
Lie Theory, from Lie to Borel

and Weil

by Wilfried Schmid*†

In 1913, Hermann Weyl published a monograph,

“Die Idee der Riemannschen Fläche” [28], which for

the first time introduced the notion of a manifold.

Basic notions of topology had been established by

Poincaré (“analysis situs”) around the turn of the cen-

tury, and Weyl used those freely. In the monograph,

Weyl concentrated on Riemann surfaces, of course –

i.e., one dimensional complex manifolds – but he also

gave various other examples ofmanifolds, such as the

Möbius strip.

Lie developed the notion of a Lie group – or what

he called “Transformationsgruppen” – in the years

1874–1893 [15], long before Weyl’s definition of a

manifold. How could he do that?

Before answering this question, I shall briefly de-

scribe Lie’s career. After studying in Oslo (then called

Kristiana) without a strong focus, he published his

first mathematical paper in 1869, in Crelle’s Journal.

Awarded a generous scholarship for travel, he went

to the University of Berlin, where he met, and be-

came friends with, Felix Klein. One can almost say

that Klein and Lie then consciously mapped out their

research programs – both viewing groups as a power-

ful tool in differential equations and geometry. Lie re-

turned as professor to Oslo, Klein became professor

in Erlangen, then moved to Leipzig, and later Göttin-

gen. Lie became Klein’s successor in Leipzig in 1886.

Three years earlier, Klein’s student Friedrich Engel

(1861–1941) had become Lie’s “Assistent”. That was

a beginning academic position in Germany, roughly

comparable to that of an assistant professor in the
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US today, but attached to one full professor, to whom

the Assistent owed certain responsibilities. Engel had

significant influence on Lie – Lie’s papers became far

more rigorous after Engel joined him.

In the following I shall concentrate on the defini-

tion of (what are now called) Lie groups. Lie, of course,

viewed them as an important tool and pursued many

applications to geometry and differential equations.

For Lie, a transformation group is a pair of real or

complex analytic maps, only locally defined on open

sets in Rm×Rn or Cm×Cn,

y = F(x,a) (taking values in Rm, resp. Cm) ,

with a law of composition c = φ(a,b) satisfying

(1)
F(F(x,a),b) = F(x,c) when c = φ(a,b) , and

φ(a,φ(b,c)) = φ(φ(a,b),c) whenever defined

Usually, but not always, a “unit” and “inverses” are

required to exist:

(2)

φ(e,a) = φ(a,e) = a for each a , and F(x,e) ≡ x;

also, for each a , there exists b such that

φ(a,b) = φ(b,a) = e.

In current terminology, one would call this the germ

of a Lie group acting on the germ of a manifold.

As a special case, one gets the group acting on it-

self – in which case F = φ – either by left or by right

translation. With F(x,a) and φ(a,b) as above, the “in-

finitesimal transformations” are

Xi = ∑ j

∂φ j(a,b)

∂bi

∣∣
b=e

∂F
∂a j

.

Lie formulated “three fundamental theorems”. The

first is the infinitesimal version of the group law (1).
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The second asserts that the linear span of the Xi are

closed under taking commutators

[Xi , X j ] = Xi X j − X j Xi = ∑k ci, j,k Xk ,

in other words, they span a Lie algebra (Weyl’s ter-

minology). Lie’s third theorem asserts that every sys-

tem of structural constants ci, j,k satisfying the ob-

vious condition (skew symmetry, Lie triple identity)

arises from a transformation group.

Lie’s first, early proof of his third theorem asso-

ciates to each system of structural constants ci, j,k vec-

tor fields

Xi = ∑ j,k c j,i,k x j
∂

∂xk

When the ci, j,k satisfy the triple identity, the Xi span

a Lie algebra of vector fields on Rm , in modern ter-

minology, the Lie algebra of the adjoint group. At

the time, Lie overlooked the possibility of a nontriv-

ial center, in which case the group to be constructed

does not coincide with the adjoint group. Years later,

he realized the Lie algebra to be constructed, and

thereby indirectly the corresponding transformation

group, as a Lie algebra of functions under Poisson

bracket. To this day, constructing the Lie group corre-

sponding to a given Lie algebra is not entirely trivial.

