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1. Introduction

Let Y be a smooth rational surface and let D⊂Y be

an effective reduced anticanonical divisor. Such pairs

(Y,D), called anti-canonical pairs, have a rich geom-

etry. They were first investigated systematically by

Looijenga, and by Friedman etc in the 80s. Note that

Y −D comes with a canonical (up to scaling) nowhere-

vanishing 2-form Ω with simple poles along D. When

the intersection matrix of D is negative definite, D can
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be contracted and Y becomes a singular analogue of

a K3 surface (a normal complex analytic surface with

trivial dualizing sheaf). Motivated by mirror symme-

try, Gross, Hacking and Keel introduced new ideas

in a series of papers on Looijenga pairs, beginning

with [8]. In particular, they proved Torelli type re-

sults in [9] conjectured by Friedman. In this regard,

it was shown in [27] that the symplectic cohomology

of X −D is canonically isomorphic to the vector space

of global sections of the structure sheaf of its mirror.

We will survey the smooth topology, algebraic ge-

ometry, symplectic geometry and contact geometry

of anti-canonical pairs in Sections 2, 3, 4, 5 respec-

tively.

Let X be a smooth, oriented 4 dimensional mani-

fold. A topological divisor of X refers to a connected

configuration of finitely many closed embedded, ori-

ented, labeled smooth surfaces D = C1 ∪ ·· · ∪Ck in X
such that each intersection between two surfaces is

transversal and positive, no three Ci intersect at a

common point, and D has empty intersection with ∂X .
A topological divisor D is often described by a plumb-

ing graph with vertices corresponding to the surfaces

Ci and edges corresponding to intersection points. As-

sociated to D there are plumbed neighborhoods ND as

well as the boundary plumbed 3-manifold YD, which

are all well-defined up to orientation-preserving dif-

feomorphisms.

Given a topological divisor D = C1 ∪ ·· · ∪Ck in X ,
we use [Ci] to denote the homology class of Ci in

H2(X) and H2(ND), r(D) = k to denote the length of D,
and S(D) = (s1, · · · ,sr(D)) to denote the sequence of self-

intersection numbers. H2(ND) is freely generated byCi.

The intersection matrix of D is the k by k square ma-

trix QD = (si j = [Ci] · [C j]), where · is used for any of the

pairings H2(X)×H2(X),H2(X)×H2(X),H2(X)×H2(X ,∂X).
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Via the Lefschetz duality for ND, the intersection ma-

trix QD can be identified with the natural homomor-

phism QD : H2(ND)→ H2(ND,YD). We use homology and

cohomology with Z coefficient unless otherwise spec-

ified.

For a symplectic 4-manifold (X ,ω) a symplectic

divisor is a topological divisor D with eachCi symplec-

tic and having the orientation positive with respect to

ω . Let Kω be the symplectic canonical class of (X ,ω).

Definition 1.1. A symplectic log Calabi–Yau pair

(X ,D,ω) is a closed symplectic 4-manifold (X ,ω) to-

gether with a nonempty symplectic divisor D=∪Ci rep-

resenting the Poincare dual of −Kω . A symplectic log

Calabi–Yau pair is called a A symplectic Looijenga pair

if each Ci is a sphere, called an elliptic log Calabi–Yau

pair if D is a torus.

Here are some quick observations, which have

well known analogues in the holomorphic category.

Lemma 1.2. For a symplectic log Calabi–Yau pair

(X ,D,ω),

• c1(X − D,ω) = 0, and (X − D,ω) is minimal in

the sense it has no symplectic sphere with self-

intersection −1.
• D = ∪Ci is either a torus or a cycle of spheres.

• (X ,ω) is a rational or elliptic ruled symplectic

4-manifold. In particular, κ(X ,ω) = −∞. D is a cy-

cle of spheres only when (X ,ω) is rational.

• b+(QD) = 0 or 1.

Proof. The vanishing of c1(X − D) follows directly

from the definition and X −D being minimal follows

directly from the adjunction formula. The 2nd bullet

is also proved by the adjunction formula. Let gi be the

genus of Ci. Then

−[Ci] · [Ci]−∑
j 6=i

[C j] · [Ci] = Kω · [Ci] =−[Ci] · [Ci]+2gi −2.

So 2gi −2 =−∑ j 6=i[C j] · [Ci]≤ 0, namely, gi ≤ 1 for each i.
If gi = 1 for some i, then ∑ j 6=i[C j] · [Ci] = 0 which implies

that Ci is the only component. The remaining case is

that gi = 0 for each i. In this case, ∑ j 6=i[C j] · [Ci] = 2 for

each i and clearly D is a cycle of spheres.

Since D is a nonempty symplectic divisor repre-

senting −Kω we have Kω · [ω]< 0. It follows from [17],

[22] that (X ,ω) is rational or ruled and admits a genus

0 Lefschetz fibration over a Riemann surface Σ. Let F
be the fibre class. Since Kω ·F = −2 and D represents

−Kω the projection of D to Σ has nonzero degree.

