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Abstract
We develop a bundle theory of presheaves on small categories,

based on similar work by Brent Everitt and Paul Turner. For
a certain set of presheaves on posets, we produce a Leray-Serre
type spectral sequence that gives a reduction property for the
cohomology of the presheaf. This extends the usual cohomolog-
ical reduction of posets with a unique maximum.

1. Introduction
In [2] Everitt and Turner develop a bundle theory for coloured posets. In their

development, coloured posets act as a generalisation of Khovanov’s ‘cube’ construc-
tion in his celebrated paper on the categorification of the Jones polynomial [4]. The
notion of homology for coloured posets differs from the usual definition of presheaf
homology, so it is desirable to rebuild the theory in a more versatile form. In this
paper, we do away with coloured posets and move to the full generality of presheaves
of modules on small categories. Additionally, we rework the arguments from the more
natural cohomological point of view. For the main theoretical result we impose the
general assumption that the base B of our bundle ξ : B→ Sh is a poset category and
that for each x ∈ B, the small category of ξ(x) is also a poset category; we call such
a bundle a poset bundle of presheaves:

Main Theorem. Let ξ : B→ Sh be a poset bundle of presheaves with B a recursively
admissible finite poset, and (Eξ, Fξ) the associated total presheaf. Then there is a
spectral sequence that converges to the cohomology of the total presheaf:

Ep,q
2 = Hp(B;Hq

fib)⇒ H•(Eξ;Fξ).

Bundles of presheaves and the total presheaf are defined in §2, while recursively
admissible posets are defined in §6.

In the context of presheaf cohomology, the spectral sequence for a poset bundle
of presheaves converges to the cohomology of the fiber at the maximum of the base.
Thus, while the main theorem of [2] is able to model Khovanov homology, our key
application is as follows.
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Main Application. Let E and B be posets, with B recursively admissible. Sup-
pose that π : E→ B is an onto poset map such that for all x < y in B, the subposet
π−1(x) ∪ π−1(y) of E is admissible for π−1(x), π−1(y). Then

H•(E;F ) ∼= H•(π−1(1);F ),

for all F ∈ Sh(E), where 1 is the unique maximum of B.

We proceed as follows. In §2 we define a category Sh of presheaves on small cat-
egories that features morphisms between objects reminiscent of the induced maps in
[1, p. 4]. A bundle is then just a small category decorated with objects and morphisms
of Sh. We also give a way to ‘glue up’ the elements of Sh in a bundle into a total
presheaf. The main aim of the paper is to understand the relationship between this
total presheaf and the bundle. In §3 we describe explicitly the cochain modules giving
rise to the presheaf cohomology of a presheaf. This gives the concrete tools needed
to establish the quasi-isomorphisms in the main theorem. Next, the general construc-
tion of a spectral sequence from a bicomplex provides the first step of the overarching
argument – a spectral sequence, constructed from the bundle, that converges to a
particular cohomology. The rest of the argument is establishing that this particular
cohomology coincides (in some restricted cases) with the usual presheaf cohomology
of the total presheaf.

The chain map ω that will witness this coincidence is defined in §5. Similarly to
[2], it involves signed combinations of traversals of a grid, determined by a pair of
sequences in the base small category and in one of the small categories over an object
of the base. The cohomological viewpoint here necessitates our ω goes ‘the opposite
way’ to that in [2]. The next section collects some technical tools and the definition
of a recursively admissible poset – the restricted case in which the main theorem
holds. The bulk of the work is in §7 and §8 with the establishment of two explicit
quasi-isomorphisms, giving rise to two long exact sequence in the cohomologies of the
total complex and of the presheaf. This is done by careful manipulation of spectral
sequences and morphisms between them. Section §9 collects the results into a proof
of the main theorem.

The final section §10 gives a recipe for turning a presheaf on a poset into the
total presheaf of a bundle. If the base of that bundle is recursively admissible, then
applying our main theorem completes the proof of the main application. We finish
with an example of a repeated use of this application.
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2. The category Sh

For the rest of the paper, R is a commutative ring with 1.
We define a category Sh of presheaves on small categories. An object (C, F ) of

this category consists of a small category C and a presheaf F on C. A Sh-morphism
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γ : (C, F )→ (D, G) is a pair of maps (γ1, γ2), where γ1 : D→ C is a covariant functor
and γ2 : Fγ1 → G is a natural transformation:

C

D

RMod or

F (γ1(x)) F (γ1(y))

G(x) G(y)

⟳

F

γ1

G

γ2x

G(y→x)

F (γ1(y)→γ1(x))

γ2yγ2

The composition of two morphisms γ : (C, F )→ (D, G) and δ : (D, G)→ (E, H)
is then (γ1δ1, δ2γ2) : (C, F )→ (E, H).

Definition 2.1. Let B be a small category. A bundle of presheaves with base B is a
contravariant functor ξ : B→ Sh.

Example 2.2.
1. A constant bundle ξ = B× (C, F ) is a bundle of presheaves with ξ(x) = (C, F )

for all x ∈ B and ξ(x→ y) = id(C,F ) for all arrows x→ y.
2. A bundle of coloured posets with base B in the language of [2] is a covariant

functor ζ from a poset B with a unique maximum to the category CPR of
coloured posets. Such a bundle of coloured posets gives rise to a bundle of
presheaves ξ : Bop → Sh, where if ζ(x) = (P, F ), then ξ(x) = (Pop, F ).

3. If P and Q are posets, then an object F ∈ Sh(P×Q) determines a bundle of
presheaves ξ : P→ Sh. For any x ∈ P, denote by Fx the functor from the full
subcategory {x} ×Q of P×Q that agrees with F . Then ξ(x) = (Q, Fx) for all
x ∈ P and ξ(x→ y) = (idQ, Fx→y), where Fx→y|z : Fy(y, z)→ Fx(x, z) agrees
with F .

4. We can also model a group action on a presheaf (C, F ). Let the category CG

have one object • and let the morphisms of CG be given by G, with composition
given by the group operation. Then a bundle of presheaves ξ : CG → Sh with
ξ(•) = (C, F ) describes the action of G on (C, F ).

For clarity, if ξ is a bundle of presheaves with base B and x ∈ B, then we will
use the notation Ex for the small category that is the first coordinate of ξ(x) and
Fx for the second coordinate of ξ(x). Also, if y ∈ Ex, then π(y) = x, i.e. π indicates
which fiber y comes from. Finally, consider the Sh-morphism ξ(x1 → x2). For its
first coordinate we write ξ1(x1 → x2) : Ex1 → Ex2 instead of ξ(x1 → x2)1; similarly
ξ2(x1 → x2) : Fx2ξ1(x1 → x2)→ Fx1 instead of ξ(x1 → x2)2 for the second.

Definition 2.3. Let B be a small category and ξ a bundle of presheaves with base B.
The associated total presheaf (Eξ, Fξ) consists of a small category Eξ and a presheaf
Fξ : Eξ → RMod, defined as follows (also see Figure 1):
• As a small category, Obj(Eξ) =

⊔
x∈B Obj(Ex). The simple arrows of Eξ are of

two types. There is an arrow y1 → y2 in Eξ if
a) y1, y2 ∈ Ex for some x ∈ B and y1 → y2 is an arrow in Ex;
b) x1 → x2 is a non-identity arrow in B, y1 and y2 are objects of Ex1

and Ex2
,

respectively, and we have ξ1(x1 → x2)(y1) = y2.
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The set of all arrows of Eξ is the smallest set containing the simple arrows that is
closed under composition, where
– for any x ∈ B, composition of arrows of type a) from Ex is given by the com-

position in Ex,
– composition of arrows of type b) (and identity arrows) is given by composition

in B.
Additionally, we impose the commutativity of squares: if x1 → x2 is an arrow in B
and y1 → y2 is an arrow in Ex1

, then the square below commutes in Eξ:

x1 x2

y1 ξ1(x1 → x2)(y1)

y2 ξ1(x1 → x2)(y2)

B :

Eξ :

• As a presheaf, Fξ sends an object y ∈ Eξ with π(y) = x to Fx(y). Arrows y1 → y2
of type a) from some Ex are sent to the map Fx(y1 → y2); arrows y1 → y2 of type
b) with π(y1) = x1, π(y2) = x2 are sent to ξ2(x1 → x2)y1

. Composition arrows are
sent to the appropriate composition of the above maps.

