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Abstract. In the recent years, we witness a great

interest in imaging, in a wide sense, using contrast

agents. One of the reasons is that many imaging

modalities, as the ones related to medical sciences,

suffer from several shortcomings. The most serious

one is the issue of instability. Indeed, it is, nowadays,

a common certainty that classical inverse problems

of recovering objects from remote measurements

are, mostly, highly unstable. To recover the stability,

it is advised to create, whenever possible, the

missing contrasts in the targets to image. In this

survey paper, we follow this direction and propose

an approach how to analyze mathematically the

effect of the injected agents on the different fields

under consideration. These contrast agents are

small-sized particles modeled with materials that

enjoy high contrasts as compared to the ones of

the background. These two properties allow them,

under critical scales of size/contrast, to create local

spots when excited from far. These local spots

can be remotely recovered in stable ways. The

accessible information on the target are encoded in

theses spots. After stating a class of such imaging

modalities that enter into this framework, as the

* RICAM, Austrian Academy of Sciences, Altenbergerstrasse
69, A-4040, Linz, Austria.
E-mail: ahcene.ghandriche@ricam.oeaw.ac.at
† This author is supported by the Austrian Science Fund
(FWF): P 30756-NBL.
‡ RICAM, Austrian Academy of Sciences, Altenbergerstrasse
69, A-4040, Linz, Austria.
Email: mourad.sini@oeaw.ac.at
§ This author is partially supported by the Austrian Science
Fund (FWF): P 30756-NBL.

acoustic imaging, photo-acoustic imaging, optical

imaging and more, we provide detailed analysis

for first two modalities where the contrast agents

are micro-bubbles and nano-particles respectively.

In these cases, we provide a clear and useful

correspondence between the critical size/contrast

scales and the main resonances, and hence the local

spots, they are able to create while excited with

appropriate incident frequencies. To estimate the

remote dominant field generated by the background

in the presence of such particles, we derive the

point-interaction approximation of these fields. This

dominant field that we call the Foldy-Lax field, as

it is reminiscent to the Foldy-Lax field generated by

Dirac-like potentials with prescribed multiplicative

(scattering) coefficients, encodes the fields after the

multiple scattering between the background and the

different particles. This Foldy-Lax field contains the

accessible information on the target to image. Using

resonating incident frequencies enhances this field

and makes it readable from remote measurements.
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1. Introduction and Motivation

Our major focus in this survey is the mathemat-

ical analysis of problems described by partial differ-

ential models involving micro or nano-scaled struc-

tures enjoying high contrasts as compared to their

surrounding background. The motivations of these

studies come from inverse problems, medical imag-

ing and material sciences. Here, we are mainly con-

cerned with the inverse problems related to medical

imaging. In a large class of inverse and imaging prob-

lems that have been studied in the recent decades,

the goal is to use remotely measured data to recon-

struct internal features of the mechanism that pro-

duced them. In general, the mechanism is described

by partial differential equations with material coef-

ficients entering them. Estimating (few of) these co-

efficients is the target of these problems. What we

learned in the last two decades is that such problems

are highly unstable, meaning that a small perturba-

tion of the measured data can produce a large devi-

ation in the reconstructed coefficients. These insta-

bilities are unavoidable as they are inherent to the

settings themselves. The main reason is that the for-

ward maps are usually highly smoothing. There are

several ways that one can follow to handle the issue

of instability. The first approach is to try to stabilize

such inverse and imaging problems. One way to sta-

bilize them is to approximate them by a sequences

of stable ones and see how the solutions of the sta-

ble ones converge to the true one. This is called the

regularization approach, see [28] for more details.

This approach of stabilizing the problems is a purely

mathematical idea created since A. N. Tikhonov and

J. L. Lions and passing by A. Calderon, see [40] for

an overview on different ideas proposed for solving

these ill-posed problems. The other approach, which

is purely an engineering idea, is to go back to the data

(the measured signals) and enhance them. One way

of enhancing the signals is to inject small-scaled con-

trast agents into the target to image. Our goal is to

analyze mathematically this approach, but most im-

portantly to find how to quantify it and use it to solve

the related inverse and imaging problems. We focus

on imaging modalities involving micro-bubbles (as

in Acoustics) and nano-particles (in models related

to the Electromagnetism). There are of course other

highly important and challenging models as the Elas-

ticity and the models derived as combination of these

models in the framework of multiphysics imaging (as

Photo-Acoustic imaging, Magneto-Acoustic imaging,

MREIT, etc), see [4] for further discussions.

Borrowing similar comments from the related ex-

perimental engineering literature, as a support to

the second approach, it is well known that con-

ventional imaging techniques, as microwave imaging

techniques, are potentially capable of extracting fea-

tures in breast cancer, for instance, in case of the

relatively high contrast between healthy tissues and

malignant ones, [30]. However, it is observed that in

case of benign tissue, the variation of the contrasts is

quite low so that such conventional imaging modali-

ties are limited to be used for early detection of such

diseases. Creating such missing contrasts is highly

desirable. One way to do it is to use either electro-

magnetic nano-particles, see [18], or micro-bubbles,

see [55], as contrast agents.

Next, we describe a list of few imaging modalities

that could fit into the strategy we are willing to follow.

1. Acoustic Imaging using micro-bubbles as con-

trast agents, see [1, 39, 55, 56] for more details

on related theoretical and experimental stud-

ies. This modality is based on using the con-

trasted scattered fields, by the targeted anomaly,

measured before and after injecting micro-scaled

bubbles. These bubbles are modeled by mass

densities and bulk moduli enjoying contrasting

scales. These contrasting scales allow them to

resonate at certain incident frequencies. The goal

then is to analyze mathematically this contrasted

scattered fields in terms of these scales with in-

cident frequencies close to these resonances and

derive explicit formulas linking the values of the

unknown mass density and bulk modulus of, the

targeted region, to the measured scattered fields.

2. Optical Imaging using electromagnetic nano-

particles as contrast agent, see [18, 23, 30]. In

the same spirit as for the Acoustic imaging, we

contrast the measured electromagnetic field be-

fore and after injecting the nano-particles. In the

original works, see [18] for instance, the authors

propose to inject a “relatively dense” set of mag-

netic (or dielectric) nano-particles. Using effec-

tive medium theory, we can transform the imag-

ing problem into a particular inverse scattering

problem. In addition, instead of using a dense

set of such nano-particles, we propose to inject

few of them but we choose them to be nearly res-

onating nano-particles. Precisely, in this case, we

need to use frequencies of incidence close to the

corresponding plasmonic or dielectric resonances
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Figure 1. Non-invasive photo-acoustic imaging of a rat’s cerebral cortex using nano-particles as contrast agents.

This figure is from [49].

(i.e. Mie resonances). Hence the equivalent scat-

tering problem enjoys local coercivity which en-

ables convexity of the related energy functional.

3. Photo-Acoustic Imaging using magnetic or di-

electric nano-particles as contrast agents, see

[49, 57]. Exciting injected magnetic (or dielectric)

nano-particles in the targeted tissue will create

heat on their surfaces (or bodies) and in its turn

the heat will create pressure waves. The imag-

ing problem is then to recover the permittivity

from these remotely measured pressure waves.

We have two major steps for this imaging modal-

ity. The first concerns the photo-acoustic inver-

sion. In this step, we recover the electric energy

created by the nano-particles. The second step

is the electromagnetic inversion: from the recon-

structed electric energy, we recover the permit-

tivity (and eventually the conductivity). Here also,

the plasmonic or dielectric resonances will play a

key role.

