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Abstract.

Five sporadic simple groups were proposed in the

19th century and 21 additional ones arose during

the period 1965–1975. Since the early 1950s, there

has been much thought about the nature of finite

simple groups and how sporadic groups are placed

in mathematics. While in mathematics graduate

school at The University of Chicago, I became

fascinated with the unfolding story of sporadic

simple groups. It involvedmultiple theories, detective

work and experiments. In this article, I shall describe

some of the people, important ideas and evolution

of thinking about sporadic simple groups. Most

should be accessible to a general mathematical

audience.
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1. Introduction

I shall discuss how our discoveries of the 26 spo-

radic simple groups evolved, with emphasis on what

I myself experienced or heard from witnesses. Writ-

ing this account in the first person seems natural. My

passion about finite group theory began to grow in

the late 1960s.

The five Mathieu groups were not part of natural

infinite families, like the alternating groups, or clas-

sical matrix groups like PSL(n,q). The earliest use of
the term “sporadic group” may be the second edition

(1911) of Burnside’s book [27] (note N) where he com-

ments about the Mathieu groups:

“These apparently sporadic simple groups would probably
repay a closer examination than they have yet received”.

The first edition of Burnside’s book (1897) [26]

and Dickson’s Linear Groups (1901) [55] both men-

tion the Mathieu groups, but do not use the term

“sporadic group”.

It is worth mentioning that Burnside felt that

groups of odd order were likely to be solvable [27]

(note M). This was confirmed by the celebrated the-

orem of Walter Feit and John Thompson in 1963

[70]. A consequence is that a nonabelian finite sim-

ple group has order divisible by 2 and so contains

involutions (an involution is an element of order 2).

The term sporadic simple group has come to

mean a nonabelian finite simple group which is not

a group of Lie type or an alternating group. The

term sporadic group usually means a sporadic sim-

ple group but in practice it hasmeant a group Gwhich

contains a normal quasisimple subgroup Q (meaning,

Q is perfect and Q/Z(Q) is a finite simple group) so

that Q/Z(Q) is sporadic and CG(Q) = Z(Q). Such a G is

an upwards extension of Q by a subgroup of the outer

automorphism group of Q.
It is a consequence of the CFSG (classification

of finite simple groups) that there are no sporadic

groups other than the 26 known by the early 1980s.

A list will be described soon.

At the beginning of the CFSG era, which started

in the early 1950s, the meaning of sporadic was less

precise. Then, it seemed a priori possible that, be-

sides the alternating groups and groups of Lie type,

there might be an infinite series of previously un-

known simple groups, which could have been called

sporadic. In the 1960s, researchers entertained pleas-

ant fantasies about finding infinitely many new finite

simple groups. I remember speculations about series

of graphs or integral lattices with big automorphism

groups.

In the group theory community, “discovery” of a

finite simple groupmeant finding strong evidence for

its existence. Proof of existence usually came later,
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frequently done by someone other than the discov-

erer. Standards were fairly high. When the term dis-

covery was used publicly by an established group the-

orist, there was not, to my knowledge, an eventual

proof of nonexistence. More cautious terms like “pos-

sible discovery” were used for preliminary studies,

some of which did lead to a contradiction. The term

“putative simple group” seemed appropriate for a se-

rious candidate not yet proven to exist. Peter Neu-

mann’s use of this term around early 1974 is my earli-

est recollection. John Conway used it in his 1970 ICM

lecture [41]. Walter Feit’s extensive 1970 ICM survey

[71] presents his view of finite simple group theory at

that time, using the term “potential” simple group (in

reference to the Lyons group) but not the term “puta-

tive”.

Discoveries of previously unknown simple

groups were strongly connected to the ongoing clas-

sification of the finite simple groups. The program to

classify finite simple groups came to life in the early

1950s. Its resolution was announced around the

early 1980s, I believe, at the American Mathematical

Society annual meeting during January, 1981, in San

Francisco. At a finite group theory special session in

this meeting, Daniel Gorenstein made the announce-

ment that the CFSG was essentially complete. Ron

Solomon confirms my memory about this. Speakers

at special sessions customarily provide an abstract in

advance to the Notices of the American Mathematical

Society. For the Gorenstein announcement, there

was no abstract provided and I am not aware of any

written record of the event.

The announcement was optimistic. Unresolved is-

sues arose, including a substantial one. They were

identified and eventually dealt with. It is now gener-

ally believed that the classification is settled and that

the list we shall display later is complete.

One could say that most effort in the CFSG pro-

gram was directed towards achieving an upper bound

on the possibilities for finite simple groups. Those

who sought new groups and tried to construct them

worked to achieve a lower bound. These two bounds

met eventually. Some people belonged in both camps.

Things I learned from working on CFSG helped

me find my way in the world of sporadic groups. This

article is focused on the story of sporadic groups and

is not an attempt to survey the CFSG. I will give cer-

tain anecdotes about discoveries, constructions and

uniqueness proofs of sporadic groups. Apologies to

the many researchers on CFSG, finite geometries and

representations whose work will not be mentioned.

The interested reader may consult [216, 88, 9, 197]

and other surveys.

See Appendices for list of finite group terminol-

ogy and list of the finite simple groups.

In Memoriam. Players in the sporadic group story

who have passed: John Conway, Bernd Fischer, Mar-

shall Hall, Donald Higman, Graham Higman, Jeffrey

Leon, Émile Mathieu, Jack McLaughlin, Simon Norton,

Mike O’Nan, Charles Sims, Michio Suzuki, Ernst Witt.

I mention the related historic articles about Donald

Higman [11] and John Conway [120].

2. Main Themes Which Developed for
the Sporadic Groups

Most finite simple groups are of Lie type (ana-

logues of Lie groups over finite fields, and variations)

and can be treated uniformly by Lie theory. Defini-

tions for symmetric groups and alternating groups

are easy to understand. The sporadic groups are

not easily described. Listed below are several themes

which are relevant for discovering or describing most

of the sporadic groups.

For certain sporadic groups, more than one cate-

gory applies.

External themes:

Multiply transitive and rank 3 permutation repre-

sentations (rank 3: transitive permutation representa-

tion for which point stabilizer has just three orbits).

Isometries of lattices in Euclidean space (Leech

lattice and related lattices).

Automorphisms of commutative nonassociative

algebras.

Internal themes:

ω-transposition groups (definition given below).

Pure group theoretic characterizations (such as

characterization by centralizer of involution, transi-

tivity on flags of elementary abelian 2-subgroups).

Recall that in any group, two involutions generate

a dihedral group.

Definition (Bernd Fischer). Let ω be a subset of

{3,4,5,6, . . .}. Given a finite group G, a subset D of in-

volutions is a class of ω-transpositions in G if D is a

conjugacy class in G and whenever x,y ∈ D and xy 6= yx,
then the subgroup generated by x,y is dihedral of or-
der 2n for some n ∈ ω (so n is the order of xy). When

this is the case and G is generated by D, we say that
G is an ω-transposition group for the subset D.

This class of groups will be discussed later. Some-

times, one sees a variation of this condition which al-

lows D to be a union of conjugacy classes.

3. The List of FSG, Changing Over
Time

Now, shall present the lists, at several moments

in history, of known or putative finite simple groups,
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including counts for sporadic groups known up to

those moments. For some groups, existence and

uniqueness proofs came much later. To keep expo-

sition in this section efficient, the lists are sketchy.

See the Appendix of Notations and FSG orders for

more details including group orders and discussions

of nonsimplicity and multiple occurrences of isomor-

phism types.

The date given for sporadic groups is year of dis-

covery, as well as I remember. Publication dates are

found in the reference section.

3.1 1910 View of FSG

Cyclic groups of prime order;

Alternating groups of degree at least 5;

Some classical groups over finite fields (general

linear, unitary, orthogonal, symplectic), done by Ga-

lois and Jordan; the nonabelian simple group associ-

ated to a classical group is the quotient of its commu-

tator subgroup by the center (with a few exceptions

in small dimensions);

Groups of type G2,E6 (and possibly F4) by L. E.

Dickson (around 1901 or so), at least in odd charac-

teristic;

Proposals by Émile Mathieu of the Math-

ieu groups: M11,M12,M22,M23,M24 [174, 175, 176]

(1861–1873); Their existence was first made rigorous

in 1937 by Ernst Witt [243, 244];

[sporadic count=5].

3.2 1959 View of FSG

Cyclic groups of prime order;

Alternating groups of degree at least 5;

LIE TYPE:

1955 Chevalley groups over finite fields

(types An(q),Bn(q),Cn(q),Dn(q),E6,7,8(q),F4(q),G2(q),
q = prime power; some restrictions on n,q) [28]; in-
cludes classical groups: for example, An(q) ∼= PSL(n+
1,q);

LIE TYPE:

1959 Steinberg variations of Chevalley groups, as-

sociated to graph times field automorphisms (types
2An(q),2 Dn(q),3 D4(q),2 E6(q), q = prime power; some re-

strictions on n,q); includes classical groups involv-

ing field automorphism: for example, 2An(q)∼=PSU(n+
1,q);

The groups of Galois, Jordan and Dickson are in-

cluded in the Chevalley-Steinberg series;

Mathieu groups;

[sporadic count=5].

3.3 1962 View of FSG

Same as in 1959 plus these:

LIE TYPE:

1960 The series of Suzuki groups Sz(q),q = odd

power of 2, q ≥ 8, found by pure group theoretic in-

ternal characterization [221]; these might have been

considered “sporadic” but in 1961 were shown by

Takashi Ono to be of Lie type, 2B2(q), associated to an
isomorphism of the group B2(q) but which does not

come from a morphism of the Lie algebra [191, 192].

LIE TYPE:

1961 The two series of groups defined by Ree,
2G2(q), q ≥ 27, q = odd power of 3; and 2F4(q)′, for q
an odd power of 2. The group 2F4(2) is nonsimple; its

derived group 2F4(2)′, called the Tits group [232], has

index 2 and is simple [232];

[sporadic count=5]

3.4 1970 View of FSG: The Deluge, Part 1

Same as in 1962 plus these:

NEW SPORADIC:

1965 Janko group J1;

1967 Hall-Janko group (HJ = J2); Janko group

J3; Higman-Sims group; McLaughlin group; Suzuki

group;

1968 Conway’s Co1,Co2,Co3; Held; Fischer’s

simple groups Fi22,Fi23,Fi′24 (the first two are

3-transposition groups; the third is the commutator

subgroup of the 3-transposition group Fi24).

1969 Lyons group;

[sporadic count=5+14=19].

3.5 Early 1970s Blues

New genuine and putative sporadic groups were

fun to examine. There were no announcements about

discoveries during 1970 and 1971. A mild depression

spread within the finite group community.

3.6 1973 View of FSG: The Deluge, Part 2

Same view as in 1970 with these additions:

NEW SPORADIC:

Springtime 1972: Ru (Rudvalis rank 3 group) order
21433537·13·29;

before mid-May 1973: O′N (the O’Nan group, of

order 29345·7319·31);
summer 1973: F2 (Fischer’s Baby Monster; a

{3,4}-transposition group);

November 1973: M = F1 (Monster, discov-

ered independently by Fischer and Griess; a

{3,4,5,6}-transposition group);

F3 (Thompson);

F5 (Harada-Norton);

[sporadic group count=25].
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3.7 1975 View of FSG

Same as 1973, plus

NEW SPORADIC:

May, 1975: Janko’s fourth group J4, of order

221335·113·23·29·31·37·43, found by centralizer of invo-

lution characterization for 21+123M222.
[sporadic group count=26].

3.8 The Final List of FSG (After Decades of CFSG)

The final list here is given in compact form. See

Appendices for more detailed list of notations, group

orders and duplicate listings.

(a) cyclic groups of prime order;

(b) the alternating groups (even permutations on

a set of n symbols, n ≥ 5);
(c) groups of Lie type over finite fields (17 fam-

ilies): Chevalley groups An(q) ∼= PSL(n + 1,q), Bn(q) ∼=
PSO(2n+1,q), . . . ,E8(q); Steinberg, Suzuki and Ree vari-
ations: 2An(q)∼= PSU(n+1,q), . . . 2F4(22m+1)′;

(d) 26 sporadic groups = 5 groups of Mathieu

from 1860s, plus 21 others, discovered during period

1965–1975.

[sporadic count = 26].

Of the 26 sporadic groups, 20 are subquotients

of the Monster, the largest sporadic. These twenty

groups form The Happy Family. The set of six remain-

ing groups are called The Pariahs. There is no single,

simply stated theme which explains or describes the

sporadic groups in a useful or efficient manner. The

broadest theme so far is membership in the Happy

Family.

4. Fuzzy Boundary Between Sporadic
Simple Groups and the Others

The Lie theoretic viewpoint describes most of the

finite simple groups. The symmetric groups could be

viewed as general linear groups over the “field of one

element”, an idea introduced by Jacques Tits [230]

(for background, see [241]). The sporadic groups

are the outsiders. However, other viewpoints for fi-

nite groups do not particularly exclude the sporadic

groups.

(1) We see an easily checked 3-transposition con-

dition for transpositions in symmetric groups. The

classification of 3-transposition groups with trivial

solvable normal subgroups includes familiar groups

but also three previously unknown sporadic groups,

Fi22,Fi23 and Fi24. What resulted from such a simple

hypothesis is amazing.

(2) The finite real and complex reflection groups

were classified a long time ago. Their composition

factors involve only cyclic groups, alternating groups

and certain classical matrix groups over the fields of

2 and 3 elements.

The finite quaternionic reflection groups were

classified in the 1970s by Arjeh Cohen [36, 37, 38].

Their composition factors involve only cyclic groups,

alternating groups, a few classic matrix groups of

small dimension over small fields, and the sporadic

group of Hall-Janko.

(3) Timmesfeld’s classification [229] of {4,odd}+
transposition groups with no normal solvable sub-

groups gave most groups of Lie type in character-

istic 2 (the groups 2F4(q) do not occur here), all of

the 3-transposition groups of Fischer, plus the spo-

radic Hall-Janko group (which is not a 3-transposition

group). The group HJ embeds into the group G2(4)
and its {4,odd}+-transpositions are contained in those
of G2(4). So, HJ is close to being a group of Lie type

in characteristic 2. There is a beautiful description of

subgroups K of G2(4) which are isomorphic to HJ and
which contain the derived group of the natural G2(2)
subgroup (G2(2)′ ∼= PSU(3,3)) [236]. Such K do not con-

tain the natural G2(2) subgroup.
(4) Also the {3,4,5,6}-transposition property of

the 2A-involutions inM (the Monster) feels like a prop-

erty of Weyl groups in Lie algebra theory, particularly

because of the theory of Miyamoto involutions [182]

for vertex operator algebras and Sakuma’s theorem

[202]. See [45] for discussions of Y -diagrams for sets

of 2A elements in the Monster. Many finite groups

which come up in vertex algebra theory are gener-

ated by Miyamoto involutions; see later section Lat-

tices, vertex algebras and applications and references

therein.

(5) The groups of Lie type have well-known ge-

ometries based on their parabolic subgroups. Some

actions of sporadic groups on local subgroups (nor-

malizers of p-groups, for a prime p) have features in
common with the latter actions, including diagrams

which are analogues of Dynkin diagrams. See the arti-

cle of Mark Ronan and Stephen Smith [198]. The inter-

esting example for the Monster gives an E8-diagram.

