
Geometry Motivated by Physics

by Shing-Tung Yau*

It is a great honor to be invited for this important

occasion. The first time I had met Prof. Yang was in

the fall term of 1971 when he gave a series of public

lectures at Stony Brook. I was deeply impressed by the

intuitive power of physics as described by the great

master. In the following years, I saw the impact of

Yang–Mills theory on mathematics. It was exciting for

a geometer to study the effect of physical intuition in

our field and what we could do for physics in return.

I spent the next thirty years exploring such an interac-

tion. It was a fruitful research: from general relativity,

to gauge theory and to string theory. The influence of

Prof. Yang is very deep and I am grateful to him. In

this note, I will explain such a personal experience.

The choice of topic is therefore rather subjective.

The concept of space (or space-time) has evolved

according to our ability in mathematics and our un-

derstanding of nature. In the ancient times, figures

were constructed from line segments, planes and

spheres (or quadrics like the parabola). Beautiful the-

orems in plane and solid geometry were proved by

the Greeks. The most fundamental theorem is the

Pythagorean theorem. Even modern geometry de-

mands that this theorem holds infinitesimally. The

fact that there are only five platonic solids had been

a fascinating statement for mathematicians, philoso-

phers and physicists (they are tetrahedron, octahe-

dron, cube, icosahedron’s, dodecahedron).

Although Archimedes had applied the concept of

infinite process to geometry, it was not until the full

development of Calculus (Newton, Leibniz) that we

had the tools to study curved space. The foundation

of calculus of variation due to Enter et al. also gave

rise to many important geometric objects that are

fundamental in modern geometry (e.g. minimal sur-

faces).
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Euler also introduced the important concept of

Euler number which is the foundation of all topolog-

ical invariants. While geodesics and various geomet-

ric quantities were introduced on surfaces in three

space, the very fundamental concept of intrinsic cur-

vature was first introduced by Gauss. The product of

two principle curvatures depends only on the first

fundamental form and is independent of isometric

deformation of surfaces. The product is called Gauss

curvature, and its introduction is the birth of mod-

ern geometry, and it also inspired the famous work

of Riemann. (Apparently Gauss was interested in ge-

ometry because he was asked to survey land.)

C.F. Gauss said that: “I am becoming more and

more convinced that the necessity of our geometry

cannot be proved, at least not by human reason nor

for human reason. Perhaps in another life we will be

able to obtain insight into the nature of space which is

now unattainable. Until then we must place geometry

not in the same class with arithmetic which is purely

a priori, but with mechanics.”

From this quotation of Gauss, we can see that he

was deeply excited by what should be called space.

With the continuous development of mathemat-

ics and inputs from physics, we are facing a similar

situation. Our concept of space may not be adequate.

Later, Riemann formally introduced the concept

of abstract Riemann geometry which is free from be-

ing a subspace of Euclidean space.

Tensor Calculus was then developed on abstract

space. Noncommutativity of covariant differentiation

D ∂

∂x
D ∂

∂y
6= D ∂

∂y
D ∂

∂x

gives rise to the concept of curvature of a connection.

In his approach to understand the multivalued

analytical function, the concept of Riemann surface

was introduced by Riemann. In order to make holo-
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morphic function single valued, the concept of uni-

formization was introduced.

This development of Riemann surface has had a

deep influence on modern geometry. It is a funda-

mental tool to understand surface in three space and

was developed into the theory of complex manifold

and projective geometry. They are the fundamental

algebraic curves in higher dimensional space.

When Einstein formulated the unification the-

ory of gravity with special relativity, the background

mathematics was Riemannian geometry. His equation

is

Ri j −
R
2

gi j = Ti j.

Ricci tensor is associated with matter while the

full curvature tensor is related to full gravity behav-

ior. This is a spectacular development. Geometry can-

not be separated from physics anymore.

Any attempts to explicitly construct solutions of

Einstein Equation, with physical boundary condition,

end up with singularity. The spherical symmetric so-

lution is found by Schwarzchild. It is the most impor-

tant model for black hole. The basic question in gen-

eral relativity is: Given a nonsingular set of generic

data at time zero, what will the future space-time look

like?

Penrose–Hawking proved that: If there is a

trapped surface, singularity will develop. The theory

of Penrose–Hawking is based on the technique of ge-

ometry. Only after this theory of “trapped surface”,

did we know singularity cannot be avoided. Penrose

proposed the following fundamental question. For a

generic nonsingular initial data set, the only possible

future singularity is the type of black hole.

A closely related question is: can quantum gravity

“cure” singularity of space-time. String theory does

provide some hint that space-time may need a new

concept. However, we still need to answer the follow-

ing: what is black hole singularity?