4. Magnetic Particle Imaging. Created in early 2000,

see [35], the method is based on tracking injected

volume of magnetic nano-particles diluted in a

fluid. Indeed, it is quantitative imaging method

which uses the nonlinear remagnetization of the

used nano-particles to determine their location,

see [45] for more details. Hence the resulting

MRI images, i.e. the measured potentials, are

used to evaluate the density of distribution of

the nano-particles. The reason why the discrep-

ancy between the scattered field and the incident

field becomes high, and hence useful, is due to

the nonlinear character of the remagnetization

(which is due to the nonlinear susceptibilities of

the used nano-particles). We would like to study

mathematically this imaging modality to

(a) quantify the link between the measured po-

tentials and the density of distribution of

the nano-particles.

(b) instead of using the nonlinear character to

enhance the scattered fields, we propose to

use nearly resonant particles. The advantage

is that we do not need to use a high con-

centration of the nano-particles to be able

to track them. This will reduce the amount

of particles to be injected into the targeted

body.

There are few mathematical works devoted to

this method, as [13] and [42] for instance.

5. Nuclear Imaging: Hadron-therapy. Contrary to

the previously described imaging modalities, the

target of this method is to be a final therapy for

patients at their final stages (i.e. for extremely

advanced tumors). The main idea is to acceler-

ate the protons at very high speed to reach very

high energies before to deliver them to the part

of the body to be cured. The advantage, as com-

pared to X-rays basedmethods, is that the energy

is spread only on or close to the tumor while the

X-rays dissipate energy while traveling. The goal

is to understand how it works by localizing and

quantifying the amount of energy transported

near the tumor. Here also, to our best knowledge,

there is nomathematical work devoted to analyz-

ing this method, see [36, 37] for more detailed

information.

In the sequel, to describe our approach, we will

mainly focus on the acoustic imaging using micro-

bubbles, i.e. (1), and the photo-acoustic imaging us-

ing (dielectric) nano-particles, i.e. (3). In Figure 1 and

Figure 2, we see the sharpness of the images when in-

jecting nano-particles or micro-bubbles respectively

in the targeted regions. This suggests, in particular,

that contrasting the images taken before and after

injecting the small-scaled contrasts agents would al-

low us to extract quantitative information on the tar-

geted regions, as the mass density and the bulk mod-
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Figure 2. (a) Multilocular pancreatic cystic mass revealing intracystic septal enhancement 45 s after micro-bubble

injection with ultrasound. (b) The pattern is confirmed at contrast-enhanced CT. This figure is from [56].

ulus, for the acoustic imaging, or the electric permit-

tivity, and eventually the conductivity, for the photo-

acoustic imaging of the targeted region. Our aim is to

understand and quantify this.

At the mathematical analysis level, we need to

study how the acoustic pressure and the electromag-

netic waves (for the related imaging modalities) are

perturbed by the presence of micro-bubbles or nano-

particles having highly singular relative densities

and/or bulks or relative electric permittivity or rel-

ative magnetic permeability. For both the two imag-

ing modalities we described above, we need to han-

dle non periodic distributions of the small scaled in-

clusions and hence homogenization type techniques

do not apply. In addition, of a particular importance

to us is the use of micro and nano-scaled inclusions

which are nearly resonating. In our settings, by reso-

nance wemean the frequencies of incidence for which

the corresponding forward problem has non-unique

solutions. They are solutions of nonlinear dispersion

equations. Basically, in such situations, any solution

is a linear combination of one which has a finite en-

ergy (fixed by the radiation condition) and others

which are localized near the small inclusions. In gen-

eral, and surely in our settings, such resonances are

located in the (lower half of the) complex plane. But

if we use micro or nano-scaled inclusions which have,

in addition, high contrasts, then these resonances are,

in fact, close, in terms of the scales and contrasts, to

the real line. This fact will be extensively used in both

the imaging modalities.

The analysis is based on integral equation meth-

ods (both direct and indirect representations), taking

into account the different scales related to the size,

contrasts and the eventual cluster of the particles. We

highlight few of the key arguments in analyzing these

imaging modalities:

1. Rewriting the related Lippmann-Schwinger inte-

gral equation for the acoustics (or system for the

electromagnetics) as a linear combination of the

surface double layer operator (or the Neumann-

Poincaré operator) and the volume integral oper-

ator (or the Newtonian operator), we show that

the eventual resonances split into two families:

one given by surface-like eigenfunctions and the

other body-like eigenfunction corresponding to

the eigenvalues of the Neumann-Poincaré and the

Newtonian operators respectively. For instance,

we have the Minnaert resonance which corre-

sponds to the value − 1
2 as the eigenvalue of the

Neumann-Poincaré operator, for acoustics, and

the plasmonic resonances related to the eventual

sequence of eigenvalues to the same operator for

the electromagnetism. On the other hand, the di-

electric (or Mie) resonances correspond to the

eigenvalues of the Newtonian operator for elec-

tromagnetism. These resonances can be, approx-

imately, excited if the material properties of the

particles enjoy precise scales of their contrasts

with the surrounding background. Such scales

will be discussed in section 2.

2. The Neumann-Poincaré operator, or the double

layer operator, appears due to the contrast of

the higher order coefficient as the density for the

acoustics model or the permeability for the elec-

tromactism model when written solely with the

electric fields. It is then not surprising that the

dominant terms of the surface-like resonances,

i.e. Minnaert for acoustics and plasmonics for

electromagnetics, depend on that contrast. This

is indeed the case as it will shown in section 4.

This feature will be of importance in acoustic

imaging to reconstruct the mass density. Con-

trary to these resonances, the volume-like ones

(as the dielectric resonances) have their dom-

inant parts independent on the corresponding

contrasts (i.e. the contrast of the permittivity and

eventually the conductivity).

3. The distribution of the small particles is not nec-

essarily periodic, as we handle single particles,

doubles (dimers, i.e. closely spaced two by two
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particles) and also clusters of highly dense parti-

cles. Therefore, homogenization techniques are

not useful at this point. Rather, the method of

analysis we use has its roots back to the Foldy

formal method, see [32, 51], of representing the

acoustic field, due to multiple point-like poten-

tials. The multiplicative coefficients attached to

these point-like potentials model the scatter-

ing strengths (that we call the scattering coeffi-

cients). The close form of the Foldy field, solution

describes the field generated after all the mu-

tual interaction between the point-like scatter-

ers. Such a representation of the fields has been

justified by Berezin and Faddeev in the frame

work of quantummechanics, see [20]. The idea is

that based on the Krein extension theory of self-

adjoint operators, one can model the diffusion

by point-like particles by the Schröedinger model

with singular potentials of Dirac type supported

on those point-like scatterers. This opened dif-

ferent and fertile directions of research related

to modeling with singular potentials supported

on point, see [2], lines [29] or generally hyper-

surfaces [50]. Going back to our subject, and as

our small-scaled particles enjoy high contrasts,

it is natural then to expect that the dominant

part of the field generated by their mutual in-

teractions is reminiscent to the Foldy field. In-

deed, this dominating field can be seen as a Foldy

field generated by the point-like potentials, cen-

tered at the centers of our small particles, where

the attaching coefficients, i.e. the scattering co-

efficients in Foldy’s language, are described by

a combination of the used incident frequencies

and the relative contrasts of the material (mass

density for acoustics or permeability for elec-

tromagnetism for instance). This combination is

nothing but the dominant part appearing in the

(nonlinear) dispersion equation. These scattering

coefficients can be large when the incident fre-

quency is taken close to the different resonances

mentioned above (depending of the scales of our

model). This enhancement of the scattered field

is the key step in all the imaging modalities we

have cited above. To give a taste on how this is

used, let us mention the following three situa-

tions:

(a) Injecting one single particle, the Foldy field

reduce to one element, as there is no multi-

ple scattering. In acoustic imaging, we can

see from the remotely measured acoustic

field, i.e. the far-field for instance, that its

value changes drastically whether or not the

used incident frequency is close to the reso-

nance (the Minnaert resonance in this case).