These authors call their study of geometries for spo-

radic groups “2-local geometry” or “parabology”. Ge-

offrey Mason and Stephen Smith [173] extended this

analysis to the groups of Held and Rudvalis.

If G is a group of Lie type and P is a parabolic

subgroup with unipotent radical U , then P is a split

extension P =UL, due to a so-called Levi subgroup L.
If M is a finite dimensional highest weight module,

then the subspace of vectors fixed by U is P-invariant
and is irreducible as a module for P/U ∼= L. Steve
Smith noted analogous behavior for some 2-local sub-

groups in sporadic groups [214] and observed that

the analogues of parabolic subgroups are often not
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split For some constructions of big p-locals in spo-

radic and other finite groups see the methods of

[42, 104, 106, 105, 111, 109].

(6) There are occasional references to “the 27th

sporadic group”, meaning the Tits group 2F4(2)′ [232].
While 2F4(2) is a standard group of Lie type (mean-

ing from the series of Chevalley, Steinberg or Ree), its

commutator subgroup 2F4(2)′ is not. Compare 2G2(3),
whose commutator subgroup has index 3 and is iso-

morphic to PSL(2,8); this is a genuine group of Lie

type, though not from a series of characteristic 3.

Compare also B2(2) ∼= Sym6 and its commutator sub-

group B2(2)′ ∼= Alt6 ∼= A1(9)∼= PSL(2,9).

5. Beginnings of CFSG and Sporadic
Encounters

The CFSG starts in early 1950s and, as a conse-

quence, encourages a search for more finite simple

groups.

In any group, two involutions generate a dihedral

group. The following theorem [18] extends a thesis re-

sult of Kenneth Fowler at The University of Michigan

[76], under the direction of Richard Brauer.

Theorem 5.1 (Brauer-Fowler). There exists a function

f : N→ R so that if G is a finite simple group (of even

order) and t ∈ G is an involution, then |G| ≤ f (|CG(t)|).

In other words, if H is a finite group then, up to

isomorphism, only finitely many finite simple groups

have an involution whose centralizer is isomorphic to

H. (Usually, that number is zero.)

The function f is extravagant, of no practical

value. However, the psychological impact of limiting

isomorphism types of a finite simple group by a cen-

tralizer of involution was powerful.

In Brauer’s talk at the International Congress of

Mathematicians, in Amsterdam (1954) [18], he gave

an early theorem along this line. We first give some

notation.

Let q be an odd prime power and let H be the cen-

tralizer of an involution

1 0 0
0 −1 0
0 0 −1

 (mod scalars)

in the simple group PSL(3,q). So, H is the group of

all matrices over the field of q elements of the form(
c

A

)
(mod scalars in SL(3,q)) where A is an invert-

ible 2×2 matrix and c ·det(A) = 1. So, for all odd q, H is

isomorphic to GL(2,q)/Z, where Z is the central sub-

group of order (3,q−1).

Theorem5.2. Assume that (i)G is a finite simple group

with involution u so that CG(u)∼= GL(2,q)/Z;
(ii) for x 6= 1 in Z(CG(u)), CG(x) =CG(u);
ThenG∼=PSL(3,q) or q= 3 andG∼=M11, the Mathieu

group of order 7920 = 24325·11.

Hypothesis (ii) was eventually removed. For de-

tails, see [19, 245].

Note that we get the expected answers PSL(3,q)
but in the proof there is a case which leads to a spo-

radic group. If you had never met M11 before, you

would meet it this way.

Brauer’s strategy applied “only” to simple groups

of even order. In 1963, Feit and Thompson proved

that all finite groups of odd order are solvable [70].

After their theorem, it was clear that Brauer’s view-

point was more significant.

Theorem 5.3 (Janko-Thompson [161]). Let q ≥ 5 be

a prime power and G be a finite simple group with

abelian Sylow 2-subgroups and an involution t so that
CG(t) ∼= 2×PSL(2,q). Then q is an odd power of 3 with

q ≥ 27 or q = 5.

The case q = 5 had been mistakenly eliminated

due to an error in a character table for PSL(2,11). The
error was found later by Janko, who obtained the fol-

lowing result.

Theorem 5.4 (Janko [155]). Let G be a finite simple

group with abelian Sylow 2-subgroups and an invo-

lution t so that CG(t) ∼= 2×PSL(2,5). Then G has order

175560= 233·5·7·11·19. Furthermore, such a G exists and

is unique up to isomorphism.

Assuming that such a G exists, Janko gave two

matrices A,B in GL(7,11), which would generate such

a simple group (and prove uniqueness). In [155]

M. A. Ward gave a nice proof that A and B do gen-

erate a simple group of the right order and W. A.

Coppel gave a nice proof that this subgroup lies in

a G2(11)-subgroup of GL(7,11) [155].
The group J1 is another example of how a spo-

radic group comes up as a special case in a classifica-

tion result.

The discovery, existence proof and uniqueness

proof for J1 were done by hand and the articles

give full details, assuming background in basic finite

group theory and representation theory. This sense

of a “self-contained” treatment for a new sporadic

group was not to last. As the CFSG expanded, there

were dramatically increasing demands for broad spe-

cialized knowledge, starting around the mid 1960s.

5.1 Reaction to J1, the First New Sporadic Simple

Group in a Century

There was a lot of discussion about what the ap-

pearance of J1 could mean. The Suzuki series discov-

ered in 1960 turned out to be groups of Lie type. Were

there more sporadics waiting to be discovered?

(1) Think about the order of GL(n,q),

q
(n

2

)
(qn −1)(qn−1 −1) · · ·(q−1)
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There are similar polynomial expressions for orders

of groups of Lie type over finite fields of q elements.

Maybe the new group J1, of order [155, 156]

175560 = 11·12·1330 = 11(11+1)(113 −1)

is part of a series of groups of order q(q+ 1)(q3 − 1)
where q is a prime power (or maybe a power of 11).

This was a nice idea, but it did not lead anywhere.

(2) Consider these amusing factorizations (see

[155, 156] and [233], page 188):

175560 = 233·5·7·11·19 = 19·20·21·22 = 55·56·57

As far as I know, no one has done anything special

with this. Noam Elkies points out that 175560 is the

largest integer which is both the product of three con-

secutive integers and the product of four consecutive

integers [69].

(3) J1 contains a subgroup isomorphic to PSL(2,11)
of index 266 = 2 ·133. Since 133 is the dimension of the

E7 Lie algebra, one might wonder if something is go-

ing on with the exceptional Lie group E7. The group

J1 has a 7-dimensional representation over F11 which

embeds J1 in G2(11)! There is a containment of excep-

tional algebraic groups G2 ≤ F4 ≤ E6 ≤ E7 ≤ E8, hence a

connection between J1 and E7, though it is somewhat

distant.

6. Centralizer of Involution Examples

The strategy of characterization by centralizer

of involution was pursued, refined and replaced as

the years went by. One can not hope to try all fi-

nite groups as centralizer of involution candidates

to finish CFSG. Still, it is remarkable that many small

groups occurred as centralizers of involutions in pre-

viously unknown finite simple groups.

6.1 The C = 21+4:Alt5 Dichotomy and HJ and J3

I am not sure why Janko chose this candidate for

the centralizer of involution in a simple group, but it

was fortunate. Ronald Solomon points out similarity

to involution centralizers in the groups

M12,G2(3),PSp(4,3),PSL(4,3),PSU(4,3).

The group C = 21+4:Alt5 has three conjugacy

classes of involutions. Take involutions z in the cen-

ter, w in O2(C)\{z} and t ∈C\O2(C). They represent the

three conjugacy classes. The Glauberman Z∗-theorem

[83] says that z must be conjugate to one of w, t. The
case where z is conjugate to just one of w, t leads to
the group HJ (and z is conjugate to w, in fact). The

case where z is conjugate to both w and t leads to the
group J3 of order 50232960 = 2735·5·17·19.

6.2 The Double Covers 2·Altn and the Groups of

McLaughlin and Lyons

The sporadic group of McLaughlin has one con-

jugacy class of involutions with centralizer of shape

2·Alt8, the double cover of Alt8, described by Schur

[203].

Richard Lyons, while a graduate student at The

University of Chicago, produced strong evidence that

there is a finite simple group with an involution

centralizer isomorphic to 2·Alt11 [172]. Such a group

has one conjugacy class of involutions and order

2837567·11·31·37·67. The Lyons group was proven to ex-
ist by Charles Sims [210, 139].

Short arguments with the Z∗-theorem [83] show

that the groups 2·Altn are not centralizers of involu-

tions in finite simple groups if n ≥ 12 or n ≤ 7. For
n ≤ 7, one may also use the Brauer-Suzuki Theorem

[21], which says that a finite simple group does not

have a quaternion Sylow 2-group. The cases n = 9,10
were eliminated by Janko and Lyons, respectively

[158, 171].

6.3 Exceptional Central Extensions of Finite

Groups of Lie Type

With finitely many exceptions, finite groups of Lie

type over a field of characteristic p have Schur mul-

tiplier of order relatively prime to p [218, 219, 97,

98, 100]. Certain associated exceptional central ex-

tensions appeared as normal subgroups in normal-

izers of small p-groups within sporadic groups. Some

examples: (a) 2·PSU(6,2) in Fi22; (b) 32·PSU(4,3) in Co1;

(c) 2·F4(2) in the Monster; (d) 22·PSL(3,4) in the Held

group; (e) 4·PSL(3,4).2 in the O’Nan group; (f) 2·Sp(6,2)
in Co3.

I do not recall a case of a sporadic group being dis-

covered by centralizer of involution procedure start-

ing from an exceptional central extension of a group

of Lie type (or such extended upwards by outer auto-

morphisms).

For connections between exceptionally nonvan-

ishing cohomology and sporadic groups, see [106].

6.4 The 21+6
+ :GL(3,2) Trichotomy, PSL(5,2), M24 and

the Held Sporadic Group

Dieter Held [140] studied the group 21+6
+ :GL(3,2),

which is a centralizer of involution in both GL(5,2)
and M24 and found evidence for a third finite sim-

ple group, where it is also a centralizer. Such a latter

group would have order 4030387200 = 21033527317 and

would become known as the Held group.

From CFSG, we know that, given a particular

group H, the number of finite simple groups, up to

isomorphism, having H as centralizer of involution

is at most 3. Only H = 21+6
+ :GL(3,2) achieves the upper

bound of 3. Several groups occur as centralizer twice.
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The pair of simple groups PSL(2,7),Alt6 ∼=PSL(2,9) each
have one conjugacy class of involutions and com-

mon involution centralizer Dih8. The pair of simple

groups HJ,J3 have involutions with common central-

izer 21+4
− :Alt5.

Dieter Held writes:

“Dear Professor Griess,
Thank you very much for your email. [In] 1968 I had been

considering a variety of problems which included the groups
PSL(5,2) and M24 (Mathieu-group on 24 letters) as ‘small’
cases. Thus, I started with a characterization of these two
simple groups by the centralizer of a 2-central involution.
For a successful start, I assumed that if H is the centralizer
of an involution in the center of a Sylow-2 subgroup of the
group G to be determined, then H is also the full normal-
izer in G of each of the two elementary abelian subgroups
E and E1. I knew that this is the case neither in M24 nor in
PSL(5,2). Thus, I could hope to arrive soon at a contradic-
tion while investigating G locally. But I did not produce a
contradiction in this manner. On the contrary, I was able to
decide which involutions of H were G-conjugate and which
were not. I found that G has precisely two classes of invo-
lutions and I determined the structure of the centralizer of
an involution not contained in the center of a Sylow-2 sub-
group of G. At that point I wanted to determine the order
of G. The idea was to make use of the Suzuki-Order-Formula;
see Janko’s characterization of the smallest group of Ree as-
sociated with the simple Lie Algebra of type (G2), Journal of
Algebra Vol. 4, No. 2, September 1966, page 295, Lemma of
Suzuki. After I had computed the relevant character tables
I found the necessary further calculations as too tiresome.
By chance I got an invitation to take part at an Oberwolfach-
Meeting where I could talk to John Thompson. I gave him an
account of the up to now known structure of G: So far no
contradiction, precisely two classes of involutions, and the
structures of the centralizers of two non-conjugate involu-
tions. It sounded unbelievably to my ears when Thompson
said that precisely for such a situation he could give me a
rather simple formula – now known as The Thompson Or-
der Formula – for computing the order of G. A few weeks
later I computed 4030387200 as the order of G which was a
first hint for the existence of a new sporadic simple group.
More information gathered supported this. At this state of
affairs I felt that it would be best to publish my results as
soon as possible as I wanted to use it for habilitation at a
german university. At that time I was research fellow of DFG,
Deutsche Forschungsgemeinschaft, and I had not been affil-
iated to any university.

So far the story of the exciting days in 1968. By the way,
it had been an unexpected stroke of luck that with John
Thompson I met somebody who understood and was inter-
ested in what I had been looking for.

I hope that this report is of some historical value to you.
Best regards
Dieter Held”

Such a simple group was first constructed by Gra-

ham Higman and John McKay using computer work

(unpublished). Existence of such a group follows from

existence of the Monster [103]. See also later sec-

tion Computer and manual constructions of sporadic

groups.

6.5 Janko’s Long Quest

In the early 1970s, Ulrich Dempwolff told me

about a weekly seminar at Ohio State University in

which Koichiro Harada and Zvonimir Janko were the

main speakers. They gave ongoing reports on their

current research. The seminar was a good opportu-

nity for young participants to learn about techniques.

Janko spoke about cases he considered for centraliz-

ers of an involution in a finite simple group. Demp-

wolff said “In particular he tried a number of central-

izers H with E = O2(H) extraspecial and an irreducible

action of H/E on the E/E ′”. He noted Janko’s repeated

use of the phrases “large extraspecial groups” and

“large amounts of time” during his lectures.

Janko even studied series of centralizer candi-

dates. Jon Alperin told me that Janko considered

q1+8Sp(6,q) for q a power of 2. This series generalizes
the case of an involution centralizer 21+8Sp(6,2) in the
group Co2. No simple group occurs for such a cen-

tralizer when q > 2. At a 1972 meeting in Gainesville,

Florida, Janko proposed another infinite family of

centralizers for possible new simple groups. They

had the approximate form 21+2mPSL(2,2m). Within a

fewweeks after the conference, a story circulated that

these possibilities were eliminated for all but finitely

many m. In the proceedings [159], Janko reported on

a family of then still-unresolved centralizer of involu-

tion problems including the series which created ex-

citement at the conference.

Janko was the most openly energetic explorer

of centralizer of involution problems. He found suc-

cess four times, starting with centralizer candidates

which puzzled observers. They wondered whether he

had extremely good insight or just an amazing lucky

streak. The most exotic-looking centralizer for his

groups was 21+12.3.M22.2 in the pariah J4. The context

of his successes surely included a great number of

trials which led to no new groups but strengthened

his instincts.

