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Introduction

In mathematics we profit from the method of

assigning an algebraic object (such as a number, a

group, a ring, and so on) to a geometric object. Many

proofs in geometry are unthinkable without this tech-

nique. Every reader will know examples (the funda-

mental group of a topological space, cohomology the-

ories, and discrete invariants like dimension, genus or

whatever). Classification often starts by fixing an “in-

variant”. For objects moving in families we can study

“moduli” or the behavior of “jumps” of invariants

considered.

This little survey note introduces (a particular

and small) part of this story: we see how the algebraic

object, the “invariant”, can be a finite group scheme,

or a p-divisible group (or, in special cases, a Galois rep-
resentation given by a group scheme). We will define

and discuss these notions. We will see the way this

gives access to the definition and study of new phe-

nomena: in mathematics one wants to discover the

structure underlying objects, questions and conjec-

tures considered.

Methods described are particularly useful in ge-

ometry over fields of positive characteristic or in ge-

ometry and number theory over a number field. There

we cannot use analysis and topology in the classi-

cal vein. These new methods show a rich vocabulary

of new structures that, in a sense, replace our famil-

iar characteristic zero tools. Quite unexpected invari-

ants, stratifications and foliations appear; these have

been studied in some detail, and we can enjoy the

beauty of these new geometric objects.
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Early roots we have already seen in work by Gauss

and in the belief of Weil that objects in positive char-

acteristic should be treated as geometric objects (and

not as algebraic objects obtained form characteristic

zero phenomena reduced mod p). Foundations were
laid, then Grothendieck andmany others carried on in

a breathtaking way. Manin started the search for typ-

ical positive characteristic structures in the study of

moduli spaces of abelian varieties. Tate showed how

Tate `-groups and p-divisible groups replace the use
of the fundamental group in cases were the classi-

cal topology is not anymore present. Many modern

proofs in algebraic geometry and in number theory

use these new tools. Part of this we describe in this

little survey.

A remark on terminology. In this survey we will

use theory of schemes; a small part of the first two

chapters of the book [30] will suffice; also see [84].

However, if you are not familiar with this terminol-

ogy, already over a base field you can follow most

of the theory below; if we say “over a base scheme”

you may restrict to a base ring (commutative, with

1 6= 0); already over base rings the theory of finite

group schemes offers beautiful results and intriguing

questions and problems.

If you want to stick to classical terminology, you

can see “an abelian scheme A → S” as a family of

abelian varieties parametrized by S; in this classical

languagemany results have been proved; scheme the-

ory simplifies and gives new insight. In Definition 3

we see that (in most cases) you can treat finite group

schemes as algebraic objects (with quite a lot of struc-

ture). I am not saying that this makes insight easy, but

sometimes direct computations can be done making

use of such an algebraic description. – You will be

convinced that theory explained below is difficult to

JULY 2020 NOTICES OF THE ICCM 55



grasp and to describe using only the language of va-

rieties.

Notation. We write K for an arbitrary field, κ for a

field, in most cases of positive characteristic, and k
for an algebraically closed field. Any base ring R will

be commutative, and usually we assume 0 6= 1 in R. For
a ring R an element x ∈ R is called nilpotent if there

exists n ∈ Z>0 with xn = 0; in a (commutative) ring the

nilpotent elements form an ideal, sometimes denoted

by
√
(0); if there are no nilpotents x 6= 0, i.e. if

√
(0) is

the zero-ideal, we say that R is reduced; for any R the

ring R/
√
(0) is reduced. For a scheme S nilpotents in

the structure sheaf OS define a sheaf I of ideals, and

its subscheme of zeros, with structure sheaf OS/I, is
denoted by Sred ⊂ S; see 1.14. The symbols p and ` will

be used for prime numbers.

We use the concept “variety” in the following way;

a scheme S over a field K is called a variety if for ev-

ery field extension K ⊂ L after base change S⊗K L we

obtain a reduced, irreducible scheme, i.e. S/K is geo-

metrically reduced and irreducible.

Suppose X is a scheme over S, e.g. a variety V over

a field K. For a morphism T → S we write XT = X ×S T ;
e.g. if K ⊂ L we write VL = V ⊗K L. Classical language
often uses the same symbol for V , a variety over K,
and for VL; however the “variety V over K” and the

“variety V over L” are “different objects” and should

be distinguished in notation.

We will write Ag = ∪d Ag,d for the moduli space

of polarized abelian varieties, and Ag,1 for the mod-

uli space of principally polarized abelian varieties. If

working in characteristic p we tend to write Ag,1 in-

stead of Ag,1⊗Fp.

1. (Finite) Group Schemes

1.1. Group Schemes. Here is a short definition:

Definition 1. Consider a base scheme S and consider

the category SchS of all schemes over S. A group object

G→ S in this category is called an S-group scheme. This

means that for every X → S the set MorS(X ,G) = G(X)

is a group in a functorial way.

This may sound a bit abstract. We discuss the

definition and soon we will give many examples, to

make you familiar with this concept. As in the cate-

gory SchS of schemes over S (fibered) products exist,

and as S with the identity map to S is a final object, i.e.
MorS(X ,S) consists of one element for every X ∈ SchS

we can rephrase the definition:

Definition 2. There exist morphisms

mG = m : G×S G→ G, iG = i : G→ G, e : S→ G

satisfying the usual group axioms.

Definition 3 (Affine group schemes). If S = Spec(R)
is affine, where R is a commutative ring, and G =

Spec(B)→ S is affine, the R-algebra structure on the

commutative R-algebra B; if G is an S-group scheme

the group axioms on Spec(B) translate into the follow-
ing homomorphisms

× : B⊗R B→ B s = sB : B→ B⊗R B

ι = ιB : B→ B

ηB : R→ B εB : B→ R

Here × and ηB come form the R-algebra structure on
B and sB, ιB and εB define the group structure on G =

Spec(B)→ S:

the multiplication m : G×S G → G gives the “co-

multiplication” sB,

the inverse in the group object gives the antipode

ι = ιB : B→ B and

the unit element e ∈ G(S) gives the augmentation

εB.

I suggest you spell out the various properties of these

maps, obtained from the group axioms, and the way

the two definitions group object versus bialgebra

agree in case of affine group schemes; for examples

see [63], 1.1. Also see [84], Chapter 5.

A commutative R-algebra with this structure is

called a R-bialgebra. A commutative R-algebra coming

from an affine, non necessarily commutative group

scheme, is called a R-Hopf algebra. Note that the mul-

tiplication in × in the ring B is assumed to be com-

mutative, however the multiplication m on G need not

be commutative, respectively the co-multiplication sB

need not be co-commutative.

If G= Spec(B)→ S = Spec(R), and B is finite flat over

R of constant rank n we say n is the order of G/S.
For a group G or a group scheme G/S and N ∈ Z>0

we define a map [N] : G→ G, respectively a morphism

[N] : G→G by [N](x) = xN ; for a group scheme G/S with
multiplication m : G×G→ G this is defined as

[N] =

G
∆N−→ G×·· ·×G︸ ︷︷ ︸

m

mN−→ G

 .

1.2. A linear group, or an affine group variety, is a

group scheme G = Spec(E) over a field K such that E
is a finite type K-Hopf algebra such that E⊗k is a do-
main (no zero-divisors) for any field k containing K.
The notions “linear” and “affine” amount to the same

here, e.g. see [84], Th. 5.3.1.
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An example is GLn,K and any affine group variety

can be embedded into an appropriate GLn. Examples:

Ga = Spec(K[T ]), s(T ) = T1 +T2, ι(T ) =−T, ε(T ) = 0,

the additive group of dimension one, and the multi-

plicative group of dimension one:

GL1 =Gm = Spec(K[T,T−1]), sT = T ⊗T,

ι(T ) = T−1, ε(T ) = 1.

these group schemes are defined over a prime field,

and we use the same notation over any base ring if no

confusion can occur.

1.3. Example/Exercise (Tate). To give you a taste of

this topic let us discuss the case (“group schemes of

order 2”) that in the R-Hopf algebra E ⊃ I = Ker(ε)∼= R·x
is free of rank one over R; here a complete classifi-

cation can be given, and I suggest you prove all de-

tails of the following exercise. We see in [109] this is

a special case of the classification of group schemes

of prime order (over quite general rings, for restric-

tions see that paper).

(1) There exists a ∈ R such that x2 = ax.
(2) There exists b ∈ R such that s(x) = x1 + x2 +b(x⊗ x)

where x1 = x⊗ 1 and x2 = 1⊗ x. Conclude that the
comultiplication s is cocommutative (i.e. G is a

commutative group scheme).

(3) Using as(x) = s(ax) = s(x2) = (s(x))2 conclude that

(ab+1)(ab+2) = 0.

(4) Write ι(x) = γ·x. Using that ι is the coinverse show

γ·x+ x+bγax = 0; hence 1+ba is a unit in R.

(5) Conclude that ab =−2 ∈ R.
(6) Conversely, suppose given any ring R (commu-

tative with 0 6= 1 ∈ R) and suppose given a,b ∈ R
with ab = −2 ∈ R. Formulas given above define a

group scheme G, that is commutative with I free
of R-rank one. Note that choosing I = R·y with

y = ux, where U is a unit in R gives the structure

constants y2 = (ua)y and s(y) = y1+y2+(bu−1)(y⊗y);
the pairs (a,b) and (ua,u−1b) define isomorphic

group schemes.

Conclusion. Group schemes of order 2 over an ar-

bitrary base ring are classified by a choice (a,b) with
ab=−2∈ R up to the equivalence described above. For

a,b ∈ R with ab =−2 in R, and G is given by:

G = Ga,b = Spec(B), B = R[x]/(x2−ax),

and the group structure (the bi-algebra structure) is

given by

ε(x) = 0, s(x) = x⊗1+1⊗ x+bx⊗ x, ι(x) = x.

See [109]; [108], 3.2; [3], Section 5; [88], Proposition

on page 10.

The classification for p= 2 as described above can
be generalized to any group scheme of prime order. A

classification over an arbitrary base ring can be found

in [109], Theorem 2 on page 12. A little warning: some

authors define a by xp =−ax; this would give x2 =−ax
and ab = 2 in the small example above, just a matter

of taste and notation.

Over the base ring κ = Fp we define αp = Ker(F :
Ga → Ga), where F denotes he Frobenius morphism.

For any R ⊃ Fp we use the same notation, instead of

αp⊗R if no confusion can occur.

Remark/Exercise. Write out the bialgebra for αp. We

see that αp = G0,0 for any base ring.

Explicit cases. G0,0 ∼= α2 with Fp ⊂ R, and G−2,1 ∼= µ2,R,

G1,−2 ∼= Z/2
R
.

In [109] the case of arbitrary prime order p flat

finite group schemes of order p over a quite general

ring is treated.

Remark. In particular any finite group scheme of

prime order is commutative. We have seen in 1.10.2

a non-commutative group scheme of order p2 over a

field. Note a difference: any finite group of order p2

is commutative, but we see the analogous statement

is not correct for group schemes.

1.4. Example. For k ⊃ Fp any group scheme N over

k of order p is in one of the following isomorphism

classes:

• [(loc, et)]

N ∼= µp,k,

• [(loc, loc)]

N ∼= αp,

• [(et, et)]

N ∼= Z/pZ
k
.

For a perfect field κ ⊃Fp any N1 with N1⊗k∼= µp,k deter-

mines and is determined by a Galois representation

Gal(k/κ)→ (Z/pZ)∗,

for any N1 with N1⊗ k ∼= αp we have N1 ∼= αp,

any N1 with N1⊗ k ∼= Z/pZ
k
determines and is de-

termined by a Galois representation Gal(k/κ)→
(Z/pZ)∗.

This can be showed using [109]; also see 1.10.

1.5. Structure. Over a field we have a good insight

what kind of group schemes exist. We a morphism

T → Spec(K) is algebraic, we say T is an algebraic

scheme over K, if this morphism is of finite type.
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An algebraic group scheme G over a field K (alge-

braic means of finite type) can be one of the following

types:

(f). Finite group schemes: Spec(B) as above, with

dimK(B)< ∞.

(lin). Linear group schemes: a closed (irreducible, re-

duced) subgroup scheme of a the linear group

GLn,K .

(AV). Abelian varieties.We say A is an abelian variety

if A is a group scheme over a field K, the structure
sheaf of A⊗ k has no nilpotents, A is connected

and A is a projective scheme. This implies that

the group law on A is commutative. The name

comes from the fact that Niels Henrik Abel con-

structed such varieties for computing values of

“abelian integrals” on Riemann surfaces.

