq2−1 (4.5)

described by Szczarba [26, Lemma 3.3].

Proposition 4.2. The map Ψp is bijective, and in the notation of (4.4) we have

|i| ≡ (α) +
k∑
s=1

|js| +
k∑
s=1

(s− 1)(qs − 1) (mod 2).

Remember from Section 2.4 that given a shuffle α = (α1, . . . , αk) we write (α) for
the exponent of its signature. For k = 2 the above identity appears already in [26,
Lemma 3.3] and [15, Lemma 6].3

Proof. It is clear how to reverse the construction to obtain the inverse of Ψp.
Regarding the claimed formula, we assume first that i is of the form

i =
(

0, . . . , 0︸ ︷︷ ︸
q1−1

, 1, . . . , 1︸ ︷︷ ︸
q2−1

, . . . , k − 1, . . . , k − 1︸ ︷︷ ︸
qk−1

)
. (4.6)

Then the shuffle α = (α1, . . . , αk) is the identity map on [l − 1] and js = (0, . . . , 0)
for all s, from which we conclude that the formula holds.

Consider two elements from [l − 1] that are removed one right after the other.
Changing the order of the removals changes the degree of i by ±1. If the two removed
values belong to the same, say the s-th, interval of p, then the degree of js also changes
by ±1, and α remains fixed. If the values belong to different intervals, then all js
remain the same, but the sign of the shuffle changes. Hence in any case the claimed
identity is preserved.

Starting from (4.6), we can reach any i ∈ Sn−1(p) by repeating this swapping
procedure. This completes the proof.

5. The Szczarba operators
5.1. The twisting cochain

We review the definition of Szczarba’s twisting cochain [26, pp. 200–201] in the
formulation given by Hess–Tonks [15, Sec. 1.4]. Let X be a simplicial set and G a

3Recall that Szczarba writes the signature of the shuffle (ν, µ) as sgn(µ, ν) and also from [15,
p. 1866] that his sign exponent ε(i, n+ 1) equals n+ |i|. Also note that the subscripts of the
degeneracy operators sµ and sν in [15] should be swapped.
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simplicial group, and let
τ : X>0 → G (5.1)

be a twisting function. It will be convenient in what follows to write σ(x) = τ(x)−1

for x ∈ X>0.
Szczarba [26, Thm. 2.1] has introduced the operators

Szi : Xn → Gn−1 (5.2)
x 7→ Di,0 σ(x)Di,1 σ(∂0x) · · ·Di,n−1 σ((∂0)n−1x)

forn⩾ 1and i ∈ Sn−1. In particular, one has Sz∅ x = σ(x). We follow Hess–Tonks [15,
Def. 5] in using the symbol Szi and the name Szczarba operator. In terms of these
operators, Szczarba’s twisting cochain t : C(X) → C(G) is given for x ∈ Xn by

t(x) =


0 if n = 0,
Sz∅ x− 1 = σ(x) − 1 if n = 1,∑

i∈Sn−1
(−1)|i| Szi x if n ⩾ 2.

(5.3)

In Appendix B we recall the definition of the simplicial operators Di,k, and we show
that t is well-defined on normalized chains.

Example 5.1. In low degrees, Szczarba’s twisting cochain looks as follows. Simplices
are indicated by vertex numbers. For example, a 2-simplex x ∈ X2 is written as 012
and s1 ∂0 x as 122. Note that the products are taken in the simplicial group G, not
in the dga C(G).

t(01) = + σ(01) − 1, i= ∅ (5.4)
t(012) = + σ(012)σ(122), i= (0) (5.5)
t(0123) = + σ(0123)σ(1223)σ(2333) i= (0, 0) (5.6)

− σ(0113)σ(1233)σ(2333), i= (1, 0)
t(01234) = + σ(01234)σ(12234)σ(23334)σ(34444) i= (0, 0, 0) (5.7)

− σ(01224)σ(12224)σ(23344)σ(34444) i= (0, 1, 0)
− σ(01134)σ(12334)σ(23334)σ(34444) i= (1, 0, 0)
+ σ(01114)σ(12344)σ(23344)σ(34444) i= (1, 1, 0)
+ σ(01124)σ(12224)σ(23444)σ(34444) i= (2, 0, 0)
− σ(01114)σ(12244)σ(23444)σ(34444) i= (2, 1, 0)

We need to understand how the Szczarba operators relate to the bijection Ψp

introduced in Section 4. Let n = k + l with 1 ⩽ k ⩽ n. Any i = (i1, . . . , in−1) ∈ Sn−1
can be written in the form in the form

i = (i1, i2) = (i1,1, . . . , i1,l, i2,1, . . . , i2,k−1) (5.8)

with i1 ∈ Sn−1(p) and i2 ∈ Sk−1, where

p = (p0, . . . , pk) = ∂il+1 · · · ∂i1+1 [n]. (5.9)

Lemma 5.2. Using this notation, we have

(∂0)l Szi x = Szi2 x(p0, p1, . . . , pk),
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∂̃k−1 Szi x = sᾱ1 Szj1 x(p0, . . . , p1) · · · sᾱk
Szjk

x(pk−1, . . . , pk)

where Ψp(i1) = (α, j1, . . . , jk) and ᾱs = [l − 1] ∖ αs for 1 ⩽ s ⩽ k.

Proof. The case l = 0 of the first identity is void. Given the definition (4.3), it reduces
for l = 1 to the formula

∂0 Szi x = Sz(i2,...,in−1) ∂i1+1x, (5.10)

which is stated in [15, Lemma 6]. The case l ⩾ 2 follows by iteration.
The second identity is trivial for k = 1, compare the discussion of Ψp following

Example 4.1. For k = 2 it is again given in [15, Lemma 6]. For larger k it follows by
induction:

Assume the identity proven for k and l and consider k′ = k + 1 and l′ = l − 1.
The other values for the new situation are also written with a prime, that is, p′,
i′ = (i′

1, i
′
2) and Ψp′(i′

1) = (α′, j′
1, . . . , j

′
2).

Let p = ∂i′2,1+1p
′, and let p̂ be the removed value. We split i′ as i′ = (i1, i2)

with i1 = (i′1,1, . . . , i′1,l−1, i
′
2,1) and i2 = (i′2,2, . . . , i′2,k−1) and corresponding values α

and j1, . . . , jk. Then

∂̃k Szi′ x = ∂̃ ∂̃k−1 Szi′ x (5.11)

= ∂̃
(
sᾱ1 Szj1 x(p0, . . . , p1) · · · sᾱk

Szjk
x(pk−1, . . . , pk)

)
By the definition of the shuffle α, we have l − 1 ∈ αr if ∂il+1 removes an element
between pr−1 and pr. Hence l − 1 /∈ αs for s ̸= r and therefore

= sᾱ1∖{l−1} Szj1 x(p0, . . . , p1)
· · · sᾱr

∂̃ Szjr
x(pr−1, . . . , pr) · · · sᾱk∖{l−1} Szjk

x(pk−1, . . . , pk).