This discrimination allows us to estimate

this resonance. From this resonance, we

can estimate the mass density of the back-

ground in the vicinity of the injected bub-

ble, see [26]. In photo-acoustics, we could

estimate the internal modulus of the total

field (i.e. phaseless total field). This allows

us to transform the photo-acoustic imaging

to the inversion of the phaseless total elec-

tric field, see [33].

(b) Injecting dimers, i.e. two close particles,

then the Foldy field encodes the multiple

scattering field between the two particles.

From these fields, we can extract not only

the total fields on the two centers, but also

the background Green’s function on the

two centers. This Green’s function evalu-

ated on the two centers encodes the val-

ues of the lower coefficients of our mod-

els, i.e. the bulk modulus for acoustic imag-

ing and the permittivity (and eventually the

conductivity) for the photo-acoustic imag-

ing, see [33]. However, extracting such infor-

mation is possible only if the used incident

frequencies are close to the mentioned res-

onances. This issue is related to the Foldy-

Lax paradigm, an outstanding open ques-

tion, on the possibility of extracting, from

remote data (i.e. far-fields), the fields gen-

erated after multiple scattering between the

particles. This paradigm makes sense and it

is justified if the used incident frequencies

are close to the resonances, see [34].

(c) Injecting a dense cluster of small particles,

the corresponding Foldy field approximates

the Lippmann-Schwinger field (i.e. the field

solution of the Lippmann-Schwinger equa-

tion) with a (contrasting) coefficient given

by the average of the mutual scattering co-

efficients of each particle. The sign of this

contrast is fixed by the used incident fre-

quency if it is chosen near to the mentioned

resonances. As in the metamaterial theory,

up to an appropriate choice of the inci-

dent frequency, we generate negative lower

order coefficients of the effective medium

(bulk modulus for acoustics and permit-

tivity for electromagnetism for instance).

Hence the derived effective medium enjoys

local coercivity. This local coercivity makes

the inverse scattering problem more stable.

In particular, the related least-square func-

tional might be convex. Again, recovering

such nice properties is possible only if the

incident frequencies are close to the men-

tioned resonances.
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The rest of the manuscript is divide as follows. In

section 2, respectively section 3, we give a more pre-

cise description of the kind of micro-scaled, respec-

tively nano-scaled, inclusions we will be using and de-

scribe qualitatively and quantitatively the generated

resonances at the precise needed scales. The formal

characterization of the resonances described in this

section is well justified in deriving the needed asymp-

totic expansions of the different related fields. This

is stated in section 4 for the acoustic imaging and

in section 5 for the photo-acoustic imaging modali-

ties respectively. From these expansions, we describe

imaging functional that can be used to effectively ex-

tract the needed coefficients from those expansions.

2. Characterization of the Contrast
Agents

2.1 Electromagnetic Nano-Particles

Different types of nano-particles are proposed in

the literature. Let us cite few of them:

1. To create contrast in the permittivity, carbon

nano-tubes, ferroelectric nano-particles and the

calcium copper titanate are used, see [18].

Such particles have diameter which is estimated

around 10 nm, or 10−8 m, and have the rela-

tive electrical permittivity of the order 10 for

the carbon nanotubes, 103 for ferroelectric nano-

particles and around 106 for the Calcium copper

titanate, see [61]. If the benign tumor is located at

the cell level (which means that our imaging tar-

get Ω is that cell), with diameter of order 10−5m,

then the Ω-relative radius of the particles is of the

order a ∼ 10−3. Hence, the relative permittivity of

the types of nano-particles are estimated of the

order a−r where r is 1
3 for the carbon nanotubes, 1

for ferroelectric nano-particles and 2 for the cal-

cium copper titanate.

2. The human tissue is known to be nonmagnetic.

To create magnetic contrasts, it was also pro-

posed in [18] to use iron oxid magnetic nano-

particles for imaging early tumors. Such material

has a relative permeability of the order between

104 and 106, see [38], and hence of the order a−r

with r between 4
3 and 2.

3. Other types of material are given through more

involved electric or magnetic susceptibilities. Ex-

amples of such nano-particles are those for

which the permittivity (similarly the permeabil-

ity) follow spatial dispersion relation as the ones

given by the Drude model, i.e. ε := ε0 −
ω2

p
ω(ω+iγ)(

or µ := µ0 −
ω2

p
ω(ω+iγ)

)
with ωp as the plasma fre-

quency, γ the damping parameter1 and ω is our

incident frequency2.

This shows that for the detection of the tumors

using such nano-particles, we can model the ratio of

the relative electric permittivity and relative magnetic

permeability in terms of the relative size of nano-

particles. Inspired on this, we set the following def-

inition:

Definition 2.1. We call (Dm,εm,µm) an electromagnetic

nano-particle of shape Dm with diameter a, of order of
few tens of nanometers, and permittivity and perme-

ability εm,µm respectively. We call them

1. Electric (or Dielectric) Nano-particles if in addi-

tion: εmε0
∼ a−r,r > 0 and µm

µ0
∼ 1 as a � 1.

This implies that the relative index of refraction

is large, i.e.
κ2

m
κ2

0
:= εmµm

ε0µ0
� 1 as a � 1. Hence the

relative speed of propagation cm
c0

:= κ0
κm

is small.

But, the contrast of the transmission coefficient

is moderate.

2. Magnetic (or Plasmonic) Nano-particles if in addi-

tion εm
ε0

∼ 1 and 1
2

µm+µ0
µm−µ0

is “very close” to one of

the eigenvalues of the Neumann-Poincaré opera-

tor (i.e. the adjoint of the double layer operator).

This means that the relative speed of propaga-

tion is moderate. But the contrast of the trans-

mission coefficient is large. Example of such ma-

terials are given by the Drude model described

above. Indeed, if µm := µ0 −
ω2

p
ω(ω+iγ) , then

1
2

µm+µ0
µm−µ0

=

1
2 − µ0 ω(ω+iγ)

ω2
p

. For smooth shapes Dm, the corre-

sponding double layer operator has its spectrum

as {σn}n∈N ⊂ [− 1
2 ,

1
2 ) with 0 as the only accumula-

tion point for the sequences (σn)n∈N. Hence the

incident frequency ω and the damping parame-

ter γ can be chosen so that 1
2

µm+µ0
µm−µ0

approaches

elements of the sequence (σn)n∈N.

2.2 Micro-Bubbles

Similar as for the electromagnetic nano-particles,

we set the following definition of the micro-bubbles

Definition 2.2. We call (Dm,ρm,km) a micro-bubble of

shape Dm with diameter a, of about few tens of mi-

crometers, and mass density and bulk modulus ρm,km

respectively. They are called

1. Low Dense / Low Bulk Bubbles if in addition: ρm
ρ0

∼

ar and km
k0

∼ ar with r > 0 and then
c2

m
c2

0
:= ρm

km

ρ0
k0

∼ 1

as a � 1. This means that the relative speed of

propagation
c2

m
c2

0
is moderate. But the contrast of

the transmission coefficient is large.

