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Abstract. We give an account of the analogies

between the Nash–Kuiper C1 solutions of the

isometric embedding problem and the weak solutions

of the incompressible Euler equations which violate

the energy conservation. Such analogies have lead

to the recent resolution of a well-known conjecture

of Lars Onsager in the theory of fully developed

turbulence.
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1. The Nash–Kuiper Theorem

Let (Σn,g) be a smooth n-dimensional Riemannian

manifold. A map u : Σ →RN is isometric if it preserves

the length of curves, i.e. if

(1) `g(γ) = `e(u◦ γ) for any C1 curve γ ⊂ Σ,

where `g(γ) denotes the length of γ with respect to the

metric g:

(2) `g(γ) =

ˆ √
g(γ(t))[γ̇(t), γ̇(t)]dt .

As customary, in local coordinates we can express the

metric tensor g as1 g = gi jdxi⊗dx j. For a C1 map u, con-
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dition (1) is equivalent to the system of partial differ-

ential equations

(3) ∂iu ·∂ ju = gi j .

In the usual language of Riemannian geometry,

(3) means that g is the pullback of the Euclidean met-

ric through the map u.
The existence of isometric immersions (resp. em-

beddings) of Riemannian manifolds into some Eu-

clidean space is a classical problem, explicitly formu-

lated for the first time by Schläfli, see [46]: in the lat-

ter Schläfli conjectured that the system is solvable

locally if the dimension N of the target is at least

sn := n(n+1)
2 . Such conjecture stands to reason because

(3) consists precisely of sn equations in N unknowns.

In the first half of the twentieth century Janet [36],

Cartan [14] and Burstin [13] proved Schläfli’s conjec-

ture for analytic metrics.

For the very particular case of 2-dimensional

spheres endowed with metrics of positive Gauss cur-

vature, Weyl in [51] raised the question of the ex-

istence of (global!) isometric embeddings in R3. The

Weyl’s problem was solved by Lewy in [39] for ana-

lytic metrics and Nirenberg settled the case of smooth

metrics in his PhD thesis in 1949; a different proof

was given independently by Pogorelov [43] around

the same time, building upon the work of Alexandrov

[1] (see also [44]).

An important aspect of the Weyl’s problem is

the rigidity of the solutions found by Lewy, Niren-

berg and Pogorelov. Indeed, already before the work

of Lewy, Cohn-Vossen and Herglotz proved indepen-

dently that C2 isometric immersions of positively

curved spheres are uniquely determined up to rigid
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motions, cf. [17, 33] and see also [49] for a thorough

discussion.

Before the appearance of Nash’s celebrated

works, it was natural to expect that the assumption

ofC2 regularity in the works of Cohn-Vossen and Her-

glotz was just of technical nature. But in his 1954

note [41] Nash astonished the geometry world and

proved that the only true obstructions to the exis-

tence of isometric immersions are topological and

that as soon as N ≥ n+1 and there are no such obstruc-

tions, then there are in fact plenty of such immer-

sions. Nash’s Theoremwas therefore in stark contrast

with the intuition that codimension 1 smooth isomet-

ric immersions are rather rigid for n = 2 and that for

n > 2, given that the system (3) is heavily overdeter-

mined, existence of solutions should occur rarely.

In order to state Nash’s Theorem we need some

terminology.

Definition 1.1. Let (Σ,g) be a Riemannian manifold.

An immersion v : Σ →RN is short if we have it “shrinks”

the length of curves. ForC1 immersions and in local co-

ordinates such condition is equivalent to the inequality

(∂iv ·∂ jv)wiw j ≤ gi jwiw j for any tangent vector w.

Theorem 1.2. Let (Σ,g) be a smooth closed

n-dimensional Riemannian manifold and v : Σ → RN a

C∞ short immersion with N ≥ n+1. Then, for any ε > 0
there exists a C1 isometric immersion u : Σ → RN such

that ‖u− v‖C0 ≤ ε . If v is, in addition, an embedding,

then u can be assumed to be an embedding as well.

Indeed Nash gave a proof of Theorem 1.2 for N ≥
n+ 2 and just remarked that it could be proved for

N ≥ n+1 with some additional work; the details were

then given in two subsequent notes by Kuiper, [38].

For this reason Theorem 1.2 is called nowadays the

Nash–Kuiper Theorem on C1 isometric embeddings.

2. Rigidity Versus Flexibility

Isometries of Riemannian manifolds behave then

in rather different ways depending on their smooth-

ness: from the one hand we have the rigidity of

C2 isometries, witnessed in the classical result of

Cohn-Vossen and Herglotz, and on the other hand

we have the flexibility of C1 isometries stated in the

Nash–Kuiper Theorem. A natural question is whether

there is a threshold regularity which distinguishes be-

tween the two behaviors.