7. Don Higman’s Rank 3 Theory

A permutation representation of a group G on a

set Ω is a group homomorphism G → Sym(Ω). Its de-

gree is the cardinality |Ω|.
The rank of a transitive permutation representa-

tion of the group G on a set Ω is the number of orbits

for the natural action on Ω×Ω. Equivalently, it is the

number of orbits of a point stabilizer Ga := {g ∈ G |
ga = a} on Ω.

Notation 7.1. Let the finite group G act on the set Ω

transitively with rank 3. For a ∈ Ω, let the orbits of the

point-stabilizer Ga be {a},∆(a),Γ(a). Assume that if g ∈
G, then ∆(g ·a) = g ·∆(a) and Γ(g ·a) = g ·Γ(a).

Define n := |Ω|, the degree;
k := |∆(a)|,
` := |Γ(a)|
λ := |∆(a)∩∆(b)| for b ∈ ∆(a),
µ := |∆(a)∩∆(b)| for b ∈ Γ(a).
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Call k, ` the subdegrees and call k, `,λ ,µ the rank 3

parameters or the Higman parameters of the rank 3

representation.

Lemma 7.2 ([141]). µ`= k(k−λ −1) (the Higman con-

dition).

Call a sequence of nonnegative integers k, `,λ ,µ
a Higman quadruple if they satisfy the Higman con-

dition. A Higman quadruple may arise from a rank 3

group, or not. Don Higman kept a list of such quadru-

ples which might be relevant to finite groups.

There are other numerical conditions in [141];

above is all I need now.

The next example may be verified by counting. No

specialized group theory is required.

Example 7.3. Let G be 4-transitive subgroup of Symm

for m ≥ 4, Ω = the set of unordered pairs of distinct in-

tegers from {1,2,3, . . . ,m}. The action of G is transitive.

The stabilizer in G of (i, j) has two nontrivial orbits:
∆((i, j)) := the pairs which contain just one of i, j

(cardinality k = 2(m−2));
Γ((i, j)): = the pairs which avoid i, j (cardinality `=(m−2

2

)
).

The stabilizer of (i, j) in G is transitive on the sets

∆((i, j)) and Γ((i, j)). So, we have a rank 3 permu-

tation representation on n = 1 + k + ` = 1 + 2(m − 2) +
(m−2)(m−3)

2 =
(m

2

)
points. The remaining parameters for

the Higman condition are:

λ = m−3+1 = m−2; µ = 4.
The Higman condition µ`= k(k−λ −1) here would

say 4
(m−2

2

)
equals 2(m−2)(2(m−2)− (m−2)−1) = 2(m−

2)(m−3), which is true.

Remark 7.4. To a rank 3 group, there are two nat-

urally associated graphs. Define a graph by connect-

ing distinct points a,b ∈ Ω with an edge if and only if

b ∈ ∆(a). The second graph is defined using the func-

tion Γ.

8. The Groups of Hall-Janko and
Higman-Sims

Nowwe jump to year 1967 and closely related sto-

ries about the sporadic groups HJ and HS.

8.1 The Hall-Janko Group

The Hall-Janko group, HJ, which has order

604800 = 2733527, was discovered independently by

Zvonimir Janko and Marshall Hall, Jr. As explained

earlier, Janko started by using C := 21+4
− :Alt5 (split ex-

tension) as candidate for the centralizer of an involu-

tion in a simple group.

Marshall Hall, Jr. had been pursuing an account of

simple groups of order at most onemillion [130, 131].

Leonard Eugene Dickson [57] listed 53 known finite

simple groups of order less than a million. Most num-

bers less than a million can be eliminated as possible

simple group orders with elementary arguments. The

number 604800 = 273352·7 resisted elimination and at-

tracted Marshall Hall, Jr. to work out properties of a

simple group of this order. His computational meth-

ods, with character theory, subgroups and permuta-

tions, were intense. He relied on some then-recent

fundamental results in CFSG, listed on page 139 of

[130]. In particular, he refers to the announced clas-

sification of N-groups by John Thompson, which im-

plies the classification of minimal simple groups. The

latter was used to restrict composition factors within

subgroups of G. The 1965 announcement of Janko’s

group J1, of order 175560, added a group to the Dick-

son list and encouraged Marshall Hall, Jr. to settle

whether 604800 was the order of a simple group.

Hall proposed three irreducible characters of de-

grees 1, 36, 63 such that their sum χ could be a

permutation character for G. If so, in an associated

permutation representation, a one point stabilizer

would have order 6048 and it is easy (quoting hard

theorems) to show that it must be isomorphic to

PSU(3,3). The form of the permutation character indi-

cates that the associated permutation representation

of G would have rank 3 in the sense of Donald Hig-

man [141]. The relevant Higman quadruple would be

k = 36, ` = 63,λ = 14,µ = 12 and the 2-point stabilizers

have shape PSL(2,7) and 42:Dih6.

After Janko announced discovery of a simple

group of order 604800 in early 1967, Hall acted

quickly to conclude his studies in summer 1967. Hall

proposed explicit permutations on 100 letters repre-

senting elements of the possible group G and used

them in a long series of calculations. Finally, Peter

Swinnerton-Dyer used the Titan computer at Cam-

bridge University to verify that the permutations gen-

erated a group of order 604800, thus proving exis-

tence.

David Wales and Marshall Hall, Jr. later proved

uniqueness with computer [132, 133]. The review of

[132] adds later information about other construc-

tions of HJ, both by computer and by hand.

The rank 3 group HJ was not discovered starting

from the rank 3 theory, as were the sporadic groups

of Higman-Sims, McLaughlin, Rudvalis and Suzuki.

The announcements of Zvonimir Janko and Mar-

shall Hall, Jr. referenced each other’s work [132, 155,

156]. It is nice to read about such courtesy. The orig-

inal character table for HJ circulated by Janko had

some errors. Hall introduced computational methods

to the study of and search for new simple groups,

which aided the searches by other researchers. See

the full article [130] which, for example, proves exis-

tence and computes the character table of Sz(8), the
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simple Suzuki group of order 29160 = 265·7·13. The ex-
istence proof of HJ has been incorrectly attributed to
both Hall and Wales. For a more common misattribu-

tion, see item (3) in the Final Remarks section.

8.2 The Higman-Sims Group

The story I tell of the Higman-Sims group discov-

ery and existence proof is taken from testimony of

Charles Sims (see [11, 145]).

It took place at a conference “Computational

problems in abstract algebra” in Oxford in 1967.

Marshall Hall, Jr. lectured on his construction of

his simple group HJ, order 2733527. It acted in a rank

3 fashion on a graph on 100 points and valency 36.

On the last day of the conference, 2 September,

1967, Higman and Sims thought about 100 and won-

dered if that number could come up in other ways for

rank 3 groups. They may not have been so curious

but for the fact that our number system is written in

base 10 and 100 = 102. Right away, they thought of the

wreath product Sym10 o2 acting on the Cartesian prod-

uct of two 10-sets. This is rank 3 with subdegrees 1,

18, 81. The Higman parameters are (18,81,8,2).
Higman had a table of Higman quadruples. One

quadruple was (22,77,0,6). The number 22 suggested

that the Mathieu group M22 could be a point stabilizer

in a rank 3 group with these parameters. The symmet-

ric and alternating groups on 22 points will not work

here since they do not act transitively on a set of 77

points, while it is well known thatM22 acts on a Steiner

system S(3,6,22), which has 77 blocks (77 =
(22

3

)
/
(6

3

)
).

So, they defined a graph. For nodes of the graph,

they used a set Ω of 100 points: *, with the 22 points ∆

affording M22, and with the 77 blocks Γ. It is clear that

Aut(M22) = M22:2 acts on this set of 100 points. Work

of Ernst Witt on existence and uniqueness of Steiner

systems associated to Mathieu groups [243, 244] was

very helpful to Higman and Sims.

The edges in the graph are defined as follows: *

is connected to just the 22 points of ∆. A point p in

∆ is connected to * and the 21 blocks containing it. A

block is connected to the 6 points in the block and the

16 blocks disjoint from it. (So, the Higman parameters

have values λ = 0, µ = 6.)

They needed to prove existence of some permu-

tation π on Ω which preserved the graph and moved

*. Existence would prove that the group G generated

by π and the action of Aut(M22) on the set Ω is a rank

3 group with parameters (22,77,0,6).
Higman and Sims talked all night and got such

a π . By the morning of Sunday, 3 September, 1967,

it was clear that their group G or a subgroup of in-

dex 2 was a new simple group. (It turns out that the

commutator subgroup G′ has index 2 and is simple of

order 2932537·11.) Time from conception to existence

proof for this sporadic group was about a day. Their

performance was unique. For other sporadic groups,

gap between discovery and construction ranged from

weeks to years.

I learned in 2007 that Dale Mesner had con-

structed this Higman Sims graph in his 1956 doc-

toral thesis at the Department of Statistics, Michi-

gan State University [180]. This 291 page thesis ex-

plored several topics, including integrality conditions

for strongly regular graphs (association schemes with

two classes) related to Latin squares. Mesner’s the-

sis does not mention concerns about the graph’s au-

tomorphism group or acknowledge connections with

Mathieu groups and Steiner systems. Jon Hall gives

an account of this in [11]. Connections between rank

3 groups and connected strongly regular graphs are

discussed in [122].

9. Discoveries of More Rank 3 Groups
by Search for Higman Quadruples

Don Higman’s original motivation for his rank 3

theory was probably to study parameter sets. Mar-

shall Hall’s multiple innovative techniques for HJ and
Higman and Sims’ elegant analysis for HS dramati-

cally suggested the wealth of opportunities for inves-

tigating possible new simple groups. The group the-

ory community took great interest.

Higmanmaintained a list of parameter sets which

met his conditions. Some corresponded to actual rank

3 groups. There are relevant group theoretical condi-

tions besides arithmetic ones. If G is a rank 3 group

with point stabilizer H, the group H must have sub-

groups of indices k and `. See [94], p.125 for Hig-

man’s table of parameters which apply to actual rank

3 groups.

In the next few subsections, we shall discuss

other simple groups discovered from this viewpoint.

Fischer’s 3-transposition groups are indeed rank

3 groups by virtue of their action on a class of

3-transpositions, but their discovery came about by

Fischer’s theory of ω-transposition groups. They are

discussed elsewhere in this article.

9.1 Discovery of the McLaughlin Group

When I was in graduate school at University of

Chicago, Jack McLaughlin was in residence there dur-

ing a sabbatical year (1968–1969, as I recall) from

the University of Michigan. He was thinking about the

Higman-Sims group and Don Higman’s rank 3 theory.

McLaughlin considered the group H = PSU(4,3), order
27365·7 and its maximal parabolic subgroup of index

112. He next studied Higman quadruples k, `,λ ,µ with
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k = 112. Since ` must be the index of a subgroup of H,
he reviewed ones he knew about and thought of a sub-

group isomorphic to PSL(3,4), order 26325·7 = 20160,
described by H. H. Mitchell around 1918 [181]. This

gives ` = 162 and the Higman condition forces λ = 30
and µ = 56. McLaughlin defined a graph on 275 nodes
and valency 112 at each node. Using the strategy of

Higman and Sims, he constructed an automorphism

of the graph and thereby exhibited a new sporadic

group of order 2736537·11 [179]. I omit details.

That year, Janko came to the University of

Chicago to give a colloquium. I joined the dinner

party, which included Jack and Doris McLaughlin and

possibly George Glauberman. I remember that Janko

and McLaughlin were in good moods.

9.2 The Suzuki Rank 3 Sporadic and the Suzuki

Chain

Suzuki describes a new sporadic simple group

which acts as a rank 3 permutation group on 1782

points [224]. It has order 21337527·11·13. It is part of

a chain Sym4 < PSL(2,7) < PSU(3,3) < HJ < G2(4) < Suz,
where each step represents a rank 3 group and point

stabilizer. The rank 3 representation of Suz has Hig-
man parameters k = 416, `= 1365,λ = 100,µ = 96. At the
1972 Gainesville conference, Suzuki said that there

was no upwards extension of this chain. That is, there

does not exist a finite group with a rank 3 representa-

tion whose one point stabilizer is Suz. This chain may

be observed acting on the Leech lattice modulo 2 [40].

In [224], Suzuki credits recent work of Marshall Hall,

Jr, Don Higman and Charles Sims for inspiration and

mentions the HS construction as a model.

9.3 Discovery of the Rudvalis Group

Arunas Rudvalis announced evidence for his spo-

radic group around spring 1972 [200]. He was very

excited when he called me at home in Ann Arbor

to break the news. For months while on the Michi-

gan State University faculty, he had been search-

ing for new sporadic groups by creating lists of

candidates for a point stabilizer and a 2-point sta-

bilizer in some unknown rank 3 group, then de-

termining possible associated Higman quadruples

using computer searches and group theory meth-

ods. Finally, he struck gold: the group 2F4(2) was

a good candidate for the point stabilizer with

2-point stabilizers PSL(2,25).2 and a parabolic sub-

group 21+4+4+1.Frob(20). The associated quadruple

(2304,1755,1280,1328,1280) satisfies the Higman condi-

tion (Table 10A1, page 125 in [94] erroneously lists

these four parameters as (2304,1255,1280,1328,1208);
my apologies, and thanks to Rob Wilson).

10. Looking for More Sporadics –
Other Methods

Lots of group theorists looked for new sporadics.

Some probably did so in secret. While in graduate

school, I played with the Higman criterion and “re-

discovered” the parameters which McLaughlin used,

as well as finding quadruples which led nowhere.

Some sporadic groups are multiply transitive per-

mutation groups: all Mathieu groups; Higman-Sims

group; Co3 (on cosets of a subgroup isomorphic to

McL:2).
A putative simple group which has a doubly tran-

sitive representation with point stabilizer isomorphic

to PSU(3,5) was investigated by Graham Higman, but

he did not complete the work before Donald Higman

and Charles Sims discovered and constructed their

group. The group studied by Graham Higman and the

Higman-Sims group are isomorphic. See [142, 211].

The degree 276 doubly transitive representation

of Co3 turned up as a consequence of Conway’s anal-

ysis of the Leech lattice and isometry group. A tran-

sitive extension of a transitive representation of the

group H on a set Γ is a group G with transitive ac-

tion on a set Ω = Γ∪{α},α /∈ Γ, so that the stabilizer

Gα of α in G is isomorphic to H and Gα acts on Γ as

H acts on Γ. The Graph Extension Theorem of Ernest

Shult [209] gives a general sufficient condition for

construction of doubly transitive groups. It can pro-

duce all known doubly transitive groups except triply

transitive groups and certain PSL(2,q). With this crite-

rion, Shult could have discovered and constructed the

sporadic group Co3 before Conway did via his study

of the Leech lattice. In above notation, H would be iso-

morphic to McL:2 and Γ would have cardinality 275.

The relevant action of H on Γ is the rank 3 represen-

tation discussed in Section 9.2.

Computer work was significant for the sporadic

groups, from the mid-1960s. John McKay was in-

volved with Graham Higman on the first construc-

tion of the Held group (unpublished) and with Con-

way on studies including trine groups (mentioned in

[120]). DavidWales collaborated with Marshall Hall on

uniqueness of HJ [129].
While in graduate school in Chicago, I attended

a two-week meeting on finite and infinite group the-

ory in Ann Arbor, around July 1968, hosted by Uni-

versity of Michigan faculty Donald Higman, Donald

Livingstone and Roger Lyndon and Jack McLaughlin.