Since D = ∪Ci is either a torus or a cycle of spheres,

the genus of Σ is at most 1.
The last bullet follows from the fact that

b+(X) = 1.

Therefore elliptic pairs and Looijenga pairs are

exactly the symplectic log Calabi–Yau pairs with

length 1 and at least 2 respectively. We remark that

symplectic log Calabi–Yau pairs have vanishing rela-

tive symplectic Kodaira dimension (cf. [16]). The fol-

lowing is the main result in [12].

Theorem 1.3 (Symplectic deformation). Two sym-

plectic log Calabi–Yau pairs are symplectic deforma-

tion equivalent if they are homologically equivalent. In

particular, each symplectic deformation class contains

a Kähler pair.

Moreover, two symplectic log Calabi–Yau pairs are

strictly symplectic deformation equivalent if they are

strictly homologically equivalent.

Let us explain the various equivalence notions

in the theorem (see [29] for a thorough discussion

of equivalence notions for symplectic manifolds). Let

(X0,D0,ω0) and (X1,D1,ω1) be two symplectic pairs

with r(D0) = r(D1) = k. They are said to be homolog-

ically equivalent if there is an orientation preserving

diffeomorphism Φ : X0 → X1 such that Φ∗[C0
j ] = [C1

j ] for

all j = 1, . . . ,k. The homological equivalence is said to

be strict if, in addition, Φ∗[ω1] = [ω0]. When X0 = X1,

they are said to be symplectic homotopic if (D0,ω0)

and (D1,ω1) are connected by a family of symplec-

tic divisors (Dt ,ω t), and they are further said to be

symplectic isotopic if ω t can be chosen to be a con-

stant family. (X0,D0,ω0) and (X1,D1,ω1) are said to

be symplectic deformation equivalent if they are ho-

motopic, up to an orientation preserving diffeomor-

phism. They are said to be strictly symplectic defor-

mation equivalent if they are symplectic isotopic, up

to an orientation preserving diffeomorphism.

A sequence (si) of integers is said to be anti-

canonical if it is realized as S(D) for a symplectic log

Calabi–Yau pair (X ,D,ω). Combined with Theorem 3.1

in [3], we obtain

Corollary 1.4. Given a anti-canonical sequence (si),

there are only finitely many symplectic deformation

types of symplectic log Calabi–Yau pairs (X ,D,ω) with

S(D) = (si).

There is an algorithm to write down the anti-

canonical sequences, starting from the list of mini-

mal pairs and reverse the minimal reduction process

in [12]. It is interesting to compare anti-canonical se-

quences with spherical circular sequences. A spher-

ical circular sequence is the sequence of a cycle of

symplectic spheres in a rational surface with minimal

complement. An anti-canonical sequence (si) is said

to be rigid if, for any cycle of symplectic spheres D ⊂
(X ,ω) with S(D) = (si) and (X −D,ω) minimal, (X ,D,ω)

is a symplectic log Calabi–Yau pair.

Theorem 1.5 (Anti-canonical sequences, [14]). Each

spherical circular sequence with b+ = 1 is anti-

canonical, and each anti-canonical sequence with

b+ = 1 is rigid.
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From the contact point of view, symplectic log

Calabi–Yau pairs are separated into 3 groups, as

stated in the following theorem. Here, Kod(Y,ξ ) is the
contact Kodaira dimension introduced in [13].

Theorem 1.6 (Contact trichotomy, [14]). Let (X ,D,ω)

be a symplectic log Calabi–Yau pair, QD the intersec-

tion matrix of D and (si) the self intersection sequence.

(i) If QD is negative definite, then D admits con-

vex neighborhoods inducing the same contact

3-manifold (YD,ξD), which only depends on S(D)

and has Kod ≤ 0.
(ii) If b+(QD) = 1, up to local symplectic deformations,

D admits concave neighborhoods inducing the

same contact 3-manifold (YD,ξD), which only de-

pends on S(D) and has Kod =−∞.

(iii) If b+(QD) = 0 but QD is not negative definite, then it

does not admit a regular neighborhood with con-

tact boundary.

Golla and Lisca considered a large family F of

torus bundles and showed that these torus bundles

are equipped with contact structures arising from

Looijenga D with b+(QD) = 1 (Theorem 2.5 in [6]). They

also showed, for a subfamily of these torus bundles,

such a contact structure is the unique universally

tight contact structure with vanishing Giroux torsion

(Theorem 1.2 in [6]). This led them to formulate the

following conjecture.

Conjecture 1.7 ([6]). For a concave cycle D of symplec-

tic spheres, the contact structure ξD onYD is universally

tight.