B : x1 x2

Sh : (C1, F1) (C2, F2)

Eξ :

y1 z1

y2 z2

RMod :

F1(y1) F2(z1)

F1(y2) F2(z2)

ξ(x1→x2)=γ

γ1(y1)=z1

y1→y2∈C1 z1→z2∈C2

γ1(y2)=z2

γ2|y1

F1(y1→y2)

γ2|y2

F2(z1→z2)

ξ

Fξ

Figure 1: Constructing the total presheaf (Eξ, Fξ). Arrows of type a) are dashed,
arrows of type b) are dotted, and composition arrows are dash-dotted.
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a)

b)

Figure 2: An alternating sequence of a) and b) arrows and the resulting commutative
grid.

Proposition 2.4. Any composition arrow f in Eξ is equal to gh, for some type a)
arrow g and some type b) arrow h.

Since compositions of arrows of type a) or b) are still arrows of the same type,
a composition arrow in E is an alternating sequence of arrows of type a) and b). If
f starts with a type a) arrow and ends with a type b), then consider the diagram
in Figure 2. If f is the composition of bolded arrows, we can construct the com-
mutative square grid below and to the right using the commutativity of squares in
Definition 2.3. This implies that f is equal to the composition of dashed arrows, as re-
quired. And if f starts with a type b) or ends with a type a), the last step subsumes
those with the other horizontal or vertical dashed arrows, again giving a resulting
composition of gh for some h of type b) and some g of type a).

Proposition 2.5. The pair (Eξ, Fξ) above is an object of Sh.

It is easily checked that Eξ is a small category. Furthermore, since the action of
Fξ on composition arrows is defined as the composition of actions on simple arrows,
functoriality of Fξ follows from the functoriality of ξ and Fx for all x ∈ B.

Remark 2.6. The commutativity of squares imposed on Eξ in Definition 2.3 enables
us to prove Proposition 2.4 at the category level. Indeed as in [2], a similar proposition
necessarily holds at the level of the presheaf, since the module homomorphisms at
type b) arrows come from the natural transformations ξ2(x1 → x2) and so the relevant
squares commute. We prefer pushing the commutativity to the category Eξ, because
of certain later arguments (e.g. Lemma 6.4).

3. Cochain modules of (C, F )

A version of the exposition in this section can be found in [6]. A presheaf F on
C acts as a covariant functor on the poset of simplices of the nerve NC of C. For
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σ = x0 → x1 → · · · → xi, τ = xi0 → · · · → xik , we set F (σ) = F (x0), and

F (τ ⊆ σ) = F (x0 → xi0) = F (xi0)→ F (x0),

where the arrow x0 → xi0 is given by the appropriate composition of arrows in σ.
The module for the k-cochains (k ⩾ 0) is

Sk(NC;F ) =
∏
σ

F (σ),

where the product ranges over all k-simplices σ = x0 → · · · → xk. For k < 0, we set
Sk(NC;F ) = 0. The differential dk : Sk−1(NC;F )→ Sk(NC;F ) for k > 0 is given
by

(dku)|σ =
k∑

j=0

(−1)jF (σj ⊆ σ)(u|σj
),

where σ = x0 → x1 → · · · → xk, u ∈ Sk−1(NC;F ), and σj = x0 → · · · → x̂j → · · · →
xk. For k ⩽ 0, dk = 0. It is easily seen that S•(NC;F ) is a chain complex. For nota-
tional brevity, we will also write it as S•(C;F ).

Given a Sh-morphism γ : (C, F )→ (D, G), there is an induced map on chains
γ• : S•(C;F )→ S•(D;G) defined by

γ•u|σ = γ2x0
(u|γ1(σ)).

Lemma 3.1. The induced map γ• is a well-defined chain map.

This follows from an easy calculation, using the naturality of γ2.
We have thus defined a covariant functor S• : Sh→ ChR, from pairs of small cat-

egories and presheaves to chain complexes over R. In particular, we have a covariant
functor Sq : Sh→ RMod for each q ∈ Z. Since homology is a functor from chain com-
plexes to graded R-modules, we also have a covariant functorH•S• : Sh→ GrRMod.
In particular, we have a covariant functor HqS• : Sh→ RMod for each q ∈ Z.

Given a bundle ξ : B→ Sh, the above gives us two presheaves on B. For any q ∈ Z
the q-cochain presheaf of B is the presheaf Sq : B→ RMod, i.e. the composition

B
ξ−→ Sh

Sq

−→ RMod.

Similarly, the homology of the fibres presheaf of B is the presheaf Hq
fib : B→ RMod,

i.e. the composition

B
ξ−→ Sh

S•

−→ ChR

Hq
fib−→ RMod.

Explicitly, if x ∈ B, then Hq
fib(x) = Hq(Ex;Fx).

4. The bicomplex Sp(B;Sq)

We want to construct a bicomplex (adapting [2, §2]) by taking the p-cochain
presheaf of (B,Sq).
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Let ξ : B→ Sh be a bundle of presheaves and suppose x→ y is an arrow in B.
We have the commutative square

Sq−1(Ey;Fy)

Sq−1(Ex;Fx) Sq(Ex;Fx)

Sq(Ey;Fy)

d

d

where the vertical maps are the chain map from Lemma 3.1 induced by ξ(x→ y). In
particular, the differential d induces a Sh-morphism γ : (B,Sq−1)→ (B,Sq), where
γ1 is the identity functor and γ2 are the differentials at each object of B. This gives
us the induced map

γ• : S•(B;Sq−1)→ S•(B;Sq).

Applying this for all q ∈ Z gives a grid of commutative squares of the form:

Sp−1(B;Sq−1)

Sp−1(B;Sq) Sp(B;Sq)

Sp(B;Sq−1)

To make the squares anti-commute instead, we apply the usual ‘Jedi sign trick’, i.e. we
include a factor of −1 in every other horizontal map. We will be concerned with this
bicomplex in particular in later chapters, so we will sometimes refer to it as just Kp,q

ξ .
Explicitly, we have

Kp,q
ξ = Sp(B;Sq);

if we denote

σ = x0 → . . .→ xp ∈ NB and τ = y0 → . . .→ yq ∈ NEx0 ,

then the vertical differential dv : Sp(B;Sq−1)→ Sp(B;Sq) is defined by

(dvu)|σ,τ = Fx0
(y0 → y1)(u|σ,τ0) +

q∑
j=1

(−1)j(u|σ,τj )

and the horizontal differential dh : Sp−1(B;Sq)→ Sp(B;Sq) is defined by

(dhu)|σ,τ = (−1)p+q

(
γy0

(u|σ0,γ1(τ)) +

p∑
i=1

(−1)i(u|σj ,τ )

)
,

where ξ2(x0 → x1) = γ.
We can place the modules Kp,q

ξ on the E0 page of a spectral sequence and use the
vertical maps as the differentials on that page. We can further use the quotients of
the horizontal maps for the differentials on the E1 page. This is sometimes referred
to as a Leray-Serre style spectral sequence (e.g. [7, §5]).

Proposition 4.1. The E2 page of the spectral sequence defined above has

Ep,q
2 = Hp(B;Hq

fib).
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Proof. Note that the differentials on the E2 page are of degree (2,−1). Consider the
following diagram

ξ (B,S•) Sp(B;S•) H•(Sp(B;S•))

(B,H•
fib) Sp(B;H•

fib)

S• Sp H•

H•
Sp

The top path is how we get the modules in a given column on the E1 page – we take
vertical homology of a column in E0. On the other hand, taking horizontal homology
of rows formed by Sp(B;Hq

fib) clearly gives the required modules Hp(B;Hq
fib). It

is then enough to show that the two graded modules at the ends of the two paths
are equal for each p ∈ Z. This follows directly from cohomology commuting with the
direct product.