1 Damping parameter is a dimensionless constant.
2 The coefficients with zero as subscripts refer to the back-
ground media.
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2. Moderate Dense / Low Bulk Bubbles if in addition:
ρm
ρ0

∼ 1 and km
k0

∼ a−r,r > 0, as a � 1. Such bubbles

are not known to exist in nature but they might

be designed, see [62]. These properties mean that

the relative speed of propagation is small. But the

contrast of the transmission coefficient is mod-

erate.

3. Characterization of the Key
Resonances

From the above modeling of the nano-particles as

well the micro-bubbles, we observe that they enjoy

one of the following properties:

1. the speed of propagation is small and the con-

trast of the transmission coefficient is moderate.

In this case, even though the particle is small,

the wave might spend some time inside it, i.e. we

might have local body mode (or vibration) if the

speed is small under some critical scales. How-

ever, there is no surface mode as the transmis-

sion coefficient is moderate.

2. the speed of propagation is moderate (not small)

and the transmission coefficient is large (or sin-

gular as the Drude model). In this case, it is the

other way around. We might have surface modes

under critical scales of the transmission coeffi-

cients but it is unlikely to have body modes as

the speed is not small enough.

These differences give rise to different types of

resonances for our two types of materials (micro-

bubbles and nano-particles). We classify them as fol-

lows

1. In the case of Micro-bubbles, we have

(a) the Minnaert resonance which corresponds

to a surface-mode for the Low Density / Low

Bulk bubbles.

(b) A sequence of resonances which correspond

to body-modes for the Moderate Density /

Low Bulk bubbles.

2. In the case of nano-particles,

(a) the plasmonic sequence of resonances

which corresponds to surface-modes for

plasmonic nano-particles.

(b) the Mie (or dielectric) sequence of reso-

nances corresponding to body-modes for

the dielectric nano-particles.

Such resonances manifest themselves for special val-

ues of r. Indeed for r < 2, they are very large and for

r > 2 they are very small in terms of the relative diam-

eter a, a� 1. However, for r = 2, they are moderate and

their dominant parts are independent of a. In the next

section, we consider the case r = 2 and show formally

how these resonances indeed appear. For simplicity

of the exposition, we handle the cases where the back-

ground is homogeneous, i.e. the material coefficients

are all constant outside the injected particles. How-

ever, the same results occur even for heterogeneous

backgrounds.

3.1 Formal Characterization of the Resonances.

The Acoustic Model

Let D = z+a B be a bounded, C1-smooth3 and con-

nected subset containing the origin of R3, with a “ra-

dius” a � 1. Let u = us+ui be the solution of the acous-

tic scattering problem, see [5, 8, 21, 22],
div 1

ρ
∇u+ω2 1

k u = 0 in R3,

us := u−ui satisfies the following Sommerfeld Radiation

Conditions (S.R.C.)
∂us

∂ |x| − i ω

√
ρ

k us = o
(

1
|x|

)
, |x| → ∞,

where

ρ :=

{
ρ1 inside D,

ρ0 outside D
and k :=

{
k1 inside D,

k0 outside D.

Here ui := ui(x,ω,θ) := e
iω
√

ρ0
k0

x·θ
is an incident plane

wave propagating in the direction θ .

From the Lippmann-Schwinger representation of

the total acoustic field u, we have

u(x)−α div
x

∫
D

Gω(x− y)∇u(y)dy−βω
2
∫

D
Gω(x− y)u(y)dy

(3.1)

= ui(x),

where α := 1
ρ1

− 1
ρ0

and β := 1
k1
− 1

k0
represent the con-

trasts between the inner and the outer acoustic co-

efficients. Here, Gω is the Green’s function of the

background medium (ρ0,k0) satisfying the outgoing

Sommerfeld radiation conditions. This is an integro-

differential equation. To transform it to a solely in-

tegral equation, we proceed by integration by parts

then (3.1) becomes

u(x)− γω
2
∫

D
Gω(x− y)u(y)dy+α

∫
∂D

Gω(x− y)
∂u
∂ν

(y)dy

= ui(x),

where γ := β −αρ1/k1, for x ∈ D. In addition, taking the

normal derivative and trace, with the usual traces of

3 In most of the computations, the Lipschitz regularity is
enough. The only place where we need more regularity is
in the characterization of the spectrum of the double layer
operator.
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the double layer potential, we obtain:(
1+

α

2

)
∂u
∂ν

− γω
2
∂ν−

∫
D

Gω(x− y)u(y)dy+α(Kω
D )∗

[
∂u
∂ν

]
=

∂ui

∂ν
.

Hence for x ∈R3 \D, the total acoustic field u(x) is
characterized by u|D and ∂u

∂ν
|∂D which are solutions of

the following close form system of integral equations:

[I − γω
2Nω ]u+α

∫
∂D

Gω(x− y)
∂u
∂ν

(y)dy = ui(x), in D[
1
α
+

1
2
+(Kω

D )∗
][

∂u
∂ν

]
− γ

α
ω

2
∂ν−

∫
D

Gω(x− y)u(y)dy

=
1
α

∂ui

∂ν
, on ∂D

with the Newtonian (a volume-type) operator:

Nω : L2(D)−→ L2(D), Nω(u)(x) :=
∫

D
Gω(x− y)u(y)dy,

with image of Nω in H2(D), and the Neumann-Poincaré

(a surface-type) operator4

(Kω
D )∗ : H−1/2(∂D)−→ H−1/2(∂D),

(Kω
D )∗( f )(x) := p.v.

∫
∂D

∂

∂νx
Gω(x− y) f (y)dy.

Remark 3.1. The following properties are key in esti-

mating the resonances. For ω = 0, each of these opera-

tors generates a sequence of eigenvalues: λm(N0)
m→∞−→ 0

and σp((K0
D)

∗) ⊂ [− 1
2 ,

1
2 ). In addition, we have K0

D(1) =
− 1

2 . These singular values are behind all the used res-

onances.

Indeed, let us recall the system of integral equa-

tion and see how it behaves for the scales defining

our micro-bubbles:

[
I − γ ω

2 Nω
]

u+α

∫
∂D

Gω(x− y)
∂u
∂ν

(y)dy = ui(x), in D,

(3.2)

[
1
α
+

1
2
+(Kω

D )∗
][

∂u
∂ν

]
− γ

α
ω

2
∂ν−

∫
D

Gω(x− y)u(y)dy

(3.3)

=
1
α

∂ui

∂ν
, on ∂D.

1. For Low Density / Low Bulk bubbles, we have

γ ∼ 1 and then γ ω2 Nω � 1 as a � 1. Hence, there is no
singularity coming from (3.2). But as α � 1, precisely
if α ∼ a−2 as a � 1, then we can excite the eigenvalue

− 1
2 of K0

D and create a singularity in (3.3). In this case,

we have the Minnaert resonance with surface-modes.

This resonance was first observed in [8] based on in-

direct integral equation methods. This observation

4 The notation p.v means the Cauchy principal value.

was used for different purposes, see [9–12]. This re-

sult was extended to more general families of micro-

bubbles in [5, 6].

2. For Moderate Density / Low Bulk bubbles, we

have α ∼ 1 and then we keep away from the full spec-

trum of (K0
D)

∗. Hence there is no singularity coming

from (3.3). But as γ ∼ a−2 � 1, we can excite the eigen-

values of the Newtonian operators N0 and create sin-

gularities in (3.2). This gives us a sequence of reso-

nances with volumetric-modes. This was observed in

[7] and [52].