Moreover, they investigated Stein (and symplec-

tic) fillings and classified in many cases up to diffeo-

morphism (Theorems 3.1, 3.2, 3.5 in [6]). On the other

hand, Ohta and Ono classified symplectic fillings of

simple elliptic singularities up to symplectic defor-

mation (Theorems 1, 1’, 2 in [25]). Using these results

and Corollary 1.4, we establish the following finite-

ness result.

Corollary 1.8 (Symplectic fillings, [14]). Suppose

(X ,D,ω) is a symplectic log Calabi–Yau pair with

b+(QD) = 1. Then

• There are finitely many (at least 1) Stein fillings of

(YD,ξD) up to symplectic deformation, all having

b+ = 0. Moreover, for a Looijenga pair, all Stein

fillings have c1 = 0.
• This is also true for minimal symplectic fillings.

We end the survey discussing the geography of

Stein fillings for negative definite QD.

The first author is grateful for the opportu-

nity to speak at the ‘Perspectives of Mathematics

in the 21st Century: Conference in Celebration of

the 90th Anniversary of Mathematics Department

of Tsinghua University’. The authors are also grate-

ful to Kaoru Ono for his interest and useful discus-

sions. The authors were supported by NSF grants DMS

1065927 and 1207037, and are supported by NSF

grant 1611680.

2. Topology of Cycle of Spheres in a
Rational Surface

In this section we review some homological

facts about topological divisors, especially cycles of

spheres, and we refer to [21], [6] and [14] for details.

We first introduce a pair of basic operations for topo-

logical divisors.

Definition 2.1. Toric blow-up is the operation adding

a sphere component with self-intersection −1 between

an adjacent pair of components Ci and Ci+1 and re-

ducing the self-intersection of Ci and Ci+1 by −1. Toric
blow-down is the reverse operation.

Notice that there is a natural labeling for these op-

erations.

Two pairs (X ,D0) and (X ,D1) are said to be toric

equivalent if they are connected by toric blow-ups and

toric blow-downs. D is said to be toric minimal if no

component is an exceptional sphere. Here, an excep-

tional sphere is a sphere with self-intersection −1.

They can be performed in the holomorphic and

symplectic categories. In the holomorphic category

they are often referred as corner blow-up/down.

Lemma 2.2. The following are preserved under a toric

blow-up/down:

• D being a cycle of spheres,

• the non-degeneracy of the intersection matrix QD,

• the oriented diffeomorphism type of the plumbed

3-manifold YD.

The 1st bullet is obvious, while the 2nd bullet

is by a direct computation. The 3rd bullet is part of

Proposition 2.1 in [21].

Here is an example to illustrate how a sphere with

s = 0 can be used to “balance” the self-intersection of

the two sides by performing a toric blow-up and a

toric blow-down.

Example 2.3 (Toric move). The following three cycles

of spheres are toric equivalent:

•3 •−2 •2 •−2 •2 •−1

•0 •−1 •−1 •0

From now on D is either a smooth torus or a cy-

cle of smooth spheres. When D is a torus with self-

intersection s, the boundary 3-manifold is the circle

bundle with Euler number s.
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2.1 The Sequence S(D) and the Boundary Torus

Bundle

When D is a cycle of spheres the labeling is taken

to be cyclic. The orientation of D is a cyclic labeling up

to permutation. We will assume now that D is a cycle

of spheres with the self-intersection sequence S(D) =

(si). Let s(D) = ∑
r(D)
i=1 (si +2) denote the self-intersection

number of D.

Lemma 2.4 (cf. Theorem 2.5 and Theorem 3.1 in [6]).

Let D be a cycle of spheres in X and V = X −ND.

• H2(ND) = Zr(D) = H2(ND),H1(ND) = H1(ND) =

Z,H3(ND) = H3(ND) = 0.
• H1(YD) → H1(ND) is a surjection. If QD is non-

degenerate, then b1(YD) = 1 and the map H1(YD)→
H1(ND) has a finite kernel, H2(YD) = H1(YD) =Z and

the map H2(YD)→ H2(ND) is trivial.

• Suppose QD is non-degenerate and b1(X) = 0, then
b1(V ) = b3(V ) = 0, b2(V ) = b2(X)− r(D)− 1 and the

map Z= H2(YD)→ H2(V ) is injective.

Here are obvious restrictions on homologous

components of D from the cycle condition.

Lemma 2.5. For a cycle of spheres D,

• At most three components are homologous in X .
There are three homologous components only if

r(D) = 3.
• There are a pair of homologous components only

if r(D)≤ 4.
• If [Ci] = [Ci+1] for some i then r(D) = 3,si = si+1 = 1,
or r(D) = 2,si = si+1 = 2.

When b+(X) = 1 there are various restrictions on

components with non-negative self-intersection. Let

r≥0(D) denote the number of components with self-

intersection ≥ 0.

Lemma 2.6. Suppose D is a cycle of spheres in X with

b+(X) = 1.