The Hölder spaces give a classical way to measure

intermediate smoothness betweenC1 andC2: aC1 map

v belongs to the Hölder space C1,α (with 0 < α ≤ 1) if

|Dv(x)−Dv(y)| ≤C|x− y|α

for some constant C independent of x,y ∈ Σ. It is

thus natural to look at C1,α isometries of Rieman-

nian manifolds and ask whether there is an α0 for

which such isometries display flexibility phenomena

à la Nash–Kuiper for α < α0 and rigidity phenomena

à la Cohn-Vossen–Herglotz for α > α0. The first math-

ematician who tackled such problem is Borisov, who

published a series of works on the topic in the late

fifties (see below). Later such question is mentioned

by Gromov in [31] and by Yau in [52] and in the re-

cent work [32] Gromov advanced the conjecture that

the threshold α0 is in fact 1
2 .

In a series of papers in the 1950s, cf. [2, 3, 4, 5],

Borisov showed that the rigidity of the Weyl problem

can in fact be extended to C1,θ immersions provided

θ is sufficiently large.

Theorem 2.1. Let (S2,g) be a surface with C2 metric

and positive Gauss curvature, and let u ∈ C1,θ (S2;R3)

be an isometric immersion with θ > 2/3. Then u(S2) is

the boundary of an open convex set.

Borisov’s Theorem is more general, but his state-

ment needs the introduction of Pogorelov’s concept

of bounded extrinsic curvature, cf. [20]:

Theorem 2.2. If (Σ,g) is a surface with C2 metric and

positive Gauss curvature and u ∈C1,θ (S2;R3) is an iso-

metric immersion with θ > 2/3, then u(Σ) has bounded
extrinsic curvature in the sense of Pogorelov.

Building upon the work of Pogorelov, [44], The-

orem 2.1 can be immediately derived from Theorem

2.2.

The concept of Pogorelov’s bounded extrinsic

curvature can be easily explained as follows. When

u is a smooth immersion, Gauss’ Theorema Egregium

asserts that the determinant of the differential dN of

the Gauss map N of u(Σ) equals the Gauss curvature κ .

In particular, by the area formula, for any measurable

subset A of u(Σ) the surface area |N(A)| of N(A)⊂ S2 can

be computed with the area formula and it is bounded

by a constant times the area of A: such constant is

simply the maximum of the absolute value of κ . On

the other hand N(A) and A are well defined as soon

as u is a C1 map and thus if an inequality of the form

|N(A)| ≤C|A| holds for every measurable A, we can as-

sert that u(Σ) has bounded curvature in a generalized

sense.

Ultimately Theorem 2.2 states that a (suitable

form of) Gauss’ Theorema Egregium holds forC1,θ im-

mersions as soon as θ > 2
3 . In [20] we discovered a very

short proof of Borisov’s Theorem, which exploits the

same key computation of Constantin–E–Titi’s proof,

see [18], of part (a) of Onsager’s conjecture, cf. Con-

jecture 3.1 below.

For sufficiently small Hölder exponents, instead,

the Nash–Kuiper construction remains valid:

Theorem 2.3. Let (Σ,g) be a C2 Riemannian manifold

of dimension n. Any short immersion u : Σ → Rn+1 can
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be uniformly approximated withC1,θ isometric immer-

sions, where:

(a) θ < 1
1+n(n+1) when Σ is a closed ball;

(b) θ < 1
1+n(n+1)2 when Σ is a general compact

n-manifold;

(c) θ < 1
5 if Σ is a 2-dimensional disk.

The maps can be chosen to be embeddings if u is an

embedding.

Case (a) of this theorem was announced in [6] by

Borisov, based on his habilitation thesis, under the

additional assumption that g is analytic. A proof with

n = 2 appeared more than 40 years later, cf. [7]. The

general statements (a) and (b) of Theorem 2.3 have

been proved in [20], whereas the improved bound for

2-dimensional disks, namely statement (c), has been

shown rather recently in [23].

As a byproduct of the above constructions, there

is no way of making sense of Gauss’ Theorema

Egregium for C1,θ immersions when θ is sufficiently

small. A natural question is then to ask whether

these two behaviors are distinguished by a sharp

threshold. In what follows we will call such question

“Borisov–Gromov problem”.

3. Onsager’s Conjecture

Around 10 years ago László Székelyhidi and

I pointed out a striking analogy between the

Borisov–Gromov problem and a well-known conjec-

ture in the theory of mathematical fluid dynamics,

proposed in 1949 by the celebrated Norwegian the-

oretical physicist Lars Onsager (we refer to the sur-

vey articles [26] and [29] for a thorough discussion of

this and several other points mentioned below). The

unveiling of such analogy was a consequence of our

work [24]: in that paper we applied methods which

are reminiscent of those used by Nash in [41] in order

to explain the existence of weak solutions to the in-

compressible Euler equations which do not preserve

the total kinetic energy.

The incompressible Euler equations describe the

motion of a perfect incompressible fluid. Written

down by L. Euler over 250 years ago, these are the con-

tinuum equations corresponding to the conservation

of momentum and mass of arbitrary fluid regions. In

Eulerian variables they can be written as

(4)

{
∂tv+(v ·∇)v+∇p = 0
divv = 0,

where v= v(x, t) is the velocity and p= p(x, t) is the pres-
sure. We will focus on the 3-dimensional case with pe-

riodic boundary conditions. In other words we take

the spatial domain to be the flat 3-dimensional torus

T3 =R3/(2πZ)3. A classical solution on a given time in-

terval [0,T ] is defined to be a pair (v, p) ∈C1(T3 × [0,T ])
which solves (4) pointwise.