Set q̂1 = p̂− pr−1 and q̂2 = pr − p̂. Again by the case l = 2 we have

∂̃ Szjr x(pr−1, . . . , pr) = sβ̄2
Szk1 x(pr−1, . . . , p̂) · sβ̄1

Szk2 x(p̂, . . . , pr) (5.12)

for a (q̂1 − 1, q̂2 − 1)-shuffle (β1, β2) and sequences k1 ∈ Sq̂1−1, k2 ∈ Sq̂2−1. We thus
obtain the desired formula since

j′
1 = j1, . . . , j′

r = k1, j′
r+1 = k2, . . . , j′

k+1 = jk, (5.13)
α′ = (α1, . . . , αr−1, γ1, γ2, αr+1, . . . , αk) (5.14)

where the subsets γ1, γ2 ⊂ [l − 2] are defined by

sγ̄1 = sᾱr sβ̄1
, sγ̄2 = sᾱr sβ̄2

. (5.15)

5.2. The twisted shuffle map
Let F be a left G-space. We recall the definition of Szczarba’s twisted shuffle map

[26, Thm. 2.3]
ψ = ψF : C(X) ⊗t C(F ) → C(X ×τ F ) (5.16)

in a notation inspired by Hess–Tonks. For any n ⩾ 0 and i ∈ Sn we define the operator

Ŝzi : Xn → (X ×τ G)n = Xn ×Gn, (5.17)
x 7→

(
Di,0 x,Di,1 σ(x)Di,2 σ(∂0x) · · ·Di,n σ((∂0)n−1x)

)
,
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which is interpreted as Ŝz∅ x = (x, 1) ∈ X0 ×G0 for n = 0 and i = ∅. Based on this
we define the map

ψ(x⊗ y) =
∑
i∈Sn

(−1)|i| (idX , µF )∗ ∇
(

Ŝzi x⊗ y
)
, (5.18)

where n = |x| as before, ∇ : C(X ×τ G) ⊗ C(F ) → C(X ×τ G× F ) is the shuffle map
and µF : G× F → F the group action.4 For a proof that ψ descends to normalized
chains see again Appendix B.

Given a decomposition n = k + l with k, l ⩾ 0, we can write any i ∈ Sn in the
form i = (i1, i2) with i1 ∈ Sn(p) and i2 ∈ Sk, where

p = (0 = p0, p1, . . . , pk+1 = n+ 1) = ∂il+1 · · · ∂i1+1 [n+ 1]. (5.19)

We also write qs = ps − ps−1 for 1 ⩽ s ⩽ k + 1.

Lemma 5.3. In the notation above, we have

(∂0)l Ŝzi x = Ŝzi2 x(p1 − 1, . . . , pk+1 − 1),

∂̃k Ŝzi x = sᾱ1 Ŝzj1 x(0, . . . , p1 − 1) · sᾱ2 Szj2 x(p1 − 1, . . . , p2 − 1)
· · · sᾱk+1 Szjk+1 x(pk − 1, . . . , pk+1 − 1),

where Ψp(i1) = (α, j1, . . . , jk+1) and ᾱs = [l − 1] ∖ αs for 1 ⩽ s ⩽ k + 1.

Proof. Apart from the trivial case l = 0, the first formula follows by induction from
the case l = 1, that is,

∂0 Ŝzi x = Ŝz(i2,...,in) ∂i1 x, (5.20)

which can be found in [26, pp. 205–206] as the discussion of the “first term of (4.1)”
there.

The second formula is also trivial for k = 0, and for k = 1 it is contained in [26,
eq. (4.5)]. The extension to larger k follows again by induction, based on the case k = 2
of the present claim as well as the case k = 2 of Lemma 5.2, using the same kind of
reasoning as given there.

6. Proof of Theorem 1.1
Let X be a simplicial set, G a simplicial group and τ : X>0 → G a twisting function.

Explicitly, the Szczarba map (1.3) is given by

Sz: ΩC(X) → C(G),
〈
x1 | · · · | xm

〉
7→ t(x1) · · · t(xm) (6.1)

where t : C(X) → C(G) is Szczarba’s twisting cochain as defined in (5.3). Since we
are looking at a multiplicative map between bialgebras, we only have to show

∆C(G) Sz ⟨x⟩ = (Sz ⊗ Sz) ∆ΩC(X) ⟨x⟩ (6.2)

for any x ∈ X, say of degree n. If n = 0, then ⟨x⟩ is primitive and annihilated by Sz,
so that (6.2) holds. We therefore assume n ⩾ 1 for the rest of the proof.

4In the definition of ψ in [26, p. 201] the upper summation index should read “p!”.
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The left-hand side of (6.2) equals

∆ Sz ⟨x⟩ = ∆ t(x) =
n∑
k=1

∂̃k−1 t(x) ⊗ (∂0)l t(x) (6.3)

=
n∑
k=1

∑
i∈Sn−1

(−1)|i| ∂̃k−1 Szi x⊗ (∂0)l Szi x

where we have again used the abbreviation l = n− k. Using the explicit formula (3.17)
for the diagonal, we can write the right-hand side of (6.2) in the form

(Sz ⊗ Sz) ∆ ⟨x⟩ = t(x) ⊗ 1 +
n∑
k=0

∑
p

(−1)ε(p) t(xp1 ) · · · t(xpk) ⊗ t(xpk+1) (6.4)

where p = (p0, p1, . . . , p2k+1) ranges over the cuts of [n] into 2k + 1 intervals corre-
sponding to the surjection ek. We are going to pair off the summands of the expres-
sions (6.3) and (6.4). We write qs = p2s − p2s−1 for 1 ⩽ s ⩽ k and ℓ(p) for the sum
of the lengths of the intervals in p corresponding to the final value k + 1.

Assume ℓ(p) = 0, so that the k intervals labelled 1, . . . , k cover the whole inter-
val [n]. From the definition of t we get

t(xpk+1) =
∑

i2∈Sk−1

(−1)|i2| Szi2 x
p
k+1, (6.5)

and together with that of the shuffle map (2.11) also

(−1)ε(p) t(xp1 ) · · · t(xpk) =∑
(−1)ε(p)+(α)+

∑
s

|js| sᾱ1 Szj1 x
p
1 · · · sᾱk

Szjk
xpk

+ additional terms with fewer than k factors. (6.6)

Here the sum is over all (q1 − 1, . . . , qk − 1)-shuffles α = (α1, . . . , αk) as well as over
all j1 ∈ Sq1−1, . . . , jk ∈ Sqk−1. The additional terms indicated above arise whenever
we have qs = 1 for some s because of the extra term −1 ∈ C(G) produced by t in the
case of a 1-simplex.

Consider the case k > 1. As a consequence of Lemma 5.2, the expressions (∂0)l t(x)
in (6.3) that give terms of the form (6.5) are indexed by the i = (i1, i2) ∈ Sn−1
with i1 ∈ Sn−1(p) and i2 ∈ Sk−1. By the same lemma, the terms ∂̃k−1 t(x) for all
such i1 give exactly the terms in the sum formula of (6.6). Lemma 3.3 and Proposi-
tion 4.2 show that also the signs work out correctly since |i| = |i1| + |i2| and

|i1| = (α) +
k∑
s=1

|js| +
k∑
s=1

(s− 1)(qs − 1) = ε(p) + (α) +
k∑
s=1

|js|. (6.7)

If k = 1, then xp1 = x, xp2 = x(0, n) is of degree 1, and ε(p) = 0. In addition to
the terms discussed in the preceding paragraph, we get a −1 on the right-hand side
of (6.5) and therefore −t(x) ⊗ 1 in (6.4), which cancels with the very first term in
the same formula.

