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1. Introduction

Every conformal class of a connected surface S

contains a complete Riemannianmetric with constant

curvature K. This metric is unique up to scale. We

say that it is hyperbolic if K = −1. In particular, any

conformal class on the orientable closed surface Sγ of

genus γ ≥ 2 contains a unique hyperbolic metric. For

this reason, hyperbolic metrics on Sγ play a specific

role.

Traditionally, an eigenvalue of a hyperbolic met-

ric on Sγ is said to be small if it is below 1/4. This ter-
minology may have occurred for the first time in [12,

page 386]. The importance of the number 1/4 stems

from the fact that it is the bottom of the spectrum of

the hyperbolic plane.

In [16, 1972], McKean stated erroneously that hy-

perbolic metrics on Sγ do not carry non-trivial small

eigenvalues. This was corrected by Randol in [21,

1974] who showed the existence of arbitrarily many

small eigenvalues.

Theorem 1.1 (Randol). For each hyperbolic metric on

Sγ and natural number n ≥ 1, there is a finite Rieman-

nian covering S̃ → Sγ such that S̃ has at least n eigen-

values in [0,1/4).

The proof of Randol uses Selberg’s trace formula.

Later, Buser observed that geometric methods lead to

an elementary construction of hyperbolic metrics on

Sγ with many arbitrarily small eigenvalues [6, 1977].

Theorem 1.2 (Buser). For any γ ≥ 2 and ε > 0, there
are hyperbolic metrics on Sγ with 2γ −2 eigenvalues in

[0,ε).

The construction of Buser relies on a pairs of

pants decomposition of Sγ , where the boundary
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geodesics of the hyperbolic metrics on the pairs of

pants are sufficiently short. Schoen–Wolpert–Yau [24,

1980] generalized Buser’s result and estimated low

eigenvalues in terms of decompositions of Sγ , where

eigenvalues are counted according to their multiplic-

ity.

Theorem 1.3 (Schoen–Wolpert–Yau). For any Rie-

mannian metric on Sγ with curvature −1 ≤ K ≤−k < 0,
the i-th eigenvalue satisfies

α1k3/2`i ≤ λi ≤ α2`i for 0 < i < 2γ −2 and

α1k ≤ λ2γ−2 ≤ α2,

where α1,α2 > 0 depend only on γ and `i is the minimal

possible sum of the lengths of simple closed geodesics

in Sγ which cut Sγ into i+1 pieces.

Dodziuk–Pignataro–Randol-Sullivan [10, 1987]

extended Theorem 1.3 to complete hyperbolic met-

rics on the orientable surfaces Sγ,p of genus γ with p
punctures (in the sense of Section 2 below).

Whereas the left inequalities in Theorem 1.3 show

the necessity of short simple closed geodesics for the

existence of small eigenvalues, the inequality for λ2γ−2

on the right indicates that this eigenvalue plays a dif-

ferent role. Indeed, Schmutz showed that λ2 ≥ 1/4 for

any hyperbolic metric on S2 [23, 1991]. Furthermore,

Buser showed in [7, 1992] that λ2γ−2 >α > 0 for any hy-
perbolic metric on Sγ , where α does not depend on γ .

Inspired by the above results and presumably

also by their previous estimates λ4γ−2 > 1/4 (Buser [6,

1977]) and λ4γ−3 > 1/4 (Schmutz [22, 1990]), Buser and

Schmutz conjectured that λ2γ−2 ≥ 1/4 for any hyper-

bolic metric on Sγ . The development so far is what

we refer to as old in our title, and our presentation

of it is trimmed towards our needs. The new de-

velopment starts with the work of Otal and Rosas,

who proved the following strengthened version of the

Buser–Schmutz conjecture in [19, 2009], using ideas

from Sévennec [25, 2002] and Otal [18, 2008].

Theorem 1.4 (Otal–Rosas). For any real analytic Rie-

mannian metric on Sγ with negative curvature, we

have λ2γ−2 > λ0(S̃), where λ0(S̃) denotes the bottom of

the spectrum of the universal covering surface S̃ of Sγ ,

endowed with the lifted metric.

In his Bachelor thesis [15, 2013], the second

named author showed that the assumption on the

curvature is superfluous. In his PhD thesis, the third

named author showed that, for hyperbolic metrics on

Sγ , the inequality in Theorem 1.4 can be sharpened to

λ2γ−2 > λ0(S̃)+δ , where δ > 0 is a constant depending

on γ and the systole of the metric; see [17, 2014].

Obviously, the assumption on the real analyticity

of the Riemannian metric in Theorem 1.4 is unpleas-

ant. At the expense of the strictness of the inequality,

the assumption can be removed, by the density of the

space of real analytic Riemannian metrics inside the

space of smooth ones. In [19, Question 2], Otal and

Rosas speculate about the possibility of removing the

assumption, keeping the strictness of the inequality.

The starting point of our joint work is this last

question on the real analyticity of the Riemannian

metric. We could show that the assumption can in-

deed be removed in the case of closed surfaces with

negative Euler characteristic [1, 2016]. Later we could

show the inequality even in the general case of com-

plete Riemannian metrics on surfaces S of finite type

(in the sense of Section 2) [2, 2017]. In addition, our

inequality λ2γ−2 > Λ(S) in these papers improves the

inequality of Otal and Rosas in [19] and also of the

third named author in [17]. The new invariant Λ(S),
the analytic systole of the Riemannian metric of the

surface, satisfies Λ(S)≥ λ0(S̃). Furthermore, for a large

class of surfaces, including compact surfaces of neg-

ative Euler characteristic, the inequality is strict. This

is the main result of our paper [3]. A major part of

this article, Sections 5 and 6, is devoted to explaining

the main ideas behind the new developments and to

formulate our main results.

After fixing some notation and discussing some

preliminaries in Sections 2 and 3, we present exten-

sions of Theorem 1.1 and Theorem 1.2 in Section 4.

In particular, we obtain quantitative generalizations

of Theorem 1.1 by elementary geometric arguments.

In Section 5, we discuss the ideas of Sévennec, Otal,

and Otal–Rosas which were important in our work in

[1, 2].

The rather long Section 6 discusses our results

from [1]–[3]. First, in Section 6.1, we describe the ar-

guments needed to extend the ideas from [19] to get

the improved bound on the number of small eigenval-

ues. We then proceed in Section 6.2 and Section 6.3

to the bounds for the analytic systole obtained in [3].

Since the arguments for the qualitative bounds of Λ(S)
are quite involved, we restrict the discussion to com-

pact surfaces, which reduces the technicalities sub-

stantially.

2. Preliminaries on Surfaces

We say that a surface S is of finite type if its

boundary ∂S is compact (possibly empty) and its Eu-

ler characteristic χ(S)>−∞. A surface is of finite type

if it is diffeomorphic to a closed surface with a finite

number of pairwise disjoint points and open disks

removed, so called punctures and holes, respectively.

A connected surface S of finite type can be uniquely

written as a closed orientable surface Sγ of genus γ ≥ 0
with p ≥ 0 punctures, q ≥ 0 holes, and 0 ≤ r ≤ 2 em-

bedded Möbius bands. As for the number r of Möbius
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bands, we recall Dyck’s theorem that, up to diffeo-

morphism, attaching three Möbius bands to a surface

is the same as attaching one Möbius band and a han-

dle.

Extending our notation, we write Sγ,p, Sγ,p,q, and

Sγ,p,q,r for Sγ with p punctures, with p punctures and

q holes, and with p punctures, q holes and r embed-

ded Möbius bands, respectively. We call γ the genus

of Sγ,p,q,r. We have

χ(Sγ,p,q,r) = 2−2γ − p−q− r.

Remark 2.1. A surface S of finite type with χ(S) < 0
admits decompositions into pairs of pants, that is,

into building blocks P of the following type:

1) a sphere with three holes;

2) a sphere with two holes and one puncture;

3) a sphere with one hole and two punctures;

4) a sphere with three punctures;

5) a sphere with two holes and an embedded

Möbius band.

Each of these building blocks of S has Euler character-
istic −1 and circles as boundary components. Hence S
is built of −χ(S) such blocks, where we need at most

2 of type 5) and where a block P of type 4) occurs if

and only if S = P.