As far as weak solutions are concerned, there

are several notions (see for instance the survey ar-

ticle [26] and the lecture notes [50]). One commonly

considered in the literature consists of pairs (v, p) :
T3 × [0,1]→ R3 ×R which solve (4) in the sense of dis-

tributions2.

For classical solutions (i.e. if v ∈ C1) the total en-

ergy

e(t) :=
1
2

ˆ
T3

|v(x, t)|2 dx

is conserved by the flow induced by (4), so that e(t) =
e(0). The proof is an easy computation. We can scalar

multiply the first equation by v to derive:

∑
j

v j∂tv j +∑
j

v j ∑
k

vk∂xk v j +∑
j

v j∂x j p = 0 ,

which we can rewrite as

∂t
|v|2

2
+(v ·∇)

(
|v|2

2
+ p

)
= 0 .

Using the fact that v is divergence free we finally

achieve

∂t
|v|2

2
+div

((
|v|2

2
+ p

)
v

)
= 0 ,

which integrated in the space variable implies

d
dt

ˆ
T3

|v|2(x, t)
2

dx = 0 .

Onsager in [42] was the first to suggest the existence

of weak solutions which might dissipate the energy.

Based on calculations in Fourier space, he formu-

lated the following conjecture (in fact he had a non-

rigorous argument for part (a)).

Conjecture 3.1. Consider periodic 3-dimensional

weak solutions of (4), where the velocity v satisfies the
uniform Hölder condition

(5) |v(x, t)− v(x′, t)| ≤C|x− x′|θ ,

for constants C and θ independent of x,x′ and t.

(a) If θ > 1
3 , then the total kinetic energy of v is con-

stant;

(b) For any θ < 1
3 there are solutions v for which the

total kinetic energy is not constant.

As already mentioned, Onsager in [42] actually

suggested the existence of solutions for which the

energy is strictly decreasing: in order to distinguish

2 Recall the classical computation that (v ·∇)v = div(v⊗ v) if
divv = 0, so that distributional solutions are defined for any
v ∈ L2(T3 × [0,1]).
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them from “non-conservative” weak solutions we will

call them dissipative solutions. Moreover the thresh-

old 1
3 has a deep physical meaning, since it is related

to the Kolmogorov’s energy spectrum in his theory

of fully developed turbulence, that Onsager rediscov-

ered independently.

4. Energy Conservation

The “positive part” of the Conjecture, namely

statement (a), was proved by Constantin, E and Titi

in [18] (a previous work of Eyink, [30], reached the

critical threshold 1
3 in a different scale of spaces). The

argument of Constantin, E and Titi is very elegant and

surprisingly simple. Fix a weak solutions (v, p) and

consider a standard family of mollifiers ϕε in space.

As usual we will denote by vε the mollification of v
with the kernel ϕε . Clearly

divvε = 0 .

On the other hand the momentum balance in the Eu-

ler equations has a nonlinear term and for this reason

vε is not a solution. We can however regard it as an

“approximate solution”:

∂tvε +divvε ⊗ vε +∇pε = div(vε ⊗ vε − (v⊗ v)ε︸ ︷︷ ︸
=:Tε

) .

It is not difficult to show that vε has enough smooth-

ness to carry on the computations of the previous sec-

tion, which therefore show

(6)
d
dt

1
2

ˆ
|vε |2

2
(x, t)dx =

ˆ
Tε : Dvε .

Since the right hand side of such equation has a com-

mutator structure, a clever, yet elementary, computa-

tion allows to show that it converges to 0 as ε ↓ 0 as

soon as v ∈ C0,1/3+ε (in fact one can allow for slightly

less regularity, cf. [18] and [16]).

Theorem 2.2 is proved in [20] with a very similar

strategy. The isometric immersion u is approximated

with a standard mollification procedure by smooth

immersions uε . After writing the area formula for the

Gaussmap Nε of uε(Σ), we can understand Gauss’ The-

orema Egregium as a suitable family of integral iden-

tities. Something similar can be done for the Euler

equations as well: we can write a suitable local ver-

sion of the energy conservation as an integral iden-

tity involving a smooth test function; the equation (6)

corresponds to the particular case of choosing a test

function identically equal to 1.
Theorem 2.2 is achieved in [20] by passing into

the limit in such identities as ε ↓ 0. The convergence

follows from a commutator estimate which has a

striking similarity with the one of [18].