Let us now turn to another development in ge-

ometry. The development of Hamiltonian mechanics

for celestial mechanics motivated the study of the be-

havior of geodesics for general Riemann manifold.

Many important questions are being asked. For ex-

ample, are there infinite number of closed geodesics

on any compact manifold? For manifold with nega-

tive curvature, closed geodesics are closely related to

the fundamental group of themanifold. The set of the

lengths of closed geodesics is known to be related to

the spectrum of the Laplacian. It has been very fruit-

ful to study the spectrum of Laplacian from the point

of view of semi-classical limit of quantummechanics.

The generalization to quantum field theory is remark-

able.

An immediate generalization of geodesics is min-

imal surfaces. At the beginning, they are related to

Plateau problems: surfaces that minimize areas with

given boundaries.

The existence theory of minimal disk in a general

Riemannian manifold was solved by Morrey whose

method of regularity is fundamental for the theory

of calculus of variations of two variables. When the

minimal surface has no boundary, we can ask many

questions similar to those for geodesics, however sur-

faces now have topology and they have to be taken

into account in their calculations.

The question of how to count the number of mini-

mal surfaces, their areas and their index has been use-

ful in studying topology of three-dimensional man-

ifolds. The study of stability of minimal surfaces

gives rise to the study of black holes as developed

by Schoen–Yau.

The calculus of variation developed by Morse,

Morrey and others has been a powerful tool in geome-

try. Morse theory was used by R. Bott and S. Smale to

solve an outstanding question in differential topol-

ogy including periodicity theorem, and also to han-

dle body decomposition theorems. Global theory of

minimal surfaces has a lot of important applications.

Some of these can be mentioned in the following.

Sacks–Uhlenbeck demonstrated the existence of min-

imal sphere when the universal cover of the mani-

fold is not contractible. Siu–Yau made use of this to

prove the Frenkel conjecture that every compact Käh-

ler manifold with positive curvature is HP“. Schoen–

Yau, Sacks–Uhlenbeck proved the existence of mini-

mal surfaces with higher genus. Meeks–Yau, Meeks–

Simon–Yau proved embeddedness of these surfaces.

Thus questions on three-dimensional manifolds (e.g.

Smith Conjecture) were solved when coupled with

Thurston’s theory as observed by C. Gordan. Schoen–

Yau solved the positive mass conjecture based on

minimal surface theory.

In another direction, the development of quan-

tum mechanics strongly motivated the study of the

spectrum of natural operators in geometry. The nat-

ural operators are Laplacian and Dirac operators. (For

complex manifolds, they are fi operators as well.) One

of the great achievements was the proof of index the-

orem by Atiyah–Singer which allows us to count solu-

tions of global differential equations when a certain

obstruction vanishes.

A spectrum of operators give rise to topologi-

cal invariants of manifolds: Zeta function was con-

structed through the heat kernel. The work of Ray–

Singer on the determinant of the natural operators

has become fundamental for later works on quantum

field theory on manifolds.

Coupled with index theory is the Hodge theory

and the Bochner vanishing theorem. When the cur-

vature has a favorable sign, the vanishing theorem
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has been very powerful to establish existence theo-

rems. However vanishing theorem does depend on

Hodge theory which was motivated by two important

subjects: fluid dynamics on two-dimensional surfaces

and the Maxwell equations.

Hodge theory with coefficients in arbitrary bun-

dle is one of the most powerful tools in modernmath-

ematics. In the hands of Hodge, Kodaira, Hirzebruch,

Atiyah, Deligne, Calabi, Griffiths, Schmid, Sir and oth-

ers, the theory was used to study the structure of al-

gebraic manifolds, especially for computing dimen-

sions of holomorphic solutions of linear systems on

complex manifolds. The very fundamental question

of Hodge on the algebraic cycle is based on Hodge

theory.

Maxwell equations can be considered as Abelian

gauge theory in contrast to the Yang–Mills theory: the

non-Abelian gauge theory. The works of E. Cartan on

structure equations and Whitney on immersion the-

ory had provided strong motivation to study the the-

ory of Fiber bundle and Vector bundles. Important

invariants like Stiefel–Whitney characteristic classes

were needed to understand the topology of such bun-

dles. In the forties, Pontryajin and Chem introduced

their classes through connections over the bundles.

The curvature form representation of Pontryajin

and Chem classes have been fundamental in topol-

ogy and geometry. The idea of minimizing L’-norm of

curvature of connections on a given bundle did not

appear in mathematics literature until 1954, when

Yang–Mills published their work. At the same time,

Calabi proposed to look at Kähler metric with min-

imal L’-norm on its curvature. But the analysis was

difficult in those days.