A Riemannian metric on a surface is called a hy-

perbolic metric if it has constant curvature −1. A sur-

face together with a hyperbolic metric will be called

a hyperbolic surface. A connected surface S of fi-

nite type admits complete hyperbolic metrics of finite

area with closed geodesics as boundary circles if and

only if χ(S) < 0. That is, excluded are sphere, projec-

tive plane, torus, Klein bottle, disk, and annulus.

Remark 2.2. With respect to any complete hyper-

bolic metric with closed geodesics as boundary cir-

cles, (neighborhoods of) the ends U of a surface S of

finite type with χ(S) < 0 are of one of the following

two types:

1) Cusps: U = C` = [0,∞)× R/`Z with metric dr2 +

e−2rds2.

2) Funnels: U = F̀ = [0,∞)×R/`Z with metric dr2 +

cosh(r)2ds2.

The geodesics {s = const} on cusps and funnels will be

called outgoing, the geodesic {r = 0} of a funnel will

be called the base geodesic of the funnel.

On building blocks P of type 2.1(1), 2.1(2), and

2.1(3), the family of hyperbolic metrics on P, with
finite area and with closed geodesics as boundary

circles, may be parametrized by the lengths of the

boundary circles, respectively. There is exactly one

complete hyperbolic metric of finite area on a build-

ing block of type 2.1(4). On building blocks of type

2.1(5), there is a three-parameter family of hyperbolic

metrics with closed geodesics as boundary circles,

where the lengths of the two boundary circles and

the closed geodesic representing the generator of the

fundamental group of the Möbius band can be chosen

as parameters in (0,∞).

Finite area is equivalent to the requirement that

all the ends of P are cusps. However, it is also possible

to have an arbitrary subset of the ends of P to consist

of funnels instead, where the lengths of the bases of

the funnels may serve as additional parameters for

the family of complete hyperbolic metrics.

Theorem 2.3 (Collar theorem). For any complete hy-

perbolic surface S of finite type and any two-sided

simple closed geodesic c in S of length `, the neigh-

borhood of width ρ = arsinh(1/sinh(`/2)) about c in S
is isometric to (−ρ,ρ)×R/`Z with Riemannian metric

dr2 + cosh(r)2ds2.

Proof. For any complete hyperbolic metric on a build-

ing block P of type 2.1(1), 2.1(2), and 2.1(3), respec-

tively, with finite area and with closed geodesics as

boundary circles, the collar of width ρ about a bound-

ary circle c of length ` is isometric to [0,ρ)×R/`Z
with Riemannian metric dr2 + cosh(r)2ds2 and is dis-

joint from the corresponding collar about any other

boundary circle of P, by [7, Propositions 3.1.8 and

4.4.4].

Suppose first that S is orientable and let c be as

in Theorem 2.3. Then we may start a pair of pants

decomposition with c as first cut and conclude the

assertion from what we just said.

Suppose now that S is not orientable. Since c
is two-sided, the preimage of c under the orienta-

tion covering So → S consists of two simple closed

geodesics c1 and c2 of length `. We may start a pair

of pants decomposition of So with c1 and c2 as first

cuts. By what we said in the beginning of the proof,

the neighborhoods of radius ρ about these are dis-

joint.

For a complete and connected Riemannian sur-

face S of finite type without boundary, denote by

sys(S) the systole of S and by sys∗(S) the length of

a shortest two-sided non-separating simple closed

geodesic of S. If S admits complete hyperbolic met-

rics, denote by Sys(S) the maximal possible systole

among complete hyperbolic metrics on S and by

Sys∗(S) the maximal possible length of a shortest two-

sided non-separating simple closed geodesic among

hyperbolic metrics on S.
Note that on Sγ = Sγ,0 and Sγ,1, a simple closed

curve is separating if and only if it is homologically

trivial. Hence the following result is a consequence of

Parlier’s [20, Theorem 1.1].
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Theorem 2.4 (Parlier). Among all complete hyperbolic

metrics of finite area on a closed orientable surface

S with at most one puncture, Sys(S) and Sys∗(S) are

achieved. Furthermore, a complete hyperbolic metric

achieving Sys(S) also achieves Sys∗(S).

3. Preliminaries on Spectral Theory

Let M be a Riemannian manifold, possibly not

complete and possibly with non-empty boundary ∂M.

Denote by Ck(M) the space of Ck-functions on M, by

Ck
c(M) ⊆ Ck(M) the space of Ck-functions on M with

compact support, and by Ck
cc(M)⊆Ck

c(M) the space of

Ck-functions on M with compact support in the inte-

rior M̊ =M\∂M of M, respectively. Denote by L2(M) the

space of (equivalence classes of) square-integrable

measurable functions on M. For integers k ≥ 0, let
Hk(M) be the Sobolev space of functions f ∈ L2(M)

which have, for all 0 ≤ j ≤ k, square-integrable j-th
derivative ∇ j f in the sense of distributions, that is,

tested against functions fromC∞
cc(M). Let Hk

0 (M) be the

closure of C∞
cc(M) in Hk(M).

Denote by ∆ the Laplace operator of M and by ν

the outward normal field of M along ∂M. For the fol-

lowing result, see for example [27, page 85].

Theorem 3.1. If M is complete, then the Laplacian ∆

with domains

D0 = {ϕ ∈C∞
c (M) | ϕ|∂M = 0} and

DN = {ϕ ∈C∞
c (M) | ∇ν ϕ = 0}

is essentially self-adjoint in L2(M); that is, the closure

of ∆ with either domain D0 and DN is self-adjoint in

L2(M).

The corresponding closures of ∆ will be called the

Dirichlet and Neumann extension of ∆, respectively.

In the same vein, we will speak of Dirichlet and Neu-

mann spectrum or eigenvalues of M. Note that these

notions coincide with the usual ones if the boundary

of M is empty.

For a non-vanishing ϕ ∈C∞
c (M),

R(ϕ) =

∫
M |∇ϕ|2∫

M ϕ2(3.2)

is called the Rayleigh quotient of ϕ . The real numbers

λ0(M) = inf
ϕ∈C∞

cc(M)
ϕ 6=0

R(ϕ) and λN(M) = inf
ϕ∈C∞

c (M)
ϕ 6=0

R(ϕ)(3.3)

are equal to the minimum of the Dirichlet and Neu-

mann spectrum of M and are, therefore, called the

bottom of the Dirichlet and Neumann spectrum of

M, respectively. If ∂M = /0, then λ0(M) = λN(M). If

M is closed, that is, compact and connected with-

out boundary, λ0(M) = 0. If M is compact and con-

nected with non-empty boundary, λ0(M) is the small-

est Dirichlet eigenvalue of M and λN(M) = 0. If M is

connected and M̃ → M is a normal Riemannian cov-

ering with amenable group of covering transforma-

tions, then λ0(M̃) = λ0(M); see [5] and, for the general-

ity of the statement here and a more elementary ar-

gument, see also [4].

The essential spectrum σess(A) of a self-adjoint op-
erator A on a Hilbert space H consists of all λ ∈ R
such that A−λ is not a Fredholm operator. The essen-

tial spectrum of A is a closed subset of the spectrum

σ(A) of A. The complement σd(A) = σ(A) \σess(A), the
discrete spectrum of A, is a discrete subset of R and

consists of eigenvalues of A of finite multiplicity.

If M is a complete Riemannianmanifold with com-

pact boundary (possibly empty), then the essential

Dirichlet and Neumann spectra of M coincide and

their infimum is given by

(3.4) λess(M) = sup
K

inf{R(ϕ) | ϕ ∈C∞
c (M \K),ϕ 6= 0},

where K runs over all compact subsets of M; com-

pare with [11, Theorem 14.4], where (3.4) is shown for

Schrödinger operators on Euclidean spaces. By (3.4),

if M is compact, then λess(M) = ∞, that is, the essential

Dirichlet and Neumann spectra of M are empty.

Since a basis of neighborhoods of any end of a

surface of finite type may be chosen to consist of an-

nuli, we have

λess(S)≥ λ0(S̃)(3.5)

for any complete Riemannian surface S of finite type,

where S̃ → S denotes the universal covering of S and S̃
is endowed with the lifted Riemannian metric; see [2,

Proposition 3.9].