3. Observe that if α is negative (i.e. negative mass

densities, similar to the Drude model for acoustics

for instance) then we could excite the other sequence

of eigenvalues of (K0
D)

∗. This gives us another se-

quence of resonances (i.e. corresponding to the se-

quence of plasmonics in electromagnetics, see sec-

tion 3.2).

Using Lippmann-Schwinger equations allows to

characterize all these resonances and for varying

backgrounds (i.e. heterogeneous backgrounds), see

[26].

3.2 Formal Characterization of the Resonances.

The Electromagnetic Model

We deal with non-magnetic materials. The elec-

tric field E = Es+E i is solution of the electromagnetic

scattering problem, see [24, 27],

curl curl E +ω2 ε µ0 E = 0 in R3,

Es := E −E i satisfies the following Silver-Mueller Radiation

Condition (S-M.R.C.)

lim
|x|→∞

(
curl Es(x)× x− i ω

√
ε µ0 |x| Es(x)

)
= 0

where

ε :=

{
ε1 inside D,

ε0 outside D.

Here, E i is a polarized incident electric field prop-

agating in the background medium. In particular, it is

divergence free, i.e. ∇ ·E i = 0 in the whole space.

The corresponding Lippmann-Schwinger equa-

tion is:

E(x)+η ∇
x

∫
D

∇
y

Gω(x− y) ·E(y)dy−ω
2
η

∫
D

Gω(x− y)E(y)dy

(3.4)

= E i(x),

where η := ε1−ε0 is the contrast of the inner and outer

electric permittivities. Here, Gω is the Green’s func-

tion of the Helmholtz equation (∆+ω2ε0 µ0) =−δ , sat-

isfying the Sommerfeld outgoing radiation condition.
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By integration by parts, (3.4) becomes

E(x)−ηω
2
∫

D
Gω(x− y)E(y)dy+η∇

∫
∂D

Gω(x− y)E ·ν(y)dy

= E i(x).

In addition, taking the normal limit from inside D, we
obtain:

(1+
η

2
)E ·ν −η ω

2
ν ·
∫

D
Gω(x− y)E(y)dy+η(Kω

D )∗[E ·ν ]

= E i ·ν , on ∂D.

Hence for x ∈ R3 \D, E(x) is characterized by E|D
and E ·ν |∂D which are solutions of the close system of

integral equation:

(3.5)[
I −ηω

2Nω
]

E +η ∇

∫
∂D

Gω(x− y)E ·ν(y)dy = E i(x), in D

and [
1
η
+

1
2
+(Kω

D )∗
]
[E ·ν ]−ω

2
ν ·
∫

D
Gω(x− y)E(y)dy(3.6)

=
1
η

E i ·ν , on ∂D.

1. For dielectric nano-particles, we have η � 1.
Hence 1

η
� 1, however we keep away from the full

spectrum of (K0
D)

∗ as the dominating term of the

sources is 1
η

E i · ν which is average-zero as ∇ ·E i = 0.
Hence no singularity comes form (3.6). But if in addi-

tion η ∼ a−2 � 1, then we can excite the eigenvalues of

the Newtonian operators N0 and create singularities

in (3.5). Observe here that the Newtonian operator is

vectorial in contrast to the acoustic case where it is

a scalar operator. Therefore its spectral decomposi-

tion is more involved. Nevertheless, projecting it on

the subspace of divergence free fields in D with zero

normal component on ∂D, we obtain the sequence of

dielectric (or Mie) resonances.

2. Observe that if the real part of η is negative (i.e.

negative contrast permittivity) as in the Drude model,

where η = ε− ε0 =− ω2
p

ω(ω+i γ) , then we can excite the se-

quence of eigenvalues of (K0
D)

∗, which lie in [− 1
2 ,

1
2 ),

by appropriately choosing the damping parameter γ

and the incident frequency ω . This gives us the se-

quence of electric plasmonics which create singular-

ities in (3.6). With such material contrast η , there is

no singularity that can be created in (3.5), since Nω

scales as a2, a � 1.
3. It is legitimate to ask if any resonance, corre-

sponding to the Minnaert one in Acoustics, exists? To

answer to this question, we consider magnetic mate-

rials, i.e. µ1 6= µ0. In the TM-approximation, the mag-

netic component u := H3, satisfies the acoustic scat-

tering problem{
div 1

ε∇u+ω2µu = 0 in R2,

us satisfies the S.R.C

where ε = ε1 inside D, ε = ε0 = 1 outside D, µ = µ1 inside

D, µ = µ0 = 1 outside D. As in the Acoustic case, for

x ∈R3 \D, u(x) is characterized by u|D and ∂u
∂ν

|∂D which

satisfy the system:
[
I − γ̃ ω2 Nω

]
u+ α̃

∫
∂D Gω(x− y) ∂u

∂ν
(y)dy = ui(x), in D[

1
α̃
+ 1

2 +(Kω
D )∗
]
[ ∂u

∂ν
]− γ

α̃
ω2∂ν−

∫
D Gω(x− y)u(y)dy

= 1
α̃

∂ui

∂ν
, on ∂D

where, now, γ̃ := ε1µ1
ε0

−µ0 and α̃ := ε−1
1 − ε−1

0 .

1. Hence γ̃ ∼ 1 if the index of refraction is moderate,

i.e. ε1µ1 ∼ 1. Then γ ω2 Nω � 1 as a � 1.
2. In addition α̃ � 1 if ε1 � 1, as a � 1. Then we can

excite the eigenvalue − 1
2 of K0

D.

Hence, a Minnaert-like resonance can be excited

by ε-near-zero and µ-near-infinity nano-particles. The

last issue is whether such materials exist in nature or

possible to be designed. Material with ε-near-zero are

possible with the Drude model where ε := ε0 −
ω2

p
ω(ω+i γ)

choosing γ,γ � 1, and ω so that ε is near zero.

3.3 Summary on the Existence of the Resonances

We summarize here the possibilities we have in

creating resonances.

1. Acoustic bubbles:

• For low density / low bulk bubbles, we have

the Minnaert resonance with surface-modes.

• For moderate density / low bulk bubbles,

we have a sequence of resonances with

volumetric-modes.

• For negative contrasts of mass densities, we

have a sequence of resonances (correspond-

ing to the plasmonics in electromagnetism)

with surface-modes.

2. Electromagnetic nano-particles:

• For dielectric nano-particles, we have the se-

quence of Mie (or dielectric) resonances with

volumetric-modes.

• For negative contrast of the permittivity, as

Drude’s model, we have the sequence of

plasmonic resonances with surface-modes.

• For ε-near-zero and µ-near-infinity nano-

particles, we have one more resonance (cor-

responding to the Minnaert one in acoustic

bubbles) with surface-modes.

4. Acoustic Imaging Using Resonating
Micro-Bubbles

4.1 Expansion of the Fields

Let D := z+a B be the bubble of center z injected in

the body to image Ω which is a bounded and smooth

domain in R3.
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Let v := vs + vi be the total field generated by the

background (ρ0,k0) without the bubble. Here the coef-

ficients (ρ0,k0) are variable and W 1-smooth inside Ω

and (ρ0,k0) := (ρ0,∞,k0,∞) outside Ω where ρ0,∞ and k0,∞

are positive constants.

We set u := us + ui to be the total field generated

by the background (ρ,k) in the presence of one bubble.