5. Energy Dissipation: L2, L∞ and C0

Concerning part (b), the first construction ever of

an L2 solution that violates the energy conservation is

due to Scheffer in [45]. A different argument was later

given by Shnirelman in [47], who was also able, a few

years later, to give the first construction of a solution

which dissipates the energy, cf. [48]. In [24] we gave

a rather simple proof of these results, constructing

bounded weak solutions of the incompressible Euler

equations which violate the usual conservation en-

ergy and the uniqueness of the Cauchy problem in

several ways (see also [25]). The key was to regard

solutions of the system (4) as divergence-free ma-

trix fields satisfying a suitable algebraic constraint: in

particular we realized that this point of view allowed

to use well established techniques from the theory of

differential inclusions, cf. [15, 8, 21, 40, 37].

In the latter field, the authors consider systems

of partial differential equations which prescribe the

values of the gradients of the solutions and thus

clearly the system (3) is a differential inclusion.

A couple of decades ago the groundbreaking paper

[40] of Müller and Šverak established a fruitful con-

nection between the techniques used in the theory

of differential inclusions and Gromov’s h-principle
(more precisely his convex integration methods) of

which the Nash–Kuiper theorem is a primary exam-

ple, cf. [31].

Our intuition that a suitable approach à la Nash

could provide a line of attack for part (b) of the Con-

jecture was confirmed by the following result, which

we proved in [27], using a suitable “convex integra-

tion scheme”.

Theorem 5.1. Given any positive smooth function e
on [0,T ] there is a pair (v, p) : T3 × [0,T ]→R3 ×R of con-

tinuous functions which solves (4) in the distributional

sense and satisfies 1
2

´
T3 |v|2(x, t)dx = e(t).

The construction of continuous solutions of (4)

follows the basic strategy of Nash in the sense that

at each step of the iteration we add a highly oscilla-

tory correction. Note that both (4) and the equation

of isometries (3) are quadratic – the oscillatory per-

turbation is chosen in such a way as to minimize the

linearization.

Indeed we construct a sequence of subsolutions

(vq, pq,Rq), i.e. solutions of

(7)

{
∂tvq +divvq ⊗ vq +∇pq =−divRq

divvq = 0

and iteratively remove the error Rq, which is a sym-

metric 3× 3 matrix field. As a first observation note

that if one is only interested in measuring the “dis-
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tance” of a smooth pair (vq, pq) from being a solution

of (4), then only the traceless part of Rq is relevant:

we can write

Rq = ρqId+ R̊q,

where R̊q is a traceless 3× 3 symmetric matrix, since

div(ρqId) = ∇ρq. Hence if R̊q = 0 then vq is a solution

of the Euler equations (perhaps with a different pres-

sure).

Recall that we also aim in Theorem 5.1 at satis-

fying a certain energy profile for the total kinetic en-

ergy. We choose therefore a sequence eq = eq(t) with
eq(t)→ e(t) and set

ρq(t) :=
1

3(2π)3

(
eq+1(t)−

1
2

ˆ
T3

|vq(x, t)|2 dx

)
,

Rq(x, t) := ρq(t)Id+ R̊q(x, t) .

In the next section we explain the key points of the

iteration and also which kind of Hölder regularity one

could expect for the final solution.

6. A Nash-Type Iteration

Our aim is to build a sequence of triples (vq, pq, R̊q)

solving (7) which converge uniformly to a triple (v, p,0)
(actually in what follows we will mostly focus on the

velocity v). The sequence will be achieved iteratively

by adding a suitable perturbation to vq and pq. We thus

set

wq = vq − vq−1.

The size of wq will be controlled with two parameters.

The amplitude δq bounds the C0 norm:

‖wq‖0 . δ
1/2
q .(8)

Up to negligible errors the Fourier transform of the

perturbation wq will be localized in a shell centered

around a given frequency λq. Hence

‖∇wq‖0 . δ
1/2
q λq .(9)

Along the iteration we will have δq → 0 and λq → ∞

at a rate that is at least exponential. For the sake of

definiteness we may think

(10) λq := λ
q and δq := λ

−2θ0
q

for some λ > 1 (although in the actual proofs a slightly

super-exponential growth is required). The positive

number θ0 is the threshold Hölder regularity which

we are able to achieve through the iteration, since

it can be easily shown by interpolation that ‖vq −
vq−1‖α = ‖wq‖α . δ

1/2
q λ α

q . λ
α−θ0
q and thus {vq}q is a

Cauchy sequence in Cα whenever α < θ0.

The perturbation wq+1 is added to “balance” the

error Rq and indeed we will see that Rq ∼ wq+1 ⊗wq+1.

For this reason we will have

‖R̊q‖0 ≤ c0δq+1(11)

‖∇R̊q‖0 . δq+1λq(12)

The main part of the perturbation wq+1 satisfies

(ideally, as we will see later) an Ansatz of the type

(13) wo(x, t) =W
(

vq(x, t),Rq(x, t),λq+1x,λq+1t
)
,

where W is a function which we are going to spec-

ify next. The pressure pq+1 will be defined similarly

as pq+1 = pq +P(vq,Rq,λq+1x,λq+1t), but we will not en-

ter into the details in our discussion, since its role is

anyway secondary.