In each of these three categories we see interesting

structures and many applications.

We will see that every group scheme of finite type

after a base field extension admits a filtration with ev-

ery subquotients contained in one of these three cate-

gories.

1.5.1. Although we use schemes you might be inter-

ested using more classical terminology.

• Over an arbitrary field K, a a variety V is a

separated scheme of finite type such that V ⊗ k
is reduced and irreducible for any algebraically

closed k ⊃ K. Example: if K $ L is a field exten-

sion, Spec(L) is a scheme over Spec(K) but is it not

a variety over K; see 1.14.
• For a group scheme G of finite type over a field

K such that G⊗K k is reduced and irreducible for

any algebraically closed k⊃ K we will use the ter-

minology group variety.

• For a group variety over K that can be embedded

into some GLn,K we use linear algebraic group.

• An abelian scheme over a field will be called an

abelian variety; this is a group variety over a field

that is complete (proper over K).

1.5.2. A Structure Theorem by Chevalley, see [13];

for a survey see [14]. Suppose G is a group scheme of

finite type over a perfect field P. Then:

the connected component (G0)red of the unit ele-

ment is a normal, closed subgroup scheme,

(G0)red is a group variety and

G/(G0)red is a finite group scheme.

Moreover

Theorem (Chevalley). For any group variety G over

a perfect field P there is a unique maximal linear sub-

group variety H ⊂G, this is a normal subgroup variety

and G/H is a an abelian variety.

Corollary. Suppose G is an algebraic group scheme

over a field K. There exists a finite extension K ⊂ L and

a filtration

H ⊂ ((GL)
0)red ⊂ GL

such that H ⊂ ((GL)
0)red is a linear subgroup vari-

ety over L, and ((GL)
0)red/H is an abelian variety and

GL/((GL)
0)red is a finite group scheme, all over L.

We will see that commutative finite group

schemes will be crucial in a better understanding of

abelian varieties. That is the essence of this note.

In general a connected, reduced group scheme

over a field is not a group variety; Spec(Q(
√
−3)) =

µ3,Q/Spec(Q) is a scheme consisting of one point, but

µ3,L is reducible for any L⊃Q(
√
−3).

A reduced subscheme of a group scheme need

not be a subgroup scheme (over a non-perfect field),

see 1.15.4.

1.6. We note that for any homomorphism f : G1→ G2

on S-group schemes Ker( f )⊂G1 does exist as a closed

subgroup scheme, namely by the cartesian diagram

(defined as a fibered product):

Ker( f )

��

� � // G1

f

��

S
e // G2.

We do not discuss the notion of quotients and result-

ing theorems.

LetG→ Spec(K) be an algebraic group scheme, and

e ∈G(K) the identity element for the group operation.

We write G0 for the connected component of e∈G(K),

called the identity component of G. We know that G0

is geometrically irreducible, in particular for any K ⊂
K′ we have (G0)K′ = (GK′)

0; e.g. see [26]2, 4.5.14.

We know that the following phenomenon can

happen: an irreducible zero-set becomes reducible

after extension of base field. For example X2 +Y 2 ∈
R[X ,Y ] defines an irreducible zero-set, which however
becomes reducible over C as X2+Y 2 =(X+

√
−1 ·Y )(X−√

−1 ·Y ) ∈ R[X ,Y ]. As we see, this does not happen for

algebraic group varieties, but it can happen for alge-

braic group schemes.

1.7. Some Examples. We give examples over Z, base-
changed to any ring.

1.7.1. We write Gm,Z for the multiplicative group; it

is given by the algebra Z[T,1/T ] with comultiplication

s(T ) = T ⊗T and antipode ιT = T−1.

Suppose n ∈ Z>1. We define the finite group

scheme of “n-the roots of unity by

E = Z[T,1/T ]/(T n−1),

µn,Z = Spec(Z[T,1/T ]/(T n−1))⊂Gm,Z,
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or, µn,Z = Gm,Z[n]. Note that µn,Z is etale after base

change to Z[1/n]→ Z. However for every prime num-

ber p dividing n the group scheme µn,Fp is not etale;

µp,Fp is a local group scheme of order p, consisting as
a scheme of one point.

1.7.2. For every n ≥ 1 we write GLn,Z for the General

Linear group, the group scheme that associates to ev-

ery ring B themultiplicative groupGLn(B) of invertible
n×n matrices with entries in B, i.e. such matrices with

determinant a unit in B. We see that Gm = GL1, and

Ga ↪→ GL2 as matrices

Ga(B) =

(
1 t
0 1

)
⊂ GL2(B), t ∈ B.

1.7.3. Constant Group Schemes. Let H be a (an ab-

stract) finite group. Let S be base scheme. We write

HS for the constant group scheme over S with fibers

equal to H; That is, for T → S with T connected,

HS(T ) = H. For example, for S = Spec(R) we have

HS = Spec(RH) and the group law on H gives the co-

multiplication on RH ∼= R#(H).

If K is a field, n ∈ Z>1 and char(K) does not divide

n and T n− 1 ∈ K[T ] factors in linear factors, “all n-th
roots of unity are in K”, a choice ζn ∈ K gives an iso-

morphism

Z/n
K
∼= µn,K .

1.8. Cartier Duality. Let N → S be a commutative,

finite flat group scheme. In this case Cartier de-

fined ND/S, and N = NDD/S. Here is the definition

in case S = Spec(R) and N = Spec(B): we define ND =

Spec(HomR(B,R)); one easily shows

the bialgebra maps produce the structure

of an R-bialgebra on BD := HomR(B,R),

e.g. see [63], 1.2. For an arbitrary base scheme S con-
structions locally on S paste to the desired ND → S.
The reader can work out interesting details, such as

the fact that the multiplication in the ring B induces

the comultiplication on BD, etc. Examples:

(Z/n
S
)D = µn,S and (αp,κ)

D ∼= αp,κ for any κ ⊃ Fp.

Note that Cartier duality for a non-commutative

group scheme would produce an algebra with non-

commutative multiplication; such rings however are

not considered in present algebraic geometry.

1.9. Frobenius and Verschiebung. See [25], I, Exp.

VIIA.4. In this subsection all rings and schemes are

over Fp. For an Fp-algebra B the absolute Frobenius is

denoted by

Frob : B→ B, x 7→ xp.

For a scheme T → S we define T (p/S), called the Frobe-

nius twist. It is defined by the commutative, cartesian

diagram

T (p/S)

��

// T

��

S
Frob // S.

Here is a down-to-earth definition. If T → S = Spec(R)
and an affine chart of T is given by polynomials

∑
α

ai,α Xα

in multi-index notation Xα = Xα1
1 ×·· ·×Xαm

m , then T (p/S)

is defined by the polynomials

∑
α

ap
i,α Xα .

We define an S-morphism F : T (p/S)→ T by the diagram

T

��

Frob

$$

F
""

T (p/S)

��

// T

��

S
Frob // S.

In down-to-earth terms: a point (x1, · · · ,xm) on a local

chart of T maps to (xp
1 , · · · ,x

p
m). This makes sense be-

cause

∑
α

ap
i,α(X

α)p =

(
∑
α

ai,α Xα

)p

.

Note that for any group scheme G → S the relative

Frobenius F : G(p/S)→ G is a homomorphism.

For a commutative, flat G→ S one can define V :
G→G(p/S); we refer to [25], I, Exp. VIIA.4.3 for the con-

struction. Note that(
G(p/S) V−→G

F−→G(p/S))= [p],
(
G

F−→G(p/S) V−→G
)
= [p].

1.10. Some Finite Group Schemes in Positive Char-

acteristic. Later in this note we will explain a differ-

ence between group schemes in characteristic zero

on the one hand and in positive characteristic on the

other hand, e.g. see 1.16. At first we give some ex-

amples. All fields in this section are in characteristic

p > 0: κ ⊃ Fp.

1.10.1. For any κ wewrite αp =Ker(F :Ga→Ga). This is

the same as: αp = κ[τ]with τ p = 1 and s(τ) = τ⊗1+1⊗τ ,

ι(τ) = −τ . Note that if κ ⊂ k, and N is a finite group

scheme over κ with N ∼= ⊗k ∼= αp,κ ⊗ k then N ∼= αp,κ .

Hence we write αp without mentioning the base field;

however with this notation Hom(αp,αp) is ambiguous.

Over k ⊃ Fp we see three (isomorphism classes of

a) finite group scheme(s) of order p, see 1.4:

µp,k αp, Z/p
k
.
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Using Dieudonné module theory is easily seen that

these are the only ones of order p. Moreover, for any
base Cartier duality gives (αp)

D ∼= αp. For any base in

any characteristic (µp,S)
D ∼= Z/p

S
.

1.10.2. Here is an example of a non-commutative fi-

nite group scheme. We define G over R⊃ Fp by

G(C) =

(
ρ τ

0 1

)
, ρ

p = 1, τ
p = 0

for any commutative R-algebra C. We can easily write

out the coordinate ring of G, and the group ax-

ioms (the maps defining this bialgebra). Note that

rank(G/Spec(R)) = p2.

1.11. Dieudonné Modules. In this subsection all

rings and schemes are over Fp and group schemes

are finite and commutative. For a perfect field κ ⊃ Fp

we write Λ = Λκ for the ring of infinite Witt vectors;

W∞ is the usual notation, but we will use the letter W
later; we write σ : Λ→ Λ for the lift of the Frobenius

on κ . The Dieudonné ring Rκ is the ring Rκ = Λκ [F ,V]
with relations

FV = p = VF , F ·β = β
σ ·F , V·β σ = β ·V, β ∈ Λ.

A left Rκ -module is called a Dieudonné module. Note

that Rκ is a commutative ring if and only if κ = Fp.

There is an (covariant) equivalence D(N) = M be-

tween on the one hand

the category of finite, commutative group

schemes N over κ .

and on the other hand

the category of left modules M of finite

length over Rκ .

In [47] the contravariant theory is proved; also see

[15]; that theory with Cartier duality gives the covari-

ant theory.

A remark on notation. The homomorphism F : N →
N(p) in the covariant theory is transformed into V and

V : N(p) → N into F ; for this reason we distinguish F
(on schemes) and F (on Dieudonné modules) and V
and V.

There are many generalizations of the above the-

orem; it would take a lot of space to discuss these.

and we will not do so here. See [8], Section 4. For the

case of finite group schemes annihilated by F over an

arbitrary (not necessarily perfect) field κ ⊃Fp see [16],

II.7.4.2.

1.11.1. We see that

D(αp)∼= κ , with F and V acting as zero on D(αp),

D(αp) = Rκ/Rκ(F ,V)

D(µp,κ)∼= κ with F acting as zero and V acting as

V·β σ = β ·V,

D(µp,κ) = Rκ/Rκ(F ,V−1),

and D(Z/n
κ
)∼= κ with F ·β = β σ ·F and V acting as

zero

D(Z/n
κ
) = Rκ/Rκ(F −1,V).

Many more examples can be made along these lines.

We will see many applications later.

1.12. Local and Etale Group Schemes. A finite group

scheme N = Spec(B) over a field K is called local, if

B is a local ring; for K ⊃ Fp this is equivalent to the

condition Fn = 0 on N for n� 0.

1.12.1. An etale morphism in algebraic geometry is

the analogue of a finite unramified cover in topology;

however in the algebraic context also we have to take

care also of algebraic phenomena like inseperability.

For a definition see [24], I.4 and III.1.2. Also see [26],

IV.4.17, e.g. Corollaire 17.6.2. An etale morphism lo-

cally of finite presentation T → S is flat and unram-

ified, and this can be taken as a definition, see [26],

17.6.1. A morphism is etale if and only if it is smooth

and of relative dimension zero. We will say a ring ex-

tension R ↪→ B is etale if Spec(R)← Spec(B) is etale.

1.12.2. Here are some examples of etale ring exten-

sions.

(1) R = K, a field, and B = K1×·· ·×Kn and every K ⊂Ki

is a finite, separable extension; these are all etale

ring extensions of a field.