We now argue that the decompositions p with ℓ(p) > 0 (including the only possible
decomposition for k = 0) lead to terms in the sum (6.4) that cancel out with the
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additional terms in (6.6) for ℓ(p) = 0.
Given two decompositions p and p′ for the surjections ek and ek′ , respectively,

we write p′ ⩾ p if p′ can be obtained from p by zero or more applications of the
“refinement procedure” described in Lemma 3.4. This gives a partial order on the set
of all such decompositions.

For any decomposition p there are exactly 2ℓ(p) decompositions p′ ⩾ p. In the
maximal such p′, all intervals with the final label k + 1 in p have been subdivided
into intervals of length 1 and relabelled with non-final values, separated by inter-
vals of length 0 labelled k + 1. In particular, ℓ(p′) = 0. Conversely, there are exactly
2ℓ1(p) decompositions p′ ⩽ p, where ℓ1(p) is the number of intervals of length 1 having
non-final labels. The minimal such p′ has no intervals of this kind.

Example 6.1. Take k = 1 and the decomposition

p : 0 2 0 1 1 2 3. (6.8)

The maximal p′ ⩾ p and the minimal p′′ ⩽ p are as follows. Subdivided or combined
intervals are indicated in boldface.

p′ : 0 4 0 1 1 4 1 2 2 4 2 3 3 4 3 (k′ = 3), (6.9)

p′′ : 0 1 3 (k′′ = 0). (6.10)

Note that we have
xpk+1 = xp

′

k′+1 (6.11)

whenever p and p′ are comparable. We therefore look at a minimal p in our ordering
and the term xpk+1 it produces. As the added intervals of any p′ ⩾ p are all of length 1,
the corresponding terms t(xp′

s ) in

(−1)ε(p′) t(xp
′

1 ) · · · t(xp
′

k′ ) (6.12)

all contain −1 ∈ C(G). The summand

(−1)ε(p′)+(α′)+
∑

s′ |j′
s′ |+ℓ1(p′) ∏

1⩽s′⩽k′

q′
s′ ̸=1

sᾱs′ Szj′
s′
xp

′

s′ =: (−1)ℓ1(p′) a (6.13)

therefore appears in the product (6.12). We claim that the expression a only depends
on p. More precisely, we have

a = (−1)ε(p)+(α)+
∑

s
|js| sᾱ1 Szj1 x

p
1 · · · sᾱk

Szjk
xpk . (6.14)

This is because an interval of length q′
s′ = 1 leads to α′

s′ = ∅ and j′
s′ = ∅, while the

remaining α′
s′ and j′

s′ are not affected and appear as αs and js for some index s ⩽ s′.
Moreover, we have ε(p′) = ε(p) by a repeated application of Lemma 3.4.

If ℓ(p) > 0, then we get 2ℓ(p) terms with alternating signs, so that∑
p′⩾p

(−1)ℓ1(p′) a⊗ t(xp
′

k′+1) =
∑
p′⩾p

(−1)ℓ1(p′) a⊗ t(xpk+1) = 0. (6.15)

The only terms in (6.4) not appearing in such a sum are t(x) ⊗ 1 plus those written
out in (6.6) for p with ℓ(p) = 0, and we have seen already that they add up to (6.3).
This completes the proof.
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7. The extended cobar construction and the loop group
Let X be a reduced simplicial set (that is, having a unique 0-simplex), and let GX

be its Kan loop group, compare [18, Def. 26.3]. (Its topological realization |GX| is a
model for the based loop space Ω|X| as a topological monoid, see [2, §1.8, Prop. 3.3].)
Let τ : X>0 → GX be the canonical twisting function, and let t be Szczarba’s twisting
cochain associated to it.

Hess–Tonks have defined an extended cobar construction Ω̃C(X) such that the
canonical dga map ΩC(X) → C(GX) extends to a dga map

ϕ : Ω̃C(X) → C(GX), (7.1)

see [15, Thm. 7]. They moreover showed that ϕ is a strong deformation retract of
chain complexes such that all maps involved are natural in X [15, Thm. 15].

Let us recall the definition of Ω̃C(X) in the form given by Rivera–Saneblidze [23,
Sec. 4.2]. Write C = C(X), and let G be the free group on generators gx where x runs
through the non-degenerate 1-simplices of X. We define a new dgc C̃ by C̃n = Cn
for n ̸= 1 and C̃1 = k[G], the group algebra of G. We set d g = 0, ε(g) = 0 and ∆ g =
g ⊗ 1C + 1C ⊗ g for any g ∈ G. We embed C into C̃ by sending x as before to gx − 1G.
The dga Ω̃C(X) is the quotient of the usual cobar construction Ω C̃ by the two-sided
dg ideal generated by the cycles ⟨a|b⟩ − ⟨ab⟩ for a, b ∈ C̃1 as well as ⟨1G⟩ − 1ΩC̃ . By
abuse of notation, we write elements of Ω̃C(X) like those of Ω C̃.

We extend Szczarba’s twisting cochain t to a linear map t̃ : C̃ → C(GX) by defin-
ing t̃(gx) = σ(x) for any non-degenerate 1-simplex x ∈ X and taking its multiplicative
extension to G ⊂ C̃1. The result is again a twisting cochain. The induced dga mor-
phism Ω C̃ → C(GX) descends to Ω̃C(X), where it defines the map ϕ from (7.1).

We extend the augmentation and the diagonal from ΩC(X) to Ω C̃ by setting

ε(⟨g⟩) = 1 and ∆ ⟨g⟩ = ⟨g⟩ ⊗ ⟨g⟩ (7.2)

for any g ∈ G. This induces well-defined maps on Ω̃C(X).

Proposition 7.1. Let X be a reduced simplicial set. With the structure maps given
above, Ω̃C(X) becomes a dg bialgebra and ϕ a quasi-isomorphism of dg bialgebras.

Proof. The maps (7.2) are compatible with ϕ because analogous formulas hold for
the 0-simplices ϕ(⟨g⟩) ∈ GX. Since ϕ is a deformation retract, it is an injective quasi-
isomorphism and its image a direct summand of C(GX). Because the latter is a
dg bialgebra, so is Ω̃C(X), and ϕ is a morphism of dg bialgebras.

Remark 7.2. The extended cobar construction Ω̃C(X) is in fact the normalized chain
complex of a certain cubical monoid Y = Ω̃X, see [23, Sec. 3.5]. This cubical monoid
can be (formally) triangulated to a simplicial monoid T Y . Sending each n-cube to the
n! simplices in its triangulation gives a well-defined quasi-isomorphism of dg bialge-
bras T : C(Y ) → C(T Y ). After the prepublication of this article, Minichiello–Rivera–
Zeinalian [20, Cor. 5.20] have shown that there is a morphism of simplicial monoids
f : T Y → GX such that ϕ = f∗ ◦ T. This gives a different proof that ϕ is morphism
of dg bialgebras.
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8. Twisted tensor products
Let C be an hgc and A a dg bialgebra, and let M be an A-dgc. By the latter we

mean a dgc M that is also a left A-module such that the diagonal ∆M : M → M ⊗M
and the augmentation εM : M → k are A-equivariant. (Recall that A acts on M ⊗M
via its diagonal ∆A : A → A⊗A and on k via its augmentation εA : A → k.)