This means that (ρ,k)= (ρ1,k1) inside the bubble D and

(ρ,k) = (ρ0,k0) outside of it. Here vi = ui := eiκ0θ ·x is the

incident plane wave where κ0 :=ω

√
ρ0,∞
k0,∞

and θ is the di-

rection of incidence. Hence, the acoustic model in the

presence of one bubble injected in the heterogeneous

background Ω reads as follows, see [5, 8, 21, 22],{
div 1

ρ
∇u+ω2 1

k u = 0 in R3,

us := u−ui satisfies (S.R.C.).

Due to the Sommerfeld radiation condition, we have

the following behavior of the scattered field us(x,θ)
far away from the target region Ω:

us(x,θ) =
eiκ0|x|

|x|
u∞(x̂,θ)+O

(
|x|−2) , |x| →+∞,

where x̂ := x/|x| and u∞(x̂,θ) denotes the far-field pat-

tern corresponding to the unit vectors x̂,θ , i.e. the in-
cident and propagation directions respectively.

Here we take the scales k1 := k̄1 a2 and ρ1 := ρ̄1 a2,

where k̄1 and ρ̄1 are positive constants independent of

a. With these scales, we have existence of the Minnaert

resonance. Indeed, we have the expansion, see [26]:

u∞(x̂,θ ,ω,z) = v∞(x̂,θ ,ω)− 1

k1

ω2
M

ω2 −ω2
M

|B|

(4.1)

×a v(z,−x̂,ω) v(z,θ ,ω)+O

(
a2(

ω2 −ω2
M

)2

)

where

(4.2)

ωM = ωM(z) :=

√
8π k1

ρ0(z)A∂B
(The Minnaert resonance!)

with A∂B := 1
|∂B|

∫
∂B

∫
∂B

(x−y)·ν(x)
4π|x−y| dxdy.

The far-field u∞(x̂,θ ,ω,z) depends on the fre-

quency of incidence ω and also the injected bubble

at the point z, that is why we added the parameter

z. The far-field v∞(x̂,θ ,ω) corresponds to scattering by

the background but without the bubble, hence the pa-

rameter z is not added.

4.2 Solution of the Inverse Problem Using One

Injected Bubble

The acoustic imaging problem we are interested

in is to reconstruct the background coefficients k0 and

ρ0 inside the imaging target Ω. For this, we need the

following data.

1. The back-scattered far-field v∞(−θ ,θ ,ω) in one

single direction θ measured before injecting any

bubble.

2. The back-scattered far-field u∞(−θ ,θ ,ω,z) in one

single direction θ measured for each injected

bubble, located in a point z ∈ Ω.

We use these data for a band of frequencies

[ωmin
M , ω

max
M ]

where

ω
min
M <

√√√√ 4π k1(
max

Ω

ρ0(z)
)

A∂B

and ω
max
M >

√√√√ 4π k1(
min

Ω
ρ0(z)

)
A∂B

.

The imaging procedure goes as follows. We set

(4.3) I(ω,z) := u∞(−θ ,θ ,ω,z)− v∞(−θ ,θ ,ω)

as the imaging functional, remembering that the inci-

dent angle θ is fixed. We have the following properties

from (4.1)

(4.4) I(ω,z)∼− ω2
M

k1(ω2 −ω2
M(z))

|B| a [v(z,θ ,ω)]2.

We divide this procedure into two steps:

1. Step 1. From this expansion, we recover ω2
M(z)

as the frequency for which the imaging function

ω → I(ω,z) gets its largest value. From the estima-

tion of this resonance ω2
M(z), we reconstruct the

mass density at the center of the injected bubble

z, based on (4.1), as follows:

ρ0(z) =
4π k1

ω2
M(z) A∂B

.

Scanning the domain Ω by such bubbles, we can

estimate the mass density there.

2. Step 2. To estimate now the bulk modulus, we

go back to (4.4) and derive the values of the

total field [v(z,θ ,ω)]2. This field corresponds to

the model without the bubble. Hence, we have at

hand v(z,θ ,ω) for z ∈ Ω up to a sign (i.e. we know

the modulus and the phase up to a multiple of

π). Use the equation ∇ · ρ
−1
0 ∇v+ω2k−1

0 v = 0 to re-

cover the values of k0 in the regions where v does
not change sign. This can be done by numeri-

cal differentiation for instance. Other ways are

of course possible to achieve this second step.

In addition, we have at hand multiple frequency

internal data.

The procedure described above uses the Minnaert

resonance. The key point to recover the mass density
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is the explicit dependance of this resonance on the

value of the mass density, of the background, on it’s

“center”, see (4.2).

Remark 4.1. We have shown that using multifre-

quency back-scattering data at one single frequency,

we can reconstruct the mass density with a simple

and explicit formula. In addition, we can estimate the

internal values of total field from which we derive the

values of the bulk modulus via numerical differentia-

tion. Disadvantages of this procedure are as follows:

• Possible zeros of the total fields v(z,θ ,ωM(z)). In-
deed, we cannot recover the bulk modulus k0 in

the regions where this total field vanishes. But

this is natural and cannot be avoided without ex-

tra information. One way to handle this issue is

to use multiple directions of incidence θ .

• Numerical differentiation. The numerical differ-

entiation is an unstable step. In addition, we need

to differentiate twice reconstructed, and hence

noisy, quantities given by ρ0 and v. This makes it

a difficult issue to handle in practice. One way

to remedy to this is to use two injected bub-

bles which are close to each other. Doing so,

we can recover not only the total field v but

also the Green’s function GωM , of the background

medium, on the “centers” of the two bubbles.

From the singularities of GωM , we recover the bulk

k0. The idea of the proof is based on the Foldy-Lax

paradigm on whether one can extract the multi-

ple scattering field generated by closely spaced

small particles from the measured far-field. This

paradigm is justified for nearly resonating fre-

quencies. This argument was tested in a simi-

lar situation, see [3]. A complete study of this

paradigm for our settings is done in [34].

4.3 Summary on the Acoustic Imaging Using

Resonating Bubbles

Here, we summarize the way how we propose to

solve the acoustic imaging problem.

1. Injecting single bubbles and using the generated

back-scattered field in one incident direction,

sent at multiple frequencies, we can reconstruct

(a) the density ρ0 via direct and stable formulas,

(b) the bulk k0 with numerical differentiation.

2. Injecting double and close bubbles (i.e. dimers),

we can avoid the numerical differentiation.

More details can be found in [26].

5. Photo-Acoustic Imaging Using
Resonating Nano-Particles

5.1 The Mathematical Model

The photo-acoustic experiment, in the general

setting, applies to targets that are electrically con-

ducting, in other words the imaginary part of the

“permittivity” is quite pronounce, and it goes as fol-

lows. Exciting the target, with laser, or by sending an

incident electric field, will create heat in it surround-

ing. This heat, in its turn, creates fluctuations, i.e. a

pressure field, that propagates along the body to im-

age. This pressure can be collected in an accessible

part of the boundary of the target. The photo-acoustic

imaging is to trace back the pressure and reconstruct

the permittivity that created it.

To describe the mathematical model behind this

experiment, let us set E, T and p to be respectively

the electric field, the heat temperature and the acous-

tic pressure. Then, as described above, the photo-

acoustic experiment is based on the following model

coupling these three quantities:
curl curl E −ω2 ε µ0 E = 0, E := Es +E i, in R3,

ρ0cp
∂T
∂ t

−∇ ·κ∇T = ω Im(ε) |E|2 δ0(t), in R3 ×R+,

1
c2

∂ 2 p
∂ t2 −∆p = ρ0 β0

∂ 2T
∂ t2 , in R3 ×R+,

where ρ0 is the mass density, cp the heat capacity, κ is

the heat conductivity, c is the wave speed and β0 the

thermal expansion coefficient. To the last two equa-

tions, we supplement the homogeneous initial condi-

tions:

T = p =
∂ p
∂ t

= 0, at t = 0

and the Silver-Mueller radiation condition to Es. More

details on the actual derivation of this model can be

found in [57, 60] and more references therein.