(2) Q⊂Q(
√
−1); Z⊂ Z[

√
−1,1/2];

(3) Let T → S be etale, and U ⊂ T a dense open sub-

scheme; thenU→ S is etale (being etale is a prop-
erty locally on T ). E.g Q[X ]⊂Q[X ,Y ]/XY −1 is etale
although above the prime ideal (X) ⊂ Q[X ] there

is no prime ideal in Q[X ,Y ]/XY −1.
(4) Let R→ B, and P ⊂ B a prime ideal and P′ = P∩

R. The inclusion is etale at P if and only if P′·BP

equal the maximal ideal of the local ring BP, and

the extension of residue class fields RP′/P′RP′ ⊂
BP/PBP is separable.

Here are some examples of ring extensions that

are not etale.

(5) Fp(t)⊂ Fp(
p
√

t);
(6) Z⊂ Z[

√
−1];

(7) Z⊂ Z[T ];
(8) Q[X ,Y ]⊂Q[X ,Y,T ]/(X−Y T ).
(9) Any purely inseparable extension K $ K′ is not

etale.

1.12.3. We say a finite group scheme N→ S is etale if
N/S is flat of finite presentation and N/S is etale.
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Note. Suppose S = Spec(K)← N = Spec(B). We see N/S
is a finite etale group scheme if B is as in (1) above.

If moreover K is perfect, this is the case if and only if

every K ⊂ Ki is a finite extension.

An aside. Suppose T → S is a finite etale mor-

phism, and S is connected with a marked point s ∈ S.
In this situation T → S defines a continuous repre-

sentation πet
1 (S,s) in a finite set (a geometric fiber of

T/S and every T/S as above is obtained in this way.

– This shows etale finite group schemes over a field

are given by a Galois representation Gal(Ksep/K).

1.12.4. We will see examples of a finite group scheme

N over a non-perfect field K such that N is a reduced

scheme, but N⊗K′ is not reduced for some extension

K ⊂ K′, see 1.15.
However if N is finite etale over K, then N is re-

duced if an only if N⊗K′ is reduced for every exten-

sion K⊂K′. Over a perfect field finite etale is the same

as finite reduced.

Moreover, over any field K a finite etale group

scheme N is of the form

N ∼= Spec(B), B = K1×·· ·×Kn

where every K ⊂ Ki is a finite, separable extension.

1.12.5. We will say that N/K is local-etale if N =

Spec(B), where B is a local ring, and the Cartier dual

ND = SpecBD is etale.

In the same way we define local-local, etale-local

and etale-etale finite group schemes over a field.

For any finite group scheme N over a field we have

N(0)/K, the connected component of the identity ele-

ment. We will see that in general

1→ N(0) −→ N −→ N/N(0)→ 1

does not split; this is the starting point of “Serre-Tate

parameters”, see 8.11. However over a perfect field

the extension does split, and we obtain the following

1.12.6. Structure Theorem. Any finite, commutative

group scheme over a perfect field κ has the following

subgroup schemes

Nloc,et, Nloc,loc, Net,loc, Net,et ⊂ N,

with Nloc,et of local-etale type, etc, and

N = Nloc,et×Nloc,loc×Net,loc×Net,et.

E.g. see [63], I.2.

Examples. Over a field κ of characteristic p we have:

µp is local-etale,

αp is local-local,

Z/p
κ
is etale-local;

moreover

N is etale-etale if and only if its order is prime to

the characteristic of κ .

1.13. Lifting. Suppose G0 is a group scheme over

κ ⊃ Fp. We say a group scheme G→ Spec(B) is a lift-

ing to characteristic zero if B is an integral domain in

characteristic zero and

B � κ, G⊗B κ ∼= G0.

Just two examples:

1.13.1. The group scheme in 1.7.2 does not admit any

lifting to characteristic zero; indeed, one can show

that G after going to an algebraic closure of the field

of fractions of B would be a constant group scheme

of order p2, hence commutative by easy group theory;

this would imply G and G0 are commutative, a contra-

diction.

1.13.2. The group scheme αp over a perfect field κ ⊃
Fp does not lift to the ring of infiniteWitt vectors Λκ→
κ (we need ramification), but αp does lift to Λκ [

√
p]→

κ . This can easily be deduced from the classification

in [109].

1.13.3. This is a particular case of the fact that any

finite commutative group scheme does admit a lifting

to characteristic zero, see [80]. For more information

see [66], [7].

Remark. The topic of lifting to characteristic zero

has many aspects and interesting cases, such as va-

rieties of arbitrary dimension, curves with an auto-

morphism, CM abelian varieties, andmuchmore. This

rich field is not treated here.

1.14. The Reduced Underlying Scheme. For any

scheme T the sheaf of nilpotents elements (with the

element 0) form an ideal; dividing out this ideal in the

structure sheaf gives a subscheme denoted by Tred⊂ T .
If G is a group scheme over a perfect field the sub-

scheme Gred ⊂ G is a sub group scheme. However, if k
is non-perfect this need not be the case. We will see

examples.

1.15. Hidden Nilpotents. We have seen that an irre-

ducible algebraic group scheme over a field stays irre-

ducible after base change. However as reduced group

scheme need not stay reduced after extension of the

base field.

Definition. We say a scheme X → S has hidden nilpo-

tents if there exists T → S such that

(X×S T )red $ Xred×S T,

i.e. if new nilpotents show up after base change.
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Already in classic al situations these can appear,

e.g. in ramified situations:

(Z[
√
−1]⊗Z F2)red = F2 $ F2[ε]/(ε

2) = (Z[
√
−1]⊗Z F2).

Or in families with “multiple fibers:

(K[X ,Y, t]/(Y 2− tX)⊗K k[t])red

$ K[X ,Y, t]/(Y 2− tX)⊗K k[t] t 7→ 0.

IfQ⊂K ⊂ L and R is a reduced K-algebra, then R⊗K L is
reduced. However in positive characteristic this does

not hold.

1.15.1. Here is an easy example: κ[X ,Y ]/(X p − aY p)

with a 6∈ κ p where p is the characteristic of κ .

1.15.2. Example. See [11], 3.10. Consider K = F2(t),
a transcendental extension of F2. Let E ⊂ P2

K be given

as

E = Z(Y 2Z +XY Z +X3 + tZ3).

This is a non-singular curve of genus one. As is

usual, we take the point whose projective coordi-

nates are [x = 0 : y = 1 : z = 0] as the unity element for

the group law, and we obtain an elliptic curve E. As
a group scheme we can consider E[2], the 2-torsion
on this abelian variety of dimension one. It is the

scheme-theoretic kernel of the endomorphism [2]E :
E → E, multiplication by 2 for the group law of E.
We see that as a scheme E[2] is a disjoint union

µ2tT , where µ2 ∼= Spec(K[τ]/τ2) and T ⊂ E is a reduced

subscheme (reduced means its structure sheaf has

no nilpotents), with T ∼= Spec(K[Y ]/(Y 2 + t). However
T ×Spec(K) Spec(K[

√
t]) ∼= Spec(K[

√
t][Y ]/((Y +

√
t)2): after

base change nilpotents show up.

1.15.3. The previous example works for every prime

number; we just took p = 2 in order to have simpler

equations. Consider E0 an ordinary elliptic curve over

κ = Fp and the equal characteristic deformation space

E→ Spf(κ[[t]]). The elliptic curve Eη over K := κ((t)) has
hidden nilpotents, just as before.

We could also consider an arbitrary princi-

pally polarized, ordinary abelian variety (A0,λ0) and

(A,λ )/K the formal equal characteristic universal de-

formation; for this case Aη [p] is reduced, with hidden

nilpotents, and A[p]red⊂A[p] is not a subgroup scheme,

quite analogous to the example above.

1.15.4. Example. See [18]: an exercise in 3.1. Let a∈ κ ,

and a 6∈ κ p, where p is the characteristic of κ . Consider

Ga = Spec(κ[T ]). Let

Ga ⊃ N = Spec(κ[T ]/(T p2
+aT p).

Then: N ⊂ Ga is a subgroup scheme, as topological

space N consists of p points, N0 is not reduced, N \N0

consists of the disjoint union of p− 1 reduced sub-

schemes, Nred is not a subgroup scheme of Ga.

Conclusion. Group schemes over non-perfect base

schemes should be handled with some extra care, not

necessary over perfect fields (such as characteristic

zero fields).

1.16. Group Schemes in Characteristic Zero Are Re-

duced. Cartier proved that

over a field K of characteristic zero an al-

gebraic group scheme is etale,

hence reduced, [4], page 109. For an easy proof for

algebraic group schemes, see [64]; also see [112], 11.3,

Theorem; see [49], Th. 9.3, see [103], 2.4; see [101],

38.8.3 for the general case.

As a corollary: any finite flat group scheme N→ S
such that the order of N/S is invertible in the sheaf of

local rings on S is etale. This reduces the case of finite
group schemes in this case to representations of the

fundamental group, in particular to representations

of the Galois group if we work over a field.

From now on group schemes considered will be

commutative, and any finite group scheme N → S is

moreover supposed to be of finite presentation and

flat over S.
Here is some literature that can be used: [8], [14],

[15], [16], [47], [49], [80], [64], [63], [83], [88], [103],

[108], [109], [112].

2. Tate `-Groups

In this section ` is a prime number.

2.1. Definition. Fix h ∈ Z>0. Choose a base scheme S.
A Tate `-group of rank h over S is projective system

{N j | j ∈ Z>0}, such that N j/S is an etale group scheme

of height `h j, we have N j+1 � N j and every geometric

fiber over s ∈ S(Ω) of N j/S is isomorphic with the con-

stant group scheme (Z/` j
Ω
)h.

Note that giving a Tate `-group of rank h is the

same as giving a continuous representation of π1(S)
on Zh

` . Here Z` is the additive group of `-adic numbers.

In case S= Spec(K) this a continuous representation of

Gal(Ksep/K).

2.2. Example. For any S such that ` is invertible on S
the projective system

T`(Gm,S) = {Gm,S[`
j] | j}

is a Tate `-group of height 1.

2.3. Basic Example. Suppose ` is invertible on S, let
A→ S be an abelian scheme of relative dimension g.
The projective system

T`(A) = {A[` j] | j}

is a Tate `-group of rank 2g.
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Suppose A is an abelian variety over C, and let

0→ Λ−→ Cg −→ Cg/Λ∼= A(C)→ 0

be the complex uniformization with lattice

π
top
1 (A(C),0) ∼= Λ ∼= Z2g, the topological fundamen-

tal group. In this case we have

T`(A) = lim←Λ/` j·Λ = Λ⊗ZZ`.

We see that for an abelian variety B over a field K ⊂
C the Tate `-module T`(B) is determined by a Galois

action on the `-adic version of the fundamental group

of A = B⊗C.
Note that the Grothendieck fundamental group

πet
1 (A,0) admits the comparison between its profinite

completion and the topological fundamental group

π
et
1 (A,0)

∧ ∼= π
top
1 (A(C),0)

for an abelian variety over C.
For an abelian variety B over a field K ⊂ C, and

k = K, we obtain an exact sequence

0→ π1(Bk,0)−→ π1(B,0)−→ π1(Spec(K))∼= Gal(k/K)→ 0

with π1(Bk,0)∼= π
top
1 (B(C),0).

We see a bridge between arithmetic and topology:

for an abelian variety over a field K⊂C it was the won-

derful idea of Tate, the Tate conjecture, that replacing

π1(A(C)) ∼= Λ by the Galois module T`(B) gives access
to arithmetic properties of B/K. This tool has been of
decisive use in work by Tate, Faltings, Wiles andmany

others.

Tate `-modules as Galois representations are of

important use as long as ` is invertible on S. How-
ever in case the characteristic of the base scheme is

equal to ` this causes problems. Some authors then

use the “physical” Tate module. However, then there

is a problem. We give two examples showing this dif-

ficulty.

2.3.1. Suppose you have a family of elliptic curves

E→ S over a base in characteristic p, and points 0,η ∈ S
such that

Eκ(η)[p](κ(η))∼= Z/p, and Eκ(0)[p](κ(0)) = 0.

This is the example where the generic fiber is ordi-

nary and a special fiber is supersingular. For exam-

ple any “universal” elliptic curve in positive charac-

teristic has this property. The collection of geometric

p j-torsion points do not fit into a flat (constant rank)

group scheme.

Still you can apply this method for abelian

schemes where the p-rank is constant.

2.3.2. The same problem arises in mixed character-

istic. Suppose you have an abelian scheme over a do-

main R in mixed characteristic, the field of fractions

had characteristic zero, and a residue field R � κ ⊃ Fp

has characteristic p. Also here the collection of geo-

metric p j-torsion points inside A/S do not fit into a

flat (constant rank) group scheme over R.
One can use “`-adic methods” in characteristic p,

or if the residue characteristic equals p as long as ` 6=
p. However for the case `= p another concept had to

be developed.