Remark 3.6. For any complete hyperbolic surface of

finite type, we get that λess(S)≥ 1/4. On the other hand,
any surface S of infinite type admits complete hyper-

bolic metrics with corresponding λess(S) = 0.

4. Theorems 1.1 and 1.2 Revisited

Mainly relying on the original argument of Buser,

we discuss the following extended version of Buser’s

Theorem 1.2.

Theorem 4.1. Let S be a connected surface of fi-

nite type with Euler characteristic χ(S) < 0, and let

ε ∈ (0,1/4]. Then S carries complete hyperbolic metrics,

with closed geodesics as boundary circles if ∂S 6= /0, with
−χ(S) Dirichlet eigenvalues in [0,ε).

If ∂S = /0, the Dirichlet eigenvalues are the usual

eigenvalues of S.
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For ε = 1/4, Theorem 4.1 also follows from the

main result of [10], at least in the case where ∂S = /0.
Nevertheless, it seems appropriate to us to include

the proof of Theorem 4.1 since the argument is nice

and short and the proof of Theorem 4.4 uses a varia-

tion of it.

Proof of Theorem 4.1. Choose a decomposition of S
into pairs of pants as in Remark 2.1. For each build-

ing block P of the decomposition, choose a hyperbolic

metric on P with closed geodesics as boundary cir-

cles and with cusps and funnels around the punc-

tures. Independently of the chosen hyperbolic met-

ric, the area of P minus its funnels (if funnels occur)

is 2π , by the Gauss–Bonnet formula. The conditions

on the hyperbolic metrics on the different P are that

the lengths of the boundary circles are sufficiently

small and fitting according to the decomposition of

S. For the funnels, the corresponding lengths of their

base geodesics should also be sufficiently small. The

meaning of sufficiently small will become clear from

the following construction of test functions.

On each building block P, we consider the func-

tion ϕP which is equal to 1 on the set Q of points of P of

distance at least 1 from the boundary circles and fun-

nels of P, vanishes on the boundary circles and fun-

nels of P, and decays linearly from 1 to 0 along the

normal geodesic segments in between. We arrive at

the first condition which is that the neighborhoods of

width 1 about the different boundary circles and base

geodesics of funnels (if they occur) should be pair-

wise disjoint. This is achieved by choosing them suf-

ficiently short. It is also understood that each such ϕP

is extended by zero onto the rest of S. Then the −χ(S)
different ϕP are square integrable Lipschitz functions

on S which are pairwise L2-orthogonal.

The area of each domain N where a function ϕP de-

cays is sinh(1)`, where ` denotes the length of the cor-

responding closed boundary or base geodesic. More-

over, the gradient of ϕP has norm 1 on these domains

N. Therefore∫
|∇ϕP|2 = ∑ |N|= sinh(1)∑`,

where the sum is over the boundary components and

funnels of P. For the Rayleigh quotient of ϕP, we ob-

tain

R(ϕP) =

∫
|∇ϕP|2∫

ϕ2
P

≤ sinh(1)∑`

2π − sinh(1)∑`
.

Choosing the hyperbolic metric on P such that the

lengths ` are sufficiently small, the right hand side is

less than ε .

If the hyperbolic metric on P has no cusps, the

support of ϕP is compact. If it has cusps, we modify

ϕP along each cusp by having it decay linearly from 1

to 0 along an interval of length 1 along the outgoing

geodesics. Then the Rayleigh quotient stays less than

ε if this is done sufficiently far out. We arrive at −χ(S)
pairwise L2-orthogonal Lipschitz functions with com-

pact support which vanish along the boundary of S
and which have Rayleigh quotients less than ε . Now

the essential spectrum of S is contained in [1/4,∞),

by (3.5), and ε ∈ (0,1/4]. Hence the variational charac-
terization of Dirichlet eigenvalues below the bottom

of the essential spectrum implies that S has at least

−χ(S) Dirichlet eigenvalues less than ε .

Remark 4.2. In Theorem 4.1, any two complimentary

subsets C and H in the set of ends of S may be chosen

to consist of cusps and funnels, respectively.

Remark 4.3. By the work of Lax and Phillips, an

infinite hyperbolic hinge cannot carry a non-trivial

square-integrable solution ϕ of the equation ∆ϕ = λϕ

with λ ≥ 1/4; see [13, Theorem 4.8]. (Notice that [13,

Theorem 4.8] also applies in dimension two, see the

last sentence in Section 4 of [13].) Hence in Theo-

rem 4.1, if S has a funnel, then S does not have eigen-

values in [1/4,∞).

Next, we present an extension of Randol’s Theo-

rem 1.1 with an elementary geometric proof, partially

motivated by Buser’s argument.

Theorem 4.4. Let S be a complete and connected hy-

perbolic surface of finite area with closed geodesics as

boundary circles (if ∂S is not empty) and with a two-

sided non-separating simple closed geodesic of length

` in the interior of S. Let n ≥ 1, ε > 0, and

k ≥ `e`

2sinh(`/2)ε|S|
.

If S is not compact, assume also that ε ≤ 1/4. Then S
has a cyclic hyperbolic covering of order (k+2)n with

at least n Neumann eigenvalues in [0,ε).

If ∂S = /0, the Neumann eigenvalues are the usual

eigenvalues of S.

Proof of Theorem 4.4. Let c be a two-sided non-

separating simple closed geodesic on S of length ` =

L(c) (see Fig. 1). Then c has a tubular neighborhood

U which is isometric to (−ρ,ρ)×R/`Z, where U is

equipped with the Riemannian metric

dr2 + cosh(r)2ds2

and where ρ > 0 is specified later. Cut S along c = {r =
0} to obtain a connected surface T with two boundary

circles c− and c+ and boundary collars

C− = (−ρ,0]×R/`Z and C+ = [0,ρ)×R/`Z

containing them. Let ϕ− and ϕ+ be the Lipschitz func-

tions on T which are equal to 1 on T \C− and T \C+,

vanish on c− and c+, and are linear in r ∈ (−ρ,0] and
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Figure 1. Choosing the geodesic c

Figure 2. A building block T (i)

r ∈ [0,ρ), respectively. The Dirichlet integrals are∫
T
|∇ϕ−|2 =

∫
T
|∇ϕ+|2 =

`sinhρ

ρ2

since |∇ϕ−|= 1/ρ on C−, |∇ϕ+|= 1/ρ on C+, and |C−|=
|C+|= `sinhρ . Let ε > 0 and choose k ≥ 1 such that

k|S|= k|T |> 2`sinhρ

ρ2ε
.(4.5)

Let T (0), . . . ,T (k+1) be k+2 copies of T and attach T (i)
along c+(i) to T (i+ 1) along c−(i+ 1), for all 0 ≤ i ≤ k,
to obtain a surface R with two boundary circles and

boundary collars C−(0) and C+(i+1) containing them

(see Figures 2 and 3). Let ϕ be the function on R which

is equal to ϕ− on T (0), to ϕ+ on T (k+1), and to 1 else-

where. Then the Rayleigh quotient of ϕ satisfies

R(ϕ)≤ 2`sinhρ

ρ2k|S|
< ε.

Now take n copies R1, . . . ,Rn of R, attach them naturally

modulo n and get n copies ϕ1, . . . ,ϕn of ϕ , with pairwise

disjoint supports (up to measure 0), on the resulting

closed surface S̃. Here it is understood that each ϕi is

extended by 0 to all copies R j of R with j 6= i. Clearly,
S̃ is a cyclic hyperbolic covering surface of S of or-

der (k+ 2)n with n non-vanishing Lipschitz functions

ϕ1, . . . ,ϕn with pairwise disjoint supports (up to mea-

sure 0) and Rayleigh quotient < ε . In the case where

S is compact these functions immediately imply the

existence of n Neumann eigenvalues of S̃ in [0,ε), by
the variational characterization of eigenvalues.

If S is not compact, S̃ is still of finite area, and thus

the ends of S̃ are cusps. In particular, the essential

spectrum of the Neumann extension ∆N of the Lapla-

cian on S̃ is contained in [1/4,∞), by the characteriza-

tion of the bottom of the essential spectrum in (3.4).

