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Einstein’s theory of general relativity is based on

the desire to merge the newly developed theory of

special relativity and Newton’s theory of gravity. He

accomplished this daunting task in 1915. Most physi-

cists consider this to be the most creative work in sci-

ence in the history of mankind. Let me now explain

some part of this theory to you.

A very important ingredient is the concept of

equivalence principle, the development of which had

a long history:

Galileo used experiment to show that the acceler-

ation of a test mass due to gravitation is independent

of the amount of mass being accelerated.

Then in 1907, Einstein said:

“We assume the complete physical equivalent of
a gravitational field and a corresponding accelera-
tion of the reference system. The gravitational mo-
tion of a small test body depends only on its initial
position in spacetime and velocity, and not on its
constitution. The outcome of any local experiment
(gravitational or not) in a freely falling laboratory is
independent of the velocity of the laboratory and
its location in spacetime”.

Hence Einstein realized that in the new theory of

gravity that he would like to develop, the laws of grav-

ity should be independent of the observers. But he

needed a framework to build such a theory of gravity

that can connect philosophy with observations.

Einstein’s great work benefited from the help

of many geometers. He, together with Grossmann,

was student of the great geometer and physicist

Minkowski. He also interacted with Levi-Civita, and

eventually Hilbert and Noether.

But most importantly, Einstein owed his epoch-

making contribution to the concept of space by the

great 19th century mathematician Riemann.
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Before Riemann, there were only three types of

space: the Euclidean space, the sphere space, and the

hyperbolic space which were all described by a single

coordinate system.

This was very similar to the time of Newton where

the universe was supposed to be static. Riemann,

however, radically changed the notion of space in his

famous essay “On the hypotheses which lie at the

foundations of geometry” in 1854.

His space was totally different from the three

spaces above, and it could exist without referring to a

fixed coordinate system. He also knew that up to first

order effect, we do not feel presence of curvature and

therefore infinitesimally, the space should look like

the flat Euclidean space. On the other hand, the sec-

ond order effect of gravity should come from accel-

eration of the particles. Therefore our space should

show curvature if it is used to describe dynamics of

gravity.

We do not really knowwhat the space should look

like globally. On the other hand, our space should

be general enough to allow many different observers

without changing the essence of the physics of grav-

ity. Observers can propagate information from one to

another one.

Hence Riemann demanded that we can use a vari-

ety of different coordinate systems to observe the ba-

sic properties of the space. However, the only mean-

ingful properties of space should be independent of

choice of the coordinate systems. This point of view

of space is very important because it is the crucial

principle of equivalence in general relativity.

Riemann defined the concept of curvature in his

introduction of abstract space. In fact, later develop-

ment of gravitational field in general relativity is mea-

sured by the curvature, while the material distribu-
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tion is represented by a part of the curvature. The

distribution of matter changes over time and so does

the curvature.

The dynamics of curvature shows the effect of vi-

bration of spacetime. And because of that, Einstein

came to the conclusion that the gravitational wave,

though small, should exist. In Einstein’s equation, the

gravitational field and the geometry of spacetime are

inseparable, as a unified entity.

It is remarkable that already in 1854 in his

speech, Riemann developed the new concept of space

because of the need to understand physical phenom-

ena. He even suggested that the smallest and greatest

parts of space should be described in different ways.

From a modern physical point of view, Riemann is

looking for the possible structure of quantum space!

Riemann once considered using discrete space to ex-

plain this problem.

Riemann started his scientific publication at the

age of 25 and died of lung disease at the age of 39.

Three years before his death, he went to Italy ev-

ery year to escape the cold, thus affecting a number

of Italian and Swiss geometers, including Christoffel,

Ricci and Levi-Civita.

They generalized Riemann’s ideas, defined ten-

sors and connections rigorously, both of which were

indispensable for general relativity and gauge field

theory. Ricci introduced the Ricci curvature tensor,

and proved that this tensor can produce a tensor that

satisfies the conservation law. All of these works, ac-

complished by geometers in the mid-to-late 19th cen-

tury, provided the most crucial tools for general rel-

ativity.

Einstein wrote a paper in 1934 entitled “Notes on

the origin of the general theory of relativity” (see Mein

Weltbild, Amsterdam: Querido Verlag), in which he re-

views the development of general relativity.

The first stage, of course, is the special the-

ory of relativity. In addition to Einstein himself, the

main founders of this theory include Lorentz and

Poincaré.

One of the most important results is that the dis-

tance is affected by time. But Einstein learned that the

action at a distance between the special theory of rel-

ativity and Newton’s theory of gravity is incompatible

and must be rectified!

At first, physicists did not realize that the con-

cept of space had undergone fundamental changes

after the breakthrough of Riemann. They attempted

to correct Newton’s gravitational theory in the frame-

work of three-dimensional space in line with the spe-

cial relativity just discovered. This idea led Einstein

to go astray three years!