It was not until 1970s that the technique of non-

linear partial differential equations was more mature

to deal with problems that arose from general relativ-

ity, gauge theory and string theory.

A deep understanding of linear theory is key to

nonlinear theory. Good estimates for harmonic func-

tions and eigenfunctions were developed by Cheng

and myself. Applications to questions on affine ge-

ometry, Minkowski problem and maximal hypersur-

faces were developed. Semi-linear elliptic equations

were developed on the theory of conformal deforma-

tion of matrices by Yamabe, Trudinger, Aubin and

Schoen.

The theory of quasi-linear equations was devel-

oped based on the understanding

of regularity of minimal surfaces and har-

monic maps. Works of Morrey, Nirenberg, De Giorgi,

Federer–Fleiming, Almgren, Allard, Uhlenbeck, Si-

mon, Schoen, Hamilton, and myself contributed to

the theory in 1970s.

The development of Yang–Mills theory in math-

ematics started from the interaction of Yang with J.

Simon who realized the Yang–Mills theory was about

the theory of curvature of connections on fiber bun-

dles.

In the mid-severities, most efforts on the math-

ematics of Yang–Mills theory were concentrated on

the self-dual equations over the four sphere. Note

that the energy of Yang–Mills field can be shown to

be not less than a suitable topological invariant of

the bundle. The field is called self-dual or anti-self-

dual if the inequality becomes equality. They played

a fundamental role in physics. They are the so–called

BPS states which are very stable states. The works of

Atiyah–Singer–Hitchin initiated the application of in-

dex theorem to calculate the dimension of the mod-

uli of self-dual Yang–Mills field. Then it was realized

that Penrose twistor theory can be used to find all

the solutions of the self-dual solutions of Yang–Mills

field over the four sphere (Atiyah–Drinfeld–Hitchin–

Manin).

In the late twenties, Karen Uhlenbeck had devel-

oped the general elliptic theory of Yang–Mills theory.

It is fundamental in understanding the compactifica-

tion of the moduli space of Yang–Mills field.

C. Taubes found a remarkable way to construct

self-dual solutions using singular perturbation. Based

on these works, in 1983, Donaldson was able to study

the global moduli space of self-dual solutions on

a reasonable general four manifold. He then used

the topology of the moduli space to create invari-

ants of the four–dimensional manifolds. This re-

markable development gave the first fundamental

breakthrough in four-dimensional topology, giving a

counter-example to Smale’s theory of h-cobordism
theorem in this dimension.

The Donaldson theory was later realized by Wit-

ten to be related to supersymmetric Yang–Mills the-

ory, the theory developed by Seiberg and Witten

(around 1995) was found to give topological invari-

ants of four manifolds. It is believed to be closely re-

lated to the Donaldson invariants. The Seiberg–Witten

invariants were then applied to solve several impor-

tant questions on geometry and topology. For exam-

ple, algebraic surface of the general type cannot be

diffeomorphic to rational surfaces. The Thom con-

jecture that the only embedded surface in a homol-

ogy class represented by an algebraic curvemust have

genus not less than the genus of the algebraic curve,

was proved by Kronheimer and Mrowka.

A very remarkable development was due to

Taubes in relating the Seiberg–Witten invariants to

the existence of Pseudo holomorphic curves in sym-

plectic manifolds.

The supersymmetric Yang–Mills theory has many

other important consequences in the modern devel-

opment of string theory and in algebraic geometry
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including the understanding of counting algebraic

curves in Calabi–Yau manifolds.

We shall also describe later the theory of Hamil-

ton Yang–Mills connections on complex manifolds.

The fact that anti-self-dual connection gives rise

to holomorphic bundle was in fact observed by

Prof. Yang. The theory developed by Donaldson–

Uhlenbeck–Yau has important applications to alge-

braic geometry and string theory. We shall come back

to this later.

In 1976, I solved the Calabi Conjecture on proving

existence (and uniqueness) of Kähler–Einstein met-

rics. It includes the important case of Kähler Metric

with zero Ricci curvature on manifolds with zero first

Chem class.

To understand the significance of latter metrics,

recall a most important class of solutions of Einstein

equation that is Vacuua.

Traditionally, there are the following ways to find

solutions:

1. Assume large groups of symmetries, either in

Riemannian or Lorentzian case. The most impor-

tant example is Schwarzchild metric, which has

maximal symmetries.

2. Assume supersymmetries, i.e. assume there are

parallel spinors.