Now the supports of the above functions ϕ1, . . . ,ϕn are

not compact anymore. However, this can be remedied

by cutting them off appropriately along the cusps of S̃
as in the proof of Theorem 4.1. Thus we obtain again

the existence of n Neumann eigenvalues of S̃ in [0,ε).
It remains to discuss the choice of ρ . By The-

orem 2.3, the neighborhood of c of width ρ =

arsinh(1/sinh(`/2)) is of the form needed in the above

argument, i.e., (4.5) requires

k >
2`

sinh(`/2)arsinh(1/sinh(`/2))2ε|S|
.(4.6)

For x > 0, we have

arsinh(1/sinhx) = ln
1+ e−x

1− e−x = 2artanh(e−x)

= 2
(
e−x +

e−3x

3
+

e−5x

5
+ · · ·

)
.

Therefore the `-term on the right hand side of (4.6)

satisfies

2`
sinh(`/2)arsinh(1/sinh(`/2))2

=
`

2sinh(`/2)
(
e−`/2 + e−3`/2/3+ · · ·

)2

<
`e`

2sinh(`/2)
.
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Figure 3. A piece of the covering S̃

Now the assertion follows from the first part of the

proof.

Remark 4.7. A surface S of finite type has two-sided

non-separating simple closed curves if and only if its

genus is positive.

Remark 4.8. If S is diffeomorphic to a closed ori-

entable surface S with at most one puncture, then a

simple closed curve on S is homologous to zero if

and only if it is separating. Thus the simple closed

geodesics on S in Theorem 4.4 are the homologically

non-zero ones.

Theorem 4.9. Let γ,n ≥ 2, ε > 0, and k ≥ 2ln(4γ − 2)/ε .

Then, for any hyperbolic metric on Sγ , there is a cyclic

hyperbolic cover S̃ → Sγ of order (k+2)n with at least n
eigenvalues in [0,ε).

Proof. By the Gauss–Bonnet formula, the area of any

hyperbolic metric on S = Sγ is 2π(2γ − 2). Clearly, the
systole of any hyperbolic metric on S is twice its in-

jectivity radius. On the other hand, we have Sys∗(S) =
Sys(S), by Theorem 2.4. We conclude that, for a given

hyperbolic metric on S, a shortest two-sided non-

separating simple closed geodesic has length ` sat-

isfying

2π(cosh(`/2)−1) = |B(`/2)|< |S|= 2π(2γ −2).

That is, cosh(`/2)< 2γ−1 and, in particular, ` < 2ln(4γ−
2). Now the function `e`/2sinh(`/2) is monotonically

increasing. Therefore we get that

`e`

2sinh(`/2)ε|S|
<

(4γ −2)2 ln(4γ −2)
2sinh(ln(4γ −2))επ(2γ −2)

<
2(4γ −2)2 ln(4γ −2)
(4γ −2)επ(2γ −2)

<
6ln(4γ −2)

επ
<

2ln(4γ −2)
ε

,

where we use that ln(4γ −2)≥ ln6 > 1 and that sinhx >
ex/4 for x > 1. Now the assertion follows from Theo-

rem 4.4.

Remark 4.10. A corresponding result holds for hy-

perbolic surfaces of finite area with one cusp. In gen-

eral, the estimate on the shortest possible length

of two-sided non-separating simple closed geodesics

of complete hyperbolic metrics will depend on the

topology of the surface; see [20].

Recall that the essential spectrum of a com-

plete and connected Riemannian manifold M does
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not change when passing to finite Riemannian cov-

ers of M and that the spectrum of M below the bot-

tom λess(M) of the essential spectrum of M consists of

eigenvalues of finite multiplicity. Recall also that the

essential spectrum of M is empty, that is, λess(M) = ∞,

if M is compact. In view of this, the proof of Theo-

rem 4.4 now carries over to more general situations

and gives, for example, the following result.

Theorem 4.11. Let M be a complete and connected

Riemannian manifold of finite volume. Suppose that

λess(M) > 0 and that M contains a two-sided non-

separating compact hypersurface H ⊆ M without

boundary. Choose ρ > 0 such that the normal injec-

tivity radius of H is at least ρ , and denote by U(ρ) the

tubular neighborhood of H of radius ρ . Let n ≥ 1, ε > 0,
and

k ≥ |U(ρ)|
ρ2ε|M|

.

If M is not compact, assume also that ε ≤ λess(M). Then

M has a cyclic Riemannian covering of order (k+ 2)n
with at least n eigenvalues in [0,ε).

If M is compact, a hypersurface H as in Theo-

rem 4.11 exists if and only if H1(M,Z) 6= 0. To see

this, note that for a hypersurface H as in Theo-

rem 4.11, there is a closed curve in M which has inter-

section number one with H. For the converse, recall

that H1(M,Z) is torsionfree and that any element of

H1(M,Z) can be represented by a closed differential

form. Now via integration, a closed differential form

representing a non-zero element of H1(M,Z) gives rise
to a non-trivial smooth map M → R/Z, and a regular

level of such a map is a hypersurface H as desired.

Corollary 4.12. Let M be a closed manifold with

H1(M,Z) 6= 0. Then for any Riemannian metric on M,

n ≥ 1, and ε > 0, there is a cyclic Riemannian covering

of M with at least n eigenvalues in [0,ε).

Clearly, the conclusion of Corollary 4.12 fails if

the fundamental group of M is finite, e.g., if M carries

a Riemannian metric of positive Ricci curvature.

Question 4.13. What kind of conditions on the ge-

ometry and topology of M result in the existence of

hypersurfaces H as in Theorem 4.11 with upper esti-

mate on |U(ρ)|/ρ2|M|? Compare with Theorem 4.9 and

Remark 4.10.

5. Topology of Nodal Sets and Small
Eigenvalues

For a surface S and a smooth function ϕ on S, the
set

Zϕ = {x ∈ S | ϕ(x) = 0}

is called the nodal set of ϕ . Furthermore, if S is Rie-

mannian and h a smooth function on S, then a solu-

tion of the Schrödinger equation (∆+h)ϕ = 0 is called

an h-harmonic function. In [8], S. Y. Cheng proved

the following structure theorem for nodal sets of

h-harmonic functions on S.

Theorem 5.1 (Cheng). Let S be a Riemannian surface

and h a smooth function on S. Then any h-harmonic

function ϕ on S satisfies:

1. The critical points of ϕ on Zϕ are isolated.

2. When the nodal lines meet, they form an equian-

gular system.

3. The nodal lines consist of a number of

C2-immersed one-dimensional submanifolds.

In particular, if S is closed, then Zϕ is a finite

union of C2-immersed circles.

Each connected component of S \ Zϕ is called a

nodal domain of ϕ . Using the above structure of nodal

sets and the Courant nodal domain theorem (see [8]),

Cheng then proved bounds on the multiplicity of the

i-th eigenvalue in terms of i and the Euler characteris-

tic of the surface. These methods for bounding mul-

tiplicities of eigenvalues have proved to be fruitful in

general.

5.1 Sévennec’s Idea

The multiplicity of the first eigenvalue gained

more interest than the others (see [9], [25] and ref-

erences therein). (Note that λ0 is simple by Courant’s

nodal domain theorem.) In [25], B. Sévennec took a

leap of thoughts and obtained a significant improve-

ment of the then best known bound on the multiplic-

ity of the first eigenvalue of closed surfaces with neg-

ative Euler characteristic.

Theorem 5.2 (Sévennec). If S is a closed Riemannian

surface with χ(S) < 0, then the multiplicity of the first

eigenvalue λ1 of a Schrödinger operator ∆+ h on S is

at most 5−χ(S).

The ideas in Sévennec’s approach proved to be

fruitful in the work of Otal [18], Otal–Rosas [19], and

our work in [1, 2]. Sévennec started by proving a

Borsuk–Ulam type theorem (see Lemmata 7 and 8 in

[25]) which has the following consequence.

Lemma 5.3. Let ∪k
i=1Pi = Pd be a decomposition of the

d-dimensional real projective space into k subsets. As-

sume that the characteristic class α of the standard

covering map π : Sd → Pd satisfies (α|Pi)
`i = 0, for all

1 ≤ i ≤ k. Then d +1 ≤ `1 + · · ·+ `k.