Now, there is a total complex associated to Kp,q
ξ . We will denote it as T •

ξ . Explicitly,

Tn
ξ :=

∏
p+q=n

Kp,q
ξ ,

with d = dh + dv. Then, from the general construction of a spectral sequence from a
bicomplex (see [7]) and from the above proposition, we have the presheaf cohomolog-
ical version of [2, Proposition 2.2]:

Proposition 4.2. If ξ : B→ Sh is a bundle of presheaves, then there is a spectral
sequence

Ep,q
2 = Hp(B;Hq

fib) =⇒ H•(T •
ξ ).

5. Grid traversals
For a given bundle of presheaves ξ, we define a chain map ω : S•(Eξ;Fξ)→ T •

ξ ,
where S•(Eξ;Fξ) is the chain complex constructed in §3 on the total presheaf of
ξ (recall Definition 2.3), and T •

ξ is the total complex associated to the bicomplex
K•,•

ξ constructed in §4. If σ = x0 → · · · → xp ∈ NB and τ = y0 → · · · → yq ∈ NEx0
,

then to each pair (σ, τ) we will associate a (signed) combination of all traversals of a
particular grid in Eξ.

To form this grid, we lay out σ and τ (see Figure 3) and complete the grid using
the morphisms ξ(xi → xi+1) – on the figure we denote yi+1,j = ξ1(xi → xi+1)(yi,j)
and y0,j = yj .

A grid traversal z ∈ NEξ of the grid of (σ, τ) is a chain of length (p+ q) of arrows
in the grid. In particular, each arrow in z is either

ξ1(x0 → xi)(yj → yj+1) or yi,j → ξ1(xi → xi+1)(yi,j).

Note that these correspond to type a) and type b) in Definition 2.3.
For each grid traversal z of the grid of (σ, τ), define

m(z) = #{squares in the grid below and to the right of z}.

Furthermore, define ς(q) =
⌈q
2

⌉
= min

{
n ∈ Z | n ⩾

q

2

}
.
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σ x0 x1 · · · xp

y0,0

...

y0,q

τ

q

=

y1,0

...

y1,q

· · ·

· · ·

yp,0

...

yp,q

Figure 3: The grid of (σ, τ) (left) and an example grid traversal (right).

We can now define the chain map. The map ω : S•(Eξ;Fξ)→ T •
ξ is defined, for

any u ∈ S•(Eξ;Fξ), by

(ωu)|σ,τ = (−1)ς(q)
∑
z

(−1)m(z)u|z,

where the sum is taken over all traversals z of the grid of (σ, τ).

Proposition 5.1. The map ω defined above is a chain map.

Proof. The argument here is analogous to the argument showing that a similar map
is a chain map in [2, Proposition 5.2].

Note the difference between grid traversals here and in [2] (where they are referred
to as multi-sequences) – in [2] the traversals stop one step short of reaching the
‘top-right’ object in the grid, which is dictated by the ‘truncated’ nature of poset
homology. Apart from this, the setup here is very similar, with ς(q) here a rephrasing
of α(q) in [2].

6. Technical tools
Up to this point, for a bundle of presheaves ξ : B→ Sh, we have constructed the

total presheaf (Eξ, Fξ) and its simplicial complex S•(Eξ;Fξ), as well as the bicomplex
K•,•

ξ and its total complex T •
ξ . We know that the spectral sequence of the bicomplex

converges to H•T •
ξ , but we would like to identify cases where it converges to the

cohomology of the total presheaf.

Definition 6.1. A bundle of presheaves ξ : B→ Sh is a poset bundle of presheaves
if both B and Ex for all x ∈ B are finite posets.

From this point on, all small categories in sight are assumed to be finite posets.
If x, y ∈ B, we say that y covers x (denoted x ≺ y) if, whenever z ∈ B is such that
x ⩽ z ⩽ y, we have z = x or z = y. We also say that B has a 0 (or is a poset with 0)
if B has a unique minimal element 0 ∈ B.
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Now, for an element x ∈ B, define B⩾x and B̸⩾x to be the full subcategories of B
with

ObjB⩾x := {z ∈ ObjB | x ⩽ z} and Obj B̸⩾x := ObjB\ObjB⩾x.

Note that both B⩾x and B̸⩾x inherit the poset structure of B. We will occasionally
omit Obj when we refer to the objects of a poset category if the meaning is clear from
context.

The key property we will exploit is the following.

Definition 6.2. Assume B is a poset.
1. Let B1 and B2 be full subposets of B. We call B admissible for B1,B2 if

• B1 ∩B2 = ∅,
• B1 ∪B2 = B,
• there are no x ∈ B2 and y ∈ B1 with x ⩽ y, and
• for all x ∈ B1, the full subposet {y ∈ B2 | x ⩽ y} ⊆ B2 is non-empty and

has a unique minimum.
2. We call B admissible for x ∈ B if B is admissible for B̸⩾x,B⩾x. Note that the

first three requirements of admissibility are automatically satisfied for B̸⩾x,B⩾x

(see bottom of Figure 6). We also denote the poset in the last requirement by

B⩾y
⩾x := {z ∈ B⩾x | y ⩽ z} = B⩾x ∩B⩾y.

3. We call B recursively admissible if B has a 0 and either
• B is Boolean of rank 1, or
• B is admissible for some x ≻ 0 and both B⩾x and B̸⩾x are recursively

admissible.

Example 6.3.
• The Boolean lattices Bn are recursively admissible (Figure 4).
• In the homological setup of [2], the Bruhat posets of type I2(m) are specially

admissible (see [2, Example 3.7]). In the language of this paper they are just
admissible (Figure 5).

• Let B−
n be the Boolean lattice of rank n with its maximum removed. Let B+

n

be Boolean lattice of rank n with another maximum added; more precisely, it
is the poset with objects

ObjB+
n = ObjBn ∪ {1+},

such that if x1, x2 ∈ Bn, then x1 ⩽ x2 in B+
n if and only if x1 ⩽ x2 in Bn; and

x ⩽ 1+ for all x ∈ Bn\{1} (where 1 is the maximum of Bn). The posets B±
n are

non-admissible for all n – if they were, then the maximum x of B1 would be
covered by exactly one element of B2, but there are no such elements x in B±

n .

If we have a poset bundle of presheaves ξ : B→ Sh and a subcategory C of B,
we can restrict the bundle ξ to C to obtain another bundle ξC : C→ Sh with to-
tal presheaf (EξC ;FξC). When the bundle ξ is clear from context, we will just use
(EC;FC). Note that we use (Ex;Fx) for the presheaf ξ(x) when x is an object of B,
which (almost) coincides with (EC;FC) when C is the subcategory of B consisting
only of x and its identity arrow.
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•

• • •

• • •

•

0

1

xB3,⩾x

B3,̸⩾x

Figure 4: The poset B3 is admissible for x.

•

•

•

•

•

•

•

•

•

•· · ·0 1

x

B1

B2

Figure 5: The poset I2(m) is admissible for B1,B2.

The next lemma shows how admissibility of B extends to Eξ.

Lemma 6.4. Let B be admissible for some x ∈ B and ξ : B→ Sh be a poset bundle
of presheaves with total presheaf (Eξ;Fξ). Then Eξ is admissible for EB ̸⩾x

,EB⩾x
.

Proof. It is immediate that EB̸⩾x
and EB⩾x

are disjoint, that EB̸⩾x
∪EB⩾x

= Eξ,
and that there is no arrow from an object of EB ̸⩾x

to an object of EB⩾x
. It remains to

show that for all w ∈ EB ̸⩾x
, the subposet {z ∈ EB⩾x

| w ⩽ z} has a unique minimal
element.