First of all, the oscillatory nature of the perturba-

tion requires us to impose that W is periodic in the

variable ξ ∈ T3. Next, observe that vq+1 must satisfy

the divergence-free condition divvq+1 = 0 and v+wo is

not likely to fulfill this: we need to add a suitable cor-

rection wc in order to satisfy it. Consider therefore a

vector potential for vq, namely write vq as ∇× zq for

some smooth zq. Subsequently we would like to per-

turb zq to a new

zq+1(x, t) = zq(x, t)+
1

λq+1
Z(v(x, t),R(x, t),λq+1x,λq+1t) .

Computing vq+1 := ∇× zq+1 we get

vq+1(x, t)= vq(x, t)+(∇ξ ×Z)(v(x, t), R̃(x, t),λx,λ t)︸ ︷︷ ︸
(P)

+O

(
1
λ

)
.

The term (P) would correspond to wo if we were able to

find a vector potential Z for W which is periodic in ξ .

This requires div ξW = 0 and 〈W 〉= 0, where we use the
notation 〈,〉 to denote the average in the ξ variable.

Similar considerations (see for instance [50]) lead

to the following set of conditions that we would like

to impose on W :

• ξ 7→ W (v,R,ξ ,τ) is 2π-periodic with vanishing av-

erage, i.e.

(H1) 〈W 〉 :=
1

(2π)3

ˆ
T3

W (v,R,ξ ,τ)dξ = 0;

• The average stress is given by R, i.e.

(H2) 〈W ⊗W 〉= R ;

• The “cell problem” is satisfied:

(H3)

{
∂τW + v ·∇ξW +div ξ (W ⊗W )+∇ξ P = 0
div ξW = 0 ,

where P = P(v,R,ξ ,τ) is a suitable pressure;
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• W is smooth in all its variables and satisfies the

estimates

(H4) |W |. |R|1/2, |∂vW |. |R|1/2, |∂RW |. |R|−1/2.

As a consequence of (H1)–(H2) we obtain

ˆ
T3

|vq+1|2 dx ∼
ˆ
T3

|vq|2 dx+
ˆ
T3
〈|W |2〉dx

=

ˆ
T3

|vq|2 dx+3(2π)3
ρq(t)

and thus the total kinetic energy of the vq+1 is (up to

small errors) eq+1(t).
Having defined the couple (vq+1, pq+1) we face the

problem of finding a suitable stress tensor R̊q+1. An

important remark is that it is possible to select a good

“elliptic operator” which solves the equations div R̊ =

f . The relevant technical lemma is the following one.

Lemma 6.1 (The operator div−1). There exists a homo-

geneous Fourier-multiplier operator of order −1, de-
noted

div−1 : C∞(T3;R3)→C∞(T3;S3×3
0 )

such that, for any f ∈C∞(T3;R3) with average
ffl
T3 f = 0

we have

(a) div−1 f (x) is a symmetric trace-free matrix for each

x ∈ T3;

(b) divdiv−1 f = f .

Assuming the existence of an ideal profile W , the

next stress tensor R̊q+1 would then be defined through

R̊q+1 = − div−1
[
∂tvq+1 +div(vq+1 ⊗ vq+1)+∇pq+1

]
= − div−1

[
∂twq+1 + vq ·∇wq+1

]
︸ ︷︷ ︸

=:R̊(1)
q+1

− div−1
[
div(wq+1 ⊗wq+1 −Rq)+∇(pq+1 − pq)

]
︸ ︷︷ ︸

=:R̊(2)
q+1

− div−1
[
wq+1 ·∇vq

]
︸ ︷︷ ︸

=:R̊(3)
q+1

(14)

where div−1 is the operator of order −1 from Lemma

6.1. Since we are assuming that the size of the cor-

rector wc is negligible compared to wo, we will discuss

the corresponding terms where wo replaces wq.

The main issues are therefore

• to show that indeed it is possible to send δq to 0
as q ↑ ∞ (so that the scheme converges)

• and to obtain a relation between δq and λq in the

form of (10).

If we were able to find a “profile” W satisfying

(H1)-(H2)-(H3)-(H4), then the iteration proposed so far

would lead to a proof of the Onsager’s conjecture. In

order to see this first expand W (v,R,ξ ,τ) as a Fourier

series in ξ . We then could compute

(15) R̊(3) = div−1
[
wo ·∇vq

]
= div−1

∑
k∈Z3,k 6=0

ck(x, t)e
iλq+1k·x ,

where the coefficients ck(x, t) vary much slower than

the rapidly oscillating exponentials. When we apply

the operator div−1 we can therefore treat the ck as

constants and gain a factor 1
λq+1

in the outcome: a

typically “stationary phase argument”. Note that it is

crucial that c0 vanishes: this is in fact the content of

condition (H1).

Using (H4) we can estimate the size of each term

ck as

‖ck‖0 . ‖W‖0‖∇vq‖0 . ‖Rq‖1/2
0 ‖∇vq‖0.

Applying (9) and (11) we arrive at

(16) ‖R̊(3)
q+1‖0 .

δ
1/2

q+1δ
1/2
q λq

λq+1
.