The holomony group is then reduced to sub-

groups of O(n). Besides locally symmetric space, the

most important spaces that have special holomony

groups are SU(n), G2 or Spin(7).
When the manifolds is Kähler (holomony group

= U(n)), the problem reduces to solve the complex

Monge–Ampere equation

det

(
gi j +

∂ 2u

∂ zi∂ z j

)
= eF det(gi j).

For a compact Kähler manifold, with first Chem

class zero, there is a unique Ricci flat metric in each

Kähler class. When there is cosmology constant ci, the

equation is

det

(
gi j +

∂ 2u

∂ zi∂ z j

)
= e−αueF det(gi j)

when α < 0, it is much easier, when α > 0, there are ob-
structions and is not completely understood. In the

latter case, I conjectured twenty years ago its exis-

tence should come from the stability of the projec-

tive structure of the projective manifold. Simon Don-

aldson has recently made important progress on my

conjecture.

My motivation to link stability of algebraic struc-

tures to solutions of elliptic equations comes from

two sources:

1. In 1976, I proved the following Chem number

in equations for algebraic surfaces with general

type

3c2(M)≥ c2
1(M).

The proof was based on the existence of Kähler–

Einstein metric with negative constant. Miyaoka

was able to prove the same inequality using the

idea of Bogomolov, this idea was related to the

theory of stability of bundle.

2. Based on the above mentioned work, I was

motivated to study Yang–Mills connections

over stable holomorphic bundles. This was

proved by Donaldson for algebraic surfaces and

Uhlenbeck–Yau for general Kähler manifolds.

3. In the theory of Ricci flow to change metric, the

asymptotic behavior is clearly related to stability.

This theory of DUY is now an important piece of

(2,0) theory in string models. Both the metric and the

bundle theory contribute significantly to algebraic ge-

ometry and string theory. For string theory compact-

ification, based on Kluza–Klein theory, both the Ricci

feat metric and the Hermitian Yang–Mills contribute

to the vacuua. For algebraic geometry, they are the

building blocks for algebraic structures. It is remark-

able that while we did not provide solutions of the

metric and the connections in closed form, compu-

tation based on sophisticated algebraic geometry is

possible.

Let me now describe ways to construct Calabi–

Yau manifolds (Kähler manifolds with zero first

Chem class).

(I gave a list of methods of construction in the

Argone lab conference in 1983.)

1. Kummer Constructions, or more generally, orb-

ifold construction.

2. Complete intersections of hypersurfaces in Fano

manifolds, in particular, in the product of

weighted projective spaces. The most important

example was constructed by me in 1983.

∑x3
i = 0, ∑y3

i = 0, ∑xiyi = 0

in CP3 ×CP3.

It admits an action of group of order 3, the Eu-

ler number is −6. This manifold is significant

for building physical models as it gives three

families of Fermions and it has nontrivial Wil-

son lines. Later Tian observed that my construc-

tion could be extended to more examples. But

B. Greene observed they are deformations of the

above manifold. Jun Li and I are able to deform

the tangent bundle plus trivial bundle to stabi-

lize SU(4) bundle. This allows interpretation for

Heterotic String Theory.
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3. Hypersurface in Toric variety. The first such con-

struction was due to Roan–Yau. Now it has be-

come a standard construction. Batyrev observed

mirror constructions of such manifolds in terms

of duality of polyhedrons.

4. Branch cover construction. For example, take a

quantic in CP3. We can take branch cover of CP3

along it to obtain quantic in CP4. In general, any

hypersurface can be associated with Calabi–Yau

manifolds in high dimension.

Similar questions can be asked for noncompact

complete Ricci flat manifolds. Vafa and his coauthors

have considered this class of manifolds as local mod-

els and have been very successful in the computation

of their instanton construction. How to understand

the moduli space of such metrics? When the mani-

fold is topologically finite, I conjectured in 1978 that

M can be compactified to a Kähler manifold whose

exceptional set in defined by an anticanonical divi-

sor. The converse is basically true. When the anti-

canonical divisor is nonsingular, it is relatively easy

and has been written up later. It was applied to con-

struct semi-flat Ricci flat manifolds in my paper with

Greene, Shapley and Vafa on the construction of Cos-

mic String.

When the anticanonical divisor is simple (normal

crossing) the problem of parameterizing these met-

rics is very interesting. A very important case of our

construction is that of algebraic manifold M with anti-

canonical divisor D to be nonsingular Calabi–Yau hy-

persurface (so that the normal bundle is trivial). The

metric I constructed on M\D is cylindrical along D
and can be glued along a tabular neighborhood of D
to form a new CY manifold. Conversely for a large

class of CY manifolds, we can pull it apart along a CY

hypersurface. Gukov and I have been looking for the

physics of such manifolds.