3. p-Divisible Groups

In this section p is a prime number, and no re-

striction is made on p in relation with a base scheme

used. Unimportant detail: in the previous section pro-

jective limit were used; for the concept of p-divisible
groups discussed here inductive limits (unions) are

used; this turns out to be somewhat easier to handle,

but there is no essential difference between the setup

using either projective or inductive limits. In the lit-

erature you will find “Barsotti-Tate groups” for the

equivalent notion of p-divisible groups.

3.1. Definition. Suppose h ∈ Z≥0. Let S be a base

scheme. A p-divisible group of height h is an induc-

tive system

{Gi | Gi ↪→ Gi+1, i≥ 1},Gi→ S

is finite, commutative, locally free of order pih, Gi is

annihilated by pi and for every i and j the multipli-

cation [pi] : Gi+ j → Gi+ j factors as the composition of

a faithfully flat Gi+ j → G j and an inclusion G j ↪→ Gi+ j;

we obtain the following exact sequence

0→ Gi −→ Gi+ j
[pi]−→ G j→ 0.

Observe that Gi =G[pi]. We can write G=∪ Gi = lim→Gi.

As [p] : G � G is epimorphic, in an appropriate sense,

these objects are called “p-divisible”. For more infor-

mation see [105], [34]. Note that Gi+ j/Gi = G j; in par-

ticular Gi+1/Gi = G1, i.e. a p-divisible group is a tower

with building blocks (successive quotients) equal to

G1.

We say that a p-divisible group X over a field is

simple if every sub-p-divisible group is either zero or

equal to X ; note that a non-zero simple p-divisible
groups does contain many subgroup schemes. Later

in this note we shall discuss the question whether G1

determines G, see § 7.

3.2. Examples.

(1) We write Gm[p∞], or µp∞ , for the inductive system

µp∞ = {µpi ↪→ µpi+1 | i}

(over any base); here h = 1.
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(2) Over any base scheme S we write Qp/ZpS
for the

inductive system

G = {· · ·Z/pi
S
↪→ Z/pi+1

S
· · ·}; h = 1.

(3) Let A→ S be an abelian scheme of relative dimen-

sion g. Then

A[p∞] = {· · ·A[pi] ↪→ A[pi+1] · · ·}

is a p-divisible group of height h = 2g. Reminder:

A[n] = Ker(×n : A→ A).

3.3. The Serre Dual. For a p-divisible group G = ∪i Gi

the exact sequence

0→ Gi −→ Gi+ j −→ G j→ 0

under Cartier duality produces the exact sequence

0→ GD
j −→ GD

i+ j −→ GD
i → 0;

we define

Gt = {· · ·GD
j ↪→ GD

j+1 · · ·}, the Serre dual of G.

3.4. The Duality Theorem. Let A,B be abelian

schemes over an arbitrary base scheme S. Suppose
ϕ : A→ B is an S-isogeny (i.e. a homomorphism with

finite kernel; it follows this kernel is flat over S), i.e.
we have an exact sequence

0→ N := Ker(ϕ)→ A
ϕ−→ B→ 0.

This gives rise naturally to an exact sequence

0→ ND = Ker(ϕ t)→ Bt ϕt

−→ At → 0.

See [63], Th. 19.1

3.5. Elliptic Curves Over Z?

Theorem (Tate). There is no elliptic curve over Q with

good reduction everywhere. See [62].

This turned out to be a special case of:

Theorem (Fontaine, [23]). There is no abelian scheme

A→ Spec(Z) of relative dimension g > 0.

The proof of this theorem is quite non-trivial.

However suppose we would have a positive answer to

Question 9.2 then this theorem of Fontaine would fol-

low easily. Indeed, suppose A→ Spec(Z) is an abelian

scheme; choose a prime number p; if 9.2 has a posi-

tive answer we would know that

A[p∞]∼= (µp,∞,Z)
a× (Qp/ZpZ

)b.

Using duality and a polarization A→At , and [63], 18.1,

we see that a = g = b. We would conclude #((A mod
p)[pn](Fp))= png); however #((A mod p))(Fp)≤ 2g

√
p, and

for large n we derive a contradiction. Hence we see

that (9.2 is true) would imply this result by Fontaine.

3.6. Remark. Does it suffice to assume that the fun-

damental group of the base if trivial? Note the anal-

ogy. Let k be an algebraically closed field of charac-

teristic zero, and S = P1
k . Any p-divisible group over S

is of the form (Qp/ZpS
)b.

Proof. For G→ P1
k we know Gi → S is etale for every

i, see 1.16. Note that π1(P1
k) is trivial; hence Gi → S is

constant for every i.

Note that any abelian scheme A→ P1
k in character-

istic zero has mutually isomorphic geometric fibers.

However in positive characteristic there are many

non-constant p-divisible groups over S =P1
κ , and there

are many abelian schemes over S = P1
κ with an infinite

set of fibers in different isomorphism classes; we will

see many examples.

Maybe the question 9.2 has a positive answer,

here for base ring Z. However for the ring of inte-

gers of other number field the situation is different in

general. We will observe some examples, but it seems

hard to give general results.

3.6.1. Example,
√

7. We see that ε = 8+ 3
√

7 is a fun-

damental unit in OL ⊂ L =Q(
√

7). One shows that the
discriminant of

E : Y 2 +XY = X3−2εX2 + ε
2X equals ∆ =−ε

6.

Over this ring of integers with class number equal

to h(L) = 1 we have an elliptic curve with everywhere

good reduction.

3.6.2. Example,
√

29 (Tate). Let L = Q(
√

29). We see

that ε = (5+
√

29)/2) is a fundamental unit, and

E : Y 2 +XY + εY = X3
∆ =−ε

10

and here also h(Q(
√

29)) = 1; see [95], page 320.

3.6.3. Example,
√

41 (FO).We see ε = (32+5
√

41/2 is a
fundamental unit in Z[(1+

√
41/2] with h(Q(

√
41)) = 1

and

Y 2 +XY = X3− εX , ∆ = ε
4,

see [102], 2.1.3.3.

Many more examples can be given, for examples

see [1], [90], [91], [92], [110].

3.6.4. More generally,

for every g there are infinitely many pairs (A,K),

where A is an abelian variety of dimension g over a

number field [K : Q]< ∞ such that A has good reduc-

tion at every non-archimedean prime of K

(hence A extends to an abelian scheme over the ring of

integers of K). This can be seen as follows. Take any

CM abelian variety A′′ over C. We know (as Shimura

already proved long ago) that it can be descended to

an abelian variety A′ over a number field K′ having
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sufficiently many CM over K′ by [97]. we know A′/K′

has potentially good reduction, i.e. there exists a fi-

nite extension K′ ⊂ K such that A′⊗K =: A/K has good

reduction everywhere.

3.7. Schemes in Characteristic p. For any commuta-

tive ring R ⊃ Fp the map x 7→ xp is a ring homomor-

phism. Hence for a schemes T over Fp we obtain a

morphism Frob : T → T (the absolute Frobenius). The

relative Frobenius F : T → T (p) is given by the com-

mutative diagram as in 1.9. If G is a group scheme,

F : G→ G(p) is a homomorphism. This morphism is

functorial in G/S.
For a commutative, flat group scheme G/S over a

characteristic p base scheme one can define the Ver-

schiebung homomorphism V : G(p)→ G; moreover

F ·V = [p]G(p) , V ·F = [p]G.

For this construction, and much more information

see SGAD: [25] Vol. I, Exp. VIIA.

3.8. An Example. Suppose E is an elliptic curve over

a finite field κ = Fq with q = pn. How to compute the

number of rational points #(E(Fq))? This was already

studied by Gauss in various disguises. Emil Artin

noted in his PhD-thesis, 1921, the analogy with he

classical Riemann Hypothesis RH; Artin formulated

a conjecture (that I like to indicate by) pRH for ellip-

tic curves over a finite field. For some time mathe-

maticians thought this was as hard as he classical RH.

However for elliptic curves this was proved: Hasse

and many others contributed, and Weil generalized

this into a vast complex of conjectures, proved by

Grothendieck, Deligne with input many others; for

surveys of this fascinating story in mathematics, see

[81], [51].

We indicate aspects of the proof started by Hasse,

and completed later. Duality on E, giving the Rosatti
involution on D = End(E), “is complex conjugation”

for every element of D. Moreover one shows that

F t =V and V t = F in the correct interpretation. Write

π = (F
E(pn−1)) · · ·(FE)︸ ︷︷ ︸

n

: E −→ E(pn) = E,

and using FV = p, we derive that π·π = q, hence the

complex absolute value equals

| π |=√q, part of the Weil conjectures.

As E(Fq) is the set of fixed points in E(k) of the map

Frob : x 7→ xq on k, this is the easiest part of the proof,

E(Fq) = E(k)Frob,

and using the fact that the order of E[1−π] equals the

norm of 1−π , we deduce that

#(E(Fq)) = (1−π)(1−π) = 1−Trace(π)+q.

This was predicted by Gauss in a special case, see [76],

conjectured by Emil Artin and vastly generalized by

Weil later.

See [35] for a description of part of the history of

the development of p-divisible groups. Some further

references: [2], [8], [11], [7], [15], [22], [23], [28], [34]

[47], [48], [51], [71], [72], [81].

4. Dieudonné Modules and Newton
Polygons

In this section we mention a classification of fi-

nite commutative group schemes, and of p-divisible
groups over a perfect field κ ⊃ Fp.

4.1. For a perfect field κ we write Γ = Γκ = Witt∞(κ) for
the ring of infinite Witt vectors over κ . Example: for

κ = Fp we obtain ΓFp = Zp.

Discussion. The usual notation is Wκ ; however the

symbolW will be reserved for Newton polygon strata;

hence we change notation. We write σ : Γ→ Γ for the

unique ring homomorphism lifting x0 7→ xp
0 in κ .

We write Rκ = Γ[F ,V] for the ring of finite expres-
sions with coefficients in Γ and F i and V j with rela-

tions

x·V = V·xσ , F ·x = xσ ·F , ∀x ∈ Γ, F ·V = p = V·F .

Note that Rκ is commutative if and only if κ = Fp.

Discussion. We will describe covariant Dieudonné

theory. Then F on a group scheme will be trans-

formed into V on its Dieudonné module and V into

F ; see [68], 15.3; for this reason we avoid using F and

V for Dieudonné modules, instead we use F and V.

4.2. Theorem. Assume κ ⊃ Fp is a perfect field. There

is a covariant equivalence N 7→ D(N) between

the category of commutative, finite group

schemes N of p-power rank over κ

and

left Rκ -modules of finite length over Rκ .

Under this equivalence for rank(N) = pd we obtain a

module of length d; note that F : N→N(p) “corresponds”

with left multiplication by V, and V : N(p) → N “corre-

sponds” with left multiplication by F .

4.3. Theorem. There is a covariant equivalence X 7→
D(X) between the category of p-divisible groups over

κ into the category of left Rκ -modules that are free

as Γ-modules. Under this equivalence for a p-divisible
group of height h we obtain a module that is free of

rank h over Γ. Also here F transforms into V and V
into F .
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Note that an isogeny f : X→Y results into an exact

sequence

0→ D(X)→ D(Y )→ D(Ker( f ))→ 0

of R-modules.

Note that a p-divisible group of dimension

dim(X) = d has the property that X [F ] := Ker(F : X →
X (p)) is a group scheme of order pd and D(X)/V·D(X)

is a κ vector space of dimension d. We write c= c(X) :=
height(X)−d. With this notation D(X)/F ·D(X) is a κ vec-

tor space of dimension c. Note that d(X) = c(X t) and

c(X) = d(X t).

4.4. There is a vast literature for generalizations

of Dieudonné modules over an arbitrary base. For

p-divisible groups the notion of displays as invented

by Mumford, later generalized by Zink has many ap-

plications. For finite group schemes we mention only

one, very useful result:

For a finite groups scheme G over a field K ⊃ Fp

(not necessarily perfect) with G = Ker(F : G→ G(p))

one can construct a p-Lie algebra and obtain an

equivalence of categories, see [16], II.7.4.2.

4.5. Notation (a). Suppose m,n ∈ Z≥0 are coprime in-

tegers. We define a p-divisible group Gm,n over Fp by

D(Gm,n) =RFp/RFp ·(V
n−Fm).