Many aspects of Lie groups and actions of Lie

groups on manifolds that are obvious today were not

in Lie’s time. As just one example, the fact that the left

translation action of a Lie group on itself commutes

with the right translation action could not be more

obvious today. It was not obvious to Lie, who thought

in terms of his own definition. Lie credits Engel with

observing that the two actions commute.

As another example, Lie tried to do as much as he

could without requiring the existence of an identity.

Today that seems pointless. The role of the “infinites-

imal translations” Xi, though clear enough to Lie, be-

came far more transparent after Hermann Weyl intro-

duced the notion of a Lie algebra.

Friedrich Schur (1856–1932) – not to be confused

with Issai Schur, to whomhewas unrelated – had been

a student of Karl Weierstrass in Berlin. It showed:

Weierstrass was perhaps the first well known math-

ematician to insist on complete rigor in analytic ar-

guments, and transmitted that insistence to his stu-

dents. Schur started out as “Assistent” to Klein in

Leipzig. In 1889–1893, not long after Lie had defined

the notion of a transformation group, Schur wrote

three papers [24–26], all published in Mathematische

Annalen, which laid out an alternate, rigorous, ap-

proach to the subject. His starting point is an obser-

vation, first made by Lie, that there is a “canonical”

choice of parameters a for Lie’s map φ(a,b), namely

those for which straight lines t 7→ ta correspond to one

parameter subgroups. In terms of those coordinates,

φ(a,b) can be expressed as a power series, absolutely

and uniformly convergent in a neighborhood of the

origin.

The coefficients of this power series depend

polynomially on Lie’s structural constants ci, j,k, but

are otherwise universal. In effect, this is the Baker-

Campbell-Hausdorff formula in disguise! He also

treats the case of the map F(x,a) in Lie’s definition,

and thus rigorously proves Lie’s third theorem, al-

most simultaneously with Lie. Schur also addresses

the differentiability requirements for transformation

groups. Lie assumes real (or complex) analyticity, but

Schur observes that C2 differentiability is enough.

This is the origin of Hilbert’s fifth problem, of course:

even being locally Euclidean is enough. The difference

in styles between Lie and Schur is striking. In Engel’s

obituary for Schur [13], he wrote that Lie and Schur

had very different ideas of what was easy and what

was not. Schur was recognized by his contemporaries

– he received an honorary Doctorate from the Techni-

cal University of Karlsruhe, for example – but in later

times became underappreciated.

Killing (1847–1923) – like Schur a student of

Weierstrass – wrote a series of papers around 1890,

contemporaneously with Schur, in the very early days

of Lie theory [14]. In these he established, or came

close to establishing, many structural results about

(what we now call) Lie algebras: criteria for semsim-

plicity (Killing introduced the term “halbeinfach”, i.e.,

semisimple), the decomposition of reductive Lie alge-

bras into simple factors and the center, but most im-

pressively by far, a classification of simple Lie alge-

bras over C barely a few years after the notion (but

not the name) of Lie algebra had been introduced.

His classification contained a minor error and the

exposition is often obscure. But the classification of

simple Lie algebras was so totally unexpected that

it could not possibly have been “guessed”. After his

PhD in Berlin, Killing taught at a “Gymnasium” (i.e.,

High School) before becoming Professor in Münster

in 1892.

If Friedrich Schur was underappreciated, Killing

has been almost ignored. Lie made a habit of review-

ing the work of others on “my theory of groups”. He

was especially savage towards Killing: “The correct

theorems (in a particular paper of Killing) are due to

Lie, the false ones due to Killing”. And “... (several pa-

pers of Killing) contain not so many results that are

correct and new. Proved, correct, and new are even

fewer”.

Élie Cartan is generally credited with the classifi-

cation of simple Lie algebras. He did put Killings clas-

sification over C on a solid footing in his thesis, and

classified simple Lie algebras overR, which Killing did

not touch at all. But Killing deserves far more recog-

nition than he got. Killing introduced the notion of a
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root, i.e., a root of the characteristic equation

det(adX−α) = 0 , where adX(Y ) = [X ,Y ] ,

but in term’s of Lie’s notation. Then, as now, the study

of roots was key to understanding of the structure of

a simple Lie algebra.

Campbell (1862–1924) studied at Oxford, and be-

came a fellow and then tutor there. In 1887, he pub-

lished two papers on what is now known as the

Campbell-Baker-Hausdorff formula [5]. The opening

paragraph of the second neatly describes their point

of view: “If x and y are operators which obey the

ordinary laws of algebra, we know that eyex = ey+x.