By elliptic regularity, the eigenspace E1 of λ1 as

in Theorem 5.2 is finite dimensional. Now consider

some norm on E1 (all are equivalent), and, with re-

spect to this norm, consider the unit sphere Sd in E1,

where d+1= dimE1 is themultiplicity of λ1. Sévennec’s

investigation of the Borsuk–Ulam theorem was mo-

tivated by the fact that each non-zero eigenfunction
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ϕ ∈ E1 has exactly two nodal domains, Ω−
ϕ = {ϕ < 0}

and Ω+
ϕ = {ϕ > 0}, which gives a decomposition of Sd

into the strata

S1 = {ϕ ∈ Sd | b1(Ω
+
ϕ )+b1(Ω

−
ϕ )≤ 1},

S j = {ϕ ∈ Sd | b1(Ω
+
ϕ )+b1(Ω

−
ϕ ) = j}, 1 < j ≤ b1(S),

where b1 indicates the first Betti number. Clearly, each

S j is invariant under the antipodal map of Sd . Dis-

cussing the properties of this decomposition of Pd

into the strata Pi = π(Si) covers a significant part of

[25]. The main results are `1 = 4 and ` j = 1 for 1 < j ≤
b1(S) ([25, Theorem 9]).

5.2 Otal’s Adaptation to Small Eigenvalues

In [18], Otal adapted this whole line of thoughts

to bound the multiplicity of small eigenvalues on hy-

perbolic surfaces of finite area. Recall that 1/4 is bot-

tom of the spectrum of the Laplacian on the hyper-

bolic plane H2. If Ω in H2 is a bounded domain with

piecewise smooth boundary, λ0(Ω) is the first Dirich-

let eigenvalue of Ω. Hence, by domain monotonicity

of the first Dirichlet eigenvalue, we get the strict in-

equality λ0(Ω)> 1/4.

Theorem 5.4 (Otal). For a complete hyperbolic sur-

face S of finite area, the multiplicity of an eigenvalue

of S in (0,1/4] is at most −χ(S)−1.

Remark 5.5. In [18], Otal also proves a similar re-

sult on the multiplicity of cuspidal eigenvalues of S
in (0,1/4].

Observe that the eigenvalues considered now

need not be the first non-zero eigenvalue. Hence

Sévennec’s ideas can not be applied directly. To rem-

edy this, Otal starts with a key observation that pro-

vides a strong constraint on the topology of nodal

sets and nodal domains of eigenfunctions with eigen-

value λ ∈ (0,1/4].

Lemma 5.6. Let S be a closed hyperbolic surface and

ϕ be a non-trivial eigenfunction of S with eigenvalue

λ ∈ (0,1/4]. Then the nodal set of ϕ is incompressible

and any nodal domain of ϕ has negative Euler char-

acteristic.

Here we say that a subset G ⊆ S is incompressible

if each loop in G, that is homotopically trivial in S, is
already homotopically trivial in G.

Sketch of proof of Lemma 5.6. Observe that, for any

nodal domain Ω of ϕ , we have λ0(Ω) = λ . This follows

immediately from the observations that (i) ϕ|Ω satis-

fies the eigenvalue equation on Ω, (ii) ϕ|∂Ω = 0, and
(iii) ϕ has constant sign on Ω.

Now let D be a nodal domain of ϕ that is a disk.

Then λ0(D) = λ . On the other hand, the universal cov-

ering π : S̃ → S is trivial over D and so we can lift D to

a disk D̃ in S̃ = H2. In particular, D̃ is isometric to D
and hence λ0(D̃) = λ0(D) = λ ≤ 1/4. This is a contradic-
tion to what we found in the first paragraph of this

subsection, namely that λ0(D̃)> 1/4.
To finish the proof of the first part of the lemma

one observes that, if a simple loop in Zϕ would be ho-

motopically trivial in S, then it would bound a disk in

S, by the Schoenflies theorem, and then there would

be a nodal domain of ϕ that would be a disk, again

by the Schoenflies theorem. The remaining assertion,

i.e., that no nodal domain is an annulus or a Möbius

band, can be proved by similar arguments. One extra

ingredient one needs is that any annulus or Möbius

band in S can be lifted to a cyclic subcover Ŝ of S̃ and

that, by a result of Brooks [5], the bottom of the spec-

trum satisfies λ0(Ŝ) = λ0(S̃) = 1/4.

Remark 5.7. In the appendix of [3], we give a short

proof of Brooks’ result in the case of normal cyclic

coverings as needed in the above application.

Sketch of proof of Theorem 5.4. The basic strategy is

very similar to [25]. For simplicity, we assume that

S is closed and let λ ∈ (0,1/4] be an eigenvalue of S.
Let Eλ be the eigenspace of λ and denote the multi-

plicity dimEλ of λ by d + 1. Now the idea is again to

use Lemma 5.3 and decompose, in a first step, the

unit sphere Sd in Eλ (with respect to some norm) into

−χ(S)−1 many strata, using the topology of S\Zϕ . Otal

chose the strata as

Si = {ϕ ∈ Sλ | χ(S\Zϕ) =−i}.

Using Lemma 5.6 and the Euler–Poincaré formula, one

can easily deduce that, for any λ -eigenfunction ϕ ,

one has χ(S) ≤ χ(S \Zϕ) ≤ −2. In particular, Si = /0 for

i 6= 2, · · · ,−χ(S). Hence the above stratification consists

of at most −χ(S)−1 non-empty strata. From the def-

inition it is clear that Si is invariant under the an-

tipodal map of Sλ . Hence to conclude the theorem,

one needs to prove that the restriction of the cover-

ing π : Sd → Pd to each stratum Si is trivial, where Pd

denotes the projective space of Eλ .

The argument for this part relies on the follow-

ing fact: If U,V are two disjoint subsurfaces of S with

piecewise smooth boundary and at least one of U or

V has negative Euler characteristic, then there is no

isotopy of S that interchanges U and V .
For ϕ ∈ Sd , in the same line as [25], consider the

decomposition S \ Zϕ according to the sign of ϕ , i.e.,

S \Zϕ =C+
ϕ ∪C−

ϕ , where C+
ϕ = {ϕ > 0} and C−

ϕ = {ϕ < 0}.
Then C±

ϕ is a subsurface of S with piecewise smooth

boundary, where the possible singularities of the

boundary of C±
ϕ are described in Theorem 5.1.

Observe that, for any ψ ∈ Sd sufficiently close to

ϕ , we have χ(C±
ϕ ) ≥ χ(C±

ψ ). If we further assume that

ϕ,ψ ∈ Si, then the last two inequalities are actually
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equalities. It then follows that there is an isotopy

of S that sends χ(C±
ϕ ) to χ(C±

ψ ). Hence, by our ear-

lier assertion on the existence of such isotopies and

Lemma 5.6, the connected component of Si that con-

tains ϕ can not contain −ϕ . This implies the trivial-

ity of the restriction of the covering π : Sd → Pd to the

stratum Si.

5.3 Otal–Rosas Proof of Buser–Schmutz Conjecture

In [23], Schmutz showed that any hyperbolic met-

ric on the surface S2 has at most 2 eigenvalues < 1/4,
and he, and Buser in [6], conjectured that any hyper-

bolic metric on the closed surface S = Sg has at most

2g− 2 eigenvalues below 1/4. Observe that the above

result of Otal already implies this conjecture if all

eigenvalues of S in (0,1/4] coincide. Of course, in gen-

eral, this will not be the case, and so one needs to

do more to prove the conjecture. The proof of an ex-

tended version, Theorem 1.4, was finally achieved by

Otal and Rosas in [19].

Sketch of proof of Theorem 1.4. Although the line of

approach is very similar to those explained in §5.1

and §5.2, there are several new difficulties that ap-

pear. Consider now the vector space E spanned by

the finitely many eigenspaces Eλ of S with λ ≤ λ0(S̃).
To extend the ideas in §5.2, one needs an exten-

sion of Lemma 5.6. Since the functions that we are

considering now are linear combinations of eigen-

functions, Theorem 5.1 is no longer available. How-

ever, since the underlying Riemannian metric of S is

real analytic, its eigenfunctions are real analytic func-

tions and, therefore, also any (finite) linear combina-

tion of them. Hence (by [14], as explained in Proposi-

tion 3 of [19]), the nodal set of any such linear com-

bination has the structure of a locally finite graph.