• If Ci and C j are not adjacent and si ≥ 0,s j ≥ 0, then
[Ci] = [C j] and si = s j = 0.

• r≥0(D)≤ 4.
• r≥0(D)= 4 only if r(D)= 4,si = 0 for each i and [C1] =

[C3], [C2] = [C4].

• Suppose r(D)≥ 3. If si ≥ 0,si+1 ≥ 0,sisi+1 ≥ 1 for some

i, then [Ci] = [Ci+1] and si = si+1 = 1. This is only pos-
sible when r(D) = 3.

These constraints follow easily from the b+(X) = 1
condition. The following lemma, derived from Lem-

mas 2.5 and 2.6, is very useful for Theorems 1.5, 1.6

and 1.8.

Lemma 2.7 ([14]). Suppose D is a cycle of spheres in X
with b+(X) = 1. Up to cyclic permutation and orienta-

tion of D, we have

• If r(D) ≥ 5, then r≥0(D) ≤ 2. When r≥0(D) = 2, s1 ≥
0,s2 = 0.

• If r(D) = 4 and r≥0(D) ≥ 3, then S(D) = (k ≥ 0,0, l <
0,0), [C2] = [C4], l + k ≤ 0.

• If r(D) = 4 and r≥0(D) = 2, then either S(D) = (0, l1 <
0,0, l2 < 0), [C1] = [C3] or (si) = (k ≥ 0,0, l1 < 0, l2 <

0), l1 + l2 + k ≤ 0.
• If r(D) = 3 and r≥0(D) = 3, then the only possi-

bilities of S(D) are (i) (1,1,1), [C1] = [C2] = [C3], (ii)

(1,1,0), [C1] = [C2], (iii) (2 ≥ k ≥ 0,0,0).
• If r(D)= 3 and r≥0(D)= 2, then the only possibilities

of S(D) are (i) (1,1, p < 0), [C1] = [C2], (ii) (k ≥ 0,0, p <

0), p+ k ≤ 2.
• If r(D)= 2 and r≥0(D)= 2, then the only possibilities

of S(D) are (4,1),(4,0),(3,1),(3,0),(2,2),(2,1),(2,0),
(1,1),(1,0),(0,0).

• If r(D) = 2 and r≥0(D) = 1, then S(D) = (k ≥ 0, p < 0).
• If r(D) = 2 and r≥0(D) = 0, then S(D) is one of

(−1,−1),(−1,−2),(−1,−3).

To describe the plumbed 3-manifold YD, we intro-

duce the matrix in SL2(Z) for a sequence of integers

(−t1, · · · ,−tk),

A(−t1, . . . ,−tk) =

(
−tk 1
−1 0

)(
−tk−1 1
−1 0

)
. . .

(
−t1 1
−1 0

)
.

Lemma 2.8 (Theorem 6.1 in [21], Theorem 2.5 in

[6]). For a cycle of spheres D with self-intersection se-

quence S(D) = (s1, ...,sk), the plumbed 3-manifold YD is

the oriented torus bundle TA over S1 with monodromy

A = A(−s1, . . . ,−sk). The intersection matrix QD is non-

degenerate if the trace of A(−s1, . . . ,−sk) 6= 2.

2.2 Toric Minimal Pairs

Lemma 2.9. Any cycle of sphere is toric equivalent to

a toric minimal one or one with sequence (−1, p). If
S(D) = (−1, p), then QD is degenerate only if p =−4.

Suppose D is a toric minimal cycle of spheres with

sequence S(D) = (si). Then

• b+(QD)≥ 1 if and only if si ≥ 0 for some i.
• QD is negative definite if si ≤ −2 for all i and less

than −2 for some i. QD is negative semi-definite

but not negative definite if si =−2 for each i.
• QD is non-degenerate if either s1 ≥ 0 and si ≤ −2
for i ≥ 2, or s1 = s2 = 0 and si ≤−2 for i ≥ 3,

The first statement is by definitions (notice that

we do not allow nodal components). The second

statement is obvious. Bullets 1, 2 are well-known

(cf. Lemma 8.1 in [21]). To prove the 3rd bullet, by

Lemma 2.8, we just need to that the trace of the mon-

odromy matrix is not equal to 2, which is a direct cal-

culation using Lemma 5.2 in [21].

Each toric minimal, negative definite cycle D with

s(D)≤−2 has a dual cycle Ď, with the property that the
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plumbed manifolds YD and YĎ are orientation revers-

ing diffeomorphic (Theorem 7.1 in [21]). To describe

the dual cycle we use the 2 by k matrix

(
a1 . . . ak

b1 . . . bk

)
to represent the sequence (a1,−2, . . . ,−2,a2, . . . ,ak),

where ai ≤ −3 and there are bi many −2 between ai

and ai+1. For a negative definite toric minimal cycle D
with s(D)≤−2, we have either two ai terms or ai ≤−4
for some i. The dual cycle Ď is represented by the 2 by

k matrix

(
ǎi = −bi −3
b̌i = −ai+1 −3

)
. It is easy to check that Ď

is also toric minimal, negative definite and s(Ď)≤−2.
A remark is that we can also view the elliptic pairs

(s) and (−s) as dual pairs in the sense that boundary

3-manifolds are orientation reversing diffeomorphic.