Graham Higman was visiting that summer, giving a

course andwriting his notes Odd Characterisations of

Finite Simple Groups [144]. I observed copies of newly

minted character table(s) of the Higman-Sims group

being circulated. J. Sutherland Frame was an author

of one of these tables [77]. Graham Higman was in

contact (by phone, I think) with John McKay during
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the meeting. They were trying to find new finite sim-

ple groups by presentations and computer work. I do

not recall the presentations, but at least one relation

involved the 19th power of a word in a free group.

Audience members speculated that Graham Higman

and John McKay noted the prime 19 in the orders

of the Janko groups J1 (175560 = 233·5·7·11·19) and J3

(50232960 = 2735·5·17·19) and studied presentations in-

spired by these Janko groups. No new simple group

resulted. In fall 1968, after ten years at the University

of Michigan, Donald Livingstone left for the Univer-

sity of Birmingham University in the UK. In the late

1970s, he would collaborate with Bernd Fischer and

Michael Thorne on the character table of the Monster.

My impression was that the search for sporadic

groups was more systematic in the world of central-

izer of involution studies than in that of permutation

groups. Centralizer of involution results directly en-

gaged the ongoing CFSG program. Sometimes, a new

sporadic group was a surprise conclusion of a stan-

dard centralizer of involution characterization, such

as the Held group [140] and the Harada-Norton group

F5 [138].

10.1 O’Nan’s Simple Group

I learned about the O’Nan sporadic group from

Jon Alperin’s lecture in Warwick, May, 1973. Mike

O’Nan was interested in classifying finite groups G
with the following property: given E,F , a pair of ele-
mentary abelian 2-group contained in G of maximal

rank, and two maximal flags 1 = E0 < E1 < · · ·< Er = E
and 1 = F0 < F1 < · · · < Fr = F (meaning, each Ei and

Fi has order 2i), then there exists an element g ∈ G
so that gEig−1 = Fi for i = 0,1, . . .r. This property could
be called transitivity on maximal flags of elementary

abelian 2-subgroups. O’Nan thereby found a new spo-

radic group, now called the O’Nan group. The order

is 29345·7311·19·31. See [189, 190].
The group J1 has this property because the Sylow

2-normalizer is a semidirect product of an elementary

abelian group of order 8 by a nonabelian group of

order 21, acting faithfully. See [190] for a list.

The O’Nan group is the only sporadic group

found by this strategy.

11. The Leech Lattice

This single object, the Leech lattice, is a richmath-

ematical world with some remarkable number theory,

combinatorics and group theory. It was discovered by

John Leech in the mid-1960s, as a dense lattice pack-

ing in 24-dimensional Euclidean space [165, 166].

My understanding is that he had been looking for

someone to analyze the isometry group. At the Inter-

national Congress of Mathematicians in 1966, John

McKay (then a graduate student) suggested this to

John Conway, who took up the challenge.

First, I give a few definitions. A lattice L in Eu-

clidean n-space is a Z-linear combination of a basis.

It is integral if all inner products 〈x | y〉 are integers

and is even if all inner products are integers and

〈x | x〉 ∈ 2Z for all x ∈ L. A Gram matrix for L with re-

spect to the Z-basis v1, . . . ,vn of L is the n× n matrix

whose i, j entry is 〈vi | v j〉. The determinant of L is the

determinant of any Gram matrix. If a lattice is even

and unimodular, n is divisible by 8. If n = 24, there
are, up to isometry, just 24 even unimodular lattices

of determinant 1. The Leech lattice is the only one

without vectors of norm 2; its minimum norm is 4. A

common notation for the Leech lattice is Λ.

Conway’s story, reported in [197], is that he fig-

ured it all out in a single session of 12.5 hours. Some

people told me that, briefly, there was more than one

candidate for the group order of the isometry group.

The final result is that the order of the isometry group

is 22239547211·13·23. Common notation for this isome-

try group is Co0 or O(Λ).

Here is the standard description of the Leech lat-

tice. Details may be found in [94]. The Leech lattice

is built from sublattices starting with a sublattice J
which had 24 × 24 Gram matrix diagonal(4,4, . . . ,4,4).
Take an orthogonal basis for J, say vi, i ∈ Ω, where Ω is

an index set of size 24. Then 〈vi | v j〉= 4δi j. For a subset

S of Ω, we use the notation vS := ∑i∈S vi. Next, we take

a binary Golay code G, which means a 12-dimensional

linear subspace of FΩ
2 so that the minimum weight of

a vector is 8 (weight means the number of nonzero

coordinates). There is a natural identification of FΩ
2

with the family of subsets of Ω obtained by consider-

ing coordinates of a vector. This sublattice J is then

enlarged to a lattice K by taking the Z-span of J and

all sums 1
2 vA, where A is the subset of Ω correspond-

ing to a word in G. Finally, we get the Leech lattice Λ :=
K +Z(−vi +

1
4 vΩ) for any i (this definition of Λ is inde-

pendent of choice of i∈Ω). See [165, 166, 39, 40, 107].

The simple groupM24, the group of the Golay code

G, acts on 24-dimensional space by permuting the ba-

sis vi, i ∈ Ω, as it permutes the index set. For this ac-

tion, M24 preserves each of the lattices J,K,Λ. Using

the same basis, there is for every subset S of Ω, a lin-

ear transformation defined by εS : vi 7→

{
−vi if i ∈ S

vi if i /∈ S
.

Self duality of the Golay code shows that εS takes

Λ to itself if and only if S corresponds to a Golay

codeword. All these transformations give a monomial

group H of shape 212:M24.

The full isometry group of Λ is larger than H. The
order of the isometry group follows from the mass

formula [204] involving all rank 24 even unimodu-

lar lattices. Conway gave an explicit formula for an
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isometry u not in H, then showed that the full isome-

try group of Λ is generated by u and H and has order

22239547211·13·23. His isometry was useful in computa-

tions.

A different style analysis of the Leech lattice,

its properties and its isometry group was given

by me in [95]. It emphasizes configurations of√
2E8-sublattices. It is relatively free of calculations

with matrices, special counting arguments, etc. Its

use of uniqueness results yields easy proofs of tran-

sitivity of the isometry group O(Λ) on sets of vectors

of norms 2, 3, 4 and triangles of type 222 before de-

ducing the order of O(Λ).

11.1 Consequences of Leech Lattice Theory for

Finite Groups

The quotient Co1 := Co0/{±1} is simple of order

22139547211·13·23.
Stabilizers of sublattices gave then-new sporadic

groups

Co2 of order 21836537·11·23;
Co3 of order 21037537·11·23;

and some familiar ones

HS re-discovered, order 2932537·11;
McL re-discovered, order 2736537·11;
Suz re-discovered, order 21337527·11·13 (see para-

graphs following).

Centralizers of certain isometries gave the groups

HJ of order 2733527 and Suz of order 21337527·11·13; both
re-discovered. (More precisely, perfect groups 2·HJ
and 6·Suz occur as subgroups of centralizers within

Co0.) I remark that if g is an element of order 3 in

O(Λ) with minimum polynomial x2 + x + 1 in End(Λ),
then (g − 1)2 = −3g, whence (g − 1)Λ is a lattice be-

tween 3Λ an Λ, of index 312 in Λ, which is stabilized by

NO(Λ)(〈g〉)∼= 6·Suz:2. The appearance of Suz within O(Λ)

is typically described as a composition factor of a cen-

tralizer, but it could be described as a composition

factor of a sublattice stabilizer. A similar observation

can be made for HJ, that it occurs as a composition

factor in lattice stabilizers. If we take g ∈ O(Λ), g of

order 5 with minimum polynomial x4 + x3 + x2 + x+ 1,
then the commutator subgroup CO(Λ)(〈g〉)′ ∼= 2·HJ is a

normal subgroup of the stabilizers of the sublattices

(g−1)k for k = 1,2,3 which are between Λ and 5Λ and

have respective indices 56k.

Studies of linear groups of degree 6 by John H.

Lindsey led him to construct the double cover of the

Hall-Janko group [168] then, by extending the pro-

cess, to the six fold covering of the Suzuki group [167,

169, 170]. He gave invariant lattices over rings of in-

tegers for these groups which, when considered as

integral lattices, led to the Leech lattice. These came

after the initial discoveries of these sporadic groups,

but can be considered independent approaches to the

Leech lattice and certain subgroups of its isometry

group.

12. Fischer’s ω-Transposition Group
Theory

We recall a definition given earlier. Let ω be a

nonempty subset of {3,4,5, . . .}. An ω-transposition

group is a finite group G generated by D, a conjugacy
class of involutions, so that for x 6= y in D, then either

x,y commute or xy has order |xy| ∈ ω . So, 〈x,y〉 is a di-
hedral group of order 2|xy|.

Examples for the case ω = {3}:
(a) D = the set of transpositions (i, j) in a symmet-

ric group G = Symn. If (i, j) and (k, `) do not commute,

their product is a 3-cycle. So the group generated by

(i, j) and (k, `) is a copy of Sym3 ∼= Dih6.

(b) Transvections in orthogonal groups Oε(2m,2),
(ε = ±), symplectic groups Sp(2m,2) and unitary

groups PSU(m,2). Each of the two conjugacy classes

of reflections in orthogonal groups over fields of 3

elements.

Fischer described and classified (with some qual-

ifications) such groups provided that each solvable

normal subgroup is in the center. The list of con-

clusions includes symmetric groups, some classical

groups over small fields and three previously un-

known almost-simple groups Fi22,Fi23,Fi24. To me,

finding these sporadic groups from the simple-looking

3-transposition property is one of the most surprising

events in finite simple group theory. Fischer’s pub-

lished existence proofs for Fi23 and Fi24 are not ac-

cepted as complete. See [8] and its detailed review.

The book [8] proves existence by deducing their exis-

tence from existence of the Monster (done in [103, 7]).

Examples for the case ω = {3,4}:
(a) GL(n,2), for D the conjugacy class of transvec-

tions = identity + rank 1 nilpotent, e.g.

1 1 0
0 1 0
0 0 1

. It
is easy to check that two different transvections gen-

erate a dihedral group of order at most 8.

(b) Some sporadic groups: Co2, Baby Monster

F2. The Baby Monster was Fischer’s fourth sporadic

group.

(c) The Monster provides an example for ω =

{3,4,5,6}.
Examples of “disconnected” ω-transposition

theories: A finite group generated by a conjugacy

class of involutions is an ω-transposition group for

some ω . Such a set may be difficult to work with

compared to ω = {3}. The Suzuki group Sz(8), order
29120 = 265·7·13 has one class of involutions. Two dis-
tinct involutions commute or their product has order

5, 7 or 13.
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For PSL(2,2n), these involutions are the transvec-

tions (with Jordan canonical form

(
1 0
1 1

)
) and ω

must contain all non-1 divisors of 2n +1 and 2n −1.
For most odd transposition groups G generated

by a conjugacy class D of odd transpositions, one

can connect two involutions x,y ∈ D by a sequence

x = d0,d1, . . . ,dr = y of elements of D so that di and di+1

commute for i = 0,1, . . . ,r−1. When D is connected in

this sense, one can begin to understand the group G
by how intersections C(di)∩C(di+1) embed in each of

C(di) and C(di+1).

The study of disconnected odd transposition

groups follows a different strategy. Works of Suzuki,

Bender [12, 223], Fischer and Aschbacher [72, 73, 5, 6]

are used. The groups PSL(2,2n),Sz(2n) and PSU(3,2n)

occur this way.

Infinite nonsolvable ω-transformation groups

have been studied by H. Cuypers, J. Hall and L. Soicher

[123, 124, 125, 126, 127, 128].

13. Computer and Manual
Constructions of Sporadic Groups

The Higman-Sims group, the Mathieu groups and

several rank 3 groups were was envisioned and con-

structed by hand. Several sporadic groups were first

constructed by computer. The first such construc-

tions were for HJ, J3, Held, Lyons, O′Nan, Rudvalis,
Baby Monster, J4 by McKay, Sims, Leon, Norton, Ben-

son, Conway, Wales, et al. [184]. Computational chal-

lenges generally got tougher with larger groups. In

some cases there were several proofs of existence,

even cases of groups with a computer constructions

and amanual constructions. I discuss a few examples.

The Rudvalis group has a subgroup of index

“only” 4060 = 2304 + 1755 + 1. Conway and Wales

constructed it with machine work by exhibiting a

28-dimensional representation of the double cover of

the Rudvalis group over the field Q[
√
−1]. The group

so constructed permutes a set of 4 · 4060 vectors in

Q[
√
−1]28. Other proofs (one by computer and one by

hand) are in [118, 163]. Some sporadic groups re-

quired computations with permutation representa-

tions on cosets of subgroups with large indices. For

example, the O’Nan group has a permutation repre-

sentation on 122760 symbols and the Lyons group

has a permutation representation on 8835156 sym-

bols. For each of the latter two groups, Sims took

two years or so for construction with computer work

[139, 212]. Ryba gave a shorter existence proof for the

O’Nan group [201].

An interesting story is that of J3. The first con-

struction was done by Graham Higman and John

McKay [143], using computer. A construction of J3 as

automorphisms on a nonassociative commutative al-

gebra of dimension 170 was done by Daniel Frohardt

[82], by hand. His proof also gives uniqueness.

There is an embedding of the triple cover 3·J3 in

GL(9,F4). Alex Ryba writes:

“The 9-dimensional rep[resentation] of 3J3 dates from be-
fore I was a graduate student. I remember an undergraduate
talk by Conway where he showed the tinymatrices (size 9×9)
and then said that it should be possible to find an invariant
to prove that they generate a proper subgroup of the unitary
group. By the time I was a graduate student he knew such an
invariant. I think it was never published and I don’t remem-
ber what it was. The 9-dimensional representation had orig-
inally been discovered (and constructed) by Richard Parker
in the course of his first meataxe experiments. It’s an in-
teresting case because the matrices are so small, but [were]
initially only known through computer work.

I think O′N is another interesting case too, and I know
more about that since I was involved in one of the construc-
tions that appears in the ATLAS. In both the O′N and J3 con-
structions the classification as hand or machine is just a
matter of taste. A compact and human readable definition
of the group is written down (and appears in the ATLAS).
There is one computation to do: that some quantity is pre-
served. It could be done in a fairly ugly way by hand or invis-
ibly by machine. My view is that the machine is more reliable
(and convincing) but I know other people who would prefer
the long hand calculation be done. There may still remain
some cases that I would view as purely machine construc-
tions. Here a human readable definition of generators can’t
be put on paper. Any cases like that really ought to be re-
placed by something a human could read. The original con-
structions of several sporadics were of this nature.”

Dan Frohardt comments:

“Alex’s quote reminded me of a brief conversation I had
with Charlie Sims in 1985 when I had given a talk about my
work on J3. He said that I would not learn any more about it
with my approach than he had with his programming. I re-
alized at the time that he was probably right.”