A next and more serious difficulty in extending

the ideas from §5.2 is that Lemma 5.6 may no longer

be true for the nodal sets of arbitrary linear combi-

nations of the eigenfunctions in E. For example, the

nodal set Zϕ of ϕ may have components that are not

incompressible. (Note also that E contains the con-

stant functions so that the nodal set of ϕ ∈ E may be

empty.) To take care of this, just delete all those com-

ponents of Zϕ that are contained in a topological disk

to obtain the modified graph, Gϕ ⊆ Zϕ . Now Gϕ may

still not be incompressible in S; however, the compo-

nents of S\Gϕ are.

Lemma 5.8. For any ϕ ∈ E, at least one component of

S\Gϕ has negative Euler characteristic.

Proof. Let ϕ ∈ E. Then the Rayleigh quotient R(ϕ) of ϕ

is at most λ0(S̃), by the definition of E. On the other

hand, if any component of S \Gϕ would be a disk or

an annulus, then the Rayleigh quotient R(ϕ|C) of ϕ re-

stricted to any such component C would be strictly

bigger than λ0(S̃), by the argument in the first para-

graph of §5.2 for disks and the argument at the end

of the proof of Lemma 5.6 for annuli. But then the

Rayleigh quotient of ϕ on all of S would be strictly

bigger than λ0(S̃), a contradiction.

We let Yϕ be the union of all components of S \
Gϕ with negative Euler characteristic. Then Yϕ is not

empty, thanks to Lemma 5.8 above, and χ(Yϕ)< 0. We

also have χ(S)≤ χ(Yϕ) by the Mayer–Vietoris sequence

and the incompressibility of the components of S\Gϕ .

This argument requires some thought.

By definition, each component C of S \ Gϕ is a

union of a nodal domain Ω of ϕ with a finite number

of disks in S enclosed by Ω. We say that C is positive

or negative if ϕ is positive or negative on Ω and let

Y+
ϕ and Y−

ϕ be the union of the positive and negative

components ofYϕ , respectively. ThenYϕ is the disjoint

union of Y+
ϕ and Y−

ϕ .

One final modification is necessary for these Y±
ϕ .

Namely, if a component of S\Y+
ϕ or S\Y−

ϕ is an annu-

lus, then we attach that annulus to its neighbour com-

ponents in Y+
ϕ or Y−

ϕ , respectively, to obtain new sub-

surfaces X+
ϕ ⊇Y+

ϕ and X−
ϕ ⊇Y−

ϕ . Note that χ(X±
ϕ )= χ(Y±

ϕ )

so that, in particular,

χ(S)≤ χ(X+
ϕ )+χ(X−

ϕ )< 0,

by what we said above.

Nowwe are ready to follow the approaches in §5.1

and §5.2. As before, we consider the unit sphere Sd in

E and the projective space Pd of E, where dimE = d+1.
The strata of Sd as in Lemma 5.3 are now

Si = {ϕ ∈ Sd : χ(X+
ϕ )+χ(X−

ϕ ) =−i}.

In order to show the triviality of the restriction of

the covering π : Sd → Pd to Si → Pi = π(Si), one argues

that the isotopy type of the triples (S,X+
ϕ ,X−

ϕ ) does not

change under a small perturbation of ϕ as long as

the perturbation lies in the same stratum. The proof

of this last fact follows a similar line as the one in

the last part of the (sketch of the) proof of Theo-

rem 5.4.

6. Small Eigenvalues and Analytic
Systole

The proof of Lemma 5.6 suggests the following

definition, that first appeared (without the name) in

[1, cf. Equation 1.6].

Definition 6.1. The analytic systole Λ(S) of a Rieman-

nian surface S is defined by

(6.2) Λ(S) = inf
Ω

λ0(Ω),

where Ω runs over all compact disks, annuli, and

Möbius bands in S with smooth boundary.
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The analytic systole is related to the systole, as

we will see in Section 6.2. In fact, the relations to the

systole were our main motivation for calling Λ(S) the
analytic systole of S.

By domain monotonicity, one can also define the

analytic systole using only annuli and Möbius bands.

However, from the proof of Theorem 6.10 it will be-

come clear why it is convenient to include disks in the

definition.

6.1 The Number of Small Eigenvalues

To put the next result into perspective, we note

that

(6.3) Λ(S)≥ λ0(S̃),

by arguments as in the proof of Lemma 5.6.

Theorem 6.4. A complete and connected Riemannian

surface S of finite type with χ(S)< 0 has at most −χ(S)
eigenvalues in [0,Λ(S)], counted with multiplicity.

For S with non-empty boundary, we assume the

boundary to be smooth and the result refers to Dirich-

let eigenvalues.

This result was first proved for closed surfaces

in [1, Theorem 1.7] and then generalized to surfaces

of finite type in [2]. The proofs of these results fol-

low the approach from [19], and again there are new

problems one has to face. We start by describing the

proof in the compact case and explain the additional

arguments needed to handle the non-compact case

briefly afterwards.

6.1.1 Closed Surfaces

To circumvent the possibly bad regularity prop-

erties of nodal sets of non-vanishing linear combina-

tions ϕ of eigenfunctions, we consider approximate

nodal sets Zϕ(ε) instead, i.e.

(6.5) Zϕ(ε) = {ϕ
2 ≤ ε},

and the connected components of their comple-

ments, the approximate nodal domains. By Sard’s the-

orem, almost every ε > 0 is a regular value of ϕ2, and

we will restrict to such ε from here on. For each such

ε , Zϕ(ε) is a subsurface of S.
In general, there is no need at all that the inclu-

sion S \Zϕ(ε)→ S is incompressible. In order to over-

come this problem, we modify Zϕ(ε) as follows: We

remove any component of Zϕ(ε) that is contained in

a closed disk D ⊂ S. The resulting subsurface Z′
ϕ(ε) ⊂

Zϕ(ε) is called derived approximate nodal set. By con-

struction, the complement Yϕ(ε) = S \Z′
ϕ(ε) is incom-

pressible in S. Moreover, any component of Yϕ(ε) is

the union of an approximate nodal domain of ϕ with

a finite number of disks enclosed by it. In particu-

lar, we may again assign signs to the components of

Yϕ(ε) to get Yϕ(ε) = Y+
ϕ (ε)∪Y−

ϕ (ε) as a disjoint union.

(Cf. Lemma 2.5 in [1]). Note that it may happen that

one of Y+
ϕ (ε) or Y−

ϕ (ε) is empty; for example, if ϕ is a

positive constant, then Y−
ϕ (ε) = /0.

Similar to the argument in Section 5.3, we restrict

our attention to those components of Yϕ(ε) and Y±
ϕ (ε)

having negative Euler characteristic and write Xϕ(ε)

and X±
ϕ (ε) for the union of these components, respec-

tively (now following the notation in [2]).

In a next step, we show that Xϕ(ε) is not empty

(cf. Lemma 2.6 in [1]). Since we are working with ap-

proximate nodal sets, the argument from the proof

of Lemma 5.8 only applies in the case where the

Rayleight quotient R(ϕ) < Λ(S) and shows that Xϕ(ε)

is not empty, for all sufficiently small ε > 0. If instead
R(ϕ) = Λ(S), we need to analyze the situation much

more carefully. It turns out that, in this case, ϕ is an

eigenfunction so that we may use Theorem 5.1, which

allows us to understand the topology of Yϕ(ε) much

better. In fact, it is just the complement of a tubular

neighbourhood around the nodal set of ϕ . Therefore,

Lemma 5.6 implies that any component of Yϕ(ε) has

negative Euler characteristic, for all sufficiently small

ε > 0.
The last modification of the sets Xϕ(ε) is exactly

as in [19]. That is, if components of S \X±
ϕ (ε) are an-

nuli or Möbius bands, then attach these annuli and

Möbius bands to X±
ϕ (ε) to obtain subsurfaces S±ϕ (ε).

(Cf. Lemma 2.8 in [1]). The final key observation is

that these modifications in combination with incom-

pressibility imply that the isotopy type of the triples

(S,S+ϕ (ε),S
−
ϕ (ε)) stabilizes for ε small. (Cf. Lemma 2.10

in [1]).

From this point on, we can invoke the arguments

from [19] again, although [1] is slightly more elemen-

tary in some parts of the proof. This is due to the

fact that we can use the implicit function theorem as

a tool (cf. Lemma 3.2 in [1]), since ε is always chosen

to be a regular value of ϕ .