Let t : C → A be a twisting cochain. The differential of the twisted tensor prod-
uct C ⊗tM is given by

dt = dC ⊗ 1 + 1 ⊗ dM − δt (8.1)

where
δt = (1 ⊗ µM ) (1 ⊗ t⊗ 1) (∆C ⊗ 1) (8.2)

and µM : A⊗M → M is the structure map of the A-module M . In the Sweedler
notation this is expressed as

dt(c⊗m) = d c⊗m+ (−1)|c| c⊗ dm−
∑
(c)

(−1)|c(1)| c(1) ⊗ t(c(2))m (8.3)

for c⊗m ∈ C ⊗tM .
The purpose of this section is to observe that C ⊗tM can again be turned into a

dgc if t is comultiplicative. The dual situation of a multiplication on the twisted tensor
product of an hga and a dg bialgebra has already been considered by Kadeishvili–
Saneblidze [17, Thm. 7.1].

Let f : ΩC → A be the map of dg bialgebras induced by the comultiplicative
twisting cochain t. Based on f and on the map E from (3.9), we introduce the map
of degree 0

F : C E−→ ΩC ⊗ C
f⊗1−−−→ A⊗ C. (8.4)

The diagonal of C ⊗tM then is defined as

∆ = (1C ⊗ µM ⊗ 1C ⊗ 1M )(1C ⊗ 1A ⊗ TC,M ⊗ 1M )(
1C ⊗ F ⊗ 1M ⊗ 1M

)
(∆C ⊗ ∆M ) (8.5)

where µM : A⊗M → M is the action. In terms of the Sweedler notation this means

∆(c⊗m) =
∑

(c),(m)

∑
i

(−1)|ci||m(1)| (c(1) ⊗ ai ·m(1)
)

⊗
(
ci ⊗m(2)

)
(8.6)

for c⊗m ∈ C ⊗tM and F(c(2)) =
∑
i ai ⊗ ci ∈ A⊗ C.

Proposition 8.1. Let t : C → A be a comultiplicative twisting cochain, and let M be
an A-dgc. Then the twisted tensor product C ⊗tM is a dgc with the diagonal given
above and the augmentation εC ⊗ εM .

Proof. This is a lengthy computation based on the analogues

d(F) = (µA ⊗ 1C)(t⊗ F) ∆C − (µA ⊗ 1C) (1A ⊗ TC,A) (F ⊗ t) ∆C , (8.7)
(1A ⊗ ∆C)F = (µA ⊗ 1C ⊗ 1C) (1A ⊗ TC,A ⊗ 1C) (F ⊗ F) ∆C , (8.8)

(∆A ⊗ 1C)F = (1A ⊗ F)F. (8.9)
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of the identities for E stated in Lemma 3.1. One additionally uses the formula

∆A t = (1 ⊗ t)F + t⊗ ιA, (8.10)

which can be seen as follows: Since f is a morphism of coalgebras, one has

∆A t = ∆A f tC = (f ⊗ f) ∆ΩC tC = (f ⊗ f) E. (8.11)

The image of E lies in ΩC ⊗ Ωl C with l ⩽ 1. Considering the terms for l = 0 and
l = 1 separately as in the proof of Lemma 3.1 gives (8.10).

In order to prove that ∆ = ∆C⊗M as given in (8.5) is a chain map, it is con-
venient to use the tensor product differential d⊗ = dC ⊗ 1 + 1 ⊗ dM on C ⊗M and
analogously on (C ⊗M) ⊗ (C ⊗M) and to show that

d⊗(∆C⊗M ) − (δt ⊗ 1C⊗M ) ∆C⊗M − (1C⊗M ⊗ δt) ∆C⊗M + ∆C⊗M δt = 0. (8.12)

With respect to these differentials, F is the only map appearing in (8.5) that is
not a chain map. The boundary d⊗(∆) therefore has two summands coming from
the right-hand side of (8.7). The first of them cancels with (δt ⊗ 1) ∆. Using (8.10),
the term ∆ δt splits up into two. Taking (8.8) into account, the first one cancels
with (1 ⊗ δt) ∆ and the second one with the second summand in d⊗(∆).

The coassociativity of ∆C⊗M is a consequence of (8.8) and (8.9). The properties
involving the augmentation follow directly from the definitions.

Corollary 8.2. Let t : C(X) → C(G) be Szczarba’s twisting cochain determined by a
twisting function τ : X>0 → G, and let F be a left G-space. Then C(X) ⊗t C(F ) is
a dgc.

The diagonal is independent of the chosen coaugmentation of C(X) and looks
explicitly as follows: For x ∈ Xn and y ∈ Fm we have

∆ (x⊗ y) =
n∑
i=0

m∑
j=0

n−i∑
k=0

∑
p

(−1)ε(p)+i+(m−j−1)|zp
k+1|

·
(
∂̃i x⊗ t(zp1 ) · · · t(zpk ) ∂̃ j y

)
⊗
(
zpk+1 ⊗ (∂0)m−j y

)
(8.13)

where z = (∂0)n−i x, and the last sum is over all interval cuts p of [i] corresponding
to ek. (Recall that the unit 1 ∈ ΩC is annihilated by the map pC implicit in F and
defined in (3.10), hence so is the term ⟨z⟩ ⊗ 1 appearing in ∆ ⟨z⟩ by 1 ⊗ pC .)

9. Proof of Theorem 1.3
This proof is similar to the one for Theorem 1.1 given in Section 6. Since Szczarba

proved that ψF is a chain map [26, Thm. 2.4], we only need to show that ψF is
a morphism of coalgebras. We start by observing that it is enough to consider the
case F = G because we can write the twisted shuffle map ψF in the form

C(X) ⊗t C(F ) = C(X) ⊗t C(G) ⊗
C(G)

C(F )

ψG⊗1−−−−→ C(X ×τ G) ⊗
C(G)

C(F ) ∇−−→ C
(
X ×τ G×

G
F
)

= C(X ×τ F ). (9.1)
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Hence if ψG is a dgc map, then so is ψF . (Recall from [6, (17.6)] that the shuffle
map ∇ is a morphism of dgcs. This also implies that the tensor product of a left and
a right A-dgc over a dg bialgebra A is again a dgc, compare [7, p. 848].)