Since w ∈ EB ̸⩾x
, w is an element of a particular Ey for some y ∈ B̸⩾x. By the

admissibility of B, that means that the poset B⩾y
⩾x has a unique minimum, say v.

Then y ⩽ v and thus there is an arrow y → v in B. Denote the presheaf morphism
given by this arrow as γ. By the construction of the total presheaf, we have that
w ⩽ γ1(w).

Suppose w ⩽ z for some z ∈ EB⩾x
and suppose z ∈ Eu, u ∈ B⩾x. Then by our

argument in Proposition 2.4 we have a z0 ∈ Eu with w ⩽ z0 ⩽ z and an arrow y → u
giving rise to a presheaf morphism γ′. Thus u is in B⩾y

⩾x, not just B⩾x. Since v is
the minimal element of B⩾y

⩾x, we have that v ⩽ u. But there is a unique arrow y → u,
so γ′1 factors through Ev and the presheaf morphism given by v → u maps γ1(w)
to z0. This means that γ1(w) ⩽ z0 ⩽ z, therefore γ1(w) is the minimum of the set
{z ∈ EB⩾x

| w ⩽ z}. Refer to Figure 6 for the relevant objects.

For constant bundles over certain posets we have a calculation of the cohomol-
ogy of the total complex. We recall the following facts about morphisms of spectral
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Figure 6: The poset B with y ∈ B̸⩾x and the fibers over y, v and u.

sequences (see [5]). If E,E′ are spectral sequences constructed from filtrations (or
bicomplexes), then a morphism of filtrations (or of bicomplexes) induces a morphism
E → E′. A spectral sequence E is bounded below if for each degree n there is an
integer s = s(n) such that Ep,q

0 = 0 when p < s and p+ q = n. If E,E′ are bounded
below spectral sequences and f : E → E′ is a morphism, such that for some r the
homomorphisms fp,qr : Ep,q

r → E′p,q
r are isomorphisms for each p, q, then the maps

fp,q∞ : Ep,q
∞ → E′p,q

∞ are also isomorphisms. The above is an adapted version of the
mapping lemma [5,7].

Proposition 6.5. Suppose B is a poset, x ∈ B is a unique minimum, and (C, F ) is
an object of Sh. If ξ = B× (C, F ) is a constant bundle (recall Example 2.2), then
there is a chain map φ• : S•(C;F )→ T •

ξ such that the induced map on cohomology
φ• : H•(C;F )→ H•T •

ξ is an isomorphism.

Proof. It is straightforward to see why S•(C;F ) is quasi-isomorphic to T •
ξ . The E2

page of the spectral sequence for ξ has

Ep,q
2 = Hp(B,∆Hq(C;F )).

Since the right-hand side is the cohomology of a constant presheaf, the only non-zero
positions on the E2 page are in the column p = 0; so the sequence collapses and we
can read off H•T •

ξ . Explicitly,

Hp(B; ∆Hq(C;F )) =

{
Hq(C;F ), if p = 0,

0, otherwise.



A COHOMOLOGICAL BUNDLE THEORY FOR PRESHEAF COHOMOLOGY 353

So H•(C;F ) ∼= H•T •
ξ . It is still useful to describe the explicit quasi-isomorphism; we

will use a version of this explicit chain map in the proof of Proposition 7.2.
First consider the constant presheaf (P,∆A), where P is a poset with a unique

minimum. Recall that

Hn(P; ∆A) ∼=
{
A, if n = 0,
0, otherwise.

We now construct an explicit map for the isomorphism above. So let u ∈ S0(P; ∆A)
be such that du = 0. Since we have a unique minimum 0, for any x ∈ P, there is an
arrow 0 ⩽ x in P. Then 0 = du|0⩽x = u|x − u|0, so u|x = u|0 for all x ∈ P. Denote
such a constant element of S0(P; ∆A) by ua if ua|x = a ∈ A for all x ∈ P. So the
isomorphism we are looking for is θ : A→ H0(P,∆A) : a 7→ ua.

Now consider the (trivial) chain complex ι•(A) defined by

ιn(A) =

{
A, if n = 0,
0, otherwise,

and dnι•(A) = 0 for all n. Define the map ψ• : ι•(A)→ S•(P; ∆A) as

ψn =

{
θ, if n = 0,
0, otherwise.

· · · 0 A 0 · · ·

· · · 0 S0(P; ∆A) S1(P; ∆A) · · ·

0 θ 0

To see this is a chain map, note that θ(a) ∈ ker(d0), so dθ = 0. All other squares
commute since all compositions are the 0 map.

Crucially, ψ• is a quasi-isomorphism. This is because H0ι•(A) = A and by con-
struction θ induces the isomorphism H0ι•(A)→ H0S•(P; ∆A). Note that the map
−ψ• is also a quasi-isomorphism, since −θ induces − id : A→ A in homology.

Returning to the case of the constant bundle ξ = B× (P, F ), we can now define
φn : Sn(C;F )→ Tn

ξ by

φu|σ,τ =

{
u|τ , if length(σ) = 0,
0, otherwise.

A routine check shows that φ• is a chain map.
We define a bicomplex L•,• by

Lp,q =

{
Sq(C;F ) if p = 0,

0, otherwise

and we let dhL = 0, dvL = 0 on the non-zero columns, and dvL = dS•(C;F ) on the 0-th
column.

Recall the bicomplex Kp,q
ξ = Sp(B;Sq) defined in Section 4. We want to show that

φ induces a morphism of these two bicomplexes. To that effect, we need three facts:
1. First, it is clear that φ(Sq(C;F )) ⊆ S0(B;Sq).
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2. Second, we need φ to induce a chain map on the vertical complexes. This is the
zero map for p ̸= 0. Consider the diagram fragment

Sq(C;F )

Sq+1(C;F )

S0(B;Sq)

S0(B;Sq+1)

d dv

φ

φ

We want to show dvφ = φd. Let u ∈ S0(B;Sq+1), x ∈ B, y0 ⩽ · · · ⩽ yq+1 ∈ C.

dvφu|x,y0⩽···⩽yq+1
=

q+1∑
i=0

φu|x,y0⩽···⩽ŷi⩽···⩽yq+1
=

q+1∑
i=0

u|x,y0⩽···⩽ŷi⩽···⩽yq+1

= du|y0⩽···⩽yq+1
= φdu|x,y0⩽···⩽yq+1

.

Therefore φ induces a chain map on vertical complexes.

3. Finally, we need φ to induce chain maps on horizontal complexes. Consider the
diagram

· · · 0 Sq(C;F ) 0 · · ·

· · · 0 S0(B;Sq) S1(B;Sq) · · ·

0 φ 0

This is just an instance of the map ψ with A = Sq(C;F ).

Now consider the two spectral sequences E and E′ associated to the bicomplexes
L•,• and K•,•

ξ , respectively. The morphism of bicomplexes φ induces a morphism
E → E′ of spectral sequences. Note also that both E and E′ are bounded below. We
have Ep,q

1 = 0 if p ̸= 0 and E0,q
1 = Hq(C;F ), while E′

1
p,q = Sp(B;Hq

fib).
As with a constant bundle, the induced maps φ are quasi-isomorphisms on the

horizontal complexes. This means that φ induces isomorphisms on the second pages of
E and E′. By the mapping lemma, we have an induced isomorphism φ : Ep,q

∞ → E′p,q
∞ .

By the above, the construction of the total complex of a bicomplex, and Proposi-
tion 4.2, we can conclude that φ gives an isomorphism φ : H•(C;F )→ H•T •

ξ .

7. Long exact sequence in the cohomology of the total complex

This and the following section are functionally similar to [2, §4].
If we have a poset bundle ξ : B→ Sh and a subcategory C of B, then we will denote

the chain complex T •
ξC

(recall §4) by just T •
C. Below we headline the main result of

this section and leave the proof until we have built up the required machinery.