6.1.2 Non-Empty Boundary

The case of non-empty smooth boundary follows

along the same lines using only one extra ingredi-

ent. This is an extension of Theorem 5.1 to the case

of Dirichlet boundary values [2, Theorem 1.7]. The

proof of the latter follows by standard reflection tech-

niques.

6.1.3 Non-Compact Surfaces

The proof in the non-compact case relies on an-

other modification procedure, which is related to the

asymptotic behavior of approximate nodal sets. Be-

sides using approximate nodal sets instead of nodal

sets, we also truncate the sets Yϕ(ε). The reason why
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we need to introduce this truncation procedure is

that, for two functions ϕ,ψ , the value ε can be regular

for ϕ , but not for ψ , even if ‖ϕ −ψ‖C1 is very small. A

first important ingredient is that, during truncation,

there is no loss of the relevant topology.

Replacing negative Euler characteristic by a dif-

ferent criterion, we say that a component C of Yϕ(ε) is

an F2-component if π1(C) contains F2, the free group

on two generators.

Let K ⊂ S be a (large) compact subsurface with

smooth boundary, such that S \K consists of a finite

union of infinite cylinders.

As a consequence of incompressibility and the

topology of S \K, we have that any F2-component of

Yϕ(ε) has to intersect K. Moreover, there can be only

finitely many F2-components. (Cf. Lemma 4.14 in [2]).

As above, we restrict our attention to the

F2-components and denote by Xϕ(ε) the union of all

the F2-components of Yϕ(ε). Using the Schoenflies the-

orem and incompressibility, it is possible to show

that K can be perturbed (possibly quite significantly,

depending on ϕ), such that X±
ϕ (ε) ∩ K is homotopy

equivalent to X±
ϕ (ε) (cf. the discussion on p. 1761 in

[2]). We then call a pair (ε,K) ϕ-regular if ε is a reg-

ular value of ϕ2 and X±
ϕ (ε,K) = X±

ϕ (ε)∩K is homotopy

equivalent to X±
ϕ (ε).

After modifying the X±
ϕ (ε,K) to subsurfaces

S±ϕ (ε,K) as above, the final preparatory step is

to show that the topological type of the triples

(S,S+ϕ (ε,K),S−ϕ (ε,K)), where (ε,K) is ϕ-regular, stabi-

lizes for sufficiently small ε > 0 and sufficiently large

K. (Cf. Lemma 4.21 in [2]). We can then use the topo-

logical types of these triples to invoke the machinery

we have used above, but have to face several addi-

tional technical difficulties.

Remark 6.6. It might be a bit surprising at first that

this only very rough description of the asymptotic be-

havior of approximate nodal domains is sufficient for

our purposes. This is remarkable, in particular, when

compared to the proof of [19, Théorème 2], which

uses the rather explicit description of eigenfunctions

in cusps coming from separation of variables. How-

ever, the main point for our topological arguments is

that all topology of derived approximate nodal sets

can be detected within large compact sets.

6.2 Quantitative Bounds for the Analytic Systole

Theorem 6.4 raises the natural problem of finding

estimates for Λ(S) in terms of other geometric quan-

tities.

Our first result in this direction generalizes the

main result of the third author in [17], which asserts

that a hyperbolic metric on the closed surface Sγ of

genus γ ≥ 2 has at most 2γ − 2 eigenvalues ≤ 1/4+ δ ,

where

δ = min{π/|S|,sys(S)2/|S|2}.

Here |S| denotes the area of S and sys(S), the systole of
S, is defined to be the minimal possible length of an

essential closed curve in S.

Theorem 6.7 (Theorem 1.6 in [3]). For a closed Rie-

mannian surface S with curvature K ≤ κ ≤ 0, we have

Λ(S)≥−κ

4
+

sys(S)2

|S|2
.

The proof relies on the Cheeger inequality for

subsurfaces F of S with non-empty boundary,

λ0(F)≥ h(F)2/4.

Recall that the Cheeger constant is defined by

h(F) = inf
`(∂Ω)

|Ω|
,

where the infimum is taken over all subdomains Ω⊂ F̊
with smooth boundary and ` indicates length.

If F is a disk, an annulus, or a Möbius band, the

assumed curvature bounds allow to apply isoperimet-

ric inequalities (cf. [3, Corollary 2.2]) giving the corre-

sponding lower bound for the Cheeger constant.

One may view Theorem 6.7 also as an upper

bound on the systole in terms of a curvature bound

and Λ(S). Together with our next result, this explains

the name analytic systole.

For a closed Riemannian surface S, we say that

a closed geodesic c of S is a systolic geodesic if it

is essential with length L(c) = sys(S). Clearly, systolic
geodesics are simple.

Theorem 6.8 (Theorem 1.8 in [3]). If S is a closed Rie-

mannian surface with χ(S)< 0 and curvature K ≥−1,
then

Λ(S)≤ 1
4
+

4π2

w2 ,

where w = w(sys(S)) = arsinh(1/sinh(sys(S))).

Under the assumed curvature bound, Theo-

rem 2.3 gives a cylindrical neighbourhood T of a sys-

tolic geodesic of width at least w. Applying Cheng’s

eigenvalue comparison to geodesic balls B(x,r) ⊂ T
with r < w gives the result.

The combination of Theorem 6.7 and Theo-

rem 6.8 in the case of hyperbolic metrics is probably

a bit more enlightening than the general case.

Corollary 6.9. For closed hyperbolic surfaces, we have

1
4
+

sys(S)2

4π2χ(S)2 ≤ Λ(S)≤ 1
4
+

4π2

w2

with w = w(sys(S)) as in Theorem 6.8.
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6.3 Qualitative Bounds for the Analytic Systole

Our main qualitative result concerning the ana-

lytic systole of compact surfaces is as follows.

Theorem 6.10 (Theorem 1.1 in [3]). If S is a compact

and connected Riemannian surface whose fundamen-

tal group is not cyclic, then Λ(S)> λ0(S̃).

In [3, Theorem 1.2], we characterize the inequal-

ity Λ(S)> λ0(S̃) also for complete Riemannian surfaces

S of finite type. The proof is quite involved. To keep

the arguments a bit easier, we will only discuss the

inequality for compact surfaces as stated in Theo-

rem 6.10. This reduces the technical difficulties sig-

nificantly but still contains most of the main ideas.

6.3.1 The Case χ(S) = 0

(Cf. [3, Section 4].) This case is much easier than

the general case, since it follows immediately from

Theorem 6.7, when combined with a result of Brooks.

Proof. If χ(S) = 0, then S is a torus or a Klein bottle.

Therefore, π1(S) is amenable and [5] (or [4]) implies

that λ0(S̃) = 0.
Since S is a torus or a Klein bottle, there is a flat

metric h conformal to the initial metric g. Clearly, g
and h are α-quasiisometric for some α > 1, thus

Λ(S,g)≥ α
−1

Λ(S,h).

Furthermore, we have

Λ(S,h)≥ sys(S,h)2

|S|2h
> 0,

by Theorem 6.7. Hence Λ(S,g)> 0 = λ0(S̃) as asserted.

6.3.2 Inradius Estimate

For a domain Ω⊂ S with piecewise smooth bound-

ary, we call the unique positive, L2-normalized Dirich-

let eigenfunction of Ω the ground state. Recall also

that the inradius of Ω is defined to be

inrad(Ω) = sup{r > 0 | B(x,r)⊂ Ω for some x ∈ Ω}.

The first preliminary result we need in the remaining

discussion is an inradius estimate for superlevel sets

of ground states.

Lemma 6.11 (cf. Lemma 6.4 in [3]). There are con-

stants ρ,ε0 > 0, such that for the ground state ϕ of

any compact disk, annulus, or Möbius band F in S with
smooth boundary and λ0(F)≤ Λ(S)+1, we have

inrad({ϕ
2 ≥ ε0})≥ ρ.

Sketch of proof. The proof is based on isoperimetric

inequalities for such domains (cf. [3, Corollary 2.2])

and the monotonicity of the topology of superlevel

sets (cf. [3, Proposition 5.2]). The used isoperimet-

ric inequalities are suitable reformulations of classi-

cal ones. The monotonicity of the topology of super-

level sets is a direct consequence of the maximum

principle: Any simple contractible loop γ ⊂ F that is

contained in Ft = {ϕ2 ≥ t} has to be contractible in Ft .