3. Algebraic Geometry of Looijenga
Pairs

In this section we very briefly review some basic

results of Looijenga pairs (Y,D), which have or might

have symplectic analogues. Please consult the survey

article [3] and [8].

3.1 Torelli and Deformation

There are several versions of the Torelli theorem.

The following is Theorem 8.5 in [3].

Theorem 3.1 (A global Torelli). Given Looijenga pairs

and an isomorphism of lattices µ compatible with D,
there is a isomorphism f of Looijenga pairs such that

µ = f ∗ if and only if µ preserves the nef cone.

Two anticanonical pairs are said to be (holomor-

phically) deformation equivalent if they are both iso-

morphic to fibers of a family of anticanonical pairs

over a connected base. The following two statements

are given in Theorem 3.1 and Theorem 5.14 in [3] re-

spectively.

Theorem 3.2. There are only finitely many defor-

mation types of Looijenga pairs with the same self-

intersection sequence. Two Looijenga pairs are defor-

mation equivalent if they are homology equivalent.

3.2 Cusp Singularities

A cusp singularity is the germ of an isolated, nor-

mal surface singularity such that the exceptional di-

visor of the minimal resolution is a cycle of smooth

rational curves D meeting transversely. For normal

surface singularities, there is a notion of Kodaira di-

mension κδ , and Gorenstein surface singularities with

κδ = 0 are simple elliptic singularities and cusp singu-

larities (cf. [26] and the references therein).

Cusp singularities come in dual pairs, and their

minimal resolutions are given as dual cycles. Every

pair of dual cycles embed in a Hirzebruch–Ionue sur-

face as the only curves. A cusp singularity is called

rational if its minimal resolution is realized as the

anti-canonical divisor of a rational surface. By the

Mumford–Grauert criterion, any toric minimal, neg-

ative definite Looijenga pair (Y,D) arises as the min-

imal resolution of a rational cusp singularity. Looi-

jenga proved that a cusp is rational if its dual cusp is

smoothable and he conjectured the converse is also

true. The Looijenga conjecture was proved in [8] via

mirror symmetry and later by integral-affine geome-

try in [2].

4. Deformation Classes of Symplectic
Log CY Pairs

In this section we give a brief outline of the proof

of Theorem 1.3 and Theorem 1.5.

4.1 Operations and Minimal Pairs

It involves the operations of non-toric blow-

up/down and the notion of minimal models. A non-

toric blow-up of D is the proper transform of a sym-

plectic blow-up centered at a smooth point of D.
A non-toric blow-down is the reverse operation which

symplectically blows down an exceptional sphere not

contained in D. These operations preserve the log

Calabi–Yau condition and there are analogues in the

holomorphic category, sometimes referred as interior

blow-up/blow-down.

A symplectic log Calabi–Yau pair (X ,D,ω) is called

minimal if (X ,ω) is minimal, or (X ,D,ω) is a symplec-

tic Looijenga pair with X =CP2#CP2. For any symplec-

tic log Calabi–Yau pair (X ,D,ω), we apply first a maxi-

mal sequence of non-toric blow-downs using [19] and

then amaximal sequence of toric blow-downs. The re-

sulting toric minimal pair, which is actually minimal

due to [28], is called a minimal model of (X ,D,ω).

We enumerate the minimal symplectic log Calabi–

Yau pairs (modulo cyclic symmetry), all of them hav-

ing length less than 5.

• Case (A): The base genus of X is 1. D is a torus.

• Case (B): X = CP2, c1 = 3h.

(B1) D is a torus,

(B2) D consists of a h-sphere and a 2h-sphere, or

(B3) D consists of three h-spheres.

• Case (C): X = S2 ×S2, c1 = 2 f1 +2 f2, where f1 and f2

are the homology classes of the two factors.

(C1) D is a torus.

(C2) r(D) = 2 and [C1] = b f1 + f2, [C2] = (2−b) f1 + f2.

(C3) r(D) = 3 and [C1] = b f1 + f2, [C2] = f2, [C3] =

(1−b) f1 + f2.

(C4) r(D) = 4 and [C1] = b f1 + f2, [C2] = f1, [C3] =

−b f1 + f2, [C4] = f1.
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The graphs in (C1), (C2), (C3) and (C4) are given

respectively by

•8 •2b •4−2b •2b •0

•2−2b

•2b •0

•0 •−2b

• Case (D): X = CP2#CP2, c1 = f + 2s, where f and s
are the fiber class and section class with f · f = 0,

f · s = 1 and s · s = 1.