I propose to investigate the corresponding theorem

when the operators obey the distributive and asso-

ciative laws, but not the commutative”. In doing so,

he treated the equation

(3) eY eX = eZ , with Z = Z(X ,Y ) ,

as a formal identity. By long calculations, he ex-

pressed Z in terms of X , Y , and repeated brackets,

with universal coefficients. He cites Schur’s paper, be-

cause his calculations lead to the same coefficients as

occur in Schur’s proof of Lie’s third theorem. But re-

markably, he says nothing about the logical connec-

tion. Unlike Schur, he does not address the question

of convergence.

Lie had already used the exponential series in the

context of Lie groups. But Campbell was the first to

use the exponential notation in the context of Lie

groups. In 1903, Campbell published an “Introduc-

tory Treatise on Lie’s Theory of Finite Continuous

Transformation Groups” [6], which was instrumen-

tal in introducing Lie’s ideas to the English speaking

mathematical world.

Poincaré (1854–1912) had a “modern” interest in

group actions in geometry, just one of his very many

mathematical interests, of course [17]. The problem

of characterizing physical space by suitable axioms

was one of the grand themes of mathematics in his

time. In “Sur les hypothèses fondamentales de la

Géométrie” (1887) [18], he approached the problem

by observing that (in the plane) Euclidean, hyper-

bolic, and elliptic geometry have one feature in com-

mon: their groups of motion act transitively, with

one-dimensional isotropy groups. He used Lie’s in-

finitesimal methods, but was reproached by Lie – in

uncharacteristically gentle terms – for being unaware

of Lie’s own classification of (local, of course) group

actions of three dimensional transformation groups

on the plane. It may not be an accident that he waited

until Lie’s death in 1899 to write about “transforma-

tion groups” in Lie’s sense.

Poincaré published an announcement, outlining

the proof of Lie’s third theorem (existence of a

“transformation group” when given its “infinitesimal

group”) in 1899 [19], around the time of Lie’s death.

The details followed a few months later, in a paper

dedicated to Stokes [20]. By then, he knew about ear-

lier work by Friedrich Schur and Campbell: he cites

both, and comments on the overlap. In effect, he in-

troducedwhat is now called the “universal enveloping

algebra”, as the algebra spanned by all formal non-

commuting products of generators of the “infinitesi-

mal transformation group” – i.e., Lie algebra – of the

group in question, modulo the relations forced by the

relation

(4) X Y − Y X − [X ,Y ] = 0

for all generators X , Y . Repeated application of

this identity makes any non-commutative polynomial

equivalent to one whose homogeneous components

are symmetric in the variables.

The crux of the Poincaré-Birkhoff-Witt theorem is

the assertion that there are no “hidden relations”, or

in current terminology, that the associated graded al-

gebra is isomorphic to the symmetric algebra of the

Lie algebra in question. His proof is complicated and

leaves much unsaid. However, the idea becomes clear

if one works it out in the case of a Lie polynomial

of degree three. Poincaré’s proof seems to have been

forgotten for almost 40 years. Garrett Birkhoff [2]

and Ernst Witt [30] published proofs independently

in 1937, in the most general setting – for possibly

infinite dimensional Lie algebras, and in any charac-

teristic of the ground field. Only Cartan-Eilenberg’s

book on homological algebra affixed Poincaré’s name

to the theorem. For Poincaré, the result was not an

exercise in algebra. Rather, he used it to make sense

of Campbell’s formal identity

(5) eY eX = eZ ;

after all, at the time a global Lie group in which one

could make sense of (5) had not yet been constructed.

What is the connection between the Poincaré-

Birkhoff-Witt theorem and the relation (5)? The dif-

ferentiated version of (5) can be written, in symbolic

notation, as

(6) eY eδX = eY+δY , with δX =
1 − e−adY

adY
δY ;

here adY (Z) = [Y,Z] is (now) standard notation, and

1 − e−adY

adY
= ∑n≥0 (−1)n (adY )n

(n+1)!
.