14. The Simple Group of Fischer and
Griess

During summer 1973, I received a letter from Ul-

rich Dempwolff who reported that Fischer had evi-

dence for a new group, a {3,4}-transposition group,

of order 241313567211·13·17·19·23·31·47, about 4×1033; it

would become Fischer’s fourth sporadic group. This

group was eventually called the Baby Monster. For the

moment, I will denote it H. Certain properties of this

putative group led me to imagine that there could be

a larger group.

For example, H contains a subgroup 21+22Co2. To

me this suggested a larger group of shape 21+24Co1.

Also H contains a subgroup 31+10PSU(5,2). To me,

this suggested a larger group 31+122Suz. These larger
groups, plus other information about H came to-

gether to suggest a simple group G with such larger

groups as subgroups.

After initial studies, I felt that there were no ob-

vious reasons to reject the possibility that such a G
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may exist. I add that H was not a subgroup of G but

instead G would have a subgroup 2·H which is a non-

split central extension ofH by Z2. The first weekend in

November 1973, in Ann Arbor, was when I felt there

was a serious chance of a new sporadic group. At a

meeting in Bielefeld the same weekend, Fischer spoke

about his ideas for the same group. We had no direct

communications about our respective discoveries un-

til weeks or months after that.

Fischer’s thinking about enlarging local sub-

groups may have overlapped with mine. He certainly

was thinking about his class of {3,4}-transpositions
in H and what they would correspond to in a larger

simple group which contained 2·H as a centralizer of

involution. This group would eventually be called the

Monster and become Fischer’s fifth sporadic group,

and my first (and only).

In late 1973, I began working out some inter-

nal properties of the Monster and a version of the

Thompson group order formula (such a formula may

have first appeared in [140]). My announcement [101]

included a proof that the smallest degree of a non-

trivial complex irreducible of the Monster is at least

196883 = 47·59·71 and conjectured that 196883 was

in fact an irreducible degree. My initial group order

work was not published, but a proof of the group or-

der was given later by Ulrich Meierfrankenfeld, Yoav

Segev and myself [108].

14.1 What Happened at Bielefeld and Cambridge

in 1973

As I worked alone in Ann Arbor in fall 1973, much

was happening elsewhere. I pass on some accounts of

the Bielefeld meeting and afterwards.

The Monster contains certain elements of respec-

tive orders 1,2,3,4,5 so that their respective central-

izers in the Monster have form F1, 2·F2, 3×F3, 4·F4(2)
and 5 × F5; the group 4·F4(2) contains the covering

group 2·F4(2) of F4(2); one could also write 4·F4(2) as
4◦(2·F4(2)).

Bernd Stellmacher provided these memories of

the 1973 Bielefeld meeting, but cautions that recol-

lection may not be accurate:

“Thursday, Aug 20, 2020
Dear Bob,
I was at this conference in Bielefeld. But I was a young

postdoc at that time and not included in the discussion, only
a Zaungast as one would say in German. And of course I do
not need to say that after nearly 50 years I would not take
an oath on what I remember.

So what I remember is an episode between two talks. Fis-
cher was standing [at] the blackboard with Thompson, and
Fischer was writing his usual diagrams of (local sub)groups:
extra special groups as upside down triangles with the acting
group as a vertical bar on top of it, and double stroke verti-
cal bars for quasisimple groups. All of it decorated with the
names or orders of the groups in question.

In this way I saw (what is now known to be) the centralizer
of (the) two involutions and the centralizer of a 3-element
(with Suz as factor group). The discussion was then how
these subgroups emerge, fit together and could live in a
larger group. But it was more the visual memory that stuck,
I do not remember any details of the discussion.

And I guess this was not the only discussion the two had
at this conference, but the only one I was present. Anyway
about a week after the conference Fischer had the group or-
der of the Monster. I think he got it by mail from Thompson,
but I am not sure at all and I do not know who else con-
tributed. Shortly after Fischer also talked of two other new
sporadic groups found “inside” centralizers of 3-elements
and 5-elements.

Here is now the sad end of the story: Fischer died last
week. I will be at the funeral on Monday. He had a marvelous
memory and surely could have given me all the information
you are interested in – and corrected what I may have gotten
wrong or not in the correct order. I will miss him a lot.

Best wishes,
Bernd”

My impression is that John Thompson found the

simple group F3 (known as the Thompson group) at

the 1973 Bielefeld meeting or shortly thereafter. The

story of Harada-Norton group, F5, is a bit more com-

plicated. Before the meeting, Koichiro Harada had

been in the process of investigating a possible sim-

ple group having an involution whose centralizer has

a normal subgroup 2·HS. It turns out that F5 met

his conditions. Simon Norton began working on this

group F5 after news of Fischer’s lecture reached him.

Koichiro Harada tells me that Helmut Bender, John

Thompson, Franz Timmesfeld and John Walter were

at the Bielefeld meeting but that Simon Norton was

not.

Koichiro Harada writes:

“Wednesday, August 19, 2020.
…Energetic andmathematical activities on theMonster (later
named) began after we all came back [to Cambridge] from
Germany, I recall. Thompson was teaching something and
at the end of each day’s teaching, he often talked about
the progress on the Monster. …Gainesville, Bielefeld, Cam-
bridge!! Super good days for group theory!! You and I, to
mention only a few, had a very good time.

Koichiro”.

15. Moonshine

In the late 1970s, the termmoonshine became es-

tablished in finite group theory. It meant an unex-

pected connection between sporadic groups and an

area of mathematics different from finite group the-

ory. We mention a few examples.

15.1 Monstrous Moonshine

Before existence of possible Monster-like sim-

ple group was resolved, we heard a surprising story

about modular forms in the late 1970s.

The starting point for Monstrous Moonshine of

Conway and Norton was a pair of surprising ideas.
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First, John McKay’s observed around 1977 that

196884, the first nontrivial coefficient of the elliptic

modular function j(z), equals 1+196883 (z varies over
the upper half complex plane). The number 196883 =

47·59·71 was expected to be the smallest degree of a

nontrivial irreducible representation of the Monster

[101]. It is easy to show that the degree of a faith-

ful matrix representation of the Monster is at least

196883.

Second, John Thompson [228] looked at a few of

the higher coefficients of

j(z)=q−1+744+196884q+21493760q2+864299970q3+· · · ,

where q= e2πiz and noticed that they were nonnegative

integer linear combinations of degrees of irreducible

representations of the Monster,

1,196883,21296876,842609326, . . . .

He then asked whether there could be a graded

space V =
⊕

n≥−1 Vn, where Vn is a finite dimensional

module for the Monster, so that the formal series

∑n≥−1 dim(Vn)qn equals j(z)− 744 and that the series

∑n≥−1 tr(g|Vn)q
n for all g in the Monster are interesting.

These series were indeed interesting. It was the

basis of the Monstrous Moonshine theory of Conway

and Norton [43], a near-bijective correspondence be-

tween conjugacy classes of the Monster and a family

of genus 0 function fields on the upper half plane.

This was an unexpected connection between deep

parts of finite group theory and number theory. The

impact on mathematics would be great.

15.2 Other Moonshine

(a) John McKay noted a connection between the

extended E8-diagram and pairs of 2A-involutions in

theMonster. See the later sectionMoonshine involving

the E8-diagram.

(b) A second connection between he extended

E8-diagram and pairs of 2A-involutions in the Monster
is that the orders of xy for a pair of 2A elements (x,y)
of the Monster, one pair from each of the 9 orbits, oc-

cur as the coefficients of the standard null vector in

the affine root system. For just the nodes occurring

within the E8 subdiagram, the coefficients are those

of the highest root. This observation may be due to

McKay. I am not aware of any explanation.

(c) AndrewOgg observed that the fifteen prime di-

visors of the Monster order were exactly those primes

p for which the discrete groups Γ0(p) have genus 0. He
offered a bottle of Jack Daniels for an explanation.

The bottle was claimed but not awarded.

16. Considering an Existence Proof
for the Monster

16.1 Impressions of Difficulty

The order of the Monster was about 8× 1053, so

construction was expected to be difficult. Computer

constructions of certain sporadic groups took years.

The problem with trying a computer construction of

the Monster was that there were no small representa-

tions. By comparison, the symmetric group of degree

44 has order about 1054, yet can be represented by 44

symbols written on a piece of paper. Also, the group

GL(9,5) has order about 1056 and the group GL(14,2)
has order about 1058. Both are represented by small

matrices.

The smallest index of a subgroup in the Monster

was believed to be about 1020, so a permutation rep-

resentation would involve that many symbols. The

smallest degree of a faithful matrix representation in

characteristic 0 had been known since 1973 to be at

least 196883 [101]; in fact the smallest degree of a

faithful matrix representation over a field of charac-

teristic not 2 or 3 turns out to be at least 196883,

and the smallest degree in characteristics 2 and 3 is

at least 196882 by a result of Steve Smith and myself

[119].

For comparison, consider the group J4 of order

221335·113·23·29·31·37·43 = 86,775,571,046,077,562,880

∼ 8.6×1019.

Its lowest degree nontrivial complex character is

1333. In characteristic 2, J4 has a representation of

degree 112, which was considered “small” [184]. The

smallest degree representation for the Baby Monster,

F2, in characteristic 0 is 4371 and in positive char-

acteristic, the smallest degree I know of is 4370 in

characteristic 2.

16.2 Worth the Effort?

In the mid 1970s, there was increasing con-

cern about encountering larger and larger sporadic

groups. The Monster was really large compared

to predecessors. The difficulty of constructing it

seemed orders of magnitude beyond past experi-

ences. Not only that, but the challenges in such a

project might even be small relative to ones posed

by sporadic groups yet to be discovered. The sense

of what was important to CFSG could change.

I recall a group theorist telling me in the mid-

1970s that he/she could have envisioned the same

expansion of ideas from Baby Monster to Monster as

I did, and even declared them “obvious”. This per-

son did not want to investigate seriously because they
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foresaw only a thankless great labor with little likeli-

hood of payoff. Looking away from Monster issues at

that time, a group theorist could see no lack of chal-

lenging problems to take up in the ongoing CFSG.

16.3 Shifting Winds in Late 1970s

In the late 1970s, there was a sense that the clas-

sification of finite groups might close in the near fu-

ture since Daniel Gorenstein and Richard Lyons had

outlined an end game [87]. No sporadics had been dis-

covered since Janko’s J4 in May 1975. Also Monstrous

Moonshine had arrived and suddenly made resolving

existence of the Monster more important. I began to

think more about how a construction would go.

17. The Attempt, Late 1979

In fall 1979, about six years after Fischer and I dis-

covered evidence for the Monster, I decided to make a

serious try at a construction. I was at the Institute for

Advanced Study, on a one year sabbatical from the

University of Michigan.

To me, the most reasonable setting seemed to be

a degree 196883 complex representation, which was

expected to be writeable over the rationals. Work of

Simon Norton suggested that if B is an irreducible

196883-dimensional representation of the Monster,

B is self-dual and has a degree 3 invariant symmetric

tensor. This means that B would have the structure

of a commutative algebra with an associative bilinear

form, for which the Monster acts as algebra automor-

phisms.

Let us say a finite simple group has Monster type

if it has an involution whose centralizer has the form

21+24Co1. My goal was to create a finite simple group

which has Monster type.

Now, I summarize the program I carried out. I

started by constructing a dimension 196883 repre-

sentation B for a suitable group C of shape 21+24Co1

and consider the family of C-invariant algebra struc-
tures. Then I had to (1) make a choice of C-invariant
algebra structure whichmight be invariant under a fi-

nite group larger thanC; (2) define an invertible linear
transformation σ on B, then prove that σ preserves

the algebra structure; (3) Show that the group 〈C,σ〉
generated byC and σ is a finite simple group in which

C is the centralizer of an involution. Then 〈C,σ〉would
be a group of Monster type.

We can describe C with a fiber product, Ĉ:

Ĉ 99K C∞

...
∨ ↓

Co0 → Co1

where C∞ is a subgroup of GL(212,Q) of the form

21+24.Co1. We can think of Ĉ as the subgroup of the

direct product Co0 ×C∞ consisting of all pairs (u,v) so
that the images in Co1 of u ∈Co0 and v ∈C∞ are equal.

Then we take C := Ĉ/〈(−1,−1)〉 where the first compo-

nent of (−1,−1) means the scalar −1 on the rational

span of the Leech lattice and where the second com-

ponent means −1 in GL(212,Q).

The smallest faithful representation of C has di-

mension 98304 = 24·212.

We use notation similar to that in [103]. Let z be
the involution which generates the center of C and let

R := O2(C).

Define B :=U ⊕V ⊕W , a direct sum of irreducible

C-modules, where U has dimension 299, dim(V ) =

98280 and W has dimension 98304 = 24·212.

Think of U as 24×24 symmetric matrices of trace

0;V has a basis of all unordered pairs {λ ,−λ}where λ

is a minimum norm vector in the Leech lattice; and W
can be thought of as a tensor product of a degree 24

representation of C0 and a degree 212 representation

of C∞.

The spaces HomC(X ⊗Y,Z) were described, where
X ,Y,Z ∈ {U,V,W}. This information enables a descrip-

tion of the multi-parameter space of C-invariant alge-
bra structures B×B → B. A choice of algebra product

and automorphism σ /∈C of the chosen algebra were

sought.

If the Monster were to exist, there would be a sub-

group K of the form 22+11+22[M24×Sym3] for whichC∩K
would look like 22+11+22[M24×2]. The right hand factor
in [M24 × 2] can be thought of as representing a sub-

group generated by the transposition (1,2) inside the
symmetric group on {1,2,3}. My choice of σ would be

an element of K which, in the quotient [M24 ×Sym3] of

K, represents the transposition (2,3) in the right hand
factor.

Such a σ would not leave the subspaces U,V,W
invariant. I found that certain direct sum decomposi-

tions

U =U1 ⊕U2 ⊕ . . . , V =V1 ⊕V2 ⊕ . . . , W =W1 ⊕W2 ⊕ . . .

were helpful to imagine an approximation of a good

σ of order 2. For example, one could see how such a

σ would permute these smaller summands, for exam-

ple, fixing certain ones while switching some Ui and

Vj and some Vk and W`, etc.

Getting signs right in a matrix for σ was a big

problem, solved by trial and error. Without know-

ing signs exactly, the procedure of the previous para-

graph enabled me to quickly determine a nonzero

product, unique up to scalar multiple. Call the prod-

uct *.
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When I chose an invertible linear transformation

σ , I had to check whether it preserved the algebra

product. This involved taking a convenient basis bi

of B, then asking whether σ(bi ∗b j) equals (σbi)∗(σb j),

for all i, j.
Checking the above set of equalities typically took

about a week of calculations by hand. Failures of

equality were studied and new formulas for σ were

proposed. I tested a long series of candidates before

finding one which worked. Sometimes, I ran a second

test for a candidate using a different basis to under-

stand failures better.

This construction took a fewmonths, roughly Oc-

tober 1979 to early January, 1980. I worked around

the clock, sleeping as needed and taking little time

off. The atmosphere at IAS was great for work and

discussions. Enrico Bombieri, an IAS faculty member,

encouraged me a lot during this intense time. I was

and still am very grateful for his understanding of my

commitment and giving such ardent support. He re-

ally wanted me to succeed. During this otherwise se-

rious time, we socialized a bit. An extraordinary event

was his visit to my office at IAS (23 ECP building) at

4 in the morning. We walked to his home for conver-

sation over spaghetti and beer until the sun came up,

a fun event! One of Enrico’s memorable stories was

about encouragement he received from Harold Dav-

enport.