In fact in our computations so far we are ignoring a lot

of technical issues: the relevant estimates are much

more complicated and affected by several other terms

which we are neglecting.

Similar arguments for the two other error tensors

R̊(1)
q+1 and R̊(2)

q+1 would lead to an estimate of type

(17) ‖R̊q+1‖0 .
δ

1/2
q+1δ

1/2
q λq

λq+1
.

Of course, this is just one of the estimates for

(vq+1, pq+1,Rq+1) and similar ones should be obtained

for all the other quantities (and for other norms).

However, (17) already implies a relation between δq

and λq. Indeed, comparing it with (11), the inductive

step requires

δq+2 ∼
δ

1/2
q+1δ

1/2
q λq

λq+1
.

Assuming λq ∼ λ q for some fixed λ � 1, this would

lead to

(18) δ
1/2
q ∼ λ

−q/3 ∼ λ
−1/3
q ,

which gives θ0 = 1/3 as the critical Hölder regularity.

7. First Höder Regularity and
Improvement

It tuns out that almost all conditions on the func-

tion W =W (v,R,ξ ,τ) can be fulfilled, as shown in [27].

Let us first examine the simple case in which we
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set v = 0: it is then possible to construct a func-

tion Ws(R,ξ ) = W (0,R,ξ ,τ) satisfying the constraints

(H1)–(H4). The basic building block is given by Bel-

trami flows. For the details we refer the reader to

[27], but one important aspect of Beltrami flows is

that one can construct several different Ws with the

property that any linear combinations of them still

satisfy (H1)-(H3)-(H4) (and a suitable version of (H2)).

In fact Ws takes the form

Ws(R,ξ ) = ∑
k∈Λ

ak(R)Bkeik·ξ

where Λ is a subset of Z3 with the property that |k| is a
fixed constant for every k ∈Λ and Bk is related to k by a
precise algebraic formula. Note in particular that two

distinct profiles W 1
s and W 2

s whose linear combination

is still a profile can be obtained by choosing two dis-

joint families Λ’s in the same sphere intersected with

the lattice Z3.

Another aspect which is important about Bel-

trami flows is that the corresponding stationary pro-

files Ws are only defined for R in a suitably small cone

C of tensors R, whose axis is the half-line {λ Id : λ ∈R+}.
Having obtained a profile W (0,R,ξ ,τ) =Ws(R,ξ ), it

seems natural to extend W by imposing that ∂τW + v ·
∇ξW = 0, leading to the formula

(19) W (v,R,ξ ,τ) =Ws(R,ξ − vτ) = ∑
k∈Λ

ak(R)Bkei(k−vτ)·ξ .

However the latter fails to satisfy (H4), because

|∂vW (v,R,ξ ,τ)| ∼ |R|1/2|τ|. This is a serious problem: ob-

serving that τ is the “fast time” variable, in the con-

struction (13) τ = λq+1t, leading to an additional fac-

tor λq+1 in the estimates for R̊(1)
q+1 and R̊(2)

q+1: this loss

destroys any hope that the scheme might converge.

In [27] a “phase function” φk(v,τ) was introduced
to deal with the transport part of the cell problem. By

considering W of the form

(20) ∑
|k|=λ0

ak(R)φk(v,τ)Bkeik·ξ

the cell problem in (H3) leads to the equation

∂τ φk + i(v · k)φk = 0 .

Since the exact solution φk(v,τ) = e−i(v·k)τ is incompat-

ible with the requirement (H4), an approximation is

used such that

∂τ φk + i(v · k)φk = O
(
µ
−1
q

)
, |∂vφk|. µq

for some new parameter µq. To be precise, the approx-

imation involves a partition of unity over the space of

velocities and the use of 8 distinct families Λ( j).

This leads to the following corrections to (H3) and

(H4): (H3) is only satisfied approximately,

∂τW + v ·∇ξW +div ξ (W ⊗W )+∇ξ P = O(µ−1
q )

and in (H4) the second inequality is replaced by

|∂vW |. µq|R|1/2.

In [28] the approach above was subsequently

used to show the first example of Hölder flows with

prescribed energy profiles, more precisely:

Theorem 7.1. Given any positive smooth function e on
[0,T ] and any α < 1

10 there is a pair (v, p) : T3 × [0,T ]→
R3 ×R of Cα functions which solves (4) in the distribu-

tional sense and satisfies 1
2

´
T3 |v|2(x, t)dx = e(t).

A further improvement was obtained in [12], fol-

lowing an idea first introduced by Isett in [34]. We

change the Ansatz (20) on W and look for a perturba-

tion wo which has the form

wo(x, t) =Ws(Rq(x, t),λq+1Φq(x, t))

= ∑
k∈Λ(1)

ak(Rq(x, t))Bkeiλq+1Φq(x,t) ,(21)

where Φq solves the transport equation

(22) ∂tΦq +(vq ·∇x)Φq = 0 .