Note that d(Gm,n) = m and c(Gm,n) = n. For every K ⊃ Fp

we will write Gm,n instead of Gm,n⊗K is no confusion

is possible. Note that Gm,n⊗K is a simple p-divisible
group. Examples: G1,0 ∼=Gm[p∞] and G0,1 ∼=Qp/Zp. Note

that (Gm,n)
t ∼= Gn,m.

For a supersingular elliptic curve E over k = Fp we

have E[p∞]∼= G1,1⊗ k.

(b). For Gm,n we define its Newton polygon N (Gm,n) as

the straight line segment starting at (0,0) and ending

at (m+n,m); this line has slope m/(m+n), an isoclinic

Newton Polygon. This gives “the Frobenius slope” of

Gm,n. More generally, a Newton polygon related to di-

mension d and height h is a lower convex polygon

starting at (0,0) and ending at d/h, and having break-

points with integral coordinates.

(c). Theorem/Notation (Manin). Any p-divisible group
X over an algebraically closed field k is isogenous with
a product

X ∼k ∏
i

Gmi,ni , gcd(mi,ni) = 1.

Notation. The Newton polygon N (X) in this case

is the lower convex polygon consisting of slopes

mi/(mi +ni) with multiplicities mi +ni arranged in non-

decreasing order. We write (m,n) for a pair of coprim
non-negative integers, and this stands for the slope

m/(m+n) with multiplicity m+n.

We obtain a bijective map

{X | d(X)= d,h(X)= h}/∼k
∼−→ {NP | d(N )= d,h(N )= h}.

For a p-divisible group Y over a field K ⊃ Fp we define

N (Y ) as the Newton polygon of K ⊗ k for any k ⊃ K.
We say a Newton Polygon is isoclinic if all slopes are

equal, i.e. the polygon is straight line segment.

(d). For an abelian scheme A→ S one can define the

dual abelian scheme At → S, e.g. see [57], Chapter 6.

An abelian variety A does admit a polarization A→ At ;

hence A and At are isogenous. The duality theorem,

see 3.4, implies that At [p∞]∼= (A[p∞])t .

We say a Newton polygon ξ is symmetric if and

only if the slopes λ and 1− λ appear with the same

multiplicity in ξ .

We conclude that for any abelian variety A over

K ⊃ Fp its Newton Polygon N (A) is symmetric.

A conjecture by Manin. Conversely, for any symmet-

ric Newton polygon ξ there exists an abelian variety A
with N (A) = ξ ; see [47], page 76; this was proved by

Serre (unpublished) and by Honda in the Honda-Tate

theory, see [106], page 98; for another proof see [67],

Section 5.

(e). Supersingular. An elliptic curve E defined over

a field K ⊃ Fp is said to be supersingular if and only

if E[p](k) = 0. This is the case if an only if E[p∞]⊗ k ∼=
G1,1, if and only if E[p] is a local-local group scheme, if

and only if N (E) is isoclinic of constant slope 1/2. For
higher dimension we have the following equivalent

properties: Let A be an abelian variety over a field K ⊃
Fp; suppose dim(A) := g > 1; fix a supersingular elliptic

curve E; the following are equivalent:

Definition.

• N (A) is isoclinic of all slopes equal to 1/2;
• there is an isogeny A[p∞]⊗ k ∼k (G1,1)

g;

• there is an isogeny A⊗ k ∼k Eg⊗ k;

Note the curious aspect that every supersingular

abelian variety of dimension at least two is not ab-

solutely simple; however for any non-isoclinic sym-

metric Newton polygon there exists an abelian vari-

ety that is geometrically simple having that Newton

Polygon; see [45]; see [9], Section 5.

For a group scheme G over K ⊃ Fp we write

a(G) := dimκ (Hom(αp,G⊗κ))

for a perfect field containing K.

Examples. We see a(Gm,n) = 1, and a(Hm,n) = min(m,n)
(see below);

The following properties are equivalent for an

abelian variety of dim(A) = g > 1:
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• There is an isomorphism A[p∞]⊗ k ∼=k (G1,1)
g;

• there is an isomorphism A⊗ k ∼=k Eg⊗ k;
• a(A) = g.

Definition. A is superspecial.

(f). For later use, see § 7, we define particular

p-divisible groups. Suppose given coprime integers

m,n ∈ Z≥0. We define a Dieudonné module with free

Γ-base {e0,e1, · · · ,em+n−1}. Moreover we write e j+m+n :=
p·e j, and Fe j = e j+n and Ve j = e j+m. for all j ≥ 0. We ob-

tain a Dieudonné module M(m,n) of height m+ n and

dimension m. We define the p-divisible group over Fp

by D(Hm,n) = M(m,n). Note that Hm,n ∼Fp Gm,n. For every

K ⊃ Fp we will write Hm,n instead of Hm,n⊗K is no con-

fusion is possible.

Note that for n ≤ 1 and/or m ≤ 1 we have Gm,n =

Hm,n; for all other cases Gm,n 6∼= Hm,n; proof: a(Gm,n) = 1
and a(Hm,n) = min(m,n).

Warning. a(X) = min(m,n) and X ∼Gm,n does not imply

X ∼= Hm,n; indeed, take m = 2,n = 5, and consider the

Dieudonné module generated M by e0 and e3 inside

∑0≤ j≤6 Γ·e j as above. This gives a p-divisible group X
with D(X) =M, an isogeny X �X/αp

∼=H2,5 and we have

a(X) = 2 = a(H2,5). For easy combinatorics behind such

questions see [37], Section 6: Appendix, and see [72].

Property/characterization. Note that Hm,n is simple.

Hence End0(Hm,n⊗K) is a division algebra over Q for

every K. The division algebra End0(Hm,n⊗k) is well un-
derstood.

For a p-divisible group X over k we have X ∼=Hm,n⊗
k if and only if X ∼k Gm,n⊗k and End(X) is a maximal

order in End0(X) = End0(Gm,n⊗ k); see [37].

For a Newton polygon ζ = {(m j,n j) | j} we write

H(ζ ) := ∑ j Hm j ,n j .

(g). A partial ordering. We write ζ ≺ ζ ′ if these New-

ton Polygons have the same end point, i.e. the same

height and dimension, and every point on ζ is on or

above ζ ′; in this case we say “ζ is above ζ ′. For d(ζ ) = d
and c(ζ ) = c the isoclinic Newton Polygon of slope

d/(d + c) is the minimal in this ordering. For sym-

metric Newton Polygons the supersingular σ = σg =

N ((G1,1)g) = g·(1,1), isoclinic of slope 1/2, is the mini-

mal one appearing for abelian varieties of dimension

g. Note: for every symmetric ξ we have:

N (A)∼ σg ⇔ A is supersingular, and σg ≺ ξ ,

A is ordinary ⇔ N (A) = g·(1,0)+ g·(0,1) =: ρg, and

ξ ≺ ρg.

(h). Theorem (Grothendieck, Katz). If X → S is a

p-divisible group over an irreducible scheme S/Fp, with

0 ∈ S and generic point η ∈ S. Then

N (X0)≺N (Xη),

i.e. “Newton Polygons go up under specialization”;

see [28], page 150; [41], Th. 2.3.1, page 143.

Grothendieck asked whether the converse holds:

In order to consider this problem we first showed

that “Purity” holds for NP strata:

4.6. Theorem (Purity). Let S → Spec(Fp) be an irre-

ducible noetherian base scheme in characteristic p. Let
X → S be a p-divisible group, or let A→ S be an abelian

scheme. The locus where the Newton Polygon differs

from that of the generic fiber is in pure codimension

one. See [37].

4.7. A Conjecture by Grothendieck.

Conjecture/Theorem. Work in characteristic p. Sup-
pose given a p-divisible group X0/κ with Newton Poly-

gon N (X0) = ζ and suppose given a Newton Polygon

ξ � ζ , i.e. ζ is “above” ξ , there exists a p-divisible group
over an irreducible scheme S/Fp, with 0∈ S and generic
point η ∈ S with X0 = X0 and N (Xη) = ξ , i.e. the partial

ordering is realized by a deformation of X0.

See [37], [67], [69]. An analogous result for prin-

cipally polarized p-divisible groups or principally po-
larized abelian varieties holds. A systematic way of

finding counterexamples in the non-principally polar-

ized cases is described in [74].

Remark. The proof I know for this theorem is quite

involved. Does there exist a “pure thought proof”?

Corollary. Consider Ag = Ag,1⊗Fp, the moduli space

of principally polarized abelian varieties in character-

istic p. For a Newton polygon ξ write Wξ ⊂Ag for the

locus where the Newton Polygon equals ξ .

The Grothendieck conjecture in this case amounts

to the fact that

∂ (Wξ ) := (Wξ )
Zar \Wξ ⊂Ag

is the union of all smaller NP strata.

Some literature: especially [47]; further: [8], [15],

[27], [28], [34], [37], [63], [67], [69], [68], [71], [74], [75],

[82], [106], [104], [105], [111], [112], [113].

5. Kraft Cycles

In this section we work over en algebraically

closed field k ⊃ Fp. We will see that in general the set

of isomorphism classes of finite group schemes over

k of fixed rank is infinite, see 5.5. However a wonder-

ful theorem by Kraft, see [43], classifies all finite com-

mutative group schemes annihilated by p; in particu-

lar in that case the number of isomorphism classes

of finite commutative group schemes over k of fixed
order is finite. We define finite group schemes Pu and

Qw;wewill see that these are the simple building blocks

of any finite commutative group scheme annihilated

by p over k.

JULY 2020 NOTICES OF THE ICCM 67



5.1. Lin: Linear words, Kraft words. Consider a word

u = L1 · · ·Lh−1 with h ∈ Z≥1. We define a finite group

scheme Pu by constructing its Dieudonné module

D(Pu) = Mu. We write z1L1z2 · · ·zh−1Lh−1zh and on Mu :=

∑1≤i≤h k·zi we give the structure of a Dieudonné mod-

ule of dimension h over k by:

Vz1 = 0; Li = F then Fzi = zi+1, and Vzi+1 = 0;

Li = F then Vzi+1 = zi, and Fzi = 0; Fzh = 0.

I.e. we visualize:

0
V← [ z1; ziFzi+1 as zi

F7→ zi+1; ziVzi+1 as zi
V← [ zi+1; zh

F7→ 0.

Note that this defines the image of any base vector

under F and under V. The empty word h = 1 defines

P/0
∼= αp. For example

z1
V← [ z2

V←[ z3 defines Pu
∼=Ga[F

3].

Note that any Pu is indecomposable, annihilated by p,
with FMu $ Mu[V] and VMu $ Mu[F ].

Any G = Pu has the property Ker(F) $ V G and

Ker(V ) $ FG. It is a finite group scheme over Fp an-

nihilated by p of rank ph.

Circ: Circular words, Kraft cycles. Consider a word

w = L1 · · ·Lh with h ∈ Z≥1. Here we only consider

such a K-cycle in a cyclic way: we introduce an (a

cyclic) equivalence relation generated by L1 · · ·Lh−1Lh∼
LhL1 · · ·Lh−1. The equivalence class of L1 · · ·Lh is de-

noted by dL1 · · ·Lhc or by Γ = dL1 · · ·Lhc. From a K-cycle

w we construct a Dieudonné module Qw; this module

is associated with a BT1 group scheme Nw over κ by

D(Nw) = Qw. The construction w 7→ Qw is given by:

Nw = ∑
1≤ j≤h

κ·z j, write z1L1z2 · · ·zhLhz1

L j = F =⇒ F ·z j = z j+1, 0 = V·z j+1,

L j = V =⇒ V·z j+1 = z j, 0 = F ·z j.

We write vF (w) := #({i | Li = F}) and vV(w) := #({i | Li =

V}). We say that a circular word w is indecomposable

if w = (w′)µ implies µ = 1.
Note that Qw is indecomposable if and only if the

circular word w is indecomposable. We see that Qw is

annihilated by p, with FNw = Nw[V] and VNw = Nw[F ].

For any circular word w the group scheme Qw is a BT1

group scheme (see below).

Any G = Qw has the property Ker(F) = V G and

Ker(V ) = FG. It is a finite group scheme over Fp an-

nihilated by p.
Although Pu and Qw are defined over Fp we will

use the same notation over any field K containing Fp,

i.e. we write Pu instead of Pu ⊗K, if no confusion is

possible.