Einstein said in the essay “Notes of the origin of

the general theory of relativity” (pp. 286–287):

I was of course acquainted with Mach’s view, according to
which it appeared conceivable that inertial resistance coun-
teracts is not acceleration as such but acceleration with re-
spect to the masses of the other bodies existing in the world.
There was something fascinating about this idea to me, but
it provided no workable basis for a new theory.

The simplest thing was, of course, to retain the Laplacian
scalar potential of gravity, and to complete the equation of
Poisson in an obvious way by a term differentiated with re-
spect to time in such a way that the special theory of relativ-
ity was satisfied. The law of motion of the mass point in a
gravitational field had also to be adapted to the special the-
ory of relativity. The path was not so unmistakably marked
out here, since the inert mass of a body might depend on
the gravitational potential. In fact, this was to be expected
on account of the principle of the inertia of energy.

These investigations, however, led to a result which
raised my strong suspicions.

The principle of equality of inertial and gravitational
mass could now be formulated quite clearly as follows: In
a homogeneous gravitational field all motions take place in
the same way as in the absence of a gravitational field in
relation to a uniformly accelerated coordinate system.

If this principle held good for any events whatever (The
“principle of equivalence”), this was an indication that the
principle of relativity needed to be extended to coordinate
systems in non-uniformmotion with respect to each other, if
we were to reach a natural theory of the gravitational fields.
Such reflections kept me busy from 1908 to 1911…

When Einstein was a student in Zurich, he was

taught by Minkowski, who was a great mathematician

on a par with Hilbert and Poincaré. Minkowski once

said “There was a lazy student in my class who had

recently done an important work which I had come

up with a geometric interpretation”.

Minkowski learned physics from Helmholtz, J.J.

Thomson and Heinrich Hertz. He held that because

of a “preestablished harmony between mathematics

and nature”, geometry could be used a key to physical

insight. He ascribes physical reality to the geometry

of spacetime.

This lecture entitled “Space and Time” was de-

livered by Minkowski in the eightieth meeting of

the Assembly of Natural Scientists and Physicians in

Cologne in Sep. 21, 1908.

The ideas of space and time developed here were

applied in a major work on the laws of electrodynam-

ics by Minkowski “The fundamental equations for

electromagnetic phenomena in moving bodies” pub-

lished in 1908. (Minkowski died in 1909.)

Minkowski wrote:

“The views of space and time which I wish to lay
before you have sprung from the soil of experimen-
tal physics, and therein lies their strength. They are
radical. Henceforth space by itself, and time by it-
self, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve
an independent reality.”

It may be interested to note that Minkowski ac-

knowledged his concept of spacetime owes a great

deal to Poincaré’s work in 1906, where Poincaré

noticed that by changing time to imaginary time,

Lorentz transformations become rotations.
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However, Poincaré did not think the four-

dimensional representation hasmuch physical signif-

icance. Even at 1908, Poincaré said that “The language

of three dimensions seems the better fitted to our de-

scription of the world although this description can

be rigorously made in another idiom.”

This is very different from Minkowski’s point of

view where he said directly “The world in space and

time in a certain sense is a four-dimensional, non-

Euclidean manifold. In truth, we are dealing with

more than merely a new conception of space and

time. The claim is that it is rather a quite specific nat-

ural law, which, because of its importance – since it

alone deals with the primitive concepts of all natural

knowledge, namely space and time – can claim to be

called the first of all laws of nature.”

In his essay of 1908, Minkowski constructed a

four-dimensional space, introducing a metric tensor

ds2 =−dt2 +dx2 +dy2 +dz2,

following Riemann, to give geometric meaning of spe-

cial relativity. The Lorenzian group, the fundamen-

tal symmetric group of special relativity, became the

group of isometries of this spacetime of Minkowski.

For the first time in history, we learned from

Minkowski that we live in a four-dimensional space-

time. Hence in 1908, Einstein got the most important

inspiration for general relativity from Minkowski:

that he has to construct his new theory of grav-

ity based of the fact that the space should be four-

dimensional.

It is generally believed that the most important

thing Einstein did in the year is his thought experi-

ment. The thought experiment taught Einstein the im-

portance of equivalence principle and the need of new

geometry to exhibit gravity. He knew that he need a

new concept of space to achieve this. The static space

of Newtonian gravity is not adequate any more.

Why is Minkowski’s article so important? Not only

that there is a conceptual breakthrough from three-

dimensional space to four-dimensional space, but

also that only within a four-dimensional spacetime,

gravity can have enough room to show its dynamical

nature! Newton’s theory of gravity is static, in that a

function is sufficient to describe the phenomenon of

gravity.

Minkowski spacetime gave the most important

reason why we need a tensor to describe grav-

ity. Tensor is a newly invented concept consisting

of many functions which together can transform

consistently so that the principle of equivalence is

obeyed. Minkowski’s tensor perfectly describes the

special theory of relativity, but Einstein wanted to fur-

ther combine Newtonian mechanics with Minkowski

space, so his new theory of spacetime should be equal

to Minkowski spacetime infinitesimally.