The ECP office building was quiet overnight, ex-

cellent for concentration. Other IAS members were

infrequently in their offices during the wee hours.

The building and offices within seemed to be always

unlocked. I noticed a man occasionally entering the

building mid-evenings to make long phone calls from

the pay phone in the lobby. An individual whom I

did not recognize came a few times with a sleeping

bag, opened an office, and went to sleep on the floor.

Most days between late evening and dawn, a service

person entered the building. While his station wagon

motor was left running, he made an inspection then

left promptly, except a few times when we had a chat.

17.1 Finale

I announced the construction of the Friendly Gi-

ant on 14 January, 1980, by mailing copies of a typed

announcement to many group theorists. I gave a for-

mal lecture about it at IAS May, 1980. The audience

included Enrico Bombieri, Armand Borel, Freeman

Dyson, Howard Garland, Daniel Gorenstein, James

Lepowsky, Richard Lyons, Jill Mesirov, Nick Patterson,

Mike O’Nan, Charles Sims, Karen Uhlenbeck, Shing-

Tung Yau, et al. An article about the talk and its sig-

nificance to finite simple group theory appeared in

the New York Times; the author, Jonathan Friendly

attended my talk. I left the next day to give a talk at

The University of Chicago.

Publicity about my research was unusually high

for mathematics at that time. A partial list:

National Science Foundation News, by Ralph

Kazarian; March 14, 1980; NSF PR80-17; Scientist

takes big step in solving major problem in mathemat-

ics;

Scientific American, Science and the Citizen, May,

1980, p. 82.

Scientific American, Martin Gardner Mathemati-

cal Games column in June, 1980.

Science News, 27 September, 1980, A monstrous

piece of research, by Lynn Arthur Steen, p. 204–206.

Encyclopedia Britannica Book of the Year, 1981

(events of 1980), p. 529 (the article is flawed).

Mosaic, A Friendly Giant, by Henry T. Simmons,

September-October 1981, 23–36.

Jonathan Friendly, Ideas and Trends, “School of

theorists works itself out of a job”, 22 June, 1980,

New York Times.

Clive Cookson, “Mathematics: ‘The Monster’ un-

veiled”, London Times, 31 May, 1980.

London Times Higher Education Supplement,

“Michigan doctor claims monster maths break-

through”, about May, 1980.

Frances Buekenhout, Les Groupes Sporadiques,

La Recherche, 131, Mars 1982. 348–355.

Freeman Dyson, “Unfashionable Pursuits”, Math-

ematical Intelligencer, vol. 5, no. 3, 1983, 47–54.

Freeman Dyson, “Unfashionable Pursuits”, article

in book “From Eros to Gaia.”

The next mathematical result to get wide public-

ity was the 1983 work of Gert Faltings on the Mordell

conjecture. Mathematics coverage in the popular me-

dia became more frequent thereafter.

Later in 1980, I finished writing up consequences

of the construction, including short existence proofs

for certain sporadic groups and table of involvements

of sporadic groups in one another. The article was

submitted to Inventiones and appeared in 1982 [103].

18. Reactions to the Original Proof

On 13 November, 2020, Richard Borcherds wrote:

“Thanks for the history.
John Conway once told me how astonished the group

theorists at Cambridge were when your construction came
out. He said that although they had known that in theory
one could try to construct the monster using an algebra
structure on 196883, everyone had felt that the calculations
would simply be too complicated for anyone to carry out.
I attended a series of seminars by Conway and Norton on
your construction while I was an undergraduate, but must
admit I was rather lost after the first couple of weeks.

Best regards, Richard Borcherds.”
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In 1981, I heard similar accounts from Jan Saxl

about the opinions around Cambridge.

Jacques Tits made many improvements and stud-

ies, both on the 196883-dimensional algebra and de-

termination of the automorphism group [234, 235].

In 1984, Conway gave a more efficient con-

struction of the Monster and an associated

196884-dimensional algebra [42]. He used the

Parker loop, which is a Moufang loop (a kind of

nonassociative group) built from the binary Golay

code of dimension 12 over the field of integers mod

2. It has 213 elements. The loop enabled Conway

to write down compact formulas for the algebra

multiplication and show existence of an “extra auto-

morphism”, a point which was particularly difficult

in [103]. His formulas were compatible with my

original formulas. Such a loop was not known to

exist until the early 1980s, several years after the

original construction of the Monster [102, 103]. For

background on related loops, see [104, 106].

In 2012, Ching Hung Lam and I made a much eas-

ier existence proof by vertex algebra theory. For a

summary, look ahead in the section Short existence

proof of the Monster and MVOA.

19. Uniqueness of the Monster and
the Algebra B

Uniqueness of the Monster was proved by Griess,

Meierfrankenfeld and Segev in 1989 [108], using hy-

potheses on centralizer of involutions. The method

was to study the graph of 2A involutions and use re-

sults from the CFSG to determine stabilizers of pairs,

then eventually prove that the graph is uniquely de-

termined and that the Monster was the full automor-

phism group of the graph. See the Final Remarks sec-

tion for more detail.

There is still no uniqueness result for (B,∗) as
an algebra (though it is essentially unique, assuming

that a group of Monster type acts on it as algebra

automorphisms). One could consider ring-theoretic

hypotheses such as an invariant bilinear form (i.e.

(x ∗ y,z) = (z,y ∗ z) for all x,y,z ∈ B) and a polynomial

identity. A low degree homogeneous polynomial iden-

tity (besides the commutative law) satisfied by (B,∗)
is not known explicitly. There is an identity of degree

1+2·dim(B), made by adapting the standard degree 2n
identity for Matn×n(Q) [2]. Since the algebra is commu-

tative, there is a nontrivial identity of degree 2+dim(B)
[199]. The degree of any polynomial identity (inde-

pendent of xy−yx) for (B,∗) is at least 6 [93]. Basic the-
ories for Lie algebras and Jordan algebras start with

their defining identities, of degrees 3 and 4 respec-

tively. It could be hard to start a classical-style theory

for algebras depending mainly on a high degree poly-

nomial identity.

20. Commutative, Nonassociative
Algebras

The Norton proposal in the 1970s that there

could be a good 196883-dimensional commutative al-

gebra for studying the Monster created a general in-

terest in finite groups as automorphisms of commu-

tative nonassociative algebras. Such algebras did not

generally have a unit. Several examples were found as

follows. If G is a finite group and M is a finite dimen-

sional CG module with character χ , then a G-invariant
commutative algebra structure on M corresponds to

G-homomorphisms of modules S2M →M, where Sn de-

notes symmetric tensors of degree n. The space of

such maps has dimension equal to the inner product

of characters χ and S2χ which is defined by S2χ(g) =
1
2 (χ(g)

2 +χ(g2)). The space of invariant symmetric tri-

linear forms on M has dimension equal to the inner

product of the principal character with S3χ , which is

defined by S3(χ)(g) = 1
6 (χ(g)

3 + 3χ(g2)χ(g)+ 2χ(g3)). In

general, one could try any finite group and any mod-

ule. In practice, more interesting examples came up

by taking a group G and a permutation representa-

tion, then taking an irreducible constituent of a per-

mutation module. See articles of Smith [213] and Fro-

hardt [82].

Later in this article, I describe how finite dimen-

sional commutative nonassociative algebras and fi-

nite groups come up in vertex operator algebra the-

ory. An example of dimension 156 is analyzed in

[110].

21. Graded Spaces and VOAs

A graded space for the Monster was announced

by Igor Frenkel, James Lepowsky and Arne Meurman

in 1983, a response to the Thompson suggestion.

They used a blend of theory for highest weight mod-

ules for affine Lie algebras and the techniques from

the Monster construction [103]. Their book [81] came

a few years later after redoing their work to include

the then-new vertex operator algebra (VOA) theory

[15]. Their main achievement was construction of the

Moonshine VOA, whose automorphism group is the

Monster [81]. They use the symbol V \ for this VOA.

The graded dimension for the Moonshine VOA is

q · ( j(z)− 744), representing removal of constant term

from the elliptic modular function, then a shift of de-

gree.

Sometimes one refers to a Moonshine VOA

(MVOA), meaning a VOA whose graded dimension is

q( j(z)− 744) for which the degree 2 component is es-

sentially the algebra created to prove existence of the

Monster [92]. Frenkel, Lepowsky and Meurman con-

jectured that their MVOA, denoted V \ [81], should be

characterized by the properties of being a VOA (a)
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whose only irreducible module is itself; (b) whose cen-

tral charge 24; and (c) whose degree 1 summand is

zero. So far, there is no such uniqueness result. For

some partial results, see [66, 164, 1]. As mentioned

before, the 196884-dimensional algebra (MVOA2,1st)

has no characterization so far without assuming an

action of the Monster.

Frenkel, Lepowsky and Meurman proved graded

traces were right for many but not all group ele-

ments of the Monster. Later, Borcherds proved that

the traces were right for all group elements [17].

22. Some Consequences of VOA
Axioms

A VOA is a graded space over a field of character-

istic 0 with countably many products. The definition

of a VOA is too long to present here; see [81]. I men-

tion a few points about the case of VOAs graded over

the nonnegative integers.

Given a VOA V = ⊕i≥0Vi, the k-th product gives

a bilinear map Vi × Vj−→Vi+ j−k−1. So, Vn under the

(n−1)th product is a finite dimensional algebra, de-

noted (Vn,(n−1)th).

In addition, (a) if dim(V0) = 1, (V1,0th) is a Lie alge-

bra; (b) if dim(V0) = 1 and dim(V1) = 0, then (V2,1st) is

a commutative algebra with a symmetric, associative

form (ab,c) = (a,bc).
Algebras (V2,1st) as in (b) are sometimes called

Griess algebras [182]. A VOA which meets condition

(b) is sometimes called an OZ algebra, which refers to

one-zero for the dimensions of V0 and V1.

A vertex algebra (VA) over a commutative ring K
is a graded K-module with a set of axioms similar to

the VOA axioms. There is an analogue of a vacuum

element but there is not necessarily an analogue of a

Virasoro element [116, 117].

In the Frenkel-Lepowsky-Meurman VOA V \,

(V \
2 ,1

st) is a commutative nonassociative algebra of

dimension 196884, essentially the algebra I defined

to construct the Monster.

The automorphism group of a finitely generated

VOA is an algebraic group, by a theorem of Chongying

Dong and myself [59]. Our paper has some results

about derivation algebras of VOAs.

23. Graded Complex Representations
for Other Groups?

The authors John Duncan, Michael Mertens and

Ken Ono [68] have constructed graded spaces for

the O’Nan sporadic group, order 29345·7311·19·31 with
number theoretic properties. The graded traces in

one version are weight 3
2 modular forms. This is a

very interesting advance. These graded spaces do not

(yet?) have a wealth of algebraic properties like a

VOA does. Sophisticated graded algebraic structures

for other pariahs have been sought for decades. This

“O’Nanshine” seems to be the best contribution so

far.

There is an automorphism of order 2 of the O’Nan

group whose fixed point subgroup is isomorphic to

J1. So the O’Nanshine space gives a kind of Moonshine

for J1.

See [52] in which authors Samuel DeHority,

Samuel Xavier Gonzalez, Neekon Vafa, and Roger Van

Peski give general constructions of graded spaces for

arbitrary finite groups which have specific number

theoretic properties. It shows that some finite groups

which do not embed in the Monster can have genus

0 kind of properties. There seems to be nothing new

about particular sporadic groups. The use of “moon-

shine” in the title of [52] seems inappropriate because

the traditional meaning of moonshine is a surprising

connection between sporadic groups and other areas

of mathematics.

24. Lattices, Vertex Algebras and
Applications

The articles [63, 64] by Chongying Dong and

myself establish a beginning to a theory of (group-

invariant) integral forms in VOAs, and give an integral

form in V \ which is invariant under the Monster. Scott

Carnahan [29] shows that there is even one which is

self-dual. None of these Monster-invariant forms is

given an explicit description, unfortunately.

There is a standard integral form in the lattice

VOA VL, for any even lattice L, given with explicit gen-
erators [63]. Moreover, when L is a root lattice of type
ADE, Ching Hung Lam and I showed [116, 117] that

those natural generators which lie in the degree 1

term form a standard Chevalley basis of the finite

dimensional simple complex Lie algebra ((VL)1,0th) as

well as a basis for the intersection of the standard

integral form in VL with (VL)1. So, we have a natural

generalization of usual Chevalley basis and root lat-

tice to an integral form in the lattice VOA VL.

24.1 Is Every Finite Group the Automorphism

Group of a VOA?

There is a natural question for VOAs, in the spirit

of Noether’s inverse Galois problem (given a finite

group, G, is there a Galois field extension K of the

rationals Q so that Gal(K/Q)∼= G?). The Noether prob-
lem is not settled.

Given a finite group G, is there a VOA whose au-

tomorphism group is G? The answer is unknown in
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general but is yes for G = M and a variety other fi-

nite groups. Automorphism groups of VOAs are stud-

ied in articles of Dong, Griess, Nagatomo and Ryba

[67, 60, 61, 62, 206]. One of the interesting cases

of large rank is the occurrence of 227.E6(2); see Shi-

makura [208].

For VAs over finite fields, there is a fairly natural

affirmative answer for a finite group which is an ad-

joint form Chevalley or Steinberg group extended up-

wards by diagonal and graph automorphisms, proved

by Ching Hung Lam and myself [116, 117]. This result

makes use of the standard integral form in the lattice

VOA VL.

25. Short Existence Proof of the
Monster and MVOA

A new existence proof for a Moonshine VOA was

given by Miyamoto [183]. Shimakura [207] gave a rel-

atively short existence proof of a Moonshine VOA us-

ing a theory of Miyamoto about simple current mod-

ules for a VOA [182]. Ching Hung Lam and I used this

construction of an MVOA to give a relatively short

existence proof for the Monster [115]. The very long

calculations in earlier proofs [103, 42] are now avoid-

able, a sign of progress.

The relationship between VOA theory and finite

simple groups has become stronger.

26. Moonshine Involving the
E8-Diagram

This section is essentially the introduction to the

article [114] by Ching Hung Lam and myself.

In 1979, John McKay [178] noticed a remark-

able correspondence between Ẽ8, the extended

E8-diagram, and pairs of 2A-involutions inM, the Mon-

ster (the largest sporadic finite simple group).

(1)
3C
◦|
|
|◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦

1A 2A 3A 4A 5A 6A 4B 2B

There are 9 conjugacy classes of such pairs (x,y), and
the orders of the 8 products |xy|, for x 6= y, are the

coefficients of the highest root in the E8-root sys-

tem. Thus, the 9 nodes are labeled with 9 conjugacy

classes of M. There is no obvious reason why there

should be such a correspondence involving high-level

theories from different parts of themathematical uni-

verse.