5.2. Definition. An object T 6= 0 in an abelian category
is called indecomposable if T = T1⊕T2 implies T1 = 0 or
T2 = 0. A basic tool:

Theorem (Krull-Remak-Schmidt). Let R be a ring, and

consider the category C of artinian and noetherian left

R-modules. For every indecomposable T ∈ C the ring

EndR(T ) is a local ring. In C every non-zero object is

a direct sum of indecomposable modules, and this de-

composition is unique up to an isomorphism and per-

mutation of the factors. See [44], Prop. X.7.4, and The-

orem X.7.5. See [36], page 115.

5.3. Theorem (Kraft). Over an algebraically closed

field k ⊃ Fp any commutative group scheme G anni-

hilated by p can be written as a direct sum of group

schemes Pw′i
and indecomposable Qw j ,

G ∼= ∑
i

Pui ⊕ ∑
j

Qw j ,

and this way of writing is unique up to isomorphism

and permutation of the factors. See [43]; see [12],

Chapter 2.

5.4. Corollary. Over an algebraically closed field k ⊃
Fp and for a fixed n the set of isomorphism classes of

finite group schemes of order pn over k annihilated by

p is finite.

5.5. Remark/Example. The condition “annihilated

by p” is essential in the preceding two results. We

show that (without this condition)

the set of isomorphism classes of group

schemes of rank pn over k with n≥ 3 is not
finite.

For any β ∈ k∗ = k\{0} we define the Dieudonné mod-

ule Mβ = Mβ ,e,x defined by generators e and x with the

following relations:

F ·e = V·e, F2·e = V2·e = p·e = 0,

and

F ·x = β ·e, V·x = e.

We see that the length of Mβ equals p3; hence this is

the Dieudonné module of a finite group scheme of

order p3.

Claim. We have(
{Mβ | β ∈ k∗}/∼=

) ∼= k∗/(Fp2)∗;

hence the set

#
(
{Mβ | β ∈ k∗}/∼=

)
= ∞

in an infinite set.
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Proof. Suppose Mγ =Mγ, f ,y has generators f and y with
relations as above and suppose that Mβ

∼= Mγ . We see

that

{u ∈Mβ | pu = 0}= R·e∼= R· f ;

this isomorphism is given by e 7→ b· f + c·F · f with b ∈
Fp2 and c ∈ k. Further

x 7→ δ ·y+ ε· f , δ ,ε ∈ R.

Using V·x = e and V·y = f we see that b = δ mod p, and
we conclude Mβ

∼= Mγ if and only if β/γ ∈ Fp2 .

5.6. An Example with an Explication. Consider ex-

tensions over k given as

0→ αp→ N→ αp→ 0.

The group Ext(αp,αp) is infinite; for a description

see [63], 15.5. However, if we consider such group

schemes N up to isomorphism over k, without fix-
ing coordinates on the embedded αp ⊂ N and on the

cokernel N � αp, the number of such isomorphism

classes is four, the possibilities are:

• α2
p (the split extension), and

• Ga[F2] given by the linear Kraft word V,
• its dual given by the linear Kraft word F , and
• E[p], where E is a supersingular elliptic curve; this

last finite group scheme N ∼= NFV is given by the

circular Kraft cycle FV.

For concepts in this section, see [12], [43], [52],

[54], [63], [68], 2.5.

6. Mixed Characteristics and Lifting
Questions

For an early survey, see [66]. Suppose you have

an object X0 over a field κ ⊃ Fp (we give more precise

cases soon). We say X → Spec(Γ) is a lifting to charac-

teristic zero, if there exists an integral domain Γ, with

given Γ � κ , and fraction field Q(Γ) = K ⊃ Q and X
over Γ) (with extra conditions, depending on the sit-

uation); usually we write X = X ⊗Γ K for the generic

and X0 =X ⊗κ for the special fiber. Sometimes we im-

pose extra conditions on κ , e.g. a perfect field, or an

algebraically closed field. Sometimes we can impose

extra conditions on Γ, e.g. the ring being local, the ring

being unramified relative to Γ→ κ and we should im-

pose conditions on X/Γ to be specified in every con-

crete situation. See 9.5.

6.1. Examples and Some Results on Liftings.

6.1.1. Finite Group Schemes. In general a finite

group scheme N0/κ does not admit a lifting to char-

acteristic zero:

Any non-commutative group scheme N0 of rank p2,

e.g. see 1.7.2, does not admit a lifting to a flat N/Γ. In

fact any such lifting would define a non-commutative,

constant N ⊗K; by group theory we know any group

of order p2 is commutative.

Theorem. Any commutative group scheme N0 over k⊃
κ does admit a lifting to characteristic zero, see [80].

The group scheme αp does admit a lifting, as we

already see by [109]; it does admit a lifting to an ap-

propriate ramified Γ→ κ , but not to an unramified Γ.

6.1.2. Algebraic Curves. Any smooth complete alge-

braic curve C0 can be lifted to a flat, smooth algebraic

curve in mixed characteristic.

6.1.3. Algebraic Varieties. There exist varieties of di-

mension at least two in positive characteristic that

cannot be lifted to characteristic zero, as was proved

by Serre, see [94], also see the appendix in [78].

6.1.4. Polarized Abelian Varieties. Any abelian va-

riety in characteristic p can be lifted to a formal

abelian scheme over a complete Noetherian local do-

main. However in order to decide whether this formal

abelian scheme can be algebraized we like to lift a po-

larization along. For principally polarized abelian va-

rieties we know a lifting does exist, even to an unram-

ified situation (as was proved by Grothendieck and

Mumford).

Theorem (Mumford; Norman and Oort). Any polar-

ized abelian variety (A,λ ) over a perfect field κ can

be lifted to a polarized abelian scheme, and there do

exist examples that cannot be lifted to an unramified

situation (an example was given by Ogus); see [60],

[59].

6.1.5. Curves with Automorphisms. Suppose C0 is

an algebraic curve over κ and a subgroup G⊂Aut(C0);

in general the pair (C0,G) cannot be lifted to character-

istic zero: the Hurwitz bound easily provides us with

examples; for other examples see [66]. However for

a cyclic G liftability was a conjecture for some time

(1995), and that has been proved now:

Theorem (F. Pop; Obus and Wewers). Let (C0,ϕ) be a

smooth, complete algebraic curve with an automor-

phism ϕ ∈ Aut(C0) over an algebraically closed field

k ⊃ Fp; this pair can be lifted to characteristic zero.

See [61], [85]; see 6.2.4. For a discussion and ref-

erences see A. Obus – Lifting curves with automor-

phisms in [77], Chapter 2.

6.1.6. p-Divisible Groups. Any p-divisible group over
a perfect κ admits a lifting to an unramified mixed

characteristic domain.

6.1.7. CM-Liftings. Suppose A0 is an abelian variety

over a finite field. We know by Tate that A0 is a CM
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abelian variety, see [104]. We can ask whether a CM-

lifting does exist. It turns out that one has to formu-

late this question in various ways, with various an-

swers. For a full account of this interesting field, see

[7].

6.2. A Method in Deformation Theory. See [80], [79].

Suppose we study a problem in lifting theory, or

we want a deformation with specific properties of a

generic fibre. If the universal deformation theory ex-

ists, as in [87], which is the case in many situations,

it seems the problem is (almost) solved: just inspect

properties of all fibers; in several cases this works

well. However in more difficult problems we can en-

counter situations not easily solved in this way. We

discuss a method that worked well in several cases.

This method consists of two steps:

(I) deform N0 to a “better” situation M0; we have to

define what better means, and we have make a

usually non-canonical choice of such a deforma-

tion; in most cases this is the hard part of the

proof.

(II) apply general theory to solve the problem at

hand for this “good” situation.

We explain this method in the various situations.

Serre once communicated tome: “About theorems

being proved by general methods or by tricks. The

word trick is pejorative. But one should keep in mind

that a ‘trick’ in year N often becomes a ‘theory’ in year

N +20”.

6.2.1. Lifting Finite Commutative Group Schemes.

Step I. After rigidifying finite commutative group

schemes it is proved that the equi-characteristic-p de-
formation space is irreducible, [80], Theorem 3.1. As

usual, Step I is the hard part. In particular any finite

commutative N0 admits a deformation with geomet-

ric generic fiber M0 =Nη a direct sum of a local-etale

and an etale-local group scheme.

Step II. Clearly M0 can be lifted to characteristic zero

(the easy part of the argument), and [80] Lemma 2.1

finishes the proof that any finite commutative group

scheme can be lifted to characteristic zero.

6.2.2. Lifting Polarized Abelian Varieties.

Step I. Consider a polarized abelian variety (A0,µ)

over κ ⊃ Fp. Using the theory of displays (enabling us

to write down deformation of p-divisible groups ex-
plicitly) we prove that (A0,µ) can be deformed with

geometric generic fiber an ordinary (B0,µ), see [60],

Th. 2.2 and Th. 3.1. In this part and in the next step

a theorem by Serre and Tate that infinitesimal defor-

mations of (polarized) p-divisible group and of (polar-
ized) abelian schemes is an equivalence of categories

in a precise sense.

Step II. Clearly an ordinary polarized p-divisible
group can be lifted, and the Serre-Tate equivalence

shows (B0,µ) can be lifted to characteristic zero, and

[80] Lemma 2.1 finishes the proof that any polarized

abelian varieties can be lifted to characteristic zero,

see [60], Coroll. 3.2. For a different proof see [59].

6.2.3. Deformations of p-Divisible Groups with Pre-

scribed Generic Newton Polygon.

Step I. For a p-divisible group X0 over a perfect κ ⊃ Fp

we define

a(X0) = dimκ(Hom(αp,X0)).

Note that a(X0) = 0 if and only if X0 is ordinary. Sup-

pose X0 is non-ordinary; we show there exists an

equi-characteristic-p deformation of X0 with geomet-

ric generic fiber Y0 such thatN (X0) =N (Y0) and. a(Y0) =

1; see [37], Th. 5.11 and Coroll. 5.12.

Step II. For p-divisible groups with a(-) = 1 a method

in linear algebra generalizing the well-known Cayley-

Hamilton theorem describes precisely all Newton

Polygon strata in Def(Y0), see [67], Th. 3.4, see [69],

Th. 2.1, showing that any p-divisible group X0 can be

deformed to a p-divisible group with prescribed New-

ton Polygon, exactly as Grothendieck had asked for,

see [28], page 150 in the Appendix.

Remark. The method described here can be gen-

eralized to the situation of principally polarized

p-divisible groups, and hence to principally polarized
abelian varieties; see [69], Th. 3.1. There one can start

with any principally polarized supersingular abelian

variety, and apply (I) and (II), or we can start with

a principally polarized supersingular abelian variety.

with. a(A0) = 1, existence assured by [46], Th. 4.9(iii)

and apply (II).

Remark. The method described here shows that for

any symmetric Newton Polygon ξ the Newton Poly-

gon stratum Wξ ⊂Ag,1 =Ag,1⊗Fp in the moduli space

of principally polarized abelian varieties in character-

istic p, is non-empty. As a corollary this proves the

conjecture by Manin, see [47] page 76, that any sym-

metric Newton Polygon appears for an abelian variety

of that dimension in that characteristic, see [67], Sec-

tion 5. This conjecture was earlier proved by Serre

(unpublished) and by Honda in the Honda-Tate the-

ory, see [106], page 98.

Remark. For non-principally polarized abelian va-

rieties there do exist Newton Polygon strata where

a(−) > 1 for all points. Step (I) does not hold in such

situations. There are many counterexamples to the

generalization of the Grothendieck Conjecture to po-

larized p-divisible groups, and to polarized abelian

varieties; in [74] there is a systematic way to fund

such examples.
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6.2.4. Lifting a Cyclic Cover of an Algebraic Curve.

Step II. In [61], Th. 1.4 we find a criterion for a cyclic

cover in positive characteristic ensuring the lifting

problem has a solution.

Step I. In [85] we find a deformation argument show-

ing that any cyclic cover in positive characteristic can

be deformed to a cyclic cover as in [61], Th. 1.4.

Combining the two (quite non-trivial steps) we ar-

rive at:

Theorem. Any cyclic cove C→ D over k ⊃ Fp can be

lifted to a mixed characteristic domain. See [85], Th.

1.1.

6.3. Suppose we have an object X0 over κ ⊃ Fp such

that X0 ⊗ k can be lifted to characteristic zero for

some k ⊃ Fp. Suppose the deformation theory of X0

is prorepresentable. Then we see that X0 can be lifted

to some mixed characteristic domain Γ � κ . However

normalizing Γ might extend the residue class field.