Hence when two points are very close to each

other, up to first order, the gravity rule governing

them should be the one of Minkowski spacetime.

However, this is no more true when we count second

order effect of gravity, curvature becomes important.

At the time, physicists knew nothing about the notion

of tensors (in fact, only a few geometers knew about

tensor analysis.)

Einstein knew from the principle of equivalence

that the new potential of gravity should depend on a

point and the tangent vector of space at that point (ve-

locity vector), but he has no idea what kind of math-

ematical tool can be used. So he asked his classmate

Marcell Grossmann for help and finally figured out

that the gravitational field should be described by a

metric tensor. The tensor varies in spacetime, but at

every point it can be approximated by a first-order

Minkowski metric.

Grossmann is a geometer, who helped Einstein to

do homeworks in geometry in Zurich. He went to the

library and found the ideas of tensor. However, the

idea of introducing metric tensor alone is not enough

to describe the gravitational field. We need to know

how to differentiate tensor in a curved space. We

would like the result of differentiation is also inde-

pendent of choice of coordinate system (the require-

ment of equivalence principle). This is the connection

theory of Christoffel and Levi-Civita.

Einstein said in his memoirs of general relativ-

ity mentioned above that this was his first question,

and was found to have been solved by Levi-Civita and

Ricci. Einstein’s second question was how to gener-

alize Newton’s law of gravitation in this new frame-

work. Newton’s equation is simple, that is, the sec-

ond derivative of the gravitational potential is equal

to matter density.

At that time, neither Einstein nor Grossmann

knew how to differentiate metric tensors so that the

result is still a tensor which is independent of the

choice of coordinate. Grossmann, at Einstein’s re-

peated requests, managed to find Ricci’s work in the

library.

It turned out that Ricci had already contracted

Riemann’s curvature tensor to a symmetric second-

order tensor. It is denoted by Ri j. It has the same de-

gree of freedom as the metric tensor and in a suitable

coordinate system, can be the second derivative of

metric tensor gi j. Einstein immediately realized that

it must be the left-hand side of the field equation,

while the right-hand side is the tensor Ti j of the gen-

eral matter distribution (in flat space, this tensor has

been well studied.) Einstein and Grossmann proposed

the equation Ri j = Ti j in two articles published in 1912

and 1913. This equation is similar to Newton’s equa-

tion ∆u = ρ where u is the gravitational potential and

ρ is the matter density.
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However when Einstein tried to solve this equa-

tion by an asymptotic approach, he did not recover

the astronomical phenomena (e.g., light deflection,

Mercury’s anomalous perihelion shift) that he was

trying to explain. This made him very frustrated.

In the following years, in order to explain astro-

nomical phenomena, he tried to choose special coor-

dinates, essentially giving up the preciously simple

principle of equivalence. The many communications

between him and Levi-Civita could not help either.

The following was written by Einstein in: Notes of

the origin of the general theory of relativity (1934, pp.

288–289).

I soon saw that the inclusion of non-linear transforma-
tions, as the principle of equivalence demanded, was in-
evitably fatal to the simple physical interpretation of the
coordinates – i.e. that it could no longer be required that
coordinate differences should signify direct results of mea-
surement with ideal scales or clocks.

I was much bothered by this piece of knowledge, for it
took me a long time to see what coordinates at all meant
in physics. I did not find the way out of this dilemma until
1912, and then it came to me as a result of the following
consideration:

A new formulation of the law of inertia had to be found
which in case of the absence of a “real gravitational field”
passed over into Galileo’s formulation for the principle of
inertia if an inertial system was used as coordinate sys-
tem. Galileo’s formulation amounts to this: A material point,
which is acted on by no force, will be represented in four-
dimensional space by a straight line, that is to say, by a short-
est line, or more correctly, an extremal line.

This concept presupposes that of the length of a line el-
ement, that is to say, a metric. In the special theory of rel-
ativity, as Minkowski had shown, this metric was a quasi-
Euclidean one, i.e., the square of the “length” ds of a line
element was a certain quadratic function of the differentials
of the coordinates.

If other coordinates are introduced by means of a non-
linear transformation, ds2 remains a homogeneous function
of the differentials of the coordinates, but the coefficients
of this function (gµν ) cease to be constant and become cer-
tain functions of the coordinates. Inmathematical terms this
means that physical (four-dimensional) space has a Rieman-
nian metric.

The timelike extremal lines of this metric furnish that law
of motion of a material point which is acted on by no force
apart from the forces of gravity. The coefficients (gµν ) of
this metric at the same time describe the gravitational field
with reference to the coordinate system selected. A natural
formulation of the principle of equivalence had thus been
found, the extension of which to any gravitational field what-
ever formed a perfectly natural hypothesis.

The solution of the above-mentioned dilemma was there-
fore as follows: A physical significance attaches not to the
differentials of the coordinates but only to the Riemannian
metric corresponding to them. A workable basis had now
been found for the general theory of relativity. Two further
problems remained to be solved, however.