The diagonal on the right C(G)-module C(X ×τ G) is C(G)-equivariant, and
inspection of the formula (8.13) shows that so is the diagonal on C(X) ⊗t C(G).
Because ψ = ψG is also C(G)-equivariant, we may assume y = 1 ∈ C(G). In other
words, it suffices to consider elements of the form x⊗ 1 ∈ C(X) ⊗t C(G) when check-
ing the claimed identity

∆ψ = (ψ ⊗ ψ) ∆. (9.2)

We therefore need to look at ∆ψ(x) = (−1)|i| ∆ Ŝzi x. Combining Lemma 5.2 with
Proposition 4.2, we have

(∂0)l Ŝzi x = Ŝzi2 x(p1 − 1, . . . , pk+1 − 1) (9.3)

and ∑
i1∈Sn(p)

(−1)|i| ∂̃k Ŝzi x =
∑

(−1)ε Ŝzj1 x(0, . . . , p1 − 1)

· Szj2 x(p1 − 1, . . . , p2 − 1) · · · Szjk+1 x(pk − 1, . . . , pk+1 − 1), (9.4)

where the sum on the right-hand side is over all j1 ∈ Sq1−1, . . . , jk+1 ∈ Sqk+1−1, and

ε = |j1| + · · · + |jk| +
k∑
s=1

(s− 1)(qs − 1). (9.5)

Also, formula (8.13) for the diagonal on C(X) ⊗t C(G) boils for x⊗ 1 down to

∆ (x⊗ 1) =
n∑
i=0

n−i∑
k=0

∑
p

(−1)ε(p)+i−|zp
k+1|

·
(
∂̃i x⊗ t(zp1 ) · · · t(zpk )

)
⊗
(
zpk+1 ⊗ 1

)
(9.6)

where x ∈ Xn, z = (∂0)n−i x ∈ Xi, and the last sum is over all interval cuts p of [i]
corresponding to ek. To this expression we have to apply the map ψ ⊗ ψ. Note that
the first tensor factor above is of the form

∂̃i x⊗ t(zp1 ) · · · t(zpk ) = ∂̃i x⊗ Sz zp1 · · · Sz zpk
+ additional terms with fewer than k factors in the second component. (9.7)

As in Section 6, these additional terms arise whenever a zps with 1 ⩽ s ⩽ k is of
degree 1 because of the extra term −1 ∈ C(G) in the definition of t in this case.

We first consider the cuts p in (9.6) with ℓ(p) = 0, that is, where the intervals
with labels 1 to k cover all of [i]. In this case we conclude the following from (9.3)
and (9.4): If we apply ψ ⊗ ψ to the terms in (9.6) that correspond to the first line
of (9.7), then we exactly get the terms appearing in∑

i1∈Sn(p)

(−1)|i| ∂̃k Ŝzi x⊗ (∂0)l Ŝzi x (9.8)

if we set i = p1 − 1 and z = x(n− i, . . . , n). Moreover, the formula (9.5) tells us that
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the sign above corresponds with the one in (9.6).
We now proceed to showing that the decompositions p with ℓ(p) > 0 lead to

summands in (9.6) that cancel out with the additional terms in (9.7) for the p
with ℓ(p) = 0. The variable i ∈ [n] in (9.6) is fixed during the following discussion.

We look at a minimal decomposition p of [i] according to the partial ordering
introduced in Section 6 and at the 2ℓ1(p) decompositions p′ ⩾ p. They all lead to the
same zp

′

k′+1 = zpk+1, hence to the same second tensor factor Ŝz zpk+1 in

(ψ ⊗ ψ) ∆ (x⊗ 1). (9.9)

For each such p′, the first tensor factor in (9.6),

(−1)ε(p′)+i+|zp
′

k′+1|
∂̃i x⊗ t(zp

′

1 ) · · · t(zp
′

k′ ), (9.10)

contains the term

(−1)+ℓ1(p′)
(

(−1)ε(p)+i+|zp
k+1| ∂̃i x⊗ Sz zp1 · · · Sz zpk

)
, (9.11)

because of the contributions −1 ∈ C(G) of each interval of length 1, and also because
we have ε(p′) = ε(p) by Lemma 3.4. As before, these terms add up to 0 for ℓ1(p) > 0,
which completes the proof.

10. Comparison with Shih’s twisted tensor product
We have mentioned in the introduction already that Szczarba’s twisting cochain

agrees with the one constructed by Shih [25, §II.1] using homological perturbation
theory. In [10, Sec. 7] we pointed out that despite this agreement their approaches
lead to different twisted tensor products and different twisted shuffle maps.

Recall that given any cochain t : C → A, one can define the twisted tensor products

C ⊗tM and M ⊗t C (10.1)

for a left or, respectively, right A-module, see [16, Def. II.1.4] for instance. The twisted
tensor products considered so far have been of the first kind.

In Section 9 we have proven that Szczarba’s twisted shuffle map

ψ : C(X) ⊗t C(F ) → C(X ×τ F ) (10.2)

is a morphism of dgcs, and it is not difficult to see that for F = G it is also a morphism
of right C(G)-modules [10, Prop. 7.1].

Shih on the other hand uses the twisted tensor product C(F ) ⊗t C(X) (where the
fibre F is considered as a right G-space). His twisted shuffle map

∇τ : C(F ) ⊗t C(X) → C(F ×τ X) (10.3)

is part of a contraction that is a homotopy equivalence of right C(X)-comodules and,
in the case F = G, of left C(G)-modules, see [25, Props. II.4.2 & II.4.3] and [12,
Lemma 4.5∗]. In this sense his result is stronger because it is not known whether
Szczarba’s map ψ is part of such a homotopy equivalence.5

5Since the underlying complexes are free and defined for k = Z, the map ψ is at least a homotopy
equivalence of complexes, cf. [5, Prop. II.4.3].
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On the other hand, there does not seem to be a dgc structure on C(F ) ⊗t C(X).
The “mirror image” of (8.5) gives a chain map

C(F ) ⊗t C(X) →
(
C(F ) ⊗t C(X)

)
⊗
(
C(F ) ⊗t C(X)

)
, (10.4)

but it is not coassociative in general because of the asymmetry inherent in the def-
inition of the cooperations Ek. We expect, however, that (10.4) extends to an A∞-
coalgebra structure.

There is a different definition of an hgc, based on cooperations

Ẽk : C → C ⊗ C⊗k, (10.5)

which for simplicial sets is realized by the interval cut operations Ẽk = AWẽk
based on

the surjections ẽk = (1, 2, 1, . . . , 1, k, 1), cf. [9, Sec. 4]. In this setting C(F ) ⊗t C(X)
would become a dgc with the diagonal (10.4) if Szczarba’s twisting cochain t were
comultiplicative with respect to this new hgc structure. This is not the case, however,
as can be seen for ⟨x⟩ ∈ ΩC(X) with x ∈ X2 already.

11. Discrete fibres
In this section we dualize the dgc model from Theorem 1.3 to a dga model for

bundles with finite fibres. We also derive a certain spectral sequence converging to
the homology of a bundle with discrete fibre that in the context of CW complexes
was constructed by Papadima–Suciu [21]. For finite fibres we again consider the dual
spectral sequence converging to the cohomology of the bundle, which turns out to be
a spectral sequence of algebras. In the special case of a p-group it has recently been
studied by Rüping–Stephan [24].

11.1. The homological spectral sequence
Let G be (the simplicial group associated to) a discrete group, so that C(G) =

C0(G) = k[G] is the group ring with coefficients in k. We write a� k[G] for the
augmentation ideal. For a discrete space F it gives rise to an increasing filtration
of C(F ) = C0(F ) by the k[G]-submodules

F−p(F ) = ap C(F ) (11.1)

with p ∈ N (and the convention a0 = k[G]). We write gr∗(F ) for the associated graded
module over the graded algebra gr∗(G) with structure map gr∗ µ induced by the
action µ : G× F → F .