This series evidently has a positive radius of conver-

gence. Poincaré proves (6) bymeans of a residue argu-

ment, then uses (6) to show that the quantity on the

right in (5) is the exponential of a quantity Z = Z(X ,Y )
whose power series converges for all small X and Y .
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Although his argument implies Campbell’s universal

formula for the coefficients, Poincaré does not pur-

sue this.

To follow the chronological order, Baker

(1866–1956) won a scholarship to St. Johns Col-

lege, Cambridge, became a fellow there, and in 1914

became Lowndean Professor of Astronomy at Cam-

bridge. One of his earliest publications was an 1905

article on “Alternants and continuous groups” [1] in

the Proceedings of the London Mathematical Society;

“alternants” being then used as terminology for the

Lie bracket of X and Y , which Baker denoted by (X ,Y ).
After referring to Friedrich Schur and Campbell, he

derives explicit formulas for Z in the relation

(7) eX eY = eZ ,

in terms of X and Y – as had Campbell (and implic-

itly, Schur) – but much more efficiently and elegantly

than Campbell. That was his last publication on Lie

groups; at his time, he was better known as author of

textbooks on algebraic geometry.

After the 1899 announcement and the detailed

paper on Lie’s third theorem, on (what is now

known as) the Baker-Campbell-Hausdorff formula,

and on the Poincaré-Birkhoff-Witt theorem, Poincaré

returned to the subject of transformation groups in

two papers in 1901 [21] and 1908 [22]. His main ana-

lytic tool was the residue calculus, which he used to

re-prove some of Killing’s results on the root space

decomposition of a semisimple Lie algebra. More sig-

nificantly, he attempted to understand global ques-

tions about semisimple Lie groups, before Hermann

Weyl’s notion of manifold had been formalized. That

makes these papers frustrating for a present-day

reader. In the semisimple case, he saw that the multi-

plication rule given by the Campbell-Baker-Hausdorff

formula could be analytically continued. In effect, he

treated the Lie algebra as (what we now regard as) the

universal covering group, with a multi-valued multi-

plication rule, which ramifies along certain hypersur-

faces.

One of his examples is instructive. He considers

two “infinitesimal rotations” X and Y for the rotation

group SO(3), about axes `X , `Y in general position. He

normalizes X so that eX is a full rotation through an

angle 2π . As element of SO(3), eX is the identity, but

not in (what he regarded as) the parameter group in

Lie’s sense, i.e., the faux universal covering group.

Since eY represents a rotation about the axis eX `Y = `Y ,

through the same angle as

eX eY e−X = eY ,

regardless how Y is scaled. On the other hand, in gen-

eral eY `X 6= `X , hence

e−Y eX eY 6= eX , so eX eY e−X 6= eY

in the parameter group. That’s a paradox, but not

a contradiction: the group laws are only required to

hold locally, near the identity. A plausible explanation

had to await the understanding of the universal cov-

ering group, which became possible only after Weyl’s

definition of manifold in 1913.

Élie Cartan (1869–1951), the son of a village black-

smith, entered the elite École Normale Supérieure in

1888, graduating in 1891. Among his teachers were

Hermite, Darboux, Picard, Goursat, and Poincaré. Af-

ter one year of compulsory military service, he re-

turned to the ENS for two more years of graduate

study. He met Lie in 1892, when Lie was visiting Paris

at the invitation of Darboux. Cartan received his doc-

torat d’État in 1894. The subject of his thesis was a

rigorous reworking of Killing’s classification of the

simple Lie algebras over C [7]. After junior positions

in Montpellier and Lyon, Cartan became professor in

Nancy and then Paris. Chern was his student (though

Cartan was not Chern’s PhD advisor). Following his

retirement in 1940, Cartan taught classes at the École

Normale Supérieure des Jeunes Filles. Perhaps of in-

terest: Josiane Serre, wife of Jean Pierre, was that in-

stitution’s last Director, before the ENS became coed-

ucational in 1985; four years later she served for one

year of interim director of the ENS.