1. If a field-law is expressed in terms of the special the-
ory of relativity, how can it be transferred to the case of a
Riemannian metric?

2. What are the differential laws which determine the Rie-
mannian metric (i.e., gµν ) itself?

As for problem 2, its solution obviously required the con-
struction (from the gµν ) of the differential invariants of the
second order. We soon saw that these had already been es-
tablished by Riemann (the tensor of curvature). We had al-

ready considered the right field-equation for gravitation two
years before the publication of the general theory of relativ-
ity, but we were unable to see how they could be used in
physics.

Einstein struggled from 1913 to 1915. It is amus-

ing that the equation that Einstein and Grossmann

wrote down was actually correct if there is no mat-

ter. Indeed, Schwarzschild was able to solve Einstein

equation for a spherical star in 1916, right after Ein-

stein and Hilbert wrote down the right field equation.

Schwarzschild solution assumed that there is no

matter. And it was enough to calculate light bend-

ing due to the gravity of the sun. Therefore Einstein

and Grossmann could have made the observation in

1913, if they found the exact spherical symmetric so-

lution. Apparently Einstein got discouraged when his

approximate solution did not give him the right an-

swer compatible with the physical observation. He

was very depressed and was attempting to use spe-

cial coordinate and hence gave up the principle of

equivalence. The following writing of him shows his

frustration:

On the contrary, I felt sure that they could not do jus-
tice to experience. Moreover I believed that I could show
on general considerations that a law of gravitation invariant
with respect to arbitrary transformations of coordinates was
inconsistent with the principle of causality. These were er-
rors of thought which cost me two years of excessively hard
work, until I finally recognized them as such at the end of
1915, and after having ruefully returned to the Riemannian
curvature, succeeded in linking the theory with the facts of
astronomical experience.

In the light of knowledge attained, the happy achieve-
ment seems almost a matter of course, and any intelligent
student can grasp it without too much trouble. But the years
of anxious searching in the dark, with their intense longing,
their alternations of confidence and exhaustion and the fi-
nal emergence into light – only those who have experienced
it can understand that.

Let us now go back to what happened in the final

stage of Einstein’s work on general relativity. In the

spring of 1915, he visited the great mathematician

David Hilbert in Göttingen. Hilbert certainly knows

geometry well, but above all, he is the founder of

modern geometric invariant theory. He also gathered

a large group of outstanding mathematicians in Göt-

tingen. Some of them can be described in the follow-

ing:

Felix Klein was a pioneer in classifying geome-

tries by using symmetry groups, Hilbert’s student

Hermann Weyl was the founder of gauge field theory,

along with Emmy Noether, the greatest female math-

ematician in history.

During the period of 1915 to 1918, Noether was

developing her theory of current where one can use

group of continuous symmetries to deduce equa-

tions of motions. (In general relativity, the continuous

group of symmetry is the group of coordinate trans-

formations.)
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Einstein’s visit was just at the right time! Hilbert

discovered the Hilbert action in November of the

same year, and deriving the correct gravitational

equation quickly from this action. Upon hearing the

news and receiving Hilbert’s postcard on the equa-

tion, Einstein quickly got his equation, and based on

this equation, deduced astronomical phenomena he

had been trying to solve. The equation is

Ri j −
R
2

gi j = Ti j.

The left hand side can be derived from the Hilbert ac-

tion
∫

R in a simple manner. This was actually known

to Bianchi and Ricci in 1901.

In the beginning, Einstein was unhappy with

Hilbert’s priority. But Hilbert quickly declared that

the work should belong entirely to Einstein, and that

turned Einstein happy. This is an epoch-making work.

Later generations of physicists and mathematicians

should all pay their highest tribute to Einstein. But I

shall hope history will remember the group of Geome-

ters who helped Einstein achieved his great theory of

gravity. Much of what I discussed here is written by

Einstein himself. It is unfortunate that in that article,

he did not mention the contribution of Hilbert.

Looking backward, the correct equation of mo-

tion derived by Hilbert and Einstein could have been

found by Grossmann and Einstein in 1913. The left-

hand side of the equation in 1913 consists of Ricci

tensor while the right-hand side is the matter tensor.

The right-hand side is familiar and it satisfies conser-

vation law. But the left-hand side of the 1913 equa-

tion is only the Ricci tensor which does not satisfy

the conservation law. Hence they cannot be equal.

The left-hand side should therefore be replaced

by some form of curvature tensor that satisfies con-

servation law. This was actually found by Ricci us-

ing Bianchi identity. One simply subtracts the Ricci

tensor by some multiple of the metric tensor by the

trace of the Ricci tensor. If Einstein and Grossmann

trust the beauty of geometry and tried to complete

the equations based on its internal consistency, Ein-

stein would not have to wait until 1915 to write down

the right equations.