In 2001, George Glauberman and Simon Norton

[85] enriched this theory by adding details about the

centralizers in the Monster of such pairs of involu-

tions and relations involving the associated modular

forms. Let (x,y) be such a pair and let n(x,y) be its as-
sociated node. Let n′(x,y) be the subgraph of Ẽ8 which

is supported at the set of nodes complementary to

{n(x,y)}. If (x,y) is a pair of 2A involutions and z is

a 2B involution which commutes with 〈x,y〉, Glauber-
man and Norton give a lot of detail about CM(x,y,z).
In particular, they proposed how CM(x,y,z) gives a

“new” relation to the extended E8-diagram, namely

that CM(x,y,z)/O2(CM(x,y,z)) looks roughly like “half”

of the Weyl group corresponding to the subdiagram

n′(x,y).
The important and provocative McKay-

Glauberman-Norton observations seemed like

looking across a great foggy space, from one high

mountain top to another. We want to realize their

connections in a manner which is more down-to-

earth, like walking along a path, making natural steps

with familiar mathematical objects. These objects

are lattices, vertex operator algebras, Lie algebras,

Lie groups and finite groups.

In [114], we propose a specific moonshine path

for the 3C-case (i.e., n′(x,y) is an A8-diagram). The

3C-case seems to be especially rich. Several Niemeier

lattices are involved. They include E3
8 and the Leech

lattice Λ. Triality for D4 plays a role. An explanation

for occurrence of just “half” the Weyl group (of type

A8) arises naturally.

We subsequently developed similar moonshine

paths for some other nodes [112, 113]. The suggested

“half Weyl group” property turns out to be true in sev-

eral cases though not for 6A.

27. Final Remarks

27.1 Significance of Uniqueness and the

Nine-Orbit Theorem for the Monster

Uniqueness of the Monster was proved by Ulrich

Meierfrankenfeld, Yoav Segev and myself [108]. This

article also contains a first proof of the group order

246320597611213317·19·23·29·31·41·47·59·71

and the first proof that the action of the Monster on

ordered pairs of 2A-involutions has nine orbits (the

nine orbit theorem).

Progress on a uniqueness proof for the Monster

was claimed by Simon Norton in [185] but was not fol-

lowed by a published proof. The article [185] refers

to claims of exactly nine orbits and the group order,

attributing these to unpublished work of Bernd Fis-

cher and John Thompson. I find no publications to

support this attribution. My recollection is that, in

the early 1980s, these assertions had been considered

very likely to be true, but unproved. I could find no
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proof or solid reference to a proof for the nine or-

bit theorem in Norton’s publications [185, 186, 187,

188]. Nine cases of the so-called dihedral algebras

(generated by a pair of idempotents associated to

2A-involutions) are listed in [45], page 230, but with-

out a reference to a proof. My impression is that Nor-

ton deserves credit for describing those nine dihedral

algebras, but not for proving completeness of the list,

which would appear to depend on the nine orbit theo-

rem. Sakuma [202] proved that those nine dihedral al-

gebras described by Norton are the only isomorphism

types possible for generation by a pair of such idem-

potents. Sakuma’s result does not seem to imply the

nine orbit theorem.

27.2 About the Atlas of Finite Groups

The Atlas of Finite Groups is a remarkable book

full of well-organized material about many of the fi-

nite simple groups, including character tables, clas-

sifications of maximal subgroups and lists of many

special properties. I consult it frequently and appre-

ciate its great convenience. The tables could be called

enriched character tables, meaning that they include

power maps on classes, indicators and fusion un-

der outer automorphisms. However, the user should

be cautious due to lack of verifications, unstated as-

sumptions and problems with attributions. See a re-

view in MathSciNet [45]. When I make reference to the

Atlas material in a paper, I may treat it as a hypothe-

sis.

For revisions to the original version of the Atlas,

see [46, 13]. Concerns about accepting the Atlasmate-

rial as proved or at least reproducible were presented

in a lecture of Jean-Pierre Serre ([205] is available on

youtube.com) and in a letter to Donna Testerman [13].

Subsequently, electronic re-computations of the Atlas

tables were redone in [22, 23, 25], resulting in confir-

mations plus some revisions. Only a few cases cur-

rently remain.

Thomas Breuer, and Robert A. Wilson [24] are

completing a check of the Monster character table

in the Atlas (coauthor Kay Magaard recently passed

away). Author Rob Wilson writes:

[19 March, 2021] “…we rely on your reference [108] for most
of the relevant facts about the Monster. I don’t think we need
anything else, although the paper is not completely written
so there may be some details still to consider. We also use
character tables of various subgroups of the Monster, either
previously verified or re-computed as necessary from verifi-
able and/or published information. In particular we do not
need any classification of elementary subgroups or anything
like this – nor did we use this kind of information in [22]. The
bulk of the work is in calculating the class list and the power
maps. Strictly speaking, we did not re-calculate the charac-
ter table, but verified (proved) that the published table is
correct.”

[26 March, 2021] “Yes, we need existence of the Monster, and
existence of the 196883 character. For that matter, we as-
sume CFSG and any other reasonable background material.
We are not trying to prove anything from first principles.

It is only in the case of facts about the Monster itself that
it is imperative we do not use any results that might need
the character table – for example, we do not use the isomor-
phism type of 31+12.2Suz, since there are two non-isomorphic
non-split extensions of this type, only one of which is a sub-
group of the Monster, and ultimately we use the character
table to determine which one it is, not the other way round.

It is hard to articulate a ‘general strategy’ for obtaining
the conjugacy classes. We collect a whole load of classes
from involution centralizers first, then centralizers of ele-
ments of order 3 and 5, and then use various ad hoc argu-
ments to deal with all the primes one at a time, not necessar-
ily in the order you might expect – ending in fact with 7. We
use the known values of the permutation character to give
us (bounds on) some centralizer orders, but sometimes have
to fight quite hard to get the fusion or lack of it.”

More comments on the Atlas (several refer to my

work):

(a) The uniqueness result [108] is needed for jus-

tification of the character table of the Monster, found

in [45]. That table was based on the assumption that

a group of Monster type has an irreducible complex

representation of dimension 196883. Dependence on

this assumption was not stated in the Atlas. Exis-

tence of an irreducible of degree 196883 was shown

in [92] for a particular group of Monster type, but

not for an arbitrary group of Monster type. I am not

aware of any publications about the table by the au-

thors Bernd Fischer, Donald Livingstone and Michael

Thorne.

(b) The table of involvement of one sporadic

group in another, [45], page 238, is an update of a

table taken from [103], but credit is not given.

(c) The reference [104] was not included; it gave

the first published rigorous treatment to the Parker

loop theory and furthermore showed that such loops

could be viewed as based on binary codes. Some fur-

ther applications of loops to finite simple groupsmay

be found in [106, 195, 196].

(d) Page 228 of [45] is subtitled: Sporadic Fischer-

Griess-Monster or “Friendly Giant” group M ∼=FG∼=F1.

The latter pair of isomorphisms is ambiguous since

uniqueness of the Monster was not resolved until the

1989 article [108].

(e) The Atlas system of notations for simple

groups is uncomfortable to many finite group theo-

rists. Look ahead to the sectionNotations for the finite

simple groups.

27.3 Fischer’s Early Work on Y-Diagrams

In early 1975, during the Rutgers special year

in finite groups, Bernd Fischer visited for a few

weeks and lectured on aspects of his ω-transposition

groups, especially his {3,4}-transposition groups.
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In conversations, he showed me work on sub-

groups of the Monster generated by various sets of

2A-involutions. There were examples where such in-

volutions form diagrams which look like the letter

Y, with arms of various lengths. Two nodes are dis-

connected if the pair of involutions commute and are

connected if the two involutions generate a dihedral

group of order 6.

Interesting results on Y-diagrams are discussed

in the Atlas of Finite Groups [45], though sometimes

without attributions or indications of proofs.

27.4 Early Hint About the Monster?

I have mentioned the 1972 Gainesville group the-

ory meeting a few times, where Suzuki and Janko dis-

cussed possibilities for finding new simple groups.

My talk [89, 90] was about extraspecial groups 21+2n
ε

and their upwards extensions by subgroups of their

outer automorphism group Oε(2n,2). I gave an easy

sufficient condition for such an extension to be non-

split. One application was that an upwards exten-

sion 21+24
+ .Co1 is nonsplit. During my lecture, I won-

dered aloud about the possibility of a simple group

with a subgroup of shape 21+24
+ .Co1 as centralizer of

an involution. The audience was attentive but re-

served. Conway, in the front row, half-smiled for a

half-second. This possibility actually came to life in

late 1973.

27.5 The Dempwolff Group

Because sporadic group world is full of excep-

tional phenomena, there was special interest in group

extensions. Unusual extensions were regular things

to be observed in sporadic groups, e.g. centralizers

and other local subgroups. For general background,

see [106].

Around 1972, Ulrich Dempwolff worked on

H2(GL(n,2),Fn
2). It is zero except at n = 3,4,5 where

it is 1-dimensional. The cases n = 3,4 had been well

known. The case n = 5 was Dempwolff’s result [53]. It

turns out that the nonsplit extension E with O2(E) ∼=
25 and E/O2(E) ∼= GL(5,2) appears as a subgroup of

the Thompson group F3 and in the exceptional Lie

group E8(C). The group F3 does not embed in E8(C)
but it does embed in E8(3). For more on the Demp-

wolff group and E8, see [99]. The Thompson group

arises in a point about modular moonshine and ver-

tex algebras [16]. The articles [116, 117] resolve the

Borcherds-Ryba concern and give a vertex algebra

style proof that F3 embeds in E8(3).

27.6 Naming Sporadic Groups

Policies for naming sporadic groups have gen-

erally included the discoverers’ names but some-

times also the constructors’. As time passed, the con-

structors’ names were gradually dropped. The groups

once named Higman-Janko-McKay and Higman-Held-

McKay (the “Higman” in each of these two names

refers to Graham Higman), Lyons-Sims and O’Nan-

Sims became J3, Held, Ly, O′N, respectively. If timing

had been different for Graham Higman’s work or that

of Donald Higman and Charles Sims, the Higman-

Sims group could have been named the Higman-

Higman-Sims group.

One unusual case is the Hall-Janko group, HJ,
found independently by Marshall Hall, Jr. (as part of

his studies in the mid 1960s of groups of order less

than a million) and by Zvonimir Janko. When one is

about to speak the sentence “The groups Janko dis-

covered are J1,HJ,J3 and J4”, there is understandable

temptation to substitute J2 for HJ. Yielding would be

an injustice to Marshall Hall, Jr. I encourage everyone

to use the notation HJ, not J2.

Perhaps the most unusual case is the Monster,

which, following tradition, might have been called the

Fischer-Griess group if Conway had not promoted the

name Monster so aggressively. Conway’s explanation

was that the group was so special that it should be-

long to no individuals. He added that this policy was

an analogue of his introducing the names ·0, ·1, ·2, ·3
in [39, 40] around 1968 for his newly found groups,

though he publicly admitted wishing that someone

would change those “ridiculous names”. He got his

wish in [45]: they are now called Co0,Co1,Co2,Co3. This

represents improvement: in the Baby Monster, the

centralizer of a 2-central involution is written 21+22.·2
or 21+22.(·2) in the old system but 21+22.Co2 in the new

system.

A consequence of the popular use of Monster ter-

minology was that I was not widely credited for my

1973 discovery until the late 1970s, even though I

told group theorists about it regularly. Fischer did

get general credit for his discovery from the begin-

ning.

At an algebra conference at Ohio State Univer-

sity in 1993, the twentieth year of Monster-awareness,

I introduced the notation M for the Monster. Con-

ference participants, including Conway, immediately

liked the idea. It is now standard. Actually, I prefer to

double stroke the first vertical (similar to IM, as when

I write by hand) rather than the last vertical, but such

a style is not available in Latex.

27.7 Commutative Nonassociative Algebras

The study of commutative nonassociative alge-

bras associated to finite groups has continued. Fi-

nite dimensional, commutative nonassociative alge-

bras occurred as homogeneous summands of cer-

tain VOAs, as described in a previous section. Their
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properties [182] inspired several sets of axioms for

classes of finite dimensional algebras. I am aware

of axioms for the theories Majorana representations

[151] and axial algebras [136, 137]. The special invo-

lutions in both of these theories ought to be called

Miyamoto involutions since they are analogues of the

important original idea of Miyamoto [182]. The book

[151] attributes the axioms for the algebra proper-

ties and involutions to the mathematical physicist

Majorana, but this claim is very doubtful. I followed

the references given in [151] and looked through Ma-

jorana’s writings and came up with no corroborat-

ing evidence. Literature on these algebras includes

[33, 78, 79, 80, 151, 152, 150, 149, 153, 154, 148, 147]

and [134, 135, 136, 137, 33, 34, 50, 51, 162, 177].

The book [151] claims an existence and unique-

ness proof of the Monster by finite geometries and

group amalgam methods, but does not acknowledge

the first uniqueness proof and nine orbit theorem

proof in [108] (although it does refer to [108] for some

information).

27.8 About the Suzuki Series

The series of simple Suzuki groups [221] is now

denoted Sz(q) or 2B2(q), q = 21+2k; it is simple for k ≥ 1.
The group has order q2(q − 1)(q2 + 1) and acts dou-

bly transitively on the set of q2 + 1 Sylow 2-groups.

In 1971, Jacques Tits told me that when news of

the Suzuki series of groups and their orders reached

him, he gave his own construction without seeing the

proof. See [231]. Marshall Hall, Jr. made an original

construction of Sz(8) [130].
Each group in the Suzuki series has order rela-

tively prime to 3. About 1970, John Thompson proved

that they are the only nonabelian simple groups with

this property. The first published proof of this result

was by George Glauberman [84]. A shorter proof was

given by Bernd Stellmacher [220].

The group B2(2) ∼= Sym6 and Sz(2) = 2Bs(2) ∼=
Frob(20), the unique group of order 20 with trivial cen-
ter. Here is a way to understand Sz(2). For Symn, every

automorphism is inner except for n = 6 in which case

Aut(Sym6)/Inn(Sym6) ∼= Z2 and there is a non-inner au-

tomorphism of order 2 whose fixed point subgroup

is isomorphic to Frob(20). It interchanges the conju-

gacy classes of (12) and (12)(34)(56). One way to see

existence of such an automorphism is to use the Frat-

tini argument for the normalizer of a Sylow 5-group

in the normal subgroup Inn(Sym6) of Aut(Sym6) and

the fact that every automorphism of Frob(20) is in-

ner.

27.9 The Groups of Ree Type

Definition 27.1. A finite group of Ree type is a finite

simple group which contains an involution whose cen-

tralizer has the form 2×PSL(2,q), for q an odd power

of 3, q ≥ 27, and for which the Sylow 2-subgroups are

elementary abelian of order 8. We denote such a group

by R(q).

Harold Ward [237] considered G, a finite simple

group of with elementary abelian Sylow-2 subgroup

and an involution centralizer of shape 2 × PSL(2,q),
for q > 5,q ≡ 3,5(mod 8). Under some mild additional

hypotheses, he showed that q is an odd power of 3

and that G and the Ree group 2G2(q) both share the

group order q3(q−1)(q3 +1) and both possess doubly

transitive representations of degree q3 +1.
Uniqueness of the groups of Ree type was an

especially difficult problem in the classification of

finite simple groups. The desired result was that

R(q) ∼= 2G2(q) for all q. This was considered an ana-

logue of characterization problems for the doubly

transitive groups PSL(2,q),PSU(3,q) for prime powers

q (say q = pe for a prime p ≥ 2) and Sz(q) = 2B2(q) for
q = 21+2n,n ≥ 1.