As was already noted, Cartan’s thesis rigorously

classified the simple complex Lie algebras. The key

to understanding the structure of a simple Lie alge-

bra g is the notion of Cartan subalgebra – the central-

izer of a generic X ∈ g. Cartan subalgebras are abelian,

and any two of them are conjugate under the auto-

morphism group Aut(g). Since g is simple, Lie’s origi-

nal proof of his “third fundamental theorem” applies,

and g is the Lie algebra of Aut(g). In particular, any

Cartan subalgebra h⊂ g acts on g faithfully, and

g = h ⊕
(
⊕α∈Φ gα

)
, with Φ ⊂ h∗ the set of roots,

and for α ∈Φ,

gα = {X ∈g | [H,X ] =< α,H > X for all H ∈ h}

is the α-root space. The root spaces are one dimen-

sional, and

[gα , gβ ] = gα+β if α +β is also a root.

Φ contains Z-bases for the Z-linear span of Φ, so-

called systems of simple roots Ψ, all of them conju-

gate under the action of the normalizer of h in Aut(g).
Up to conjugacy, the choices of Cartan subalge-

bra h⊂ g and of simple root system Ψ⊂Φ are unique.

The R-linear span of Ψ carries a canonical inner prod-

uct, the Killing form; the possible angles between two

simple roots are (n−1)π/n, n= 2, 3, 4 or 6, with possible

ratios of squared lengths, related to the angles, equal

to 1, 2, or 3. This then leads to a classification of the
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possible simple Lie algebras over C. The substance of
these argument can be already be found in Killing’s

writings, though with gaps, obscurely presented al-

most to the point of unintelligibly; to give just a sin-

gle example of many, for Killing roots were multiple

valued functions on the Lie algebra g, with branches

along the set of non-semisimple elements of g. Also,

unlike Killing, Cartan actually constructed the excep-

tional Lie algebras, though not in his thesis, but 15

years later, in 1909 [8].

Until Cartan, all those proving results about

Lie groups followed Lie’s terminology: they distin-

guished between the parameter group and the asso-

ciated transformation group, even when the groups

in question were obviously globally defined, linear

groups – recall that in general, Lie groups had been

defined as germs of groups, acting on germs of

spaces. That changed after Weyl’s definition of man-

ifold in 1913: in his later writings, Cartan viewed

Lie groups no longer as germs of groups, but as

Lie groups in the modern sense. Aut(g)0, the con-

nected component of the identity in the automor-

phism group of a simple complex Lie algebra g, has

trivial center. A rather delicate aspect of the classi-

fication of exceptional simple Lie groups is to deter-

mine the center of the universal cover of Aut(g)0. Car-

tan solved that problem in a paper in 1927 [11].

The classification of simple Lie algebras over R
is much more involved than the classification over C.
Cartan dealt with that issue in 1914, and more impor-

tantly, described their structure, as well as the struc-

ture of the corresponding Lie groups [10]. Every con-

nected simple, real Lie group G has a unique conju-

gacy class of maximal compact subgroups, as proved

by Cartan. Maximal compact subgroups K⊂G are con-

nected and are either semisimple – i.e., a direct prod-

uct simple factors – or have a one dimensional center.

Moreover, the center of G is contained in the center of

K. In particular, every connected, complex, simple Lie

group GC contains a connected, simple, compact Lie

group UR, because GC can be viewed as a real group.

Thus, up to conjugacy,

GC ←→ UR

establishes a bijection between connected, complex,

simple Lie groups and connected, compact, simple Lie

groups.

One minor complication of the study of con-

nected, simple, real Lie groups is the fact that they

need not be linear groups, i.e., subgroups of GL(n,R)
for some n; the covering groups of SL(2,R) provide

the simplest example of this phenomenon. The prob-

lem is minor because coverings of the adjoint group

of a connected, simple, real group correspond bijec-

tively to coverings of its maximal compact subgroup

KR, and those are well understood, of course.

For each linear, connected, real, simple Lie group,

Cartan constructs an involution, now called the Car-

tan involution,

θ : G −→ G , such that K = {g ∈ G | θ g = g}

is a maximal compact subgroup. The pair (G,θ) de-

termines (G,K) and vice versa, up to isomorphism, of

course. Thus, to problem of classifying the connected,

real, simple Lie groups, turns into the problem of clas-

sifying involutions of connected, simple, complex Lie

groups, which Cartan was able to carry out with con-

siderable effort.