After completing the general theory of relativity,

Einstein believed that the most basic part of physics

should be guided by thought experiment and the el-

egance of mathematics. At the end of the article, he

said that after finding the equation of general relativ-

ity, everything came so natural and so simple that it

was a breeze for a capable scholar. However, before

finding the truth, he tried his best, after years of hard

work, suffered pains day and night, which was hard

to tell. Einstein’s work can be said to be the greatest

scientific work ever undertaken by mankind.

The success of general relativity left us another

daunting task to explain natural phenomena of grav-

ity. The task is difficult because the system of equa-

tion is truly nonlinear and the background space-

time is changing dynamically. Physics of gravity does

not give a precise description of the initial data or

the boundary conditions of the complicated nonlin-

ear system.

There is no global symmetry of the dynamical

changing spacetime. Nonexistence of global time, or

nonexistence of timelike translation symmetry, gave

great difficulty to define many important physical

quantities that we learned in Newtonian mechanics.

Noether’s theory of current allows us to define mass

and linear momentum four-vector if we have time-

like translation that preserves the system. But for a

generic system in general relativity, continuous group

of symmetry does not exist!

Nonexistence of continuous symmetries caused

difficulties to define classical concepts such as mass,

linear momentum and angular momentum that are

fundamental in understanding physics of gravity.

When we watch two neutron stars interacting with

each other, we need to know the mass of each star

and the binding energy of the whole system counting

contributions from matter and gravity together. This

problem arises in general relativity because the con-

cept of energy density is not possible in this theory

of gravity.

The reason is that if the density exists, it will de-

pend only on the first order information of the po-

tential of the gravity which is the metric tensor. Yet

we can always find a coordinate system so that the

first order differentiation of the metric tensor is zero

at one point. This will mean that the energy density

is zero.

Einstein already realized such questions one hun-

dred years ago. He proposed a definition of energy

based on a concept of pseudo-tensor drawing analog

with the definition of Newtonian mechanics. This def-

inition was clarified more precisely by the work of

Arnowitt, Deser, and Misner in 1962. Nowadays it is

called ADM mass.

This definition works well for isolated physical

system of gravity where the total mass of the whole

system is defined. From the point of view of Noether,

this is natural because for an isolated physical sys-

tem, we expect existence of asymptotic symmetry at

infinity and the time translation at infinity captures

the total energy of the system. This is a good defi-

nition of total energy. However, it captures the total

energy only and there are detailed information of par-

tial energy we need to explore.

The very important question went back to Ein-

stein again. He proposed the concept of gravitation

radiation: the vibration of spacetime will radiate wave
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which gives energy. The energy comes from the bind-

ing energy of the gravity of the system. This con-

cept was clarified by Bondi-van der Burg-Metzner and

Trautman where they defined a mass along some null

hypersurface. Such a mass is called Bondi mass and

it has a pleasant property that it decreases when the

null hypersurface moves to the future.

The decreases of the Bondi mass is interpreted

as the energy carried away by the gravitational radi-

ation. The definition of Bondi mass is important as

it describes the dynamics of spacetime. However, the

definition presumes some structure of spacetime that

depends on the dynamics of the Einstein equation.

Both ADM and Bondi mass are total mass in na-

ture. It cannot capture mass of bodies that are inter-

acting with some other bodies. An important case is

how to define binding energy of two neutron stars in-

teracting with each other. Hence we need a concept

of quasilocal mass: Given a closed two-dimensional

(spacelike) surface S in spacetime, what is the total

energy it encloses?

If S is the boundary of a three-dimensional space-

like three-manifold M in spacetime, we like to mea-

sure the total mass enclosed by S within M. Since we

like to make sure the energy to be conserved, the

quantity that we want should depend only on the in-

formation of S in spacetime and independent of the

choice of M. This is the conservation law for quasilo-

cal mass.

The existence of such quantity has been a serious

problem for a long time. The very first thing that Ein-

stein and later workers in general relativity was inter-

ested in whether the total ADM mass for an isolated

physical system is positive?

In fact, in 1957, Bondi and other well known

physicists had a meeting and discussed the possibil-

ity of negative mass in general relativity. Einstein’s

theory could not tell whether this is possible or not.

But if the total mass is negative, the system may col-

lapse and it will mean Einstein’s theory of gravity may

create a rather undesirable effect of unstable system.

The positivity of ADM mass was proved by

Schoen and myself in 1979, the full proof published

in 1981. Our proof is more geometric in nature.

Subsequently, Witten gave a proof depending on

Dirac operator which is more transparent to physi-

cists. Shortly afterwards, Bondi mass was also proved

to be positive and the state of affair for total mass of

an isolated physical system in gravity is pretty satis-

factory.

Schoen and I also used our method to prove in

an effective way that when matter density is large

enough, black hole will form. It is the first rigorous

statement that black hole forms when matter density

is large.

The concept of Black Hole was proposed by P.S.

Laplace in 18th century who proposed that there can

be object whose gravitational fields are so strong

that even light can not escape. But nothing can

be done about this proposal. In 1916, right after

Einstein-Hilbert wrote down the Einstein equation,

Karl Schwarzschild wrote down a solution

ds2 =−
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2

+ r2(dθ
2 + sin2

θdφ
2).