A very important understanding of Calabi–Yau

manifold comes from the concept of mirror construc-

tion. It can be considered as a symmetry on the cate-

gory of Calabi–Yau manifolds. This was suggested by

Lerche–Vafa, and Dixon. Later, GreenwPlesser demon-

strated its existence in the case of quantic. It realizes

the duality between IIA and IIB theory from string the-

ory. The duality allows one to compute the number

of instantons arisen in IIA theory. These are the holo-

morphic curves in Calabi–Yau manifolds. The compu-

tation of the number of holomorphic curves in alge-

braic manifolds dates back to the nineteenth century.

It was called enumerative geometry. Input from mir-

ror symmetry settles this “kind” of old problem. It

was initialized by Candalas et al. and finally solved

by Liu–Lian–Yau (and Givental independently in case

the manifold is more special). The work of Liu–Lian–

Yau–Givental was a rigorous mathematical piece of

work that settles the old problem. However, it did

not give a true understanding of mirror symmetry. In

1995, Strominger–Yau–Zaslow proposed that Calabi–

Yau manifold should have a foliation (singular) of

special Lagrangian torus. The mirror manifold should

be obtained by taking duality along the leaves of the

foliation.

The SYZ construction is based on the newly devel-

oped M-theory. Therefore the geometric construction

has support from the intuition of physics. The com-

plicated question of singularities involved in such

construction is expected to be solvable. The SYZ con-

struction can be seen from the following diagram.

The above diagram allows us to transfer objects

from M to M′ and vice-versa. This generalized Fourier–

Mukai transform was extensively studied in algebraic

geometry.

From the SYZ construction, we know that spe-

cial Lagrangian Cycles from M should move to stable

holomorphic bundles over M and coupling should be

preserved (Leung–Yau–Zaslow).

The construction should explain most of the

questions in mirror symmetry. A very important one

is how to map odd dimensional cohomology of a

Calabi–Yau manifold to the even dimensional coho-

mology of its mirror.

I proposed the following diagram.

where L is the Poincare bundle defined fiberwisely on

T 3 × (T 3)∗ which produces a line bundle over the fiber

product M ×S3 M′. The map from odd cohomology of

M to even cohomology of M′ should be the composite
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of the following maps.

H3(M)→ H3(M×S3 M′)

ω → π
∗
1 ω

H3(M×S3 M′)→ H∗(M×S3 M′)→ Heven(M′)

ω → ω ∧ ec1(L) → (π2)∗(ω ∧ ec1(L)).

This map should exhibit the mirror symmetry in

the cohomology level.

Many interesting questions arose in the SYZ con-

struction. Most of the geometric quantities including

complex structure and Ricci flat metrics will require

quantum correction from disk instantons. (There is a

background semi-flat Ricci flat metric given by Cos-

mic String construction.) How to compute such in-

stantons are nontrivial. Works by C.C. Liu, Katz, Ke-

feng Liu, C.H. Liu, J. Zhou, myself and others are mak-

ing progress over these important questions.

Around the same time as the development of SYZ,

Kontzerich proposed homological mirror conjecture

which suggested that derived category of M should

be the same as the Fukaya category of M′. A lot of ac-

tivities were initiated, especially by Bridgeland, Orlov,

Kawamata, Thomas and others.

The concept of mirror symmetry was initiated by

string theory. It does solve many outstanding ques-

tions in algebraic geometry that is otherwise difficult

to understand. The ideas inspired by string theory in

mathematics has been able to unify naturally many

diverse concepts in mathematics. It helps to solve

classical problems. It is inconceivable that nature will

fool us by leading us so deeply into the core of math-

ematics.

While CY manifolds give a conformally invariant

sigma model, a very interesting question is how to

move from a general sigma model to a conformally

invariant theory. This is provided by renormalization

group flow.

In fact, twenty years ago, this was studied by

Richard Hamilton. The equation

dgi j

dt
=−2Ri j

where gi j is the metric and Ri j is its Ricci tensor.

The Hamilton equation has led to an important

understanding of geometric

structures on manifolds. I proposed to Hamilton

to provide a proof of the geometrization program of

Thurston based on this flow. He was able to carry out

this program in much more detail. Some new impacts

were given by Perelman recently. In a closely related

development, the dynamics of a surface moving by its

mean curvature have shown some exciting develop-

ment. Huisken and others have made important con-

tributions. This will contribute to applied mathemat-

ics, geometry and physics.

The whole impact of geometry is moving dynam-

ically, touching important parts of physics and engi-

neering.
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