With (21), we would have

(23) R̊(1)
q+1 = ∑

k∈Λ(1)

∇ak(Rq)(∂tRq +(vq ·∇)Rq)e
iλq+1Φq .

Assuming that DΦq(x, t) is not too far from the iden-

tity, the stationary phase argument leads to

(24) ‖R̊(1)‖0 . δ
3/2

q+1δ
1/2
q λqλ

−1
q+1 .

In fact in the latter estimates we are also assuming

that the advective derivative ∂tRq +(vq ·∇)Rq satisfies

a better bound than the usual derivative DRq. This is

indeed correct, as first pointed out by Isett in [34],

and intuitively it can be justified by observing that

even the advective derivative (∂tvq+vq ·∇)vq satisfies a

better bound than Dvq.

However, since ‖Dvq‖0 → ∞, we expect the defor-

mation matrix DΦq to be controllable only for short

times. More precisely, by a well-known elementary es-

timate on ODEs, if Φq(x, t0) = x, then

(25) ‖DΦq(·, t)− Id‖0 . ‖∇vq‖0|t − t0|. δ
1/2
q λq|t − t0|

for |t − t0|. (δ
1/2
q λq)

−1. The latter is a typical “CFL con-

dition”, cf. [19].

To handle this problem we proceed as in [12] and

consider a partition of unity (χ j) j on the time interval

[0,T ] such that the support of each χ j is an interval I j
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of size 1
µq

for some µq � 1. In each time interval I j we

set Φq, j to be the solution of the transport equation

(22) which satisfies

Φq, j(x, t j) = x,

where t j is the center of the interval I j. Recalling that

‖Dvq‖0 . δ
1/2
q λq, (25) leads to

(26) ‖DΦq, j‖0 = O(1) and ‖DΦq, j − Id‖0 .
δ

1/2
q λq

µq

provided

(27) µq ≥ δ
1/2
q λq,

an estimate we will henceforth assume. Observe also

that |∂t χ j|. µq.

The new fluctuation will take the form

wo = ∑
j

χ j(t) ∑
k∈Λ(i( j))

ak(Rq)Bkeiλq+1k·Φq, j(28)

where:

• i( j) equals 1 if j is odd and 2 if j is even;
• Λ(1) and Λ(2) are two disjoint families.

The new Ansatz leads then to the following estimate

(29) ‖R̊q+1‖0 . δ
1/2

q+1µqλ
−1
q+1 +δq+1δ

1/2
q λqµ

−1
q

Optimizing in µq we then reach

(30) ‖R̊q+1‖0 . δ
3/4

q+1δ
1/4
q λ

1/2
q λ

−1/2

q+1 ,

namely

δq+2 ∼ δ
3/4

q+1δ
1/4
q λ

1/2
q λ

−1/2

q+1 .

The latter relation leads to a threshold θ0 = 1
5 and

hence to the following theorem

Theorem 7.2. Given any positive smooth function e on
[0,T ] and any α < 1

5 there is a pair (v, p) : T3 × [0,T ] →
R3 ×R of Cα functions which solves (4) in the distribu-

tional sense and satisfies 1
2

´
T3 |v|2(x, t)dx = e(t).

8. First Onsager-Critical Construction

In [11] Buckmaster observed that, by choosing the

cut-off functions χi appropriately in (28) it is possible

to show that the solution produced in the proof of

Theorem 7.2 enjoys C1/3−ε regularity at almost every

time-slice. The idea is to make the cut-off flat on large

portions of their supports while paying very steep

time derivatives on small portions. The price to pay

is that the “global” Hölder control gets much weaker:

the solutions is just slightly better than continuous

(i.e. it has a very small Hölder exponent, depending

on ε). In [9], jointly with Buckmaster and Székelyhidi

we exploited a quantitative version of the latter idea

to reach the first nonconservative solutions up On-

sager’s threshold 1/3, albeit in a weaker form than as

stated in his conjecture.

Theorem 8.1. For every α < 1
3 there are a nontrivial

continuous compactly supported solution (v, p) : T3 ×
R → R3 ×R of (4) and an L1 function C : R → R+ such

that

|v(x, t)− v(y, t)| ≤C(t)|x− y|α ∀t ∈ R,∀x,y ∈ T3 .

9. h-Principle
The Beltrami flows together with the transport

Ansatz explained in the previous sections settle

the issue of convergence (at least for Hölder expo-

nents θ < 1/5), but are not sufficient to conclude an

h-principle statement which is a satisfactory counter-

part of Theorem 1.2. The reason is that the stationary

profiles Ws defined through Beltrami flows are only

defined for R’s belonging to a suitably small cone of

tensors.

Nevertheless, there is a very simple set of station-

ary flows (which we will call “Mikado flows”) based on

pipe flow, which can generate all R. These flows were
introduced by Daneri and Székelyhidi in [22].