This solution has a singular point when r = 0, where
the curvature goes to infinity. Physical laws can not

be interpreted at such a point.

Since this solution has a large group of symme-

tries, many physicists thought that such singularities

would not occur in general. This view was held by Lif-

shitz, Khalatnikov and coworkers.

This view was changed in 1965 by the work of

Penrose. He invented the concept of closed trapped

surface Σ.

It is a spacelike two dimensional surface Σ such

that the two families of null geodesics orthogonal to

Σ are convergent at Σ. (The outgoing light rays are

dragged back and converge.)

Penrose proved that existence of closed trapped

surface implies that spacetime is incomplete. The the-

ory is further developed by Hawking-Penrose.

Penrose founded closed trapped surface exists

in the above Schwarzschild solution and such closed

trapped surface exists in any spacetime which is close

to Schwarzschild, the singularity will therefore be

there for spacetime close to Schwarzschild.

However, Penrose and Hawking could not explain

how closed trapped surface arise in general space-

time and by what mechanism.

It was in the paper of Schoen-Yau, existence of

black hole due to condensation of matter (1983) that

gave the derivation of existence of closed trapped

surface from first physical principle. When matter

density is large in a fixed region, closed trapped sur-

face will form. The argument is mathematical rigor-

ous based on the theory of general relativity.

The demonstration of existence of a good defini-

tion of quasilocal mass took a long time, after works

of many people including Penrose, Hawking, Brown-

York, Geroch, Bartnik, Horowitz and Shi-Tam.

Since it is supposed to be trivial for any closed

surface in the flat Minkowski spacetime and yet non-

negative for general spacetime, it is a miracle that

such a definition can exist which is compatible with

the previous works of ADM and Bondi. Two impor-

tant definitions were proposed: one is due to Robert

Bartnik and the other due to Mu-Tao Wang and my-

self.
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The quasilocal mass allows us to define binding

energy related to binary black holes and is related

to the energy of the gravitational radiation. The ap-

proach of Wang-Yau allows them to define quasilo-

cal angular momentum with Po-Ning Chen. It helps

to clarify the former definitions of total angular mo-

mentum.

By the works of Richard Schoen and his coau-

thors, we know the Bartnik mass is different from

Wang-Yau mass. It would be interesting to know

which one is more useful to describe physical dynam-

ics of gravity.

The concept of quasilocal mass and angular

momentum has opened a window on studying the

physics and geometry of spacetime. A great deal more

efforts need to be spent in their study.

The definitions are most successful for objects

within an isolated physical system. It would still be

useful to understand a more general situation includ-

ing higher dimensional analogue. Rather intricate ge-

ometry are involved in the study of such concepts.

• I shall now discuss the quasilocal angular

momentum and center of mass of Chen-Wang-Yau,

which are defined based on the theory of optimal iso-

metric embedding, and their applications to spatial

and null infinity. This is based on joint work with Po-

Ning Chen, Jordan Keller, Mu-Tao Wang, and Ye-Kai

Wang.

• (Wang-Yau, 2009) To evaluate the quasilo-

cal mass of a 2-surface Σ with the physical data

(σ ,H), one solves the optimal isometric embedding

equation, which gives an embedding of Σ into the

Minkowski spacetime with the image surface Σ0 that

has the same induced metric as Σ, i.e. σ . One then

compares the extrinsic geometries of Σ and Σ0 and

evaluate the quasilocal mass from σ , H and H0.

• The physical surface Σ with physical data (σ ,H)

gives (σ , |H|,αH).

• Given an isometric embedding X : Σ → R3,1 of σ .

Let Σ0 be the image X(Σ) and (σ , |H0|,αH0
) be the data

of Σ0.

• Let T be a future timelike unit Killing field of

R3,1 and define τ =−〈X ,T 〉.
• Define a function ρ and a 1-form ja on Σ:

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ|2 −
√
|H|2 + (∆τ)2

1+|∇τ|2√
1+ |∇τ|2

ja = ρ∇aτ −∇a

(
sinh−1

(
ρ∆τ

|H0||H|

))
− (αH0

)a +(αH)a.

• The optimal isometric embedding equation is{
〈dX ,dX〉= σ

∇a ja = 0

• For a solution (X ,T ), the quasi-local mass is then

E(Σ,X ,T ) =
1

8π

∫
Σ

ρ.

• Σ0 is the “unique” surface in the Minkowski

spacetime that best matches the physical surface Σ.

If the original surface Σ happens to be a surface in

the Minkowski spacetime, the above procedure iden-

tifies Σ0 = Σ up to a global isometry.

• E(Σ,X ,T ) is positive in general, and zero for sur-

faces in the Minkowski spacetime.

• In addition, in joint work with Po-Ning Chen, we

also defined quasilocal conserved quantities.