Theorem 7.1. Let ξ : B→ Sh be a poset bundle of presheaves with B an admissible
poset for x ≻ 0. Then there is a long exact sequence

· · · → Hn−1T •
B ̸⩾x
→ HnT •

ξ → HnT •
B⩾x
⊕HnT •

B ̸⩾x
→ HnT •

B ̸⩾x
→ Hn+1T •

ξ → · · ·
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We will need to leverage the admissibility condition in the theorem to establish
the connection between the total complex of the whole presheaf and those of the two
smaller parts B⩾x and B̸⩾x, determined by the element x ≻ 0. Recall that we assume
all the Ey are posets.

Where possible, we will use x’s to refer to objects in B̸⩾x and z’s to refer to objects
of B⩾x. We can write down explicitly what Tn

ξ , Tn
B⩾x

, and Tn
B̸⩾x

are:

Tn
ξ =

⊕
p+q=n

∏
x0⩽···⩽xp∈B
y0⩽···⩽yq∈Ex0

Fx0
(y0), Tn

B⩾x
=
⊕

p+q=n

∏
z0⩽···⩽zp∈B⩾x

y0⩽···⩽yq∈Ez0

Fz0(y0),

Tn
B ̸⩾x

=
⊕

p+q=n

∏
x0⩽···⩽xp∈B ̸⩾x

y0⩽···⩽yq∈Ex0

Fx0
(y0).

Define the quotient map

ρ : Tn
ξ → Tn

B⩾x
⊕ Tn

B ̸⩾x

by setting to 0 any coordinate corresponding to a sequence x0 ⩽ · · · ⩽ xp ∈ B that
has objects in both B⩾x and B̸⩾x. Explicitly, if u ∈ T p+q

ξ , σ = x0 ⩽ · · · ⩽ xp ∈ B⩾x

or B̸⩾x, and τ ∈ Ex0 , then ρu|σ,τ = u|σ,τ .
To see that ρ is a chain map, let {x0, . . . , xp} ⊆ B⩾x. We have

ρdu|σ,τ = du|σ,τ =

p∑
i=0

(−1)iu|σi,τ + (−1)p+q

q∑
j=0

(−1)ju|σ,τj

=

p∑
i=0

(−1)iρu|σi,τ + (−1)p+q

q∑
j=0

(−1)jρu|σ,τj = dρu|σ,τ .

The calculation is analogous if {x0, . . . , xp} ⊆ B̸⩾x. Therefore ρ is a chain map. It is
also clearly surjective, so we have a short exact sequence

0→M• → T •
ξ → T •

B⩾x
⊕ T •

B ̸⩾x
→ 0

for a particular chain complex M•. We describe M• explicitly:

Mn =
⊕

p+q=n

∏
x0⩽···⩽xp

∏
y0⩽···⩽yq∈Ex0

Fx0
(y0),

where x0 ∈ B̸⩾x, xp ∈ B⩾x. We can rewrite M• to pay attention to how many of the
xi’s are in B̸⩾x and how many are in B⩾x:

Mn =
⊕

s+t+q=n

∏
x0⩽···⩽xs⩽z0⩽···⩽zt−1

∏
y0⩽···⩽yq∈Ex0

Fx0
(y0),

where xi ∈ B̸⩾x, zi ∈ B⩾x, s ⩾ 0, t ⩾ 1.

Proposition 7.2. Let ξ : B→ Sh be a poset bundle of presheaves with B an admis-
sible poset for x ≻ 0. If M• is as above, there is a chain map φ1 : T

n−1
B ̸⩾x
→Mn that

induces an isomorphism in cohomology.

Proof. In an attempt to keep the notation less cluttered, write Kn = Tn−1
B ̸⩾x

.
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We define the chain map φ1 : K
n →Mn, which will extend to a morphism of

filtered complexes. By showing that φ1 induces isomorphisms on the first pages of
the two spectral sequences associated to the two filtrations, the Mapping Lemma
implies that φ1 is a quasi-isomorphism.

Let σ = x0 ⩽ · · · ⩽ xs ⩽ z0 ⩽ · · · ⩽ zt−1 be a sequence in B with xi ∈ B̸⩾x and
let zi ∈ B⩾x, s ⩾ 0, t ⩾ 1. Denote σ′ = x0 ⩽ · · · ⩽ xs. Also let τ = y0 ⩽ · · · ⩽ yq be
a sequence in Ex0 . Now if s+ t+ q = n, we define φ1 : K

n →Mn by

φ1u|σ,τ =

{
(−1)qu|σ′,τ if t = 1

0 otherwise.

Intuitively, φ1 acts like the map φ in Proposition 6.5 on the portion of M• that
matches T •

B̸⩾x
. A routine check shows that φ1 is a chain map.

Now we define filtrations of M• and K•:

FpMn = {u ∈Mn : u|σ,τ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xs ⩽ z0 ⩽ · · · ⩽ zt−1 with s ⩾ p},

J pKn = {u ∈ Kn : u|σ,τ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xs with s ⩾ p}.

We want to use the Mapping Lemma for these two filtrations, so the next step
is establishing all the assumptions of the lemma. We prove them for F with the
arguments for J being analogous.

(F is a filtration) It is clear from the definition of F that Fp+1Mn ⊆ FpMn for
each p and n. Remains to show that FpM• is a cochain complex for each p. Let
σ = x0 ⩽ · · · ⩽ xs ⩽ z0 ⩽ · · · ⩽ zt−1 with s < p and u ∈ FpMn. Then for any
sequence τ ∈ Ex0 (of appropriate length q) we have

du|σ,τ =

s∑
i=0

(−1)iu|σi,τ + (−1)s+1
t−1∑
k=0

(−1)ku|σs+k,τ + (−1)s+t+q

q∑
ℓ=0

(−1)ℓu|σ,τℓ .

The summands in the first sum correspond to x-sequences of length s− 1 < p,
while the summands in the other two sums correspond to x-sequences of length
s < p. All those coordinates are 0 in u ∈ FpMn, so d induces a differential on
FpM•.

(F is convergent below) Observe that F0Mn =Mn, since Mn does not have any
coordinates corresponding to sequences in B not containing elements of B̸⩾x.

(F is bounded above) We have FnMn = 0, since we need s+ t+ q = n and t ⩾ 1.

(φ1 is a morphism of filtrations) Let u ∈ J pKn. Set σ = x0 ⩽ · · · ⩽ xs ⩽ z and τ =
y0 ⩽ · · · ⩽ yq. First suppose s+ q + 1 ̸= n. The potentially non-zero coordinates
of φ1u|σ,τ correspond to sequences of combined length satisfying s+ q ̸= n− 1,
so they are also 0. Now suppose s < p. Again, the potentially non-zero coordi-
nates of φ1u|σ,τ correspond to x-sequences of length s < p, so are also 0. Thus
φ1(J pKn) ⊆ FpMn.
To see that φ1 induces chain maps J pK• → FpM• for every p, note that we
already know that dφ1 = φ1d and that φ1(J pKn) ⊆ FpMn.

Let E,E′ be the spectral sequences associated to the filtrations F ,J , respectively.
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We have

Ep,q
0 =

FpMp+q

Fp+1Mp+q
={u ∈Mp+q : u|σ,τ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xp ⩽ z0 ⩽ · · · ⩽ zt−1},

E′p,q
0 =

J pKp+q

J p+1Kp+q
= {u ∈ Kp+q : u|σ,τ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xp}.