Given a bundle X ×τ F , we consider the increasing filtration

F−p(X,F ) = C(X) ⊗t F−p(F ) (11.2)

of the twisted tensor product C(X) ⊗t C(F ) by subcomplexes. The zeroeth page of
the associated spectral sequence is of the form

E0
p,q = Cp(X) ⊗ grq(F ) (11.3)

and lives in the lower half-plane as q ⩽ 0.
Since G is discrete, any twisting cochain mapping to C(G) vanishes in all degrees

different from 1. It furthermore takes values in the augmentation ideal a by the second
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defining identity in (2.8). Hence the twisting term in the differential of C(X) ⊗t C(F )
lowers the filtration degree. As a result, the induced differential on E0 is d0 = d⊗ 1,
and the first page of the spectral sequence is of the form

E1
p,q = Hp+q(X; grq(F )). (11.4)

The convergence of this spectral sequence is delicate in general, see [21, Sec. 5.3].
However, if the augmentation ideal a is nilpotent, meaning that aL = 0 for some L,
then the filtration is finite and convergence is not an issue.

Let us assume that that k is a field or, more generally, that H(X) is torsion-free
over the principal ideal domain k. We then have

E1
p,q = Hp+q(X) ⊗ grq(F ). (11.5)

Moreover, H(X) is a graded coalgebra in this case via the composition

H(X) −→ H(X ×X)
∼=−→ H(X) ⊗H(X) (11.6)

where the second map is the inverse of the Künneth isomorphism.
We need the following observation.

Lemma 11.1. Let C be a dgc and G a discrete group, and let t : C → k[G] be a
twisting cochain. Then t induces a well-defined twisting cochain

t∗ : H(C) → gr∗(G), [c] 7→

{
[t(c)] ∈ gr−1(G) if |c| = 1,
0 otherwise.

Proof. For well-definedness we have to show t(d c) ∈ F−2(G) for c ∈ C1. Since there
is no differential on k[G], we get from the twisting cochain condition (2.8) that

t(d c) = d t(c) + t(d c) = (t ∪ t)(c) ∈ F−2(G), (11.7)

again because t takes values in the augmentation ideal a = F−1(G).
For degree reasons this also shows that t∗ is a twisting cochain.

The differential on the first page of the spectral sequence is given by the twisting
term (8.2). Using the lemma above and the fact that H(X) is a coalgebra, we can
see that this differential is the composition

δt∗ : H(X) ⊗ gr∗(F ) ∆⊗1−−−→ H(X) ⊗H(X) ⊗ gr∗(F )
1⊗t∗⊗1−−−−−→ H(X) ⊗ gr∗(G) ⊗ gr∗(F ) 1⊗gr∗ µ−−−−−→ H(X) ⊗ gr∗(F ). (11.8)

In other words, we have an isomorphism of complexes

E1 = H(X) ⊗t∗ gr∗(F ). (11.9)

We thus recover the description of the spectral sequence of an equivariant chain
complex as given by Papadima–Suciu [21, Thm. A], up to the order of the tensor
factors.
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We now look at coalgebra structures. The filtration F(G) is comultiplicative in the
sense that we have

∆ F−p(F ) ⊂
∑
q+r=p

F−q(F ) ⊗ F−r(F ) (11.10)

for all p. In fact, the claim holds for the bialgebra F = G by induction, starting with
the case p = 1, which says that

∆(g − 1) = g ⊗ g − 1 ⊗ 1 = g ⊗ (g − 1) + (g − 1) ⊗ 1 (11.11)
∈ F0(G) ⊗ F−1(G) + F−1(G) ⊗ F0(G)

for any g ∈ G. It carries over to F as C(F ) is a k[G]-dgc.
Moreover, inspection of formula (8.5) or (8.13) for the diagonal of C(X) ⊗t C(F )

shows that the filtration F(X,G) is comultiplicative, too. Taking again into account
that the twisting cochain t takes values in the augmentation ideal a, we see that the
diagonal on the page E0 of the spectral sequence is componentwise,

∆(c⊗m) =
∑

(c),(m)

(
c(1) ⊗m(1)

)
⊗
(
c(2) ⊗m(2)

)
(11.12)

for c ∈ Cp(X) and m ∈ F−q(F )/F−q−1(F ). This implies the following.

Proposition 11.2. Assume that k is a field. The filtration (11.2) gives rise to a
spectral sequence of coalgebras. As a dgc, its first page is given by

E1
p,q = Hp+q(X) ⊗t∗ grq(F )

with the componentwise coproduct. If the augmentation ideal a is nilpotent, then the
spectral sequence converges to H(X ×τ F ) as a graded coalgebra.

11.2. Dga models and the cohomological spectral sequence
We now turn to cohomology. For the following purely algebraic reason we restrict

to finite structure groups G and finite fibres F .
The dual C∗ of a dgc C with coproduct ∆ is a dga with the transpose ∆∗ as

multiplication, or more precisely, with the composition

C∗ ⊗ C∗ → (C ⊗ C)∗ ∆∗

−−→ C∗. (11.13)

However, the dual of a dga A is not a dgc in general, but it is so if C is finitely
generated free k-module in each degree. The coproduct is the transpose µ∗ of the
multiplication or rather its composition with the isomorphism (A⊗A)∗ ∼= A∗ ⊗A∗.

So let us assume that G is finite.6 Then C∗(G) is a dgc, and of course C∗(X) is a
dga for any X. Because of the definition

dC∗ = −d∗
C (11.14)

of the differential on a dual complex as the negative of the transpose of the original

6This restriction is missing for the multiplicative model stated in [17, p. 219]. Together with the
assumption of simple connectedness made there for the base space X (see Footnote 1), that model
boils down to the tensor product C∗(X) ⊗ C∗(F ) for Cartesian products satisfying an appropriate
finiteness condition.
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one (compare [9, Sec. 2.3]), the transpose

t∗ : C∗(G) → C∗(X) (11.15)

of Szczarba’s twisting cochain satisfies

d(t∗) = dC∗(X) t
∗ + t∗ dC∗(G) = −

(
d∗
C(X) t

∗ + t∗ d∗
C(G)

)
(11.16)

= −
(
t dC(X) + dC(G) t

)∗ = −d(t)∗ = −(t ∪ t)∗ = −t∗ ∪ t∗.

In other words, u = −t∗ is again a twisting cochain in our sense.
The quasi-isomorphism C(X) ⊗t C(F ) → C(X ×τ F ) from Theorem 1.3 dualizes

to a quasi-isomorphism of dgas between C∗(X ×τ F ) and the dual of C(X) ⊗t C(F ).
If the fibre F is finite, then we have an isomorphism of complexes(

C(X) ⊗t C(F )
)∗ = C∗(X) ⊗u C

∗(F ), (11.17)

which is now a twisted tensor product of the second form in (10.1). The minus sign
in u = −t∗ arises again from (11.14) and also reflects the sign difference between the
two kinds of twisted tensor products, see again [16, Def. II.1.4].

The product on (11.17) is as described by Kadeishvili–Saneblidze [17, eq. (12)].
With our sign convention and in Sweedler notation it is of the form

(a⊗ b) · (a′ ⊗ b′) =
∑
k⩾0

∑
(b)

(−1)k aEk(u(b(1)), . . . , u(b(k)); a′) ⊗ b(k+1) b
′ (11.18)

for a, a′ ∈ C∗(X) and b, b′ ∈ C∗(F ). The transposes

Ek =
(
Ek
)∗ : C∗(X)⊗k ⊗ C∗(X) → C∗(X) (11.19)

are the structure maps of the hga C∗(X), see Remark 3.2. Note that the sum
over k in (11.18) is in fact only over 0 ⩽ k ⩽ |b| + |a′| because of the vanishing con-
dition (3.4).