(D2) r(D) = 2, and either ([C1], [C2]) = (a f + s,
(1−a) f + s) or ([C1], [C2]) = (2s, f ).

(D3) r(D) = 3 and [C1] = a f +s, [C2] = f , [C3] =−a f +s.

(D4) r(D) = 4 and [C1] = a f + s, [C2] = f , [C3] =

−(a+1) f + s, [C4] = f .

The graphs in (D2), (D3) and (D4) are given re-

spectively by

•2a+1 •3−2a •4 •0 •2a+1 •0

•−2a+1

•2a+1 •0

•0 •−2a−1

4.2 Classification by Homology Equivalence

There are two steps to prove Theorem 1.3. One

step is to show that each (strict) homology type of

minimal pairs contains a unique (strict) deformation

class via a combination of pseudo-holomorphic curve

techniques and Thurston type symplectic construc-

tion in the setting of a pair of a symplectic 4-manifold

with a smooth symplectic surface.

We also introduce marked divisors and estab-

lish the invariance of their (strict) deformation class

under toric and non-toric blow-up/down operations

(cf. also [25]). This invariance property reduces Theo-

rem 1.3 to the minimal case. The statement that each

symplectic deformation class contains a Kähler pair

is not stated in [12] but it follows from the proof out-

lined above since each minimal pair clearly deforms

to a Kähler pair (cf. Section 3 in [12] and Theorem 2.4

in [3]) and blow-up/down can be performed in the

Kähler category.

We remark that Theorem 1.3 should also apply to

the cases of irreducible nodal spheres and cuspidal

spheres using [1] and [24] respectively.

Proof of Corollary 1.4. By Theorem 1.3, every sym-

plectic deformation class contains a Kähler pair. The

finiteness of Looijenga pairs follows directly from

Theorem 3.2. For elliptic symplectic log Calabi–Yau

pairs, where the sequences are of length 1, the finite-
ness is more straightforward–it follows from the

finiteness of symplectic deformation types in the case

of minimal pairs for each (s), where s = 0,8,9 (cf. Sec-

tion 3 in [12]), and the fact that there is only one way

to (non-toric) blow up, up to deformation.

4.3 Anti-Canonical Sequences

Due to the classification of minimal symplec-

tic log Calabi–Yau pairs, it is a combinatorial prob-

lem to determine the anti-canonical sequences. There

are also various conditions on spherical circular se-

quences with b+ = 1 in Lemma 2.9, Lemma 2.7,

Lemma 2.6. The first statement of Theorem 1.5 that

every spherical circular sequence with b+ = 1 is anti-

canonical is deduced from these lemmas, the list of

minimal pairs, the observation that whether a spher-

ical circular sequence is anti-canonical only depends

on its toric equivalence class, and

Proposition 4.1. Suppose D ⊂ (X ,ω) is a cycle of

spheres in a rational surface (X ,ω) with minimal com-

plement. Then s(D)≤ 9, and S(D) 6= (5+ l,−l) with l ≥ 2.
D represents c1(X ,ω) if

• si ≥−1 for any i, or
• S(D) = (1,−p1+1,−p2, ....,−pl−1,−pl +1)with pi ≥ 2,

l ≥ 2.

This proposition is proved using Theorem 6.10 in

[25], Proposition 3.14 in [16], Theorem 3.1 in [6], and

a direct verification to exclude (5+ l,−l) with l ≥ 0.
For the second statement of Theorem 1.5 that any

anti-canonical sequence with b+ = 1 is rigid, it follows

from the following propositions and the observation

that whether an anti-canonical sequence is rigid only

depends on its toric equivalence class.

Proposition 4.2. Suppose (si) is an anti-canonical se-

quence and it belongs to one in the following list.

• (1,−p1 + 1,−p2, ....,−pl−1,−pl + 1) with pi ≥ 2, l ≥ 2
so r(D)≥ 3.

• (0,0,0,n) with n ≤ 0.
• (1,1, p), p ≤ 1.
• (1, p) with p ≥ 4.
• (0,n) with n ≤ 4.
• si ≥−1 for each i.
• (−1,−2) and (−1,−3).

Then (si) is rigid.
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Proposition 4.3. Suppose (X ,D,ω) is a symplectic Looi-

jenga pair with b+(QD) = 1. Then S(D) is toric equiva-

lent to one in Proposition 4.2.

Proposition 4.2, except for the last bullet, is

proved using Proposition 7.1 in [25], Theorems 3.1,

3.2, 3.5 in [6] and similar arguments. The cases

(si) = (−1,−2) and (−1,−3) are more delicate, requir-

ing a blowup trick. Proposition 4.3 is proved by Lem-

mas 2.9, 2.7, 2.6, the toric move in Example 2.3 and

induction on the length of D.

5. Contact Aspects

Let (X ,D,ω) be a symplectic log Calabi–Yau pair.