The vertical differentials in E0 are given by

du|x0⩽···⩽xp⩽z0⩽···⩽zt−1,y0⩽···⩽yq−t
=

= (−1)p+1
t−1∑
i=0

(−1)iu|x0⩽···⩽xp⩽z0⩽···⩽ẑi⩽···⩽zt−1,y0⩽···⩽yq−t
+

+ (−1)p+q

q−t∑
ℓ=0

(−1)ℓu|x0⩽···⩽xp⩽z0⩽···⩽zt−1,y0⩽···⩽ŷℓ⩽···⩽yq−t

and the vertical differentials in E′
0 are given by

du|x0⩽···⩽xp,y0⩽···⩽yq = (−1)p+q

q∑
ℓ=0

(−1)ℓu|x0⩽···⩽xp,y0⩽···⩽ŷℓ⩽···⩽yq .

Using the notation from Definition 6.2 we can thus rewrite

Ep,•
0 =

∏
x0⩽···⩽xp

(−1)p+1T •−1

B
⩾xp
⩾x

×(Ex0
,Fx0

)
and E′

0
p,• =

∏
x0⩽···⩽xp

(−1)p+qS•−1(Ex0
;Fx0

).

Now note that φ1 acts as the product over all p-long x-sequences in B̸⩾x of the
maps in Proposition 6.5, since B is an admissible poset and thus the subposet B

⩾xp

⩾x

has a unique minimum. This means that φ1 : E
′
0
p,• → Ep,•

0 is a quasi-isomorphism
and thus

E′
1
p,q = Hp(E′

0
p,•)

φ•
1∼= Hp(Ep,•

0 ) = Ep,q
1 .

The Mapping Lemma then implies that

φ•
1 : H

n−1T •
B ̸⩾x

∼= Hn(M•).

We can now easily complete the proof of the theorem, headlined at the start of
this section.

Proof of Theorem 7.1. We have the short exact sequence from before

0→M• → T •
ξ → Tn

B⩾x
⊕ Tn

B ̸⩾x
→ 0,

from which we get a long exact sequence in homology

· · · → Hn−1T •
B⩾x
⊕Hn−1T •

B ̸⩾x
→ HnM• → HnT •

ξ → HnT •
B⩾x
⊕HnT •

B ̸⩾x
→

→ Hn+1M• → · · ·

Replacing the occurrences of HnM• with Hn−1T •
B ̸⩾x

and the maps around those
occurrences with the appropriate compositions with φ•

1 and φ•
1
−1 gives the required

long exact sequence.
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8. Long exact sequence in presheaf cohomology

We now repeat this procedure for the cochain complex of the total presheaf(Eξ, Fξ).
The story is fairly similar to that of the previous section, so we are a little briefer.
Again, we headline the main result, with the proof delayed until the end of the section.

Theorem 8.1. Let ξ : B→ Sh be a poset bundle of presheaves with B an admissible
poset. Then there is a long exact sequence

· · · → Hn−1(EB ̸⩾x
;FB ̸⩾x

)→ Hn(Eξ;Fξ)→
→ Hn(EB⩾x

;FB⩾x
)⊕Hn(EB ̸⩾x

;FB̸⩾x
)→ · · ·

Where possible, we will use x’s to refer to objects in EB ̸⩾x
and z’s to refer to

objects of EB⩾x
. We can write down explicitly:

Sn(Eξ;Fξ) =
∏

x0⩽···⩽xn∈Eξ

Fξ(x0), Sn(EB⩾x
;FB⩾x

) =
∏

z0⩽···⩽zn∈EB⩾x

Fξ(x0),

Sn(EB ̸⩾x
;FB̸⩾x

) =
∏

x0⩽···⩽xn∈EB ̸⩾x

Fξ(x0).

Define another quotient map

ρ : Sn(Eξ;Fξ)→ Sn(EB⩾x
;FB⩾x

)⊕ Sn(EB̸⩾x
;FB ̸⩾x

)

by setting to 0 any coordinate corresponding to a sequence x0 ⩽ · · · ⩽ xn in Eξ that
has objects in both EB⩾x

and EB̸⩾x
. This is a chain map by an analogous argument

to the one for the quotient before Proposition 7.2.
The map ρ is clearly surjective, so we have a short exact sequence

0→ N• → S•(Eξ;Fξ)→ Sn(EB⩾x
;FB⩾x

)⊕ Sn(EB ̸⩾x
;FB̸⩾x

)→ 0

for a particular chain complex N•.
We describe N• explicitly:

Nn =
∏

x0⩽···⩽xp⩽z0⩽···⩽zn−p−1

Fξ(x0),

where xi ∈ EB ̸⩾x
, zi ∈ EB⩾x

, p ⩾ 0, n− p ⩾ 1.

Proposition 8.2. Let ξ : B→ Sh be a poset bundle of presheaves with B an admis-
sible poset for x ≻ 0. If N• is as above, there is a chain map

φ2 : Sn−1(EB ̸⩾x
;FB̸⩾x

)→ Nn

that induces an isomorphism in cohomology.

Proof. We define a filtration J of N•:

J pNn = {u ∈ Nn : u|σ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xs ⩽ z0 ⩽ · · · ⩽ zn−s−1, with s ⩾ p}.

The proof that this is a filtration is analogous to the proofs of the filtrations from
Proposition 7.2.
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Let E be the spectral sequence associated to the filtration J of N . We have

Ep+q
0 =

J pNp+q

J p+1Np+q
= {u ∈ Bn : u|σ ̸= 0⇒ σ = x0 ⩽ · · · ⩽ xp ⩽ z0 ⩽ · · · ⩽ zq−1}.

The vertical differentials in E0 are given by

du|x0⩽···⩽xp⩽z0⩽···⩽zq−1 = (−1)p+1

q−1∑
i=0

(−1)iu|x0⩽···⩽xp⩽z0⩽···⩽ẑi⩽···⩽zq−1 .

We can thus write

Ep,•
0 =

∏
x0⩽···⩽xp

(−1)p+1S•−1({z ∈ EB⩾x
| z ⩾ xp},∆Fξ(x0)).

But the S complex on the right is of a poset with a constant presheaf. By Lemma 6.4
the underlying poset has a unique minimum, so

Ep,q
1 = HqEp,•

0 =

{ ∏
x0⩽···⩽xp

(−1)p+1Fξ(x0) if q = 1,

0 otherwise.

=

{
(−1)nSn−1(EB̸⩾x

;FB ̸⩾x
) if q = 1,

0 otherwise.

So on the E1 page we have the single q = 1 row

· · · → (−1)nSn−1(EB ̸⩾x
;FB ̸⩾x

)→ (−1)n+1Sn(EB̸⩾x
;FB ̸⩾x

)→ · · · .

The differential on this page is induced by the differential

du|x0⩽···⩽xp⩽z0⩽···⩽zq−1
=

p∑
i=0

(−1)iu|x0⩽···⩽x̂i⩽···⩽xp⩽z0⩽···⩽zq−1
,

which, since it keeps the z-sequence constant, induces the following differential on the
above row on the E1 page:

du|x0⩽···⩽xp
=

p∑
i=0

(−1)iu|x0⩽···⩽x̂i⩽···⩽xp
.

Since d(−d) = (−d)d = 0, ker(−d) = ker d, and im(−d) = im d, we have that the E2

page is

Ep,q
2
∼=
{
Hp+q−1S•(EB ̸⩾x

;FB̸⩾x
) if q = 1,

0 otherwise.

Then Ep,q
2
∼= Ep,q

∞ and so

E ⇒ Hn−1S•(EB ̸⩾x
;FB̸⩾x

) ∼= Nn.

In particular, this isomorphism is witnessed by a similar quasi-isomorphism to that
in Proposition 7.2, namely φ2 : Sn−1(EB ̸⩾x

;FB̸⩾x
)→ Nn defined by

φ2u|x0⩽···⩽xn
=

{
u|x0⩽···⩽xn−1 if xn−1 ∈ EB ̸⩾x

, xn ∈ EB⩾x
,

0 otherwise.