Lemma 9.1. For any compact subset N consisting of

positive definite 3× 3 matrices there exists a smooth

vector field

Ws : N ×T3 → R3, i = 1,2

such that, for every R ∈N

(31)

{
div ξ (Ws(R,ξ )⊗W (R,ξ )) = 0,
div ξWs(R,ξ ) = 0,

and

〈Ws〉 = 0,(32)

〈Ws ⊗Ws〉 = R.(33)

In particular, in [22] the authors could prove the

following h-principle result

Theorem 9.2. Let (v̄, p̄, R̄) be a smooth solution of

(34)

{
∂t v̄+div(v̄⊗ v̄)+∇p̄ =−div R̄

div v̄ = 0

on T3 × [0,T ] such that R̄(x, t) is positive definite for

all x, t. Then for any α < 1/5 there exists a sequence

{(vk, pk)} ⊂Cα of weak solutions of (4) such that

vk
∗
⇀ v̄ and vk ⊗ vk

∗
⇀ v̄⊗ v̄+ R̄ in L∞

uniformly in time and furthermore for all t ∈ [0,T ]
ˆ
T3

vk ⊗ vk dx =
ˆ
T3
(v̄⊗ v̄+ R̄)dx.
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10. Isett’s Proof of Onsager’s
Conjecture

The stationary profile Ws reached through the

Mikado flows in [22] have not only the feature of be-

ing defined on any compact subset of positive def-

inite R’s, but they also yield improved estimates in

several error terms in the iteration. On the other hand

they are not compatible with the “patching in time”

used in (28) and indeed in [22] they are only used for

finitely many steps of the iteration, whereas the “tail”

of the series ∑q wq still consists of oscillatory pertur-

bations whose building blocks are Beltrami flows.

In [35] Isett has been able to overcome this

last obstruction by introducing a different “patching

strategy”. Isett’s key idea can be easily explained as

follows. Considered a given triple (vq, pq, R̊q) reached

at a certain step of the iteration, satisfying all the es-

timates outlined in the previous subsection. The ob-

struction to using Mikado flows could be overcome if

R̊q were supported in a union of disjoint time-stripes

of the form T3 × [ak,bk], where bk −ak ∼ (δ
1/2
q λq)

−1, com-

patibly with the CFL condition (25). In this case there

would be no need of “patching” the oscillatory pertur-

bations, since they would be supported on disjoint

time-stripes where the CFL condition holds and the

flows Φq, j of the previous subsections are close to the

identity.

In order to reach this ideal situation, Isett in [35]

partitions the whole time interval in smaller intervals

[ck,ck+1] with size ∼ (δ
1/2
q λq)

−1. In intervals of compa-

rable size it is possible to find exact solutions (zk,rk)

of the incompressible Euler equations with zk(·,ck) =

vq(·,ck). Patching such solutions with a partition of

unity one can obtain new velocity and pressure fields

(ṽq, p̃q) together with “separate” time-stripes where

they are exact solutions of the Euler equations. The

remaining regions consist of time-stripes where we

have to find a new stress tensor R̃q. Isett shows that

such tensor can be found so that its size is not much

larger than R̊q: in fact it essentially satisfies the same

estimates with worse constants.

Now there are no obstructions to apply the oscil-

latory perturbations of [22] to the new triple (ṽq, p̃q, R̃q)

and therefore one can reach the following statement

Theorem 10.1. For every α < 1
3 there is a nontriv-

ial continuous compactly supported solution (v, p) ∈
Cα(T3 ×R) of (4).

11. h-Principle and Onsager’s
Conjecture with Dissipative
Solutions

In the previous “patching” of exact solutions of

the Euler equations a canonical choice of the stress

tensor R̃q would be

(35) R̃q := div−1[∂t ṽq +(ṽq ·∇)ṽq +∇p̃q] .

However [35] generates R̃q with a different, more

complicated, procedure, since the author is not able

to reach the desired estimate through the operator

div−1. A suboptimal outcome is that Theorem 10.1

does not produce “dissipative solutions”.

This has been instead accomplished in [10], where

in a joint work with Buckmaster, Székelyhidi and Vi-

col we derive appropriate estimates for the “canoni-

cal” R̃q as defined in (35). We can therefore derive the

existence of dissipative solutions in the whole range

of Hölder exponents of the second part of Onsager’s

conjecture. Indeed such a statement is obtained as a

corollary of the exact counterpart of the h-principle
result in [22]:

Theorem 11.1. Let (v̄, p̄, R̄) be a smooth solution of

(34) on T3 × [0,T ] such that R̄(x, t) is positive definite

for all x, t. Then for any α < 1/3 there exists a sequence
{(vk, pk)} ⊂Cα of weak solutions of (4) such that

vk
∗
⇀ v̄ and vk ⊗ vk

∗
⇀ v̄⊗ v̄+ R̄ in L∞

uniformly in time and furthermore for all t ∈ [0,T ]
ˆ
T3

vk ⊗ vk dx =
ˆ
T3
(v̄⊗ v̄+ R̄)dx.

Corollary 11.2. For every α < 1
3 and every positive

smooth e : [0,T ] → R there exists a solution (v, p) ∈
C1/3(T3 × [0,T ]) of (4) such that

1
2

ˆ
T3

|v(x, t)|2 dx = e(t) .
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