Hence only the information given here does not an-

swer the question whether N0 can be lifted to some

mixed characteristic normal domain. For questions

see 9.5.

7. Minimal p-Divisible Groups

In this section we work over an algebraically

closed field k ⊃ Fp. For a p-divisible group X we con-

sider X [p] = G1 = Ker([p] : X→ X). We can consider how

far the structure of X [p] determines the isomorphism

class of X . This was a question in a letter 5 Jan-

uary 1970 of Grothendieck to Mumford, see [58], pp.

744–745: “I wonder ... assume k algebraically closed,

and G and H BT groups, and assume G(1) and H(1)
are isomorphic. Are G and H isomorphic?” As an an-

swer, Mumford wrote counterexamples. I think nei-

ther Grothendieck nor Mumford ever pursued this

question.

Completely independent of this, not knowing at

that moment this correspondence, I wondered what

conditions on X [p] ∼= Y [p] would imply X ∼= Y for

p-divisible groups over an algebraically closed field.

In this section we describe this necessary and suffi-

cient condition.

7.1. BT1 group schemes. A finite, commutative flat

group N → S is called a BT1 group scheme over S if

N/S is annihilated by p, and N (p)[V ] is flat over S and

equal to the image of F : N →N (p). See [34], 1.1.

The following conditions are equivalent for a fi-

nite commutative group scheme N over a perfect field

κ :

• N/κ is a BT1 group scheme;

• there exists a p-divisible group X with X [p] ∼= N;
see [34], 1.7;

• FN = N(p)[V ] and V N(p)N = N[F ] (hence N is annihi-

lated by p);
• there exist a set of circular Kraft cycles {w j | j}
such that N⊗ k ∼= ∑ j Qw j .

7.2. An Example. Suppose

ι =(x,y) : αp→ (αp)
2⊂ (G1,1)

2; define Z[x:y] =(G1,1)
2/ι(αp).

It is easy to see that x 6∈ Fp2 and y 6∈ Fp2 if and only if

a(Z[x:y]) = 1; in this case Z[x:y][p]⊗k∼= Qw for the circular

word w=FFVV; in particular these BT1’s are mutually

isomorphic. However,(
{Zx | x ∈ k, x 6∈ Fp2 , Zx = (G1,1)

2/(x,1)(αp)} / ∼=
)

= k∗/(Fp2)∗;

we see that QFFVV is a BT1 such that there are

infinitely many isomorphism classes of p-divisible
groups Z with Z[p]∼= QFFVV .

Proof. We work over k. For a(Z) = 1 we have a(Zt) and

Z ∼ (G1,1)
2. The unique αp ⊂ Zt gives Zt/αp

∼= (G1,1)
2. By

duality this gives functorially an exact sequence

0→ α
D
p
∼= αp→ ((G1,1)

2)t ∼= (G1,1)
2 −→ Ztt = Z→ 0.

For Zx
∼= Zy we obtain a commutative diagram

0 // αp //

∼=

��

(G1,1)
2 //

∼=
��

Zx //

∼=
��

0

0 // αp // (G1,1)
2 // Zy // 0.

The action of End((G1,1)
2 on (αp)

2 = (G1,1)
2[F ] is via

Mat(2,Fp2) and the result follows.

Conclusion. There is a BT1 group scheme N of or-

der p4 and infinitely many k-isomorphism classes of

a p-divisible groups X with X [p]∼= N.

Variant. Take any n ∈ Z>1, and (x,y) : αp → G1,n×Gn,1

with Zx = (G1,n×Gn,1)/(x,1)(αp). For x 6= 0 and y 6= 0 we

have a(Z[x:y]) = 1, and the set of such isomorphism

classes is k∗/Fp1+n .

We could also consider (x,y) : αp→ G1,n×Gm,1, etc.

7.3. Remark. Note that for a BT1 group scheme N over

k we can have p-divisible groups X and Y such that

X [p]∼= N ∼= Y [p] such that N (X) 6=N (Y ).
For example, take the circular Kraft cycle w=FnVn

for some n > 1. Any symmetric Newton Polygon ξ for

g = n with no slopes equal to 0 and no slopes equal to

one 1 (“the p-rank is zero”) admits a p-divisible group
X of height h = 2n with N (X) = ξ and X [p]∼= Nw. For any

n> 1 we have at least two different symmetric Newton

Polygons with p-rank zero and we obtain examples as

in the remark above.
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7.4. Definition.A p-divisible group X is calledminimal

if there exists a Newton polygon ζ with

X [p]⊗ k ∼= H(ζ )

in the notation of 4.5.f. Note that we do not make a

priori any connection between N (X) and ζ .

7.5. Theorem. Suppose X and Y are minimal

p-divisible groups over k. Then

X [p]∼= Y [p] ⇐⇒ X ∼= Y ;

in this case N (X) = ζ = N (Y ) with X [p] ∼= H(ζ )p ∼= Y [p].
See [71].

Note that the minimal p-divisible groups are pre-
cisely those for which the answer to the question

by Grothendieck is affirmative. Moreover, in every

k-isogeny class there is a unique minimal one.

7.6. Example.We consider k = k⊃ Fp and g= 3. We see

that we have the following possible Newton Polygons.

We write f = f (-) for the p-rank: G[p](k)∼= (Z/p) f (G) for

any commutative group scheme.

• (ss) ξ = σ3; X is minimal if and only if a(X) = 3, the
superspecial case;

• ( f = 0) for ξ = (2,1)+ (1,2) we see X is minimal if

and only if a(X) = 2;
• ( f = 1) for ξ = (1,0)+2·(1,1)+(0,1)we see X is min-

imal if and only if a(X) = 2;
• ( f = 2) any X withN (X)= ξ = 2·(1,0)+(1,1)+2·(0,1)
is minimal;

• ( f = 3) any ordinary p-divisible group is minimal.

As 7.5 allows us to describe explicitly all possible

minimal p-divisible groups, such examples can be ex-

plicitly given for any g.
Here is another characterization of minimal

p-divisible groups.

7.7. Theorem. A p-divisible group X is minimal if in

the direct summand X [p]⊗k∼= ∑ j Qw j every Qw j is sim-

ple as object in the category of BT1 group schemes. See

[72], 0.1.

Remark. Note that “simple as object in the category

of BT1 group schemes” is much stronger than the

concept “simple”. For example N = NFV has a non-

trivial proper subgroup but N is simple as BT1 group

scheme.

For example QFFVV is not simple as BT1 group

scheme: it contains a subgroup scheme isomorphic

with QFV . Using 7.4 and 7.5 one can explicitly deter-

mine all circular Kraft cycles that give a simple BT1

group scheme.

Remark. For any p-divisible group X such that

X [p] is local-local and d(X) > 1 and c(X) > 1 there

exist infinitely many Y ∼ X that are not mini-

mal. Grothendieck had examples in mind for which

his question has an affirmative answer; p-divisible
groups of dimension 1 or of codimension 1 indeed are
minimal, but in other cases many examples of non-

minimal p-divisible groups are present.

8. Stratifications and Foliations

Here we come to an application as promised in

the introduction: fix “an invariant” and study the

space of all objects having that invariant. The moduli

space of polarized abelian varieties has been studied

(certainly since Abel) and geometric, topological and

analytic tools give a wealth of information on such

spaces over C. It seems we are at loss as these tools

are not available in positive characteristic. We show

there are other, powerful tools available in that situ-

ation.

We consider Ag = Ag,1 ⊗ Fp, the moduli space

of g-dimensional principally polarized abelian vari-

eties defined over some field in characteristic p. We

construct two stratifications and foliations of these

spaces. Properties have been well established by now,

and we can harvest the fruits. (We have also studied

the cases of arbitrary degree of polarization, interest-

ing but not discussed here.)

8.1. (NP) Newton Polygons. The invariant:

A[p∞] mod ∼
Consider a symmetric Newton Polygon ξ and de-

fine the open Newton polygon stratum

Wξ (Ag) = {[(A,µ)] ∈Ag |N (A[p∞]) = ξ}.

By Grothendieck and Katz we know Wξ (Ag) ⊂ Ag is

locally closed, see [28], page 150; [41] Th. 2.3.1, page

143. We obtain a finite union Ag = tWξ (Ag).

8.2. (EO) EO Strata. The invariant: (A,λ )[p] mod ∼=
Consider a BT1 group scheme N, with a non-

degenerate alternating pairing 〈-, -〉; for details see

[68], Section 9. A principally polarized abelian vari-

ety (A,λ ) defines such a pair by

(A,λ )[p] = (N,〈-, -〉).

Denote its isomorphism type by

ϕ = ((N,〈-, -〉) mod ∼=) .

For a classification of such pairs over k see [68], The-
orem 9.4. Define

Sϕ = {[(A,µ)] ∈Ag | A[p]⊗Ω∼= N}.

Here Ω is some algebraically closed field. The set

Sϕ ⊂Ag is locally closed. Using Section 5 we can prove

that the number of such isomorphism types is finite;

hence we obtain a finite union Ag = tSϕ .
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8.3. (Fol) Foliations: Central Leaves. The invariant:

(A,µ)[p∞] mod ∼=
Consider the moduli point of a polarized abelian

variety x = [(A,λ )] and consider

C(x) = {[(B,µ)] ∈Ag | (B,µ)⊗Ω∼= (A,λ )⊗Ω}.

This set is locally closed in the Newton polygon stra-

tum Wξ (Ag) with ξ := N (A), and this inclusion is lo-

cally closed, hence C(x)⊂Ag is locally closed. See [70].

8.4. A Discussion, Some Properties. In all three cases

we have defined these sets as sets of points, and over

a perfect field we consider the scheme structure as

a reduced scheme. This seems a method not fitting

very well in Grothendieck’s philosophy.

For (NP) we do not know a good scheme theoretic

definition, see 8.1. This seems a serious obstacle in

further developments.

For (EO) there is a nice, functorial description of

these strata, see [20].

For (Fol) initially a set-theoretic definition was

given in [70]; now a functorial description is available

by the notion of sustained p-divisible groups, see [77],
Chapter 7, [12]. It is known that over a perfect base

field C(x) is non-singular (in both definitions).

8.5. Hecke Orbits. Suppose given a polarized abelian
variety (A,µ) over a field. Write x = [(A,µ)] for its mod-
uli point; its Hecke orbitH(x) is defined as the isogeny
class of (A,µ). Explicitly: [(A2,µ2)]∈H([(A1,µ1)]) if there
exists a field Ω, and (B,ζ ) over Ω and isogenies

(B,ζ )

ϕ

yy

ψ

%%

ϕ∗(µ1) = ζ = ψ∗(µ2)

(A1,µ1)⊗Ω (A2,µ2)⊗Ω

Easy. For abelian varieties over C any Hecke orbit is

dense everywhere in the moduli space (dense in the

classical topology and dense in the Zariski topology).

Example. The Hecke orbit of a supersingular elliptic

curve over k⊃ Fp has only finitely many points in Ag,1

and we see the Hecke orbit is not dense in this case.

We suggest an exercise to the reader: show the

Hecke orbit of an ordinary elliptic curve is everywhere

dense in the moduli space.

What do these results suggest?

Theorem (Chai). For an ordinary (A,µ) over k ⊃ Fp its

Hecke orbit is every where dense in the moduli space

Ag⊗Fp. See [5].

Theorem (Chai-Oort). For any (A,µ) over k ⊃ Fp, with

N (A) = ξ , its Hecke orbit is everywhere dense in the

Newton Polygon stratum given by ξ . To be published

in [12].

Hecke correspondences in positive characteristic

can blow up and down. Here is an easy example. Con-

sider the supersingular locus S ⊂ A2,1 of principally

polarized abelian surfaces, and S′ ⊂ A2,p of abelian

surfaces with a polarization of degree p2; we know

S is a union of rational curves, also S′ is a union of

rational curves. Intersection points of components of

S blow up to a component of S′ and components of

S blow down to intersection points of components of

S′ under Hecke-p-correspondences. For other Newton
Polygons, especially for higher g much more compli-

cated patterns appear.

As a consequence we see that different compo-

nents in Wξ (Ag), the locus in ∪dAg,d where ξ is real-

ized, can have different dimensions. This behavior is

well understood by now; see [74]. However compo-

nents in Wξ (Ag,1) all have the same dimension; this

is completely understood, e.g. see [69], [67]; an easy

combinatorial pattern computes the dimension of NP

strata in the principally polarized case.