A neighborhood N′ of D is called a concave (resp. con-

vex) neigborhood if N′ is a concave (resp. convex) sym-

plectic manifold. D is called concave (resp. convex) if

for any neighborhood N′ of D, there is a concave (resp.
convex) plumbing neighborhood ND ⊂ N′. A necessary

condition for D to be either convex or concave is ω

being exact on the boundary of any plumbing neigh-

borhood. Here is a local criterion.

Lemma 5.1. ω|YD is exact if and only if there is a so-

lution for z to the equation QDz = a, where a = ([ω] ·
[C1], . . . , [ω] · [Ck]) is the area vector. In particular, this

holds if QD is non-degenerate. Moreover, this condition

only depends on the toric equivalence class.

The first statement is observed in [11]. Moreover,

tori blow-up/down is a local operation that does not

change the diffeomorphism type of YD and the exact-

ness of ω|YD . One can also check that the solvability

for QDz= a is stable under toric blow-up/down by sim-

ple linear algebra. When X is a closed manifold, we

also have the following criterion.

Lemma 5.2. Suppose X is a closed manifold with inter-

section matrix QX . Let I1 = ι∗(H2(D);R) ⊂ H2(X ;R) and
I2 ⊂ H2(X ;R) be QX -orthogonal to I1 in H2(X ;R). If the
span of I1 ∪ I2 is H2(X ;R), then ω|YD is exact. The exis-

tence of I2 is preserved under toric blow-up and toric

blow-down.

We also recall two criterions for symplectic divi-

sors to be contact and the definition of contact Ko-

daira dimension.

Theorem 5.3 ([5], [20]). A negative definite symplectic

divisor is convex.

Theorem 5.4 ([11]). Let D ⊂ (W,ω0) be a symplectic di-

visor. If QD is not negative definite and ω0 restricted

to the boundary of D is exact, then ω0 can be locally

deformed through a family of symplectic forms ωt on

W keeping D symplectic and such that (D,ω1) is a con-

cave divisor. Moreover, the contact structure ξD on YD

is canonically associated to D in this case and in the

negative definite case.

Definition 5.5 ([13], [15]). Let (W,ω) be a concave sym-

plectic 4-manifold with contact boundary (Y,ξ ). (W,ω)

is called a Calabi–Yau cap of (Y,ξ ) if c1(W ) is a tor-

sion class, and it is called a uniruled cap of (Y,ξ ) if
there is a contact primitive β on the boundary such

that c1(W ) · [(ω,β )]> 0.
The contact Kodaira dimension of a contact

3-manifold (Y,ξ ) is defined in terms of uniruled caps

and Calabi–Yau caps. Precisely, Kod(Y,ξ ) =−∞ if (Y,ξ )
has a uniruled cap, Kod(Y,ξ ) = 0 if it has a Calabi–

Yau cap but no uniruled caps, Kod(Y,ξ ) = 1 if it has

no Calabi–Yau caps or uniruled caps.

5.1 Trichotomy

Theorem 1.6 is based on the following observa-

tion in [14] (cf. also Theorem 2.5 in [6]).

Proposition 5.6. For a symplectic log Calabi–Yau pair

(X ,D,ω), ω is exact on YD if and only if QD is negative

definite or b+(QD) = 1.

This result is proved by the local criterion Lem-

ma 5.1, Lemma 2.9, Lemma 2.7, Lemma 2.6, the toric

move in Example 2.3, and by applying the I2-criterion

Lemma 5.2 to the following list of log Calabi–Yau

pairs (X ,D,ω) with r(D)≤ 4 and b+(QD) = 1.

1. (B2) in the list of minimal models; I2 = /0; S(D) =

(1,4).
2. (C2) with b = 1; I2 = /0; S(D) = (2,2).
3. (B3); I2 = /0; S(D) = (1,1,1).
4. Non-toric blow-ups of (B3) on C3 and its proper

transforms; I2 = {e j − e j+1,1 ≤ j ≤ α − 1}; S(D) =

(1,1,1−α).

5. Non-toric blow-ups of (C3) on C3 and its proper

transforms; I2 = {e j − e j+1,1 ≤ j ≤ α − 1}; S(D) =

(0,0,2−α).

6. (C4) with b = 0; I2 = /0; S(D) = (0,0,0,0).
7. Non-toric blow-ups of (C4) with b = 0 on C4 and

its proper transforms; I2 = {e j −e j+1,1 ≤ j ≤ α −1};
S(D) = (0,0,0,−α).