We can now, again, easily prove the headlined theorem.
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Proof of Theorem 8.1. We have the short exact sequence from before

0→ N• → S•(Eξ;Fξ)→ S•(EB̸⩾x
;FB ̸⩾x

)⊕ S•(EB⩾x
;FB⩾x

)→ 0,

from which we get a long exact sequence in homology

· · · → Hn−1(EB⩾x
;FB⩾x

)⊕Hn−1(EB ̸⩾x
;FB̸⩾x

)→ HnN• → Hn(Eξ;Fξ)→
→ Hn(EB⩾x

;FB⩾x
)⊕Hn(EB̸⩾x

;FB ̸⩾x
)→ Hn+1N• → · · ·

Replacing the occurrences of HnN• with Hn−1(EB̸⩾x
;FB ̸⩾x

) and the maps around
those occurrences with the appropriate compositions with φ•

2 and φ•
2
−1 gives the

required long exact sequence.

9. The bicomplex and the total presheaf

We have all the necessary prerequisites to prove the main theorem:

Theorem 9.1. Let ξ : B→ Sh be a poset bundle of presheaves with B a recursively
admissible finite poset, and (Eξ;Fξ) the associated total presheaf. Then there is a
spectral sequence

Ep,q
2 = Hp(B;Hq

fib)⇒ H•(Eξ;Fξ).

Proof. Proposition 4.2 gives us

Ep,q
2 = Hp(B;Hq

fib)⇒ H•T •
ξ ,

so it is enough to show that H•T •
ξ
∼= H•(Eξ, Fξ). We will do this by induction on the

size of B. Recall the chain map ω : S•(Eξ;Fξ)→ T •
ξ from Section 5:

ωu|σ,τ = (−1)ς(q)
∑
z

(−1)m(z)u|z,

where the sum is taken over all traversals z of the grid of (σ, τ). We have two short
exact sequences from Theorems 7.2 and 8.2. The map ω gives a morphism of these
short exact sequences

0 Mn Tn
ξ Tn

B ̸⩾x
⊕ Tn

B⩾x 0

0 Nn Sn(Eξ;Fξ) Sn(EB̸⩾x
;FB ̸⩾x

)⊕ Sn(EB⩾x
;FB⩾x

) 0

ε π

ε π

ω′ ω ω ⊕ ω

where the maps ε are the injections and the maps π the projections of the respective
modules. The map ω′ is the restriction of ω to the subcomplexes Nn and Mn. We
need to check the commutativity of the two squares.

(Left square) The maps ε are just injections, so we have

εωu|σ,τ = ωu|σ,τ = (−1)ς(q)
∑
z

(−1)m(z)u|z = (−1)ς(q)
∑
z

(−1)m(z)εu|z = ωεu|σ,τ .
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Hn−1T •
B̸⩾x
⊕Hn−1T •

B⩾x

HnM•

HnT •
ξ

HnT •
B̸⩾x
⊕HnT •

B⩾x

Hn+1M•

Hn−1(EB ̸⩾x
;FB ̸⩾x

)⊕Hn−1(EB⩾x
;FB⩾x

)

HnN•

Hn(Eξ;Fξ)

Hn(EB ̸⩾x
;FB ̸⩾x

)⊕Hn(EB⩾x
;FB⩾x

)

Hn+1N•

δ

ε•

π•

δ

δ

ε•

π•

δ

ω′•

ω•

ω• ⊕ ω•

ω• ⊕ ω•

ω′•

Figure 7: A portion of the commutative diagram given by the morphism of short
exact sequences.

(Right square) Similarly, the maps π are projections, so

πωu|σ,τ = ωu|σ,τ = (−1)ς(q)
∑
z

(−1)m(z)u|z = (−1)ς(q)
∑
z

(−1)m(z)πu|z = ωπu|σ,τ .

The naturality of the homology functor then gives a morphism of long exact se-
quences, which contains the commutative diagram in Figure 7.

Recall from Propositions 7.2 and 8.2 the quasi-isomorphisms

φ1 : T
n−1
B̸⩾x
→Mn and φ2 : Sn−1(EB ̸⩾x

;FB̸⩾x
)→Mn.

Claim. The following diagram commutes

Tn−1
B ̸⩾x

Sn−1(EB̸⩾x
;FB ̸⩾x

) Nn

Mn

ω

φ2

ω′

φ1

Proof of claim. Let u ∈ Sn−1(EB ̸⩾x
;FB̸⩾x

). Suppose

σ = x0 ⩽ · · · ⩽ xs ⩽ z0 ⩽ · · · ⩽ zt−1, τ = y0 ⩽ · · · ⩽ yq

with s+ t+ q = n. If t > 1, it is clear that φ1ωu|σ,τ = 0 = ω′φ2u|σ,τ , since each sum-
mand of ω′φ2u|σ,τ is 0 under φ2. If t = 1, let σ′ = x0 ⩽ · · · ⩽ xs. Then we have

ω′φ2u|σ,τ = (−1)ς(q)
∑
z′

(−1)m(z′)φ2u|z′ ,
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where the sum is taken over the traversals z′ of (σ, τ).
Pick a traversal z′ of (σ, τ). We zoom in on the top right of the grid of (σ, τ):

y′0

y′1 y′2· · ·

...
...

Note that y′0, y′2 ∈ Ez0 . If z′ passes through y′0, then φ2u|z′ = 0. If z′ passes through
y′1, then φ2u|z′ = u|z, for a particular traversal z of (σ′, τ). Moreover, in this second
case there are exactly q many squares in the rightmost column that are in the count
for m(z′), so m(z′) = q +m(z). Therefore we have

ω′φ2u|σ,τ = (−1)ς(q)
∑
z′

(−1)m(z′)φ2u|z′ = (−1)ς(q)
∑
z

(−1)m(z)+qu|z

= (−1)q(−1)ς(q)
∑
z

(−1)m(z)u|z = (−1)qωuσ′,τ = φ1ωu|σ,τ .

We can then replace the occurrences of N• and M• in Figure 7 with, respectively,
S•−1(EB ̸⩾x;FB ̸⩾x) and T •−1

B̸⩾x, adjusting the incoming and outgoing maps as the
appropriate compositions with φ•

1 and φ•
2. In the resulting commutative diagram, the

two columns are exact since, by Propositions 7.2 and 8.2, the maps φ•
1 and φ•

2 are
isomorphisms. The squares commute by the commutativity of the diagram from the
morphism of long exact sequences and the claim.

We finish the proof by induction on the size of B. If |ObjB| = 1, then

Tn
ξ = S0(B;Sn) =

∏
x∈B

Sn(Ex;Fx) = Sn(Eξ;Fξ),

and ω = (−1)ς(q) id, so ω is a quasi-isomorphism.
If ω : Sn(Eξ;Fξ)→ Tn

ξ is a quasi-isomorphism for |ObjB| < i, then we can form
the commutative diagram in Figure 7 for |ObjB| = i, with N• and M• replaced
as discussed above. Each row other than the middle one contains an instance of
the inductive hypothesis, since both B̸⩾x and B⩾x have fewer objects than B; and
B is recursively admissible. Therefore, by the Five Lemma, the middle row is an
isomorphism and thus ω is a quasi-isomorphism. This completes the induction and
the proof of the theorem.

10. A reduction property for presheaf cohomology
The statement of Theorem 9.1 closely resembles that of [2, Theorem 5.1]. Despite

this, the reframing of the result in terms of presheaf cohomology, as opposed to
coloured poset homology, leads to applications that are quite different from those of
the coloured poset version. The key difference, explored in this section, is that while
the theorem in [2] models complex interactions between the homologies of the fibers
of a bundle of coloured posets (seen in the application to Khovanov homology), the
main theorem of this paper implies that if ξ : B→ Sh is a poset bundle of presheaves
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with B recursively admissible, then it is only the cohomology of the presheaf at the
maximum of B that contributes to the cohomology of the total presheaf of ξ.

By the end of this chapter, we will be able to conclude that, for example, the
cohomology of a presheaf on the poset in Figure 8 can only be non-zero in degrees 0
and 1.