The preceding remarks, properly stated, apply

also to groups G that are semisimple, rather than

simple. They imply important structural information

about real, semisimple Lie groups G.
The Cartan involution θ induces an involution on

the Lie algebra g of G, which is denoted by the same

letter, and

g = k⊕p , with p = (−1)−eigenspace of θ ,

and k= (+1)-eigenspace, which is then also the Lie al-

gebra of a maximal compact subgroup. In this situa-

tion,

exp : p −→ G

is a diffeomorphism onto its image, and

K×p 3 (k,X) 7−→ k · exp(X)

establishes a homeomorphism onto G. That is called
the Cartan decomposition of G. In particular, G/K ∼= p

as topological space.

This is a brief summary of Cartan’s work on Lie

groups – an important part of, but far from all, of his

work.

Hermann Weyl (1885–1955) was born near Ham-

burg. He studied mathematics in Munich and Göt-

tingen, where he received his PhD in 1908 as stu-

dent of David Hilbert. After holding junior positions

in Göttingen, he became professor at the Eidgenös-

sische Technische Hochschule (ETH) in Zürich, in

1913, the same year in which his book “Die Idee

der Riemannschen Fläche” appeared [28]. He became

Hilbert’s successor in Göttingen in 1930. The Institute

for Advanced Study in Princeton offered him a pro-

fessorship in 1932, as Hitler’s rise to power in Ger-

many was imminent. He accepted, then revoked the

acceptance. When Hitler became German Chancellor

in 1933, exposing his Jewish wife to imminent dan-

ger, the Institute renewed the offer, which Weyl now

gratefully accepted.

While Lie theory and representation theory was

an important part of Weyl’s work, he made many

other contributions to other areas of mathematics
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and mathematical physics. After his retirement in

1951, he divided his time between Princeton and

Zürich.

In 1927, Weyl and his student Fritz Peter pub-

lished their proof of (what is now called) the Peter-

Weyl theorem, patterned after, and a generalization

of, the Schur orthogonality relations for finite groups

[16]. As an aside, I should mention that Fritz Peter

(1899–1949) was never again heard from in math-

ematics; he became a teacher at the “Gymnasium

Schloss Salem”, then an elite boarding school, near

the German-Swiss border, but beset by scandals in re-

cent years.

If G is a compact Hausdorff group, with Haarmea-

sure dg normalized to have total measure 1, the Peter-

Weyl theorem asserts that

L2(G) ' ∑ι∈Ĝ Vι ⊗V ∗ι (Hilbert space direct sum) .

Here Ĝ is the set of irreducible unitary representa-

tions of G modulo isomorphism, (πι ,Vι) the represen-

tation indexed by ι , and (π∗ι ,V
∗
ι ) the dual represen-

tation. Under the isomorphism the left, respectively

right action of G on L2(G) corresponds to the action

πι on the Vι , respectively π∗ι on the V ∗ι . It is an isome-

try when the inner products on theVι⊗V ∗ι are suitably

renormalized.

Under the Peter Weyl isomorphism, the tensor

product uι ⊗ v∗ι ∈Vι ⊗V ∗ι corresponds to the function

fuι⊗v∗ι (g) = < πι(g
−1)uι , v∗ι > .

As a formal consequence of the Peter-Weyl theo-

rem, the character of a finite dimensional irreducible

unitary representation π of the compact Hausdorff

group G,

χπ(g) = trππ(g) ,

determines the representation π up to isomorphism.

Any finite dimensional representation π of G can be

made unitary (Weyl’s unitary trick). Thus, to describe

the irreducible finite dimensional representations of

G, it suffices in principle, at least, to describe the ir-

reducible characters.

Chronologically, though not logically, the Weyl

character formula [29] precedes the Peter-Weyl the-

orem. If G is a connected, compact Lie group, any two

maximal compact tori T ⊂ G are conjugate. Choose

one. Any g ∈ G is conjugate to some t ∈ T . It there-
fore suffices to know the restriction of the irreducible

characters to T .
Weyl shows that the identity component N0

G(T )
of the normalizer of T coincides with the centralizer

ZG(T ), and that the centralizer in turn coincides with

T . Hence the Weyl group of (G,T ),

W = NG(T )/N0
G(T ) = NG(T )/ZG(T ) = NG(T )/T ,

is a finite group which acts faithfully on T , hence also
on the Lie algebra t, as well as on the weight lattice

Λ = {λ ∈ it∗ | λ lifts to a character eλ : T → C∗ } .