For Case (iii) of Theorem 1.6, it follows from

Proposition 5.6 that ω is not exact on YD. For Case

(i) of Theorem 1.6, QD is negative definite and hence

there is a convex plumbing neighborhood ND with

contact boundary (YD,ξD) by Theorem 5.3. Notice that

P = X − ND is a symplectic cap of YD with vanish-

ing c1, namely, it is a Calabi–Yau cap. It follows that

Kod(YD,ξD) ≤ 0. For Case (ii) of Theorem 1.6, it fol-

lows from Theorem 5.4 and Proposition 5.6 that, up

to a local symplectic deformation, there is a concave

plumbing neighborhood ND with contact boundary

(YD,ξD). Moreover, since D is symplectic and repre-

sents c1(X), for any contact primitive α of ω|YD , we

have c1(ND) · [(ω,α)] = c1(X)|ND · [(ω,α)] = D · [(ω,α)] =

D · [ω]> 0. Thus ND is a uniruled cap.
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Remark 5.7. Applying Theorem 1.6, Theorem 1.3 and

Proposition 4.1 in [9], it is not hard to prove the fol-

lowing statement: For a symplectic log Calabi–Yau

pair (X ,D,ω) with b+(QD) = 1, there exists a Kähler log
Calabi–Yau pair (X ,D,ω) in its symplectic deforma-

tion class such that D is the support of an ample line

bundle. Then (X −D,ω) provides a Stein filling with

b+ = 0 and c1 = 0.

5.2 Symplectic Fillings

In the context of torus bundles, Golla–Lisca inves-

tigated symplectic fillings in the case b+(QD) = 1. Here
is a summary of their results.

Theorem 5.8 (Theorems 1.1, 3.1, 3.5 in [6]). For a

large family F of torus bundles TA arising from D with

b+(QD) = 1, all Stein fillings of (TA = YD,ξD) have c1 = 0,
b1 = 0 and the same b2. Moreover, up to diffeomor-

phism, there are only finitely many Stein fillings, and

there is a unique Stein filling if |trA| < 2. Here A is the

monodromy matrix of YD. These results also hold for

minimal symplectic fillings for this family, except pos-

sibly 3 torus bundles with |trA|< 2.

According to Corollary 1.8, the finiteness prop-

erty holds more generally.

Proof of Corollary 1.8. By Theorem 1.6 (YD,ξD) is fil-

lable and all the symplectic fillings have b+ = 0. For
Looijenga pairs, the Stein filliability follows from Re-

mark 5.7. For an elliptic pair with self-intersection

s> 0, there is an obvious Stein filling diffeomorphic to

the neighborhood of a torus with self-intersection −s.
The finiteness of symplectic fillings for elliptic pairs

is proved in [25] (see Theorem 5.9).

Now observe that if D is concave and (Stein) rigid

then any (Stein) symplectic filling of (YD,ξD) is the

complement of a symplectic log CY pair with the same

self-intersection sequence. Now we invoke the sec-

ond statement of Theorem 1.5 and Corollary 1.4 to

conclude the finiteness of Stein symplectic fillings

for all Looijenga pairs and the finiteness of symplec-

tic fillings except for the toric equivalence classes

of (−1,−2),(−1,−3). Clearly, the fillings have vanish-

ing c1.

Together with Theorems 1.3 and 1.8 in [15], The-

orem 1.6 has the following consequence: when QD is

negative definite, the Betti numbers of exact fillings

of (YD,ξD) are bounded. For elliptic pairs, we have the

following:

Theorem 5.9 (Theorem 2 in [25]). Any simple ellip-

tic singularity has finite number of symplectic fillings,

arising either from a smoothing or the minimal reso-

lution.

For Looijenga pairs, when D is negative defi-

nite and toric minimal, ξD coincides with the contact

structure arising from the corresponding cusp sin-

gularity and hence is Stein fillable with a Stein fill-

ing diffeomorphic to ND. Notice that b1(ND) = 1 by

Lemma 2.4. We provide some explicit Betti number

bounds for Stein fillings belowwhen D is negative def-

inite.

Proposition 5.10 ([14]). Suppose that D is toric mini-

mal and negative definite andV =X −ND. IfU is a Stein

filling of YD, then XU =U ∪V has either b+ = 1 or 3, and
b+(X) = 1+b+(U)+b0

2(U),b0
2(U)+b1(U) = 1.

When b+(XU ) = 1, XU is rational or an integral ho-

mology Enriques surface, and U is negative definite

with b1(U) = 1. In this case e(U) = b−(U), where e is the
Euler number.

When b+(XU ) = 3, XU is an integral homology K3,
(b+2 (U),b0

2(U),b1(U)) = (1,1,0) or (2,0,1). In either case,

c1(U) = 0 and 2 ≤ e(U)≤ 21.

Finally, we discuss the potential implication of

Proposition 5.10 for Stein fillings of cusp singular-

ities. By the now confirmed Looijenga conjecture

which states that a cusp singularity is smoothable

if and only if has a rational dual, a smoothing of a

cusp singularity provides a Stein filling with b+ = 1.
In light of this, Proposition 5.10 provides some evi-

dence to the following symplectic/contact analogue

of the Looijenga conjecture.

Speculation 5.11. If a cusp singularity does not have

a rational dual, then it admits only negative definite

Stein fillings.
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