Otherwise ϕ would have a local minimum in the disk

filling γ , which contradicts the maximum principle.

Given this observation, one can invoke the coarea

formula exactly as in the proof of the Cheeger in-

equality. Instead of estimating from below by the

Cheeger constant, the monotonicity of the topology

allows us to use the isoperimetric inequalities, which

give much more precise information.

Let us write ΛD(S) = infΩ λ0(Ω), where the infimum

runs through all closed disks with piecewise smooth

boundary in S. Similarly, we write ΛA(S) and ΛM(S) in
the case of annuli and Möbius bands. Then

Λ(S) = inf{ΛD(S),ΛA(S)ΛM(S)},

and we treat the three terms on the right hand side

consecutively.

6.3.3 Disks: ΛD(S)> λ0(S̃)

(Cf. [3, Theorem 7.2].) The proof relies on

Lemma 6.11. We argue by contradiction and assume

that we have a sequence Di of disks in S with λ0(Di)→
λ0(S̃).

By the compactness of S and Lemma 6.11, we can

choose a (not relabeled) subsequence such that

B(x,ρ/2)⊂ {ϕ
2
i ≥ ε0}

for some fixed ball B(x,ρ/2). We lift the disks Di to

disks D̃i ⊂ S̃ such that

B(x̃,ρ/2)⊂ {ϕ̃
2
i ≥ ε0}

for some fixed point x̃ over x. We lift the ground states

ϕi of Di to the ground states ϕ̃i on D̃i and extend ϕ̃i by

zero to S\ D̃i.

By extracting further subsequences if necessary,

we have weak convergence ϕ̃i → ϕ̃ in W 1,2(S̃) and, by
standard elliptic estimates, ϕ̃i → ϕ̃ in C∞(B(x̃,ρ/2)). In
particular,

(6.12) ϕ̃
2 ≥ ε0 on B(x̃,ρ/2).

This rules out the worst case scenario ϕ̃ = 0. Moreover,

by estimating the Rayleigh quotients of ϕ̃i on carefully

chosen balls B(x̃,r)with r →∞, (6.12) allows us to show

that R(ϕ̃)≤ λ0(S̃).
The idea behind this step is as follows: If supp ϕ̃i ⊂

K for some compact subset K ⊂ S̃, the compact
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Figure 4. The cutting radii rn

Sobolev embedding applies and we are done. So as-

sume that the supports of the ϕ̃i leave every com-

pact set eventually. Now remember that B(x̃,ρ/2) ⊂
supp ϕ̃i and |supp ϕ̃i| ≤ |S|. Therefore, the intersection of

∂B(x̃,r)∩ supp ϕ̃i has to be very short for many large r
and uniformly for a subsequence of i; compare with

Figure 4. The precise argument is actually slightly

different, but more difficult to picture. The bound

on |supp ϕ̃i| is replaced by the bound ‖ϕ̃i‖W 1,2 ≤ 1 +

2Λ(S) and a counting argument gives the existence

of the radii r. By construction, the boundary term∫
∂B(x̃,r) ϕ̃i〈∇ϕ̃i,ν〉 coming from integrating by parts on

B(x̃,r) will be small, which allows to get good control

on the Rayleigh quotient.

The bound R(ϕ̃) ≤ λ0(S̃) implies that ϕ̃ is an

L2-eigenfunction of the Laplacian on S̃ with eigenvalue
λ0(S̃). Now S is not a sphere, hence there is a point

different from x̃ in the fiber over x. By construction,

ϕ̃ vanishes in the ρ/2 ball centered at this point, con-

tradicting the unique continuation principle.

6.3.4 Annuli 1: Isotopy Types

For annuli we want to invoke a similar strategy.

Instead of lifting to the universal covering, we use

cyclic subcovers. A problem that we have to face is

that this might be not the same subcover for differ-

ent annuli in competition.

This is taken care of by the following comparison

result.

Lemma 6.13 (cf. Lemma 5.3 in [3]). If F ⊂ S is a com-

pact annulus, and l denotes the length of a shortest

non-contractible closed curve in F , then

λ0(F)≥
{

1−δ +2
(
1− 1

δ

) |F |
`

√
λ0(F)

}
ΛD(S)

for all 0 < δ < 1/2.

The proof of Lemma 6.13 relies on critical point

theory for the ground state of F .

Since S is compact, |F | ≤ |S| ≤ C. For annuli with
λ0(F)≤ Λ(S)+1, the lemma above then implies that

(6.14) λ0(F)≥ (1−2δ )ΛD(S)

for ` large enough. Since we already have ΛD(S)> λ0(S̃),
we can choose δ such that (1−2δ )ΛD(S)> (1+δ )λ0(S̃).
This then implies that only annuli with ` not too large

can have λ0 close to λ0(S̃). Finally, observe that there

are only finitely many isotopy types with bounded `.

Thus, by extracting a subsequence if necessary, we

may assume that all the annuli Ai involved in a se-

quence with λ0(Ai)→ λ0(S̃) belong to the same isotopy

type.

6.3.5 Annuli 2: ΛA(S)> λ0(S̃)

(Cf. [3, Theorem 7.3].) Suppose that there is

a sequence of annuli Ai with λ0(Ai) → λ0(S̃). By

Lemma 6.11, we may assume that we have a fixed ball

B(x,ρ/2)⊂ {ϕ
2
i ≥ ε0}.

As explained above, Lemma 6.13 allows us to assume

that all Ai are isotopic. Therefore, there is a cyclic sub-

cover Ŝ of S̃ such that we can find lifts Âi ⊂ Ŝ of the

Ai. In contrast to the case of disks we are not free to

choose these lifts, since the covering Ŝ → S is not nor-

mal. As before, we also lift the corresponding ground

states ϕi to functions ϕ̂i. Then there is a sequence of

balls B(x̂i,ρ/2)⊂ {ϕ̂2
i ≥ ε0}.

We distinguish two cases.

Case 1: The sequence of x̂i remains in a bounded

set.

This allows us to repeat the argument, that we

used for the case of disks.

Case 2: Up to passing to a subsequence, we have

x̂i → ∞.

This case is indicated in Figure 5. The metric on

the cylinder is the pullback of the hyperbolic metric

conformal to the original metric on S.
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Figure 5. The case x̂i → ∞

Since the systole of the annuli Ai is bounded, at

least one boundary component of Âi has to lie within

bounded distance to the closed geodesic ĉ (indicated
by the curve at distance r0). Since the area of Ai is

bounded, the entire second boundary component can

not be too far away from ĉ (indicated by the radius

r1). Therefore, outside a fixed compact set Âi consists

only of contractible components.

Let χ be a cut off that is 1 on B(x̂i,ρ) and vanishes

in the compact set bounded by r1. By an integration

by parts argument, we get that∫
Ŝ
|∇(χϕ̂i)|2 ≤ λ0(Ai)

∫
Ŝ
|χϕ̂i|2 +Cδ ,

where δ depends on χ and can be made small for i
large (since x̂i → ∞). Note that the inradius estimate

implies in particular that∫
B(x̂i,ρ)

ϕ̂
2
i ≥ ε0|B(x,ρ)| ≥Cε0ρ

2.

Therefore,

ΛD(S)≤ R(χϕ̂)≤ λ0(Ai)+Cε
−1
0 ρ

−2
δ ,

which contradicts λ0(Ai) → λ0(S̃) < ΛD(S) for i large

(and thus δ small).

Remark 6.15. It is very interesting to observe that the

proof crucially relies in two different ways on show-

ing ΛD(S) > λ0(S̃) first. On one hand, this allows us

to control the number of isotopy classes of annuli in

competition. On the other hand, it is used to rule out

the second case from above for the lifted annuli.

6.3.6 Möbius Bands

Showing ΛM(S)> λ0(S̃) is now trivial thanks to the

hard work we have done up to this point. Let So → S be
the orientation covering of S. Any Möbius band M ⊂ S
lifts to an annulus A ⊂ So. Then

λ0(M)≥ λ0(A)≥ ΛA(So)

which implies

ΛM(S)≥ ΛA(So)> λ0(S̃).

This finishes the proof of Theorem 6.10.
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