Let G be one of the above groups, Fq its associated

finite field, q a power of the prime p, B a 1-point sta-

bilizer and H a 2-point stabilizer. The subgroup H is

cyclic. There is an element w ∈ G of order 2 so that w
normalizes H and G=B∪BwB. An element of G has the

form uh or uwhv, where h ∈ H and u,v ∈U := Op(B). The
multiplication table of G depends on knowing wxw for

x ∈ K. Since wxw ∈ BwB if x 6= 1, we have an expres-

sion wxw = y1wy2z for unique y1,y2 ∈ U \ {1} and z ∈ H.
The functions which take x to y1,y2,z, respectively, can
be described by using the field Fq. Uniqueness of G
would follow from a proof that these functions are

unique. The difficulty of proving the latter increases

with the nilpotence class of U , which is 1 (i.e., U is

abelian) for the PSL(2,q) case, class 2 for the cases

PSU(3,q) and Sz(q) and finally class 3 for the groups

of Ree type.

John Thompson [225] studied the above func-

tions for the groups of Ree type to initiate a unique-

ness program. A field automorphism on Fq which ap-

peared in his very technical formulas resisted deter-

mination. If its square were the Frobenius map x 7→ x3,

uniqueness of Ree type groups would follow.

By the late 1960s, the uniqueness challenge for

the groups of Ree type was viewed as a possible se-

rious obstruction to completing the CFSG. If some

groups of Ree type other than 2G2(q) were to exist,

should they have been considered sporadic groups,

or groups of Lie type, or would their existence estab-

lish a new category within the simple groups? Recall

that the Suzuki series of groups was discovered and

proved to exist, but not initially recognized as belong-

ing to the world of Lie theory.

Enrico Bombieri used elimination theory to de-

duce a contradiction from the Thompson formulas
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when the field automorphism is not the right one,

provided q is large enough. David Hunt and Andrew

Odlyzko, independently, treated small cases which

Bombieri’s methods did not. See [14] and its review

in MathSciNet which has a detailed summary of this

remarkable algebraic achievement. Uniqueness of the

groups of Ree type were thus established.

When I was looking for a thesis topic in late 1969,

I naïvely thought of trying to prove uniqueness of the

Ree type groups, which I had seen on a list of open

problems near the end of Gorenstein’s book [86]. My

advisor, John Thompson was skeptical but showed

me preprints to some of his articles [225]. About a

month later, I gave up. Thompson commented “Good

decision” and suggested other ideas.

27.10 Unpublished and Unresolved

As the momentum built towards the CFSG, start-

ing in the 1970s, there was a noticeable pattern of

claims announced but left unpublished for a long

time. Informal notes with news about finite simple

groups were circulated regularly. Citations of such

unpublished items appeared in reference lists in pub-

lished articles. I think of some computer proofs and

explorations, announcements about properties of

several new sporadic groups (3-transposition groups,

Rudvalis group, the Monster), characterizations by

certain centralizers of involutions, and uniqueness

results (M, J4). In the early 1980s, when Daniel Goren-

stein announced that the CFSG was complete, he was

expecting CFSG researchers to resolve ongoing pro-

grams in the near future. Unfortunately, some were

not completed for years to come. A major work [10]

was needed to resolve the quasithin group case.

27.11 Mein Greisenalterstraum

Mein Greisenalterstraum consists of wishes that

we would have a useful set of axioms for the spo-

radic groups. Ideally, axioms should enable efficient

existence and uniqueness proofs, fairly uniform pro-

cedures for determining representations and conju-

gacy classes. They should affirm community with the

rest of the finite simple groups, demystify the moon-

shine connections found so far and enable discovery

of new ones.

Work on Monstrous Moonshine and finite groups

in vertex algebra theory may be good steps in this

direction. At this time, however, not every sporadic

group is involved.

The terminology Greisenalterstraum makes ref-

erences to Kronecker’s Jugendtraum, the challenging

pronunciation of my family name Griess and the fact

that I am no longer a youngman. About a century ago,

my ancestors in the USA gave up the traditional Ger-

man pronunciation of my name (similar to “Greece”)

in favor of “grys”, which sounds like the Germanword

Greis, meaning a very old man.

27.12 Humor

A few examples come to mind.

(a) [94], page. 123. Shortly after [129] was pub-

lished, Marshall Hall, as an editor of the Journal of Al-

gebra, received a short submission titled “The simple

group of order 604801”. David Wales confirms this

story.

(b) Around 1965–1975, it seemed that one’s

chances to discover a sporadic group were greater for

those employed at state universities.

(c) Dan Frohardt told me that Mike O’Nan jok-

ingly asked “Who wants one now?” after he found his

simple group, as if sightings of new sporadic groups

could go on indefinitely. He may have been trying

to lower feelings of disappointment. There had just

been an interval without any discoveries (early 1970

to spring 1972), ended by Rudvalis’s announcement.

(d) Serge Lang noted the Monstrous Moonshine

excitement, which got started with the number

196884 (=1+196883). Serge, who was very conscious

about politics, told me around 1984 that the way he

remembers 196884 is to recall 1968 (year of street

and societal conflict in Paris and Chicago) and 1984

(the title of George Orwell’s famous novel).

(e) In [235], Tits referred to J1 as “le méchant nain”

(the wicked dwarf), due to the difficulty of determin-

ing whether it embeds in the Friendly Giant = the

Monster [92]. Eventually, Robert Wilson proved that

J1 does not embed [242].

(f) The order of the Hall-Janko group is 604800 =

2733527= 4·5·6·7·8·9·10= 10!/3!, possibly a new observa-

tion. Also, the order of HJ is the number of seconds

in a week. Awareness of this amusing fact circulated

decades ago. I do not know its origin.

(g) The 1980 film It’s My Turn, starring Jill Clay-

burgh, Michael Douglas, and Charles Grodin, depicted

an imaginary early career female mathematician, Kate

Gunzinger, played by JC. While a young faculty mem-

ber at Princeton, Dick Gross was hired as a consul-

tant for that film. Jill Clayburgh attended a math

department tea time at Princeton to observe. Early

in the film, Kate Gunzinger gave a decent presenta-

tion of the Snake Lemma. We saw her consider fu-

sion and other local behaviors which might occur

within a putative finite simple group. This young re-

searcher, probably hoping to discover a new finite

simple group, was too open about her thoughts in

front of an aggressive graduate student. This unre-

alistic scene struck me as funny.
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28. Appendix of Notations and FSG
Orders

28.1 Notations and Terminology for Finite Group

Theory

Our usage is generally consistent with that of [86,

146]. Later, we discuss notations for the finite simple

groups

In a group, 〈S〉 means the subgroup generated by

the subset S.
The order of a group is its cardinality;

The order of a group element is the order of the

cyclic group it generates;

An involution is an element of order 2 in a group;

G′ or [G,G] denotes the commutator subgroup of

the group G;
A perfect group is a group which equals its com-

mutator subgroup;

A quasisimple group is a perfect group so that the

quotient by its center is a nonabelian simple group;

Op(G) denotes the largest normal p-subgroup of

the finite group G (p is a prime);

Z(G) denotes the center of G;
Frob(n) refers to some Frobenius group of order

n; it has the form KH, where K is a normal subgroup

and H is a complement with the property that if x ∈
H,x 6= 1 then CK(x) = 1. One example is Frob(10)∼= Dih10

and another is Frob(20), which has a normal subgroup

of order 5 and a cyclic complement of order 4.

The finite classical groups associated to

sesquilinear forms are GL(n,q), SL(n,q), Oε(n,q),
· · · (n refers to the size of the square matrices, q to

the cardinality of the finite field Fq, and ε indicates

type of quadratic form). For unitary groups and

others which involve a degree 2 field extension, q
denotes cardinality of the ground field;

Altn refers to the alternating group of degree n;
Dih2m refers to the dihedral group of order 2m;
Quat4m refers to the quaternion group of order 4m;
FSG means finite simple group(s);

CFSG means the classification of FSG;

CG(S), NG(S) means the centralizer, normalizer

(resp.) of the subset S in the group G;
When indicating a group, pn means an elementary

abelian group of order pn;

21+2r
ε , an extraspecial 2-group of type ε =±;

p1+2r an extraspecial p-group;
pa+b+c+... means a group with an increasing chain

of normal subgroups of orders pa, pa+b, pa+b+c, . . . so

that the successive quotients are elementary abelian

of order pa, pb, pc, . . . .

Direct product notation: pn means p×·· ·× p (n fac-
tors); example: 2×2×Alt5 means Z2 ×Z2 ×Alt5;

Central product notation: A◦B means a group

which is a product of subgroups A,B so that [A,B] = 1,

i.e., xy = yx for all x ∈ A,y ∈ B. It is isomorphic to a quo-

tient of A×B by a central subgroup which meets each

of A and B trivially.

Group extensions: in general A.B means a group

with normal subgroup A and quotient B; A:B means

split extension, A·B means nonsplit extension; exam-

ple 2·Alt5 ∼= SL(2,5); a group 2.(2 × 2) could be 23,2 ×
4,Dih8 or Quat8. We are not consistent about use of

dots, so that 2Alt5 would mean some extension 2.Alt5;

in context, the meaning ought to be clear.

Compound group extensions: A.B.C . . . indicates a

group with normal subgroups isomorphic to A, some

A.B, some (A.B).C, etc.

28.2 Notations for the Finite Simple Groups

Since the 1950s, notations have been fairly stable,

influenced by the articles of [28, 32, 4, 3, 217]. The

E-notation of Emil Artin for all exceptional groups

of Lie type has gone out of fashion, replaced by

G2,F4,E6,E7,E8. For use of E2 instead of G2, see [225,

224].

The authors of the Atlas [45], John Conway,

Robert Curtis, Simon Norton, Richard Parker and

Robert Wilson, introduced some notations inspired

by Monstrous Moonshine [43], like F2+ which aug-

ments the Fn notation I introduced in the mid-1970s

for a few sporadics associated to the Fischer-Griess

Monster.

Unfortunately, those authors also promoted no-

tation changes for the classical groups which cre-

ated discomfort and confusion. Here are some com-

parisons. Let Q be a quadratic form on an n dimen-

sional vector space over the field K. The orthogonal

group is widely denoted O(Q), or by Oε(n,q) or Oε
n(q)

if the vector space has dimension n over the finite

field K = Fq and where ε indicates the Witt index. In

the Atlas, Oε(n,q) has a different meaning, which is

the kernel of the spinor norm modulo scalars if q is

odd and is Ωε(n,q), the kernel of the Dickson homo-

morphism [58], if q is even. Also, given a quadratic

field extension L/K and a Hermitian form Q on an

n-dimensional vector space over L, one can define a

unitary group U(Q) and when K = Fq, L = Fq2 and the

vector space is Ln; this unitary group is widely de-

noted U(n,q) or Un(q). The Atlas notation for the lat-

ter is GU(n,q) and the Atlas notation for PSU(n,q) is

U(n,q) or Un(q). The group denoted O+(8,3) in stan-

dard notation would, in Atlas notation, be expressed

as 2·O+(8,3).22 or 2·O+
8 (3).2

2. I see no real advantage to

their classical group notations and strongly discour-

age their use. See [45], pages x–xiii.
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29. Table of the Finite Nonabelian
Simple Groups and Their Orders

29.1 Organization of the Table

According to the CFSG, a finite nonabelian simple

group is a normal subgroup of a group listed in the

table above. The meaning of notations for the alter-

nating groups and sporadic groups should be clear.

I use Altn for alternating group and Dihn for dihedral

group to avoid possible confusion with Lie theoretic

notations An and Dn.

For a groups G of Lie type, we explain notations

in the next paragraph. In the table, we display d · |G| in
column 2 and d is in column 3. Some of the groups of

Lie type are not simple, and there are cases of isomor-

phisms between composition factors of members of

different families. The latter situations are discussed

in the comment section.
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The Chevalley groups, which are listed here as

An(q), · · · ,E8(q), are subgroups of the automorphism

group of a Lie algebra L(q) obtained from a Cheval-

ley basis, using coefficients a finite field Fq of cardi-

nality the prime power q. In the usual notation [32],

these groups are generated by the automorphisms

xr(t). These groups have trivial center.
The Steinberg groups, notated here by some

Chevalley group symbol Xn(q) of type ADE preceded

by a superscript 2 or 3, are the fixed point subgroups

in the Chevalley groups Xn(q) of an automorphism of

the Lie algebra L(q).
The Suzuki and Ree groups, notated here by some

Chevalley group symbol Xn(q) of type B2(q),F4(q),G2(q)
preceded by a superscript 2, are the fixed point sub-

groups of an automorphism of the groups Xn(q). For
2B2(q) and for 2F4(q), q is an odd power of 2. For 2G2(q),
q is an odd power of 3.

29.2 Comments

(a) For each q and for all n ≥ 2, the groups Bn(q)
and Cn(q) have the same order. For all q, B2(q)∼=C2(q).
Also, for all n ≥ 3, Bn(q)∼=Cn(q) if and only if q is even.

Note that the well known isomorphisms

PSU(2,q) ∼= PSL(2,q) ∼= PSO(3,q) are not represented

by groups listed here due to our restrictions

n ≥ 2 for the families Bn(q) and 2An(q). Similarly,

PΩ−(6,q) ∼= PSU(4,q) and PΩ+(6,q) ∼= PSL(4,q) for all q,
but these are not represented here since we require

n ≥ 4 for the families Dn(q) and 2Dn(q).
(b) For all but finitely many cases, the indicated

group of Lie type is simple.

The solvable groups among the finite groups

of Lie type are just A1(2), A1(3), 2A2(2) and 2B2(2) ∼=
Frob(20).

There are four nonsolvable and nonsimple

cases here. Three of these groups have a normal,

nonabelian simple subgroup of index 2: B2(2) ∼=
Sym6; G2(2), whose derived group is isomorphic to

PSU(3,3) ∼= 2A2(3); and 2F4(2), whose derived group is

the Tits simple group. The fourth group in this cat-

egory is 2G2(3) ∼= PSL(2,8):3, which has a normal sub-

group of index 3.

(c) A given finite simple group occurs just once in

the above table with the exceptions mentioned in (a)

and those isomorphisms listed below, which involve

finite fields of multiple characteristics or alternating

groups (or a few cases from (a)).

PSL(2,7)∼= GL(3,2), (A1(7)∼= A2(2));
Alt5 ∼= PSL(2,4)∼= PSL(2,5) (A1(4)∼= A1(5));
Alt6 ∼= A1(9)∼= B2(2)′;
Alt8 ∼= GL(4,2)∼= Ω+(6,2) (A3(2)∼= D3(2));
PSU(3,3)∼= G2(2)′;
PSO(5,3) ∼= PSp(4,3) ∼= PSU(4,2) (B2(3) ∼= C2(3) ∼=

2A3(2)).

(d) This table is modeled after the table on p. 169

of [94], thoughwith corrections of notations or orders

for the entries G2(q), O′N, Suz,Fi′24,F3,F5.
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