8.6. It is hard to (define and to) describe EO strata in

Ag. However in Ag,1 the situation is clear. See [68] for

a complete and precise description.

For a given symmetric Newton Polygon all central

leaves in Wξ (Ag) have the same dimension. It feels

that central leaves have “the same properties” as the

moduli space Ag⊗Q of polarized abelian varieties in

characteristic zero. This insight is supported by the

Hecke Orbit problem: any Hecke orbit is dense in Ag⊗
Q on the one hand, and any prime-to-p Hecke orbit is
dense in Ag⊗Fp, the main theorem in [12].

Boundaries. We study inclusions after taking Zariski

closures. For a locally closed subset T ⊂Ag we define

∂ (T ) := T Zar−T ⊂ Ag.

We know (solution of the Grothendieck conjecture)

that ∂ (Wξ (Ag,1)) is the union of all NP strata as given

by the partial ordering of Newton Polygons; however

for non-principally polarized abelian varieties this is

no longer true, and the inclusion pattern is compli-

cated; see [74].

For EO strata we know that ∂ (Sϕ) is the union of

smaller strata in Ag,1. However in the non-principally

polarized case this pattern is hard to understand; see

[74].

For central leaves we know ∂ (C(x)) is a union of

leaves. It seems a hard and unsolved problem to de-

termine for a given C(x)⊂Wξ (Ag) which leaves appear

in its boundary, see 9.4.

8.7. Structures described above have many applica-

tions.

For any g the moduli space Ag,1 =Ag,1⊗Fp is geo-

metrically irreducible, as was proved by Faltings and

by Chai (for p > 2); their proof uses the analogous fact
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in characteristic zero, reduction mod p, and a careful

study along the locus of degenerate abelian varieties.

By (EO) we have a pure characteristic p proof, see
[68], 1.4: for any Sϕ ⊂Ag,1 we know ∂ (Sϕ) is the union

of smaller EO strata, see [68], 1.3; Ekedahl proved that

the Zariski closure of the unique one-dimensional EO

stratum is connected, [68], Section 7, in particular 7.3;
henceAg,1 is geometrically connected, and irreducibil-

ity follows. We note the interesting fact that we do not

specialize to the boundary of Ag,1, say in the Satake

compactification, but that we specialize to smaller

strata inside Ag,1.

For another application, a proof of the Manin con-

jecture, see [67], Section 5.

8.8. Irreducibility. This story started with a theo-

rem proved by Eichler, Deuring and Igusa, computing

the number of supersingular elliptic curves as a class

number, see [19], [17], [33]: the number of supersin-

gular j-values, isomorphism classes of supersingular

eliptic curves over Fp, is asymptotically p/12 for p→∞.

For g > 1 an analogous result holds, see [38], [39],

[31], [46] 4.9. We see that (for p large)

the supersingular locus inside Ag,1 is reducible.

Then we saw that supersingular strata and leaves on

the one hand and non-supersingular strata and leaves

on the other hand behave very differently as far as

(ir)reducibility is concerned. Results:

(NP) Non-supersingular NP strata inside Ag,1 are irre-

ducible, see [10], Th. A; see 8.9.

(EO) For any EO stratum Sϕ inside Ag,1 not contained

in the supersingular locus Ehkedahl and Van der

Geer showed that Sϕ is geometrically irreducible,

see [20], Th. 11.5 and [75], Th. 10.14.

(Fol) Any central leaf not contained in the supersingu-

lar locus is irreducible, see [10], Th. B.

8.9. We give a (very brief) sketch of the proof of the

geometric irreducibility of non-supersingular Wξ ⊂
Ag,1, see [6], [10] and [77], Chapter 5. We will see

that this is a combination of beautiful geometric argu-

ments and an elegant result on monodromy groups.

For an algebraic variety (or an algebraic scheme) T we

write Π0(T ) for the set of irreducible components of

T ⊗ k.
(1). Using ideas and results by Raynaud [86], Th 5

on page 62, Moret-Bailly [55], XI.5 on page 237, we

conclude that every EO stratum Sϕ ⊂ Ag,1 is quasi-

affine, see [68], 1.2.

(2). Using this and using that Hecke prime-to-p
orbits and Hecke `-orbits outside the supersingular

locus are infinite we show that for any irreducible

component T ⊂Wξ its boundary ∂ (T ) contains an ir-

reducible component of the supersingular locusWσ ⊂
Ag,1; for details see [77], Chapter 5, 6.4.2.

(3). In [46] we find a description of the set of irre-

ducible components of Wσ ⊗ k.

Remark. We see that for any x ∈Wσ the Hecke p-orbit
Hp(x) is dense in at least one component, and for any

prime ` 6= p the `-Hecke orbit H` acts transitively on

Π0(Wσ ).

(4). Using geometric arguments such as purity

[37], the Grothendieck conjecture, see 4.7, the Cayley-

Hamilton method as in [67], we show that the

H`-equivariant map Π0(Wσ ) � Π0(Wξ ) is surjective;

hence transitivity of H` on Π0(Wξ ).

(5). A beautiful group theoretic argument, see [6],

4.4 shows the transitivity of H` on Π0(Wξ ) finishes the

proof of irreducibility of Wξ ⊗ k.

8.10. An Explicit Example. From the definitions it is

clear that different NP strata do not intersect and dif-

ferent EO strata do not intersect. It turns out that the

same is true for different central leaves.

For an ordinary NP, i.e. ξ = g·(1,0) + g·(0,1) a

NP stratum and a central leaf coincide; the same

holds of the “almost ordinary NP” (g−1)·(1,0)+(1,1)+
(g−1)·(0,1); for all other Newton Polygons the number

of central leaves in a NP stratum is infinite. A central

leaf is zero-dimensional if an only if we work on the

supersingular locus.

Here we illustrate the notion of leaves in a special

case: principally polarized abelian varieties of dimen-

sion 3 and p-rank zero. There are two possible sym-

metric Newton Polygons in this case: ξ = (2,1)+ (1,2)
and g·(1,1). We describe leaves in the first case. Here

W = Wξ = Wξ (A3,1) is irreducible and of dimension 3.
Suppose [(A,λ )] = x ∈W such that A[p∞] is minimal; in

this case the central leaf C(x) = Z is called the central

stream ofWξ ; we know all leaves inWξ are irreducible.

Moreover it can be proved that in this case Z ⊂Wξ is

the singular locus of Wξ (as a stack, or after adding

enough level structure). Moreover every central leaf

in thisWξ has dimension equal to 2. For any y∈Wξ −Z
the leaf C(y) is 2-dimensional and non-singular and

contains only non-singular points of Wξ ; every two

different leaves do not intersect, and the whole sit-

uation can be seen as “parallel” surfaces in a 3-fold.
The structure of Wξ in this particular case is well-

understood. For a more general case the picture of a

foliation of a NP stratum looks very much the same.

It can be proved (but this seems particular for

this choice of NP) that ∂ (C(z)) for any z ∈ Wξ is the

1-dimensional locus of supersingular abelian 3-folds
with a ≥ 2. For a more general case it seems hard to

describe the boundary of a central leaf, see 9.4.

8.11. Serre-Tate Parameters. Let X0 be an ordinary

p-divisible group over a perfect field κ ⊃ Fp, i.e. the

Frobenius slopes are only 0 and 1. For this case the

deformation space (equal characteristic p, or unequal
characteristic p-0) are well-understood; see [96], [42],
[53]. It is a beautiful example of families of p-divisible
groups that are not constant, but where the geomet-
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ric fibers are mutually isomorphic; indeed, this is an

example of a leaf in a foliation.

One can wonder whether the notion of Serre-

Tate parameters can be generalized to non-ordinary

p-divisible groups; by now we know what the limita-

tions are and what the correct generalization is; see

Section 8 of C.-L. Chai and F. Oort – Moduli of abelian

varieties in [77], Chapter 5: in general we have a no-

tion of “generalized Serre-Tate parameters” on a cen-

tral leaf in characteristic p. Beyond a central leaf this

structure in general cannot be extended, not in char-

acteristic p, not in mixed characteristics.

In order to understand families of p-divisible
groups over a leaf as in 8.3 a new concept has

been developed and rather well understood: sus-

tained p-divisible groups. We will not discuss this con-

cept here, but just refer to Chapter 7: C.-L. Chai and

F. Oort – Sustained p-divisible groups: a foliation re-

traced in [77], and to [12]. We use the terminology

“sustained” as in music: a voice can remain constant,

although the underlying harmony changes; in a sus-

tained family of p-divisible groups fibers aremutually

geometrically isomorphic, but the family need not be

constant, even in general cannot made constant by a

faithfully flat base change.

For some literature, see: [6], [7], [8], [10], [12], [20],

[52], [54], [67], [68], [69], [70], [71], [71], [75], [86],

[113].

9. Some Questions

9.1. Suppose N→ S is a finite presentation flat group

scheme of constant order n = rank(N/S). Is N/S annihi-

lated by [n], i.e. is

([n] : N→ N)
?
=
(

N→ S
e−→ N

)
?

We know this is true for commutative group schemes

by a theorem by Deligne, [109], page 4, [108], 3.8; we

know this is true for a group scheme over a field,

see [93], Coroll. 2.2. It suffices to show (or to have a

counter example) for a finite flat local group scheme

of order a power of p over a local Artin ring R with

residue field R � κ = κ an algebraically closed field of

characteristic p. For more information see [25], Exp.

VIII, Remarque 7.3.1; for a survey see [93].

9.2. Question (Tate, [105], Question on page 162). We

know p-divisible groups over Z:

µp,∞,Z and Qp/Zp Z
.

Is every p-divisible group over Z a product of copies of

these?

9.3. As Manin conjectured, for every prime number p
and every symmetric Newton Polygon ξ there exists

an abelian variety A over Fp with N (A) = ξ . [47], page

76, [106], page 98, [67], Section 5. However,

does there exist for every p and ξ an irreducible al-

gebraic curve C over Fp with N (Jac(C)) = ξ?

Some special cases are known. The general case in

unsolved, and this seems a hard problem. It might

even be true that for a given ξ the answer for different

prime numbers p can be different. E.g. see R. Preis –

Current results on Newton Polygons of curves, [77],

Chapter 6.

9.4. Question. We have seen that central leaves in

one fixed NP stratum are “parallel” they do not in-

tersect inside Wξ . However many examples show that

the Zariski closure of different central leaves meet in

(Wξ )
Zar.

Describe for every central leaf the “bound-

ary” ∂ (C(x)) = (C(x))Zar \C(x).

See [29].

9.5. Question.We have seen that any pair (C0,ϕ) as in

6.1.5 can be lifted to a domain in characteristic zero.

Can it be lifted to a normal domain in characteristic

zero?

Remark. For an analogous problem, lifting CM

abelian varieties, we have seen that lifting is possible

(after applying an isogeny), but there are cases where

no lifting is possible to a normal domain in charac-

teristic zero; see the notion of the residual reflex con-

dition in [7], 2.1.5.

9.6. NP Strata. Find a functorial description of NP

strata. Determine which NP strata with this correct

scheme structure are reduced.

An Afterthought. We have seen that p-divisible
groups over a field, and p-divisible groups over a base
scheme in characteristic p are rather well-understood;
for applications in characteristic p geometry this has

been a crucial tool.

However, we also said that p-divisible groups are
not finite type (etc.) objects in algebraic geometry,

and we have already seen particular care has to be

taken in considerations in case the (arbitrary) base is

not a field. In equal characteristic p this seems to be

well-understood by now.

We did not discuss p-divisible groups in mixed

characteristic; fascinating developments and applica-

tions are being developing recently. See:

• M. Rapoport and Th. Zink – Period spaces for

p-divisible groups. Annals of Mathematics Stud-

ies, 141. Princeton University Press, Princeton,

NJ, 1996.

• P. Scholze – p-adic geometry. https://arxiv.org/

abs/1712.03708
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• P. Scholze and J. Weinstein – Moduli of p-divisible
groups. Cambridge J. Math. 1 (2013), 145–237.

Also see https://arxiv.org/pdf/1211.6357.pdf

• L. Fargues and J.-M. Fontaine – Courbes et fibrés

vectoriels en théorie de Hodge p-adique.
• The paper Courbe.df in: https://webusers.

imj-prg.fr/~laurent.fargues/Prepublications.

html
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