In our settings, the source of the heat is given

by the injected electromagnetic nano-particles. Pre-

cisely, we propose to inject dielectric nano-particles.

As described in section 2 and section 3, these nano-

particles enjoy the following features. They are highly

localized as they are nano-scaled and they have high

contrast permittivity. Under critical scales, that will

be described later, these two features allow us to esti-

mate the dominant part of the measure pressure and

then extract from it the unknown permittivity, and

eventually the conductivity as well.

To give more details on how such procedure

works, we restrict ourselves to

1. the 2D-TM model for the electromagnetic propa-

gation.

2. the heat conductivity κ is small and can be ne-

glected.
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Under such conditions, the 2D model of the

photo-acoustic reduces to one single equation, see

[60].

(5.1)
∂ 2

t p(x, t)− c2
s (x)∆x p(x, t) = 0 in R2 ×R+.

p(x,0) = ω β0
cp

Im(ε)(x) |E3|2(x), in R2

∂t p(x,0) = 0 in R2

here cs is the velocity of sound in the medium that

is smooth and cs − 1 is supported in a smooth and

compact set Ω. The constants β0 and cp are known

and ω is an incident frequency. The source u := E3 is

solution of the scattering problem

(5.2)


∆u+ω2µ0ε u = 0 in R2,

u(x) := us(x)+ ei ω
√

µ0ε0 x

us satisfies the S.R.C.

where ε= ε1 inside D, ε= ε0 outside D and ε0 = 1 outside
Ω (D⊂Ω being the injected nano-particle). The permit-

tivity ε0 is variable and it is supposed to be Lipschitz

smooth inside Ω.

5.2 Inversion of the Photo-Acoustics Using

Nano-Particles

The goal of the photo-acoustic imaging using

nano-particles is to recover ε in Ω from the mea-

sure of the pressure p(x, t), x ∈ ∂Ω and t ∈ (0,T ) for

large enough T . The decoupling of the original photo-
acoustic mathematical model (5.1) into (5.1)–(5.2)

suggests that we split the inversion into the follow-

ing two steps.

1. Acoustic Inversion: Recover the source term

Im(ε)(x) |u|2(x), x ∈ Ω, from the measure of the

pressure p(x, t), x ∈ ∂Ω and t ∈ (0,T ).
2. Electromagnetic Inversion: Recover the permit-

tivity ε(x), x ∈ Ω from Im(ε)(x) |u|2(x), x ∈ Ω.

The pressure is collected on the boundary of Ω in

the following situations:

• Before injecting any particle. There is a consider-

able amount of works in the literature based on

such data. Without being exhaustive, we cite the

following references [4, 14–17, 19, 25, 31, 41, 46,

47, 53, 54, 58, 59] devoted to such inversions.

• After injecting a single particle. To our best

knowledge, there is only the work [60] where

plasmonic nano-particles are used and an op-

timization method was proposed to invert the

electric energy fields. There, the 2D-model is

stated and the magnetic field was used.

• After injecting a double and close particles

(dimers).

• After injecting a cluster of particles.

In the sequel, we show how we can use the data

given by the second, third, or forth possibilities to

solve the photo-acoustic imaging problem using di-

electric nano-particles.

5.3 Some Known Acoustic Inversions [46, 47, 54]

Here, we describe two different methods pro-

posed to do the inversion of the acoustic field and

recover the initial data. The first one is related to

the Radon transform and the second one is based on

spectral theory.

1. If the speed of propagation cs is constant and Ω

is a disc of radius R, then

Im(ε)(x) |u|2(x)

=
1

2πR

∫
∂Ω

∫ 2R

0
(∂r r ∂rM(Im(ε) |u|2))(p,r)

log(|r2 −|x− p|2|)dr dσ(p)

where

M(Im(ε) |u|2)(x,r) = 2ωβ0

cpπ

∫ csr

0

p(x, t)√
r2 − t2

dt.

See [54] for more details and [31], and the ref-

erences therein, for further development on the

inversion of the Radon transform.

2. Otherwise, but under certain conditions as the

non-trapping one, we have the spectral represen-

tation

Im(ε)(x) |u|2(x) =
cp

ω β0
∑
k

(Im(ε)(x) |u|2)kψk(x)

where

(Im(ε)(x) |u|2)k = λ
−2
k gk(0)−λ

−3
k

∫
∞

0
sin(λkt)g′′k (t)dt

with

gk(t) =
∫

S
p(x, t)

∂ψk

∂ν
(x)dx

and (λk,ψk) is the eigen-system of −c−2
s (x)∆ with

zero Dirichlet boundary condition on ∂Ω. See [46,

47] for more details.

5.4 An Approximative Acoustic Inversion [33]

Contrary to the previous described results, here

we need no condition on the geometry of the shape

of Ω nor a trapping conditions. We assume the per-

mittivity ε0(·), of the medium, to be W 1,∞-smooth in Ω

and the permeability µ0 to be constant and positive.

We propose approximative inversions of the acoustic

pressure fields to retrieve the initial data under some

conditions on localization and large contrast of the

permittivity of the injected dielectric nano-particles.
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Precisely, we assume that the injected nano-particles

enjoy the properties:

Re (εp)∼ a−2| log(a)|−1 and

Im (εp)∼ a−2| log(a)|−1−h−s, s > 0.

The frequency of the incidence ω is chosen close

to the dielectric resonance ωn0 :

ω
2
n0

:=
(
µ0 εp λn0

)−1
,

as follows

(5.3) ω
2 := ω

2
± := Re(ω2

n0
)(1±| log(a)|−h), 0 < h < 1

where λn0 is an eigenvalue of the Newtonian operator

acting as:

A0u(x) :=
∫

D
− 1

2π
ln(|x− y|)u(y)dy.

Let x ∈ ∂Ω and t ≥ diam(Ω). Under the condition

0 < s < 1−h, we have the following expansions of the

pressure:

1. Injecting one nano-particle. In this case, we have

the expansion

(p++ p−−2p0)(t,x)

=
−t ω β0

cp (t2 −|x− z|2)3/2
2 Im(εp)

∫
D
|u1(x)|2dx

+O
(
| log(a)|max(−1,2h−2)).

Here, p+ and p− correspond to the frequency

ω2
+ := Re(ω2

n0
)(1 + | log(a)|−h), respectively ω2

− :=
Re(ω2

n0
)(1− | log(a)|−h), see (5.3) and u1 is the to-

tal electric field in the presence of one dielectric

nano-particle.

2. Injecting two close dielectric nano-particles. We

have the following expansion

(p++ p−−2p0)(t,x)

=
−t ω β0

cp (t2 −|x− z|2)3/2
4 Im(εp)

∫
D
|u2(x)|2dx

+O
(
| log(a)|max(−1,2h−2)),

where D is any one of the two nano-particles.

Here, p+ and p− correspond to the frequency

ω2
+ := Re(ω2

n0
)(1 + | log(a)|−h), respectively ω2

− :=
Re(ω2

n0
)(1−| log(a)|−h), see again (5.3) and u2 is the

total electric field in the presence of two closely

spaced dielectric nano-particles.