• For an optimal isometric embedding (X ,T ), by
restricting a rotation (or boost) Killing field K of R3,1

to Σ0 = X(Σ)⊂R3,1, the quasi-local conserved quantity

is defined to be:

− 1
8π

∫
Σ

〈K,T 〉ρ +(K>)a ja,

where K> is the component of K that is tangential

to Σ0.

• In general, the optimal isometric embedding

equation is difficult to solve. However, in a pertur-

bative configuration, when a family of surfaces limit

to a surface in the Minkowski spacetime, the optimal

isometric embedding equation is solvable, subject to

the positivity of the limiting ρ .

• An important application of the theory is to an-

chor the definition of total mass and total angular

momentum of an asymptotically flat initial data set.

• If (M,g,k) is an asymptotically flat initial data set

with g−δ = O(r−p) and k = O(r−q) as r → ∞, where p > 1
2

and q > 3
2 , the ADM mass

1
16π

∫
S2

∞

∑
i, j
(gi j, j −g j j,i)ν

i.

• The ADM angular momentum is defined as

1
8π

∫
S2

∞

∑
i, j
(ki j − trgkgi j)K

i
ν

j

where Ki is an asymptotic rotation Killing field on

(M,g,k).
• Note that, however, the calculation of angular

momentum ismore subtle, as the expression diverges

apparently.

• There are proposals (Regge-Teitelboim) of par-

ity condition on (g,k) to ensure finiteness, and impor-

tant gluing constructions and density theorems for

prescribing angular momentum by Corvino-Schoen,

Chruściel-Delay, Chruściel-Corvino-Isenberg, Huang,

Huang-Schoen-Wang etc. under such a condition.

• (Chen-Huang-Wang-Yau) There exist asymptot-

ically flat spacelike hypersurfaces in R3,1 or the
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Schwarzschild spacetime with finite, nonzero ADM

angular momentum such that g− δ = O(r−
4
3 ) and k =

O(r−
5
3 ).

• (Chruściel) If p + q > 3, then the ADM angular

momentum is finite.

• To what extent is the ADM definition a valid

one?

• On the other hand, the limit of CWY quasilocal

angular momentum can be viewed as a total angular

momentum on an asymptotically flat initial data set.

• To justify our definition, we prove an invari-

ance of CWY angularmomentum theorem in Kerr: any

strictly spacelike hypersurface in the Kerr spacetime

has the same total CWY angular momentum.

• “Strictly spacelike” means, in Boyer-Lindquist

coordinates, t =O(cr) for |c|< 1. In particular, the CWY

angular momentum vanishes for such hypersurfaces

in R3,1 or the Schwarzschild spacetime.

• The proof relies on a gravitational conservation

law.

• We also computed the limit of quasilocal con-

served quantities for spacelike hypersurface of har-

monic asymptotics (Corvino-Schoen) and asymptoti-

cal hyperboloids.

• I shall now discuss the definition of total angu-

lar momentum at future null infinity I+.

• There were various definitions and pro-

posals: Ashtekar-Hansen, Dray-Streubel, Rizzi

(Christodoulou-Klainerman), Chruściel-Jezierski-

Kijowski, etc.

• How do we justify these definitions?

• The spacetime near I+ is described in terms of

the Bondi-Sachs coordinate system.

• (u,r,xa,a = 2,3) is a Bondi-Sachs coordinate sys-

tem if near r = ∞, the spacetime metric takes the form

−UV du2 −2Ududr+ ∑
a,b=2,3

r2ha,b(dxa +W adu)(dxb +W bdu)

= gαβ dxα dxβ ,

such that

dethab = detσa,b,

where σa,b is the standard round metric on (S2,xa).

U,V,hab,W a depend on u,r,xa,a = 2,3.
• Each u = constant is a null hypersurface and r is

indeed the inverse mean curvature flow (from r = ∞)

parameter on u = constant.
• The asymptotically flat condition and the vac-

uum Einstein equation imply that as r → ∞,

U = 1+O(r−2)

V = 1− 2m
r

+O(r−2)

W a = O(r−2)

hab = σab +
Cab

r
+O(r−2)

where m = m(u,xa) is the mass aspect and Cab =

Cab(u,xa) is the shear tensor which is symmetric and

traceless with respect to σ .

• As r → ∞, r−2gαβ dxα dxβ → σabdxadxb, the null met-

ric on I+.

I+ ∼ I × (S2,σab)

with u ∈ I, xa ∈ S2.

• The Bondi-Sachs-Trautman energy-momentum

is

e(u) =
1

4π

∫
S2

∞

m(u,xa)dvσ ,

pi(u) =
1

4π

∫
S2

∞

m(u,xa)Yidvσ , i = 1,2,3

where {Yi =Yi(xa), i = 1,2,3} is an orthonormal basis of

the (−2) eigenspace of ∆ = ∆σ .

• Each Bondi-Sachs coordinate system (u,r,xa) in-

duces a limiting coordinate system (u,xa) on I+ to-

gether with the mass aspect m(u,xa) and the shear

Cab(u,xa).