As mentioned earlier, the set of roots Φ ⊂ Λ consists

of the non-zero weights by which T acts on the com-

plexified Lie algebra,

(g/t)⊗RC=⊕α∈Φ gα ,

gα = {X ∈ g | Ad t(X) = eα(t)X for t ∈ T}

The root spaces gα ⊂ g are one-dimensional. The Weyl

integration formula asserts that for any f ∈C(G),∫
G

f (g)dg

=
1

#W

∫
T

∫
G

f (gtg−1) ∏α∈(Φ/±)(e
α/2(t)− e−α/2(t))−2 dgdt .

To simplify the following statements very

slightly, I shall assume that the compact Lie group

G is connected, semisimple, and simply connected.

One calls λ ∈ Λ regular if λ is not perpendicular to

any α ∈ Φ. Then for each regular λ ∈ Λ, there exists

a unique (up to isomorphism) irreducible, finite

dimensional representation πλ whose character χλ ,

when restricted to T , is given by the formula

χλ (t) = (∆(t))−1
∑w∈W ε(w)ewλ (t) with

ε(w) = sgn(det{w : t→ t}) and

∆(t) = ∏α∈Φ,(α,λ )>o (e
α/2(t)− e−α/2(t)) .

Every irreducible representation of G is isomorphic to

one of these, and πλ1
∼= πλ2

if and only if λ2 = wλ1 for

some w ∈W .

In particular then, the set of irreducible represen-

tations of the compact, connected, simply-connected

group G can be naturally identified with

W\{λ ∈ Λ | λ is regular} .

The proof of the Weyl character formula depends

on Weyl’s structural statements about compact Lie

groups mentioned earlier, the Peter-Weyl theorem,

the Weyl integration formula, and the observation

that the restriction of an irreducible character χλ to

T must be a linear combination of characters eµ of

T with positive integral coefficients; the theorem fol-

lows readily from these ingredients.

Cartan had already classified the irreducible

finite dimensional representations of a complex

semisimple Lie algebra g in 1913 [9]. In terms of

the Weyl character formula, the classification can be

stated as follows. LetVλ be the irreducible representa-

tion with character χλ , as described above. Then µ ∈Λ

is called a weight of Vλ if the µ-weight space V µ

λ
,

V µ

λ
=def {v ∈Vλ | t v = eµ(t)v for all t ∈ T } is nonzero .
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Recall that the parameter λ ∈ Λ of Vλ must be regu-

lar. Hence the root system Φ can be expressed as the

disjoint union

Φ = Φ
+
λ
∪ (−Φ

+
λ
) , where Φ

+
λ

= {α ∈Φ | (λ ,α)> 0} .

Define

ρλ = 1
2 ∑α∈Φ

+
λ

α .

It is not difficult to show that

(λ −ρλ ,α) ≥ 0 for all α ∈Φ
+ .

Theorem (Theorem of the highest weight). Suppose

G is a connected, compact, semisimple, and simply

connected Lie group. The irreducible representation

(πλ ,Vλ ) with irreducible character χλ – so according to

our convention λ ∈ Λ is regular – has λ −ρλ as weight

of multiplicity one. Moreover,

a) if A is a nonempty sum of roots in Φ
+
λ
, λ −ρλ +A is

not a weight;

b) any weight can be expressed as λ −ρλ −A, with A
denoting a sum of roots in Φ

+
λ
.

If a representation with character χλ is known

to exist – as was the case for Weyl – the statement

is a straightforward consequence of the Poincaré-

Birkhoff-Witt theorem. But for Cartan, who needed to

establish the existence of πλ first, it was a significant

accomplishment.

On the surface, the Weyl character formula is

merely an existence theorem: it sets up a parametriza-

tion of the irreducible representations of G. The the-

orem of the highest weight, on the other hand, im-

plies much, if not all, the known structural informa-

tion about irreducible representations of compact Lie

groups.

After enumerating the irreducible representa-

tions of G – either by means of the Weyl character

formula, or via Cartan’s highest weight theorem – and

establishing important structural information as con-

sequence of the theorem of the highest weight, there

remains the issue of providing “models” of these rep-

resentations. This isn’t simply an aesthetic require-

ment: not just in the case of compact (or complex

semisimple) Lie groups, a goodmodel of amathemati-

cal structure can, and often does, lead to new insights.