Measuring p+(x, t), p−(x, t) and p0(x, t) for two sin-

gle points x1 6= x2 in ∂Ω at two single times t1 6= t2, we
can

1. localize the center of the injected single nano-

particle z and estimate
∫

D |u1(x)|2dx.

2. estimate the center of the two injected nano-

particles z1,z2 (but we do not distinguish them).

In addition, we can estimate
∫

D |u2(x)|2dx. Here D
is any of the two nano-particles.

In the next section, we show how we can recover

the permittivity ε0(z) from the previous recovered

data, i.e.
∫

D |u1(x)|2dx and
∫

D |u2(x)|2dx. Later, after scan-
ning Ω with such nano-particles, we can recover ε0 in

Ω. We call this step, the electromagnetic inversion.

5.5 Electromagnetic Inversion

5.5.1 Injecting One Single Particle at Once

We start with the case when we use only sin-

gle nano-particles as contrast agents. In this case, we

have the following approximation

∫
D
|u1|2(x)dx =

|u0(z)|2(
∫

D en0(x)dx)2

|1−ω2µ0εpλn0 |2
+O

(
a2 |log(a) |3h−1

)
.

Hence, we can extract the internal phaseless in-

formation |u0(z)|. Recall that u0 is solution of

(5.4) ∆u0 +ω
2
µ0ε0u0 = 0.

This means that measuring before and after

injecting one nano-particle and scanning Ω with

such nano-particles, we transform the photo-acoustic

problem to an inverse problem of reconstructing ε0
from internal phaseless data |u0| with u0 solution of

(5.4).

Now, we move to the case where we use dimers.

5.5.2 Injecting Double Particles at Once

Injecting two closely spaced nano-particles lo-

cated at z1 and z2. In this case, we have at hand∫
D
|u1|2(x)dx and

∫
D
|u2|2(x)dx.

Based on the Foldy-Lax approximation for fre-

quencies near the resonances, see (5.3), we derive the

following expansion

Re (Gω(z1,z2)) = Φ0 +
1

2C
A1 − (1−CΦ0)

2

A1 −2(1−CΦ0)
(5.5)

+O
(
| log(a)|max(h−1;1−2h)

)
,

where

A1 :=

∫
D |u1|2(x)dx∫
D |u2|2(x)dx

, Φ0 :=
−1
2π

log |z1 − z2|

and

C :=
∫

D

[
1

ω2µ∞εp
I −A0

]−1

(1)(x)dx
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=
ω2µ∞εp

1−ω2µ∞εpλn0

(∫
D

en0(x)dx

)2

+O
(
| log(a)|−1) .

Here, Gω(·, ·) is the Green’s function of

the background model, i.e. that satisfies

(∆ + ω2ε0(·) µ0)Gω(·,y) = −δy, with radiation condi-

tions at infinity. Finally, from this Green’s function,

we reconstruction, at the expanse of numerical

differentiations, both the real and imaginary parts of

the permittivity ε0 inside Ω.

The results described in the two last sections can

be found, with more details, in [33].

Finally, let us describe the steps needed to follow

in doing the electromagnetic imaging using a cluster

of injected nano-particles.

5.5.3 Imaging Using a Cluster of Contrast Agents

We inject a cluster of contrast agents

(Dm,εm,µ0),m = 1,2, ...,M inside Ω. We need the

following assumptions on the distribution of the

cluster.

1. We have both Reεm ∼ εmra
−2 and

Imεm ∼ εmia
−2+h, with h ∈ (0,1).

2. 1−
ω2

n0
ω2 = lMah, with lM 6= 0 and h ∈ (0,1).

3. There exists a function K such that

1
[a−1+h]

[a−1+h]

∑
j 6=m

f (z j)

|z j − zm|
−
∫

Ω

f (z)
|z− zm|

K(z)dz

(5.6)

= o(1)‖ f‖C0(Ω), uniformly for z j and as a � 1.

The first assumption means that we use dielectric

nano-particles. Observe that the ration Imεm
Reεm

is very

small when a � 1 which mean that the Q-factor (i.e.

the quality factor) is very high. This is themost impor-

tant property that the dielectric nano-particles have.

The second assumption means that we should use

nearly resonating incident frequencies ω . Indeed, this

condition is key and it cannot be avoided. The third

condition can be quite critical as it means that we

have control of the distributed of the nano-particles

after injecting them. Nevertheless, as we use a clus-

ter of M particles of the order M ∼ ah−1, 0 < h < 1 and

a� 1, it means that we do not need to inject that many

of such nano-particles as soon the used frequency is

close to the resonance, i.e. taking h close to 1!

Under these assumptions, we have u(x,θ) −
uK(x,θ) = o(1), as a � 1, where the effective field uK

satisfies the effective problem:(
∆+ω

2
n0
εK(x)µ0

)
ut

K = 0, in R3, ut
K = us

K + eiκ0x·θ ,(5.7)

∂us
K

∂ |x|
− iκ0us

K = o

(
1
|x|

)
, |x| → ∞,

with ReεK := Reε − K |B|
lM
εmrχΩ, and ImεK = Imε +

K |B|
lM
εmrχΩ.

Choosing lM > 0, we have

ReεK(x)< 0, for x ∈ Ω and εK(x)− ε can be large.

We can use lM � 1 or K � 1 to enhance these con-

trasts.

We claim the following steps for reconstructing

the permittivity.

1. From the measured pressure after injecting the

cluster, we recover the pressure due to the ef-

fective medium εK . The advantage here is that we

use a sparse cluster of nano-particles with nearly

resonating frequencies however.

2. From this data, we recover ImεK |uK |2 and hence

|uK |2 as εK(x)− ε is large and known.

3. This phaseless total internal field corresponds to

a locally coercive Helmholtz wave propagator, i.e.

(5.7). By the effective medium theory, we switch

the sign of the index of refraction as for metama-

terials (in material sciences).

4. Due to the coercivity, the corresponding least

squares functional has a positive second Gateau-

derivative. Hence it is a convex functional. Such

and observation was already made by I. Knowles,

see [43, 44].

5. The slope of the least squares functional is

sharper as lM � 1 (or K � 1).

6. Conclusion

In this section, we summarize to some extent the

discussion we have made in the whole text by em-

phasizing on the key features and the possible exten-

sions.

1. We do believe that imaging with contrast agents

is among the promising modalities that are at the

cutting edge of modern medical imaging.

2. We have a clear correspondence between the crit-

ical scales of the contrasting materials and the

actual resonances.

3. Using nearly resonating frequencies provides

simple and direct links between the measured

data and the background coefficients.

4. We have demonstrated this in two frameworks:

Acoustic Bubbles and Electromagnetic Nano-

particles in their simplest models however. The

original models should be more interesting of

course.

5. Combination of imaging techniques with the ef-

fective medium theory might be applied suc-

cessfully to different modalities as Raman Imag-

ing and Magnetic Resonance Electric Impedance

Imaging (MREIT). In particular, regarding MREIT

and as stated in the literature, the most famous

algorithm, called the harmonic Bz algorithm [48],

and its variants, are based on estimates of the
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lower bound of Jacobean of the harmonics map-

pings, see [48]. It is known that this lower bound

cannot be achieved in the 3D settings. We believe

that this shortcoming can be removed as we can

retrieve coercivity if we inject resonating nano-

particles as contrast agents. However, we need

first to revisit the modeling behind and avoid the

low frequency approximation that is used so far.

In addition, the other imaging modalities as the

Magnetic Particle Imaging and Nuclear Imaging

(Hadron therapy) would be interesting and chal-

lenging as well.
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