We summarize our discussion so far as follows.

Proposition 11.3. Let X ×τ F be a fibre bundle where both the fibre F and the
structure group G have only finitely many non-degenerate simplices. It follows that
the dga C∗(X) ⊗u C

∗(F ) with the product (11.18) is a model for X ×τ F . The quasi-
isomorphism connecting this dga with C∗(X ×τ F ) is natural in X, G and F .

We now look at the duals of the filtrations introduced in the previous section.
Because the filtrations F(F ) and F(X,F ) are comultiplicative, the dual filtrations
of C∗(F ) = C0(F ) and C∗(X) ⊗u C

∗(F ),

F−p(F ) =
{
γ ∈ C0(F )

∣∣ γ(m) = 0 for all m ∈ F−p−1(F )
}
, (11.20)

F−p(X,F ) = C∗(X) ⊗u F−p(F ) (11.21)

are multiplicative. Specializing to field coefficients, we arrive at the following conclu-
sion. It generalizes a result of Rüping–Stephan [24, Cor. 4.19] for finite p-groups and
coefficients of prime characteristic p, see also [24, Rem. 4.20].
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Proposition 11.4. Let k be a field, and let G be a finite group such that the aug-
mentation ideal a� k[G] is nilpotent. There is a multiplicative spectral sequence Er
converging to H∗(X ×τ F ) whose first page is of the form

Ep,q1 = Hp+q(X) ⊗ grq(F )

with componentwise product, where gr∗(F ) is the graded algebra associated to the
filtration (11.20). The spectral sequence is natural in X, G and F .

12. The Serre spectral sequence
Theorem 1.3 allows for a short proof of the product structure in the cohomological

Serre spectral sequence. The same applies to the comultiplicative structure in the
homological setting considered by Chan [4, Thm. 1.2]. We assume throughout this
section that k is a principal ideal domain.

Recall that if the homology H(C) of a dgc C is free over k, then it is a graded
coalgebra with diagonal

H(C) −→ H(C ⊗ C)
∼=−→ H(C) ⊗H(C) (12.1)

where the last map is the inverse of the Künneth isomorphism. (We have mentioned
a special case of this already in (11.6).)

Proposition 12.1. Let E = X ×τ F be a twisted Cartesian product with the simpli-
cial group G as structure group.
(i) Assume that H(X) and H(F ) are free over k and that G0 acts trivially on H(F ).

The homological Serre spectral sequence is a spectral sequence of coalgebras with
the componentwise coproduct on

E2
pq = Hp(X) ⊗Hq(F ),

converging to H(E) as a coalgebra.
(ii) Assume that F is of finite type, that H∗(X) or H∗(F ) is flat over k and that G0

acts trivially on H∗(F ). The cohomological Serre spectral sequence is a spectral
sequence of algebras with the componentwise product on

Epq2 = Hp(X) ⊗Hq(F ),

converging to H∗(E) as an algebra.

Proof. By Theorem 1.3, the dgc C(E) is quasi-isomorphic to M = C(X) ⊗t C(F )
with the coproduct (3.17). We filter M by increasing degree in C(X) and then M ⊗M
via the tensor product filtration. Let Er be the associated spectral sequence converging
to H(M) and Fr the one converging to H(M ⊗M).

Since G0 acts trivially on H(F ), the definition (5.3) of Szczarba’s twisting cochain
tells us that this module is annihilated by t(x) for any x ∈ X1. Therefore,

E0
pq = Cp(X) ⊗ Cq(F ), d0 = 1 ⊗ d, (12.2)

E1
pq = Cp(X) ⊗Hq(F ), d1 = d⊗ 1, (12.3)

E2
pq = Hp(X) ⊗Hq(F ) (12.4)
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and similarly

F1
pq =

⊕
p1+p2=p

⊕
q1+q2=q

Cp1(X) ⊗Hq1(F ) ⊗ Cp2(X) ⊗Hq2(F ), (12.5)

F2
pq =

⊕
p1+p2=p

⊕
q1+q2=q

Hp1(X) ⊗Hq1(F ) ⊗Hp2(X) ⊗Hq2(F ). (12.6)

Inspection of the formula (3.17) shows that the coproduct is filtration-preserv-
ing and that the induced maps between the first and second pages of the spectral
sequences are the componentwise diagonals: In the notation of Sections 6 and 9,
summands corresponding to partitions p with ℓ1(p) > 0 do not contribute, again by
the annihilation property of t mentioned above, and among the remaining ones those
with ℓ(p) < p end up in a lower filtration degree. This proves the first part.

The transpose ψ∗ : C∗(E) → M∗ of ψ is a quasi-isomorphism of dgas. We filter M∗

by the dual filtration, which leads to a spectral sequence Er converging to H∗(E).
Since F is of finite type, we have

Epq0 =
(
Cp(X) ⊗ Cq(F )

)∗
, (12.7)

Epq1 = Cp(X) ⊗Hq(F ) (12.8)

by the cohomological Künneth theorem [5, Prop. VI.10.24, case II], hence

Epq2 = Hp(X) ⊗Hq(F ) (12.9)

by its homological counterpart [5, Thm. VI.9.13] and the assumption that t(x) annihi-
lates H∗(F ) for any x ∈ X1. By the same argument as before, the products on (12.8)
and (12.9) are componentwise. This concludes the proof.

Appendix A. Comparison with Baues’ diagonal
Baues [1, Sec. 1] has defined a diagonal on ΩC(X) for any 1-reduced simplicial

set X. In this appendix we compare his map with the diagonal (3.17) induced by the
hgc structure of C(X) (which of course is defined for any X ̸= ∅). Up to sign, this
has already been done by Quesney [22, Prop. 5.1].

Proposition A.1. For a 1-reduced simplicial set X the diagonal (3.17) on ΩC(X)
is the same as Baues’.

This implies that the diagonal (3.17) is also equal to the one constructed by Hess–
Parent–Scott–Tonks via homological perturbation theory [14, Secs. 4 & 5].7

Proof. Let x ∈ X be an n-simplex. The terms in Baues’ formula for ∆ ⟨x⟩ [1, p. 334]
are indexed by the subsets b ⊂ n− 1. It not difficult to see that in analogy with

7Hess–Parent–Scott–Tonks state that their recursively defined diagonal agrees with Baues’. This
includes the sign of each summand (A.3), which is not made explicit for their own formula.
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formula (3.7) Baues’ diagonal is of the form

∆ ⟨x⟩ = ⟨x⟩ ⊗ 1 +
∞∑
k=0

Ẽk(x) (A.1)

for certain functions

Ẽk : C(X) → Ωk C(X) ⊗ Ω1 C(X). (A.2)

Moreover, each non-zero summand appearing in Ẽk(x) can be written as

±
〈
xp1
∣∣ . . . ∣∣ xpk 〉⊗ ⟨xpk+1⟩ (A.3)

for the unique interval cut p of [n] associated to ek such that xpk+1 contains the
vertices indexed by b plus 0 and n. Hence, up to sign, we get the claimed identity

s⊗(k+1) Ẽk(x) = s⊗(k+1) Ek(x) = (−1)kAWek
(x). (A.4)

It remains to verify the sign, where we proceed by induction on k. The case k = 0 is
trivial because AW(1) is the identity map and Ẽ0 = s−1 the inverse of the suspension
map s.