• Such a Bondi-Sachs coordinate system is not

unique and the BMS group, which consists of diffeo-

morphisms that preserve the gauge and boundary

conditions, acts on the space of Bondi-Sachs coordi-

nate systems.

•A BMS group element induces a diffeomorphism

on I+ that is of the following form:

(u,xa) 7→ (ū, x̄A)

such that {
x̄A = gA(xa)

ū = K(xa)(u+ f (xa))

where g : (S2,σ)→ (S2, σ̄) is a conformal isometry, i.e.

g∗σ̄ =K2σ and K = 1
(α0+∑i α iYi)

with (α0,α i) a future time-

like unit vector.

• f (xa) is any smooth function on S2 that is called

a “supertranslation”. f (xa) = ∑aiYi corresponds to an

actual translation in the Poincaré group.

• K = 1
(α0+∑i α iYi)

corresponds to a boost in O(3,1).

• Choices of Yi, i = 1,2,3 correspond to O(3) ⊂
O(3,1).

• Invariance and monotonicity of mass are best

described in terms of a modified mass aspect:

m̂ = m− 1
4

∇
a
∇

bCab.

• Under a BMS transformation (K, f ), (u,xa,m, m̂) 7→
(ū, x̄A, m̄, ˆ̄m), the two modified mass aspects m̂ and ˆ̄m
are related by

m̂− 1
4

∆(∆+2) f = K3 ˆ̄m.

• This implies (e(u), pi(u)) and (e(ū), pi(ū)) differ by
exactly the boost associated with K.
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• In addition, the vacuum Einstein equation im-

plies

∂um̂ =−|∂uC|2σ ,

and the modified mass aspect is pointwise non-

increasing (mass loss formula). Note that m and m̂ de-

fine the same energy-momentum. ∂uCab :=Nab is called

the news tensor.

• There is also an angularmomentum aspect from

the expansion of W a.

r2habW b = gua =
1
2

∇
bCab +

g(−1)
ua

r
+O(r−2).

• The angular momentum aspect is defined to be

Na =−1
2

(
g(−1)

ua +
1
16

∇a|C|2
)

• The vacuum Einstein equation implies

3
∂Na

∂u
=−∇am+

1
4
εba ∇b(ε

ec
∇c∇

dCde)−
3
4

Cab∇cNbc

+
1
4

Ncd
∇dCac.

• Does there exist a modified angular momentum

aspect that satisfies similar properties of the modi-

fied mass aspect?

• Unfortunately, the transformation of the angu-

lar momentum aspect is extremely complicated.

• Under a supertranslation f , Na transforms as

Na = N̄a +m∇a f +
1
2
(∇c f )(∇c∇bCb

a −∇a∇bCb
c )

+15 other terms that involve f ,Cab,Nab

and their derivatives

• CJK, from the Hamiltonian theory associ-

ated with Bondi-Sachs coordinates, defined the total

Lorentz charge to be the integral∫
S2
(24Na +2∇c(CabCbc)+

1
2

∇a|C|2)(·),

(·) = εab∇bYi corresponds to angular momentum and

(·) = ∇aYi corresponds to center of mass.

• Theorem (CJK) The Lorentz charge is equivari-

ant under the BMS group if there exists a Bondi-Sachs

coordinate system such that m= constant, Na = constant,

and Cab = 0.

• The assumptions correspond to a stationary

spacetime.

• The limit of the CWY quasilocal conserved quan-

tities was recently computed by Keller-Wang-Yau.

The expression depends on the Hodge decomposition

of Cab. Write

Cab = ∇a∇bc−
1
2

σab∆c+
1
2
(εad∇

d
∇bc+ εbd∇

d
∇ac)

= Fab +Fab

• The limit of the CWY quasilocal center of mass

is

∫
S2
(∇aYi)

(
3
2

Na −u∇am− c∇am+2εba(∇bc)m

)
+

∫
S2

Yi

(
− 1

16
|∇(∆+2)c|2 − 1

2
∇dFad

∇
bFab −

1
4

FabFab

)

• The expression coincide with CJK for a station-

ary spacetime and thus is invariant under the BMS

group in this case as well.

• In the more general case, the expression in-

volves more refined structure of I+ (Hodge decom-

position of the shear Cab).

• All previous definitions of angular momentum

on I+ depend on a specific gauge (a null frame or a

spacetime coordinate system). In contrast, our defi-

nition is geometric and coordinate independent (de-

pends only on σ , |H|, αH ).

• In addition, solving the optimal isometric equa-

tion is a canonical procedure that is free from any

ad hoc referencing. As we are just calculating the

same conserved quantities of a surface and special-

ize to different Bondi-Sachs coordinate, general in-

variant/equivariant properties are expected.

Einstein’s theory of gravitation has initiated a

deep understanding of geometry through physical in-

sight and vice versa, in the last century. We expect this

to continue in this century.
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