The Borel-Weil theorem [3, 27], and later the Borel-

Weil-Bott theorem [4], provides such a model for ir-

reducible representations of compact Lie groups.

Both Borel and Weil are “almost” contemporaries,

in the sense that some of us – myself included – did

meet them. André Weil (1906–1998) was born to Al-

satian Jewish parents, who moved to Paris after the

Franco-Prussian war of 1970. He studied in Göttingen

and Paris, where he received his doctorate in 1928.

He then spent two years at the Aligarh Muslim Uni-

versity in Uttar Pradesh, which is explained by his

interest in Sanskrit and Hinduism. At the beginning

of WW2, he happened to be in Finland, returned to

France before it was occupied, then continued to the

US via Marseille. After teaching at Lehigh University

for two years, which he disliked intensely, he ended

up at the Institute for Advanced Study via São Paulo

and the University of Chicago. Lie theory is a very mi-

nor aspect of his work, of course.

Armand Borel (1923–2003) was born in Chaux-

de-Fonds near Bern, in the French speaking part of

Switzerland. His Swiss nationality shielded him from

the turmoil of WW2 during his youth. Borel studied

at the ETH Zürich and in Paris. He received his Doc-

torat d’Etat in Paris, with Jean Leray as advisor. Soon

after he was appointed permanent member of the In-

stitute for Advanced Study, where he stayed until his

retirement. After retiring, he became very interested

in making new developments in mathematics acces-

sible to working mathematicians, for example by run-

ning seminars in Bern (because of its central loca-

tion on Switzerland) that resulted in monographs on

D-modules and on intersection cohomology; both, it

might be noted, have become important tools in rep-

resentation theory.

Let GC be a connected, complex, semisimple Lie

group, and U ⊂ GC a compact real form – i.e., a con-

nected, compact, semisimple Lie group whose com-

plexification is GC. Pick a maximal torus T ⊂U ; not a

significant choice, since any two are conjugate in U .

Its complexification is then a Cartan subgroup of GC.

The choice of a system of positive roots Φ+ – again

not a significant choice since any two are conjugate

under NU (T ) – determines a “Borel subgroup” B⊂ GC,

i.e., a maximal solvable subgroup, one that contains

T and whose Lie algebra contains the root spaces g−α

indexed by the negative roots −α ∈ −Φ+. In this situ-

ation,

X =def U/T = GC/B (the “flag variety” of G)

is a compact complex manifold, acted on transitively

by U and GC. Any λ ∈ Λ determines a holomorphic

character eλ : B/[B,B]−→ C∗ of B, and hence a “homo-

geneous holomorphic line bundle”

Lλ −→ X = GC/B ,

a holomorphic line bundle to which the action of G on

X lifts, and on whose fiber at the identity coset B acts

via eλ . Since the group GC acts on X and Lλ , it acts on

the cohomology groups of O(Lλ ).

Theorem (Borel-Weil theorem). For λ ∈Λ, if (α,λ )≥ 0
for all α ∈Φ+,

H p(X ,O(Lλ ))

{
is irreducible of highest weight λ if p=0

vanishes for all p 6=0
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This, in particular, gives a concrete geometric de-

scription of all irreducible representations of a con-

nected compact Lie group U – or equivalently, of a

connected complex semisimple Lie group GC. The

proof is a fairly direct consequence of the Kodaira

vanishing theorem and the theorem of the highest

weight.

With X = GC/B = U/T and Φ+ as before, let ρ de-

note the half-sum of all the positive roots.

Theorem (Borel-Weil-Bott theorem). H p(X ,O(Lλ ))

vanishes for all p if λ + ρ fails to be regular. If, on

the other hand, λ +ρ is regular, choose w ∈W so that

(α,w(λ +ρ))> 0 for all α ∈Φ+, and define

pλ = #{α ∈Φ
+ | (α,λ +ρ)< 0}.

H p(X ,O(Lλ )) =


is irreducible of highest weight

w(λ+ρ)−ρ if p = pλ

vanishes for all p 6= pλ

Bott reduces this statement to the Borel-Weil the-

orem by means of spectral sequences associated to

fibrations of X over so-called generalized flag vari-

eties, with P1 fibres. The theorem has many applica-

tions in representation theory – e.g., in the proof of

the Beilinson-Bernstein vanishing theorem – and in

calculations in complex algebraic geometry.
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