For k > 1 we compare the signs associated to an interval cut

p : p0
k+1 p1

1 p2
k+1 · · · k+1 p2k−1

k p2k
k+1 p2k+1 (A.5)

for the surjection ek with those for the interval cut

p′ : p0
k p1

1 p2
k · · · k p2k−1 (A.6)

for ek−1. We compute the exponents of all the signs involved, always modulo 2. The
exponents of the permutation signs differ by

perm(p) − perm(p′) ≡ (p2k − p2k−1)
(
p1 + 1 +

k−1∑
i=1

(p2i+1 − p2i + 1)
)

(A.7)

≡ (p2k − p2k−1)
( 2k−1∑

i=1
pi + k

)
since we have to move the interval corresponding to ek(2k) = k before all preced-
ing (inner) intervals corresponding to ek(1) = ek(3) = · · · = ek(2k − 1) = k + 1. The
exponents of the position signs change by p2k−1 because of the additional inner inter-
val for ek(2k − 1) = k + 1.

The sign for the summand (A.3) is the sign of the shuffle8 (n− 1 ∖ b, b). Hence,
by passing from k − 1 to k, the exponent of this sign changes by

(p2k − p2k−1 − 1)
(
p1 +

k−1∑
i=1

(p2i+1 − p2i + 1)
)

≡ (p2k − p2k−1 − 1)
( 2k−1∑

i=1
pi + k + 1

)
(A.8)

8Strictly speaking, this is not a shuffle in the sense of Section 2.4 as 0 /∈ n− 1 = {1, . . . , n− 1}.
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because we have to move all elements in the interior of the k-th interval before all pre-
vious values occurring in b, that is, all vertices in xpk+1 with indices strictly between 0
and p2k−1.

Still modulo 2, the changes in the exponents add up to
2k∑
i=1

pi + k + 1 ≡
k∑
i=1

(p2i − p2i−1 + 1) + 1 ≡
∣∣ 〈xp1 | . . . |xpk

〉 ∣∣+ 1. (A.9)

This is exactly the exponent of the sign change we get when we pass from k − 1
to k in (A.4). The sign exponent | ⟨xp1 | . . . |xpk⟩ | arises because we have to move the
additional suspension operator past the element ⟨xp1 | . . . |xpk⟩. Another minus sign
comes from the increased exponent on the right-hand side of (A.4). This completes
the proof.

Appendix B. Szczarba operators and degeneracy maps
Apparently, neither in Szczarba’s paper [26] nor elsewhere in the literature one can

find a proof that Szczarba’s twisting cochain (5.3) and his twisted shuffle map (5.16)
are actually well-defined on normalized chain complexes. The purpose of this appendix
is to close this gap.

Recall from [26, eq. (3.1)] and [15, eq. (6)] that the simplicial operators

Di,k : Xm → Xm+k (B.1)

for 0 ⩽ k ⩽ n, i ∈ Sn and m ⩾ n− k are recursively defined by

D∅,0 = id and Di,k =


D ′

i′,k s0 ∂i1−k if k < i1,
D ′

i′,k if k = i1,
D ′

i′,k−1 s0 if k > i1

(B.2)

for n ⩾ 1 where i′ = (i2, . . . , in). Here D′ denotes the derived operator of a simplicial
operator D, compare [26, p. 199] or [15, p. 1863].

For n ⩾ 1 we introduce a map

Φ: Sn × [n] → Sn−1 × [n− 1], (i, p) 7→ (j, q) (B.3)

recursively via
j = (i1 − 1, j′), q = q′ + 1 if p < i1, (j′, q′) := Φ(i′, p),
j = i′, q = 0 if p = i1 or i1 + 1,
j = (i1, j′), q = q′ + 1 if p > i1 + 1, (j′, q′) := Φ(i′, p− 1)

(B.4)

where again i′ = (i2, . . . , in). Note that the base case n = 1 is completely covered by
the second line above since i1 = 0 in that case.

Lemma B.1. Let n ⩾ 1, i ∈ Sn and p ∈ [n], and set (j, q) = Φ(i, p).
(i) For any 0 ⩽ k < p and any simplex x of dimension m ⩾ n− k − 1 we have

Di,k sp−1−k x = sqDj,k x.

(ii) For any p < k ⩽ n and any simplex x of dimension m ⩾ n− k we have

Di,k x = sqDj,k−1 x.
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Proof. These are direct verifications by induction on n, based on the definitions
of Di,k and Φ. The base cases are i = (0), k = 0, p = 1 and i = (0), k = 1, p = 0,
respectively. In the induction step of the first formula, one distinguishes the cases
k < i1 (with the subcases i1 < p− 1, i1 ∈ {p− 1, p} and i1 > p), k = i1 (with the
subcases i1 < p− 1 and i1 = p− 1) and k > i1. For the second formula one has the
cases k < i1, k = i1 and k > i1 (with the subcases p < i1, p ∈ {i1, i1 + 1} as well as
p > i1 + 1).

For instance, for n > 1, k < i1 and i1 > p we have

Szi sp x = D ′
i′,k s0 ∂i1−k sp−1−k x = D ′

i′,k s0 sp−1−k ∂i1−k−1 x (B.5)

= D ′
i′,k sp−k s0 ∂i1−k−1 x =

(
Di′,k sp−1−k

)′
s0 ∂i1−k−1 x

=
(
sq′ Dj′,k

)′
s0 ∂i1−k−1 x

by induction, where (j′, q′) = Φ(i′, p). Then j = (i1 − 1, j′) and q = q′ + 1, hence

= sq′+1 D
′
j′,k s0 ∂i1−1−k x = sqD

′
j,k x

since k < p ⩽ i1 − 1.

Proposition B.2. Let 0 ⩽ p ⩽ n, and let x be an n-simplex.
(i) For i ∈ Sn and (j, q) = Φ(i, p) we have

Szi sp x = sq Szj x.

(ii) For i ∈ Sn+1 and (j, q) = Φ(i, p+ 1) we have

Ŝzi sp x = sq Ŝzj x.

Proof. These formulas follow from Lemma B.1 and the identities (2.17) and (2.18).
For example, we have

Szi sp x = Di,0 σ(sp x)Di,1 σ(∂0 sp x) · · ·Di,n σ((∂0)nsp x) (B.6)
= Di,0 sp−1 σ(x) · · ·Di,p−1 s0 σ((∂0)p−1 x)Di,p σ(s0 (∂0)p x)

·Di,p+1 σ((∂0)p x) · · ·Di,n σ((∂0)n−1 x)
= sqDj,0 σ(x) · · · sqDj,p−1 σ((∂0)p−1 x) · 1

· sqDj,p σ((∂0)p x) · · · sqDj,n−1 σ((∂0)n−1 x)
= sq Szj x.

Corollary B.3. Szczarba’s twisting cochain t and the twisted shuffle map ψ descend
to the normalized chain complexes.

Proof. This is a consequence of the formulas just established and, for the twisting
cochain t, the identity t(s0 x) = σ(s0 x) − 1 = 0 for any 0-simplex x.
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