• •

• • • • •

• • •

• • • •

• • •

•

Figure 8: The cohomology of any presheaf on this poset is zero in all degrees ̸= 0, 1.
Convention is that arrows go up.

It turns out that the restriction to recursively admissible posets means that we
only deal with posets with 1.

Proposition 10.1. Let B be a recursively admissible poset. Then B has a unique
maximum.

This follows from the recursive definition (Definition 6.2): the poset B is either
Boolean of rank 1, so it has a unique maximum, or all its maximums are contained
in B⩾x for some x ≻ 0, since B⩾y

⩾x ̸= ∅ for all y ∈ B̸⩾x.
The admissibility property provides a kind of ‘factorisation’ for posets into bundles.

The simplest way to do this is to turn an admissible poset into a bundle over a Boolean
lattice of rank 1 B1. Note that Boolean lattices are recursively admissible, so we can
later apply Theorem 9.1.

Lemma 10.2. Let E be an admissible poset for E′,E′′ and (E, F ) ∈ Sh. Then there
is a poset bundle of presheaves ξ : B1 → Sh such that (Eξ, Fξ) = (E, F ) (recall the
construction of the total presheaf (Eξ, Fξ), Definition 2.3).

Proof. We need to specify ξ(0), ξ(1), and ξ(0 ⩽ 1).
• ξ(0) = (E′, F ),
• ξ(1) = (E′′, F ),
• the presheaf morphism γ = ξ(0 ⩽ 1) consists of a covariant functor (a poset map

in this setting) γ1 : E′ → E′′ and a natural transformation γ2 : Fγ1 → F :
– Let γ1(x) be the unique minimum of {y ∈ E′′ | x ⩽ y}. Then if x ⩽ x′ in

E′, we have {y ∈ E′′ | x ⩽ y} ⊇ {y ∈ E′′ | x′ ⩽ y} and so γ1(x) ⩽ γ1(x
′).

– Since x ⩽ γ1(x), we have a morphism F (x)← F (γ1(x)) from (E, F ). Set
γ2,x to be this morphism.
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Remains to show that (E, F ) = (Eξ, Fξ). It is enough to show that E = Eξ by
the construction of Fξ. If x ⩽ y in E and either x, y ∈ E′ or x, y ∈ E′′, then clearly
x ⩽ y in Eξ (as an arrow of type a)). Suppose x ⩽ y in E and x ∈ E′, y ∈ E′′. Then
x ⩽ γ1(x) ⩽ y, so x ⩽ y in Eξ. Conversely, the set of arrows in Eξ is generated by
inequalities that hold in E. Therefore, x ⩽ y in E if and only if x ⩽ y in Eξ.

We can also ‘factorise’ a poset into a bundle over a more complicated base.

Proposition 10.3. Let E and B be posets, let (E, F ) ∈ Sh, and let π : E→ B be an
onto poset map, such that for all x < y in B, the subposet π−1(x) ∪ π−1(y) of E is
admissible for π−1(x), π−1(y). Then there is a poset bundle of presheaves ξ : B→ Sh
such that (E, F ) = (Eξ, Fξ).

Proof. Following the approach from the previous proposition, set ξ(x) = (π−1(x), F )
and if x < y in B, then ξ1(x < y) sends z ∈ π−1(x) to the minimum of the subposet
{w ∈ π−1(y) | z ⩽ w}.

Now suppose z < w in E and z ∈ π−1(x), w ∈ π−1(y). Since π is a poset map,
x < y in B and z < ξ1(x < y)(z) ⩽ w in Eξ.

If z < w in Eξ is an arrow of type b) or a composition arrow, then by Proposition 2.4
there is a v ∈ π−1(π(w)), such that z < v < w in Eξ, where z < v and v < w are
arrows of type b) and a), respectively. But both those arrows exist in E, so z < w
in E.

The following is a consequence of recursively admissible posets’ having a unique
maximum (or final object).

Proposition 10.4. Let B be a recursively admissible poset and let ξ : B→ Sh be a
poset bundle of presheaves. If 1 ∈ B is the unique maximal object, then

H•(Eξ, Fξ) ∼= H•(ξ(1)).

Proof. Let E be the ξ’s spectral sequence. We know that Ep,q
2 = Hp(B;Hq

fib). Now, B
has a unique maximum 1 (Proposition 10.1), so the functors lim←−B

and the ‘evaluation
at 1’ functor _(1) : Sh(B)→ RMod are naturally isomorphic. But we know that
evaluation functors are exact. Therefore

Hp(B;Hq
fib) =

{
Hq(ξ(1)), if p = 0,

0, otherwise.

The spectral sequence collapses and we get Hn(T •
ξ )
∼= Hn(ξ(1)). Since B is recur-

sively admissible, Theorem 9.1 applies, so H•(ξ(1)) ∼= H•(T •
ξ )
∼= H•(Eξ, Fξ).

We can now package the discussion into our main application.

Theorem 10.5. Let E be a poset and B be a recursively admissible poset. Suppose
that π : E→ B is an onto poset map such that for all x < y in B, the subposet
π−1(x) ∪ π−1(y) of E is admissible for π−1(x), π−1(y). Then

H•(E;F ) ∼= H•(π−1(1);F )

for all F ∈ Sh(E), where 1 is the unique maximum of B.
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Remark 10.6. The above recipe can be applied repeatedly. Indeed, one can imagine
cases where a poset E is admissible for E1,E2, and E2 is admissible for E3,E4, but
E1 is not admissible, so the poset map π : E→ B2 required for the above theorem
does not exist. Despite this, we can apply the theorem twice with B = B1 and deduce
that H•(E;F ) ∼= H•(E4;F ), for any F ∈ Sh(E).

Conversely, if the required poset map π : E→ B exists for some recursively admis-
sible B, we can instead repeatedly apply Theorem 10.5 for B1, at each step applying
the recursive definition. The upshot is that replacing the recursively admissible B
with the concrete B1 in the above theorem results in an equivalent statement.

Example 10.7. We can now examine the explicit poset given at the start of the chapter
(with arrowheads omitted, but always pointing up). Let E be the poset in Figure 8
and choose an F ∈ Sh(E). First, E is admissible for E1,E2 by inspection of the left-
hand side diagram in Figure 9. The right-hand side shows a reduction with B = B2.

• •

• • • • •

• • •

• • • •

• • •

•
E1

E2

• •

• • • • •

• • •

• • • •

•E3

E6

E5E4

Figure 9: The first two reductions of the poset E.

Another two applications of Theorem 10.5 with B = B1 reduce the poset even
further (Figure 10).

We thus have thatH•(E;F ) ∼= H•(E7;F ). To see that the cohomology of (E7, F ) is
zero for all degrees ⩾ 2, we can use the chain complex T •(E7;F ) := S•(E7;F )/D

•,
where D• is the subcomplex consisting of the degenerate simplices in E7, i.e. the
simplices that involve an identity arrow. This new chain complex T • is homotopy
equivalent to S• (see [1, p. 138]) and since it only involves non-degenerate simplices,
its cohomology is clearly trivial at degrees ⩾ 2.

There is also a more general example that we can apply our theorem to.

Proposition 10.8. Let E be a poset and let x ∈ E be a total point, i.e. for all y ∈ E,
either x ⩽ y or y ⩽ x. Then H•(E;F ) ∼= H•(E⩾x;F ) for any F ∈ Sh(E).
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• •

• • •

• •

•

•

•

•

•

•

•

E7

Figure 10: Further reduction of the poset E.

•x

E<x

E⩾x

Figure 11: A decomposition of a poset with a total point.

Proof. If E<x = ∅, then E = E⩾x and the statement of the proposition is trivial.
Otherwise, consider the subposets E⩾x and E<x (see Figure 11). For any y ∈ E<x,
we have minE⩾y

⩾x = x and so E is admissible for E<x,E⩾x. Applying Theorem 10.5
gives the required result.
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