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Abstract. The interface between the study of the

topology of differentiable manifolds and algebraic

topology has been one of the richest areas of

work in topology since the 1950’s. In these notes

I will focus on one aspect of that interface: the

problem of studying embeddings and immersions

of manifolds using homotopy theoretic techniques.

I will discuss the history of this problem, going

back to the pioneering work of Whitney, Thom,

Pontrjagin, Wu, Smale, Hirsch, and others. I will

discuss the historical applications of this homotopy

theoretic perspective, going back to Smale’s eversion

of the 2-sphere in 3-space. I will then focus on

the problems of finding the smallest dimension

Euclidean space into which every n-manifold embeds

or immerses. The embedding question is still very

much unsolved, and the immersion question was

solved in the 1980’s. I will discuss the homotopy

theoretic techniques involved in the solution of this

problem, and contributions in the 60’s, 70’s and 80’s

of Massey, Brown, Peterson, and myself. I will also

discuss questions regarding the best embedding and

immersion dimensions of specific manifolds, such

has projective spaces. Finally, I will end by discussing

more modern approaches to studying spaces of

embeddings due to Goodwillie, Weiss, and others.
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Introduction

In these notes we will discuss topics at the in-

terface between the study of differentiable manifolds

and of algebraic topology. This interface has been one

of the richest areas of study in topology since the
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1950’s, with the pioneering work of R. Thom, L. Pon-

trjagin, J. Milnor, S. Smale, S. Novikov, M. Atiyah, R.

Bott, F. Hirzebruch, as well as many others.

At one time the fields of Differential Topology

and Algebraic Topology were separate and somewhat

disjunct. Now there is no clear boundary between

these fields. The study of manifolds has progressed

remarkably with the use of homotopy theoretic tech-

niques, and conversely, the study of manifolds has in-

spired algebraic topologists to develop and use tech-

niques, including recent ones, that have found appli-

cations not only to differential topology, but to differ-

ential geometry, algebraic geometry, number theory,

and even statistics and data analysis.

The focus of these notes will be on the follow-

ing types of questions: Given two C∞ manifolds M
and N, does M embed in N? How can one tell when

two embeddings are isotopic? More generally, what

can one say about the topology of the space of em-

beddings, Emb(M,N)? These questions are quite hard,

and in the more than 75 years since Whitney’s pio-

neering work on embeddings, progress has been quite

limited. There are also analogous questions about im-

mersions, and there has been much more success in

their study, primarily because, due to powerful re-

sults of Smale and Hirsch [38] [39] [25], these ques-

tions can be translated into questions in homotopy

theory, and doing so brings powerful tools to bear.

These notes are organized as follows. We begin in

Section 1 by discussing how vector bundle theory can

be used to find obstructions to the existence of em-

beddings and immersions. More specifically, notice

that if an embedding or an immersion of one man-

ifold into another exists, then there will be an associ-

ated normal bundle. This is a vector bundle of fiber-

dimension equal to the codimension of the embed-

ding or immersion, and it satisfies some very specific

properties. Therefore if one can show that no vector

bundle of the right fiber-dimension satisfying these

properties exists, then one would have an obstruc-

tion to the existence of the embedding or immersion.

We then describe the remarkable result of Smale and

Hirsch which essentially says that for immersions,

the normal bundle obstruction is a complete obstruc-

tion to the existence of the immersion. As an applica-

tion we discuss the first, and probably still the most

startling of the applications of this result, Smale’s ev-

ersion of S2 in R3. That is to say, Smale’s theorem

says that one can turn the sphere in R3 “inside out”

through a one-parameter family of immersions.

In Section 2 we begin our focus of studying em-

beddings and immersions of closed manifolds into

Euclidean space. We recall Whitney’s famous embed-

ding and immersion theorems, and describe how,

using Smale-Hirsch theory for immersions and the

study of classifying spaces, questions about immer-

sions of manifolds can be translated into homotopy

theoretic questions. In Section 3 we begin our fo-

cus on the question of finding the smallest num-

ber φ(n) with the property every closed, smooth,

n-dimensional manifold immerses in Rn+φ(n). We de-

scribe Massey’s theorem, in which he uses a charac-

teristic class argument to show that φ(n) ≥ n−α(n),
where α(n) is the number of ones in the binary ex-

pansion of n. We in particular show that this result is

best possible by explicitly describing n-dimensional

manifolds that immerse in R2n−α(n) but do not im-

merse in R2n−α(n)−1. This led Massey to conjecture

that φ(n) = n−α(n), which is to say that every closed

n-manifold immerses in R2n−α(n). This became known

as the “Immersion Conjecture”, and we outline its so-

lution in the remainder of Section 3 and Section 4. We

begin by recalling Thom’s cobordism theorem, and

show how it can be used to prove a theorem of R.

Brown stating that the immersion conjecture is true

“up to cobordism”. That is, every closed n-manifold is

cobordant to one that immerses in R2n−α(n). We then

describe the Brown-Peterson program for the solu-

tion of the immersion conjecture and their remark-

able contributions, which ultimately reduced the con-

jecture to the study of the homotopy type of particu-

lar spaces called “BO/In” which in some sense encode

all the normal bundle obstructions to the immersion

conjecture being true. We then describe the proof of

the immersion conjecture given by the author in the

early 1980’s which studies the homotopy types of the

Brown-Peterson space BO/In in great detail.

We begin Section 5 by describing characteristic

class obstructions that have been computed for man-

ifolds with structure e.g orientation, almost complex

structures, and spin structures. This includes old

work of Massey-Peterson, Papastavridis, and Koonce,

as well as some quite recent work of Davis and Wil-

son. The author is grateful to Donald Davis for bring-

ing some of this work to his attention. We then turn to

immersion questions about specific manifolds, most

notably projective spaces, and describe a strong non-

immersion theorem due to Davis. We finish with a

short a description of a relatively new kind of homo-

topy theoretical application to the study of embed-

dings: the “Goodwillie-Weiss embedding calculus”.

After giving a brief description of the theory, we dis-

cuss a variety of results obtained over the last 20

years using this theory.

The author is grateful to Professor S.T. Yau for his

invitation to give a lecture on this subject in the Har-

vard Center of Mathematical Sciences and Applica-

tions Math-Science Literature Lecture Series, and his

encouragement to write these notes.

These notes are dedicated to Professor E. H.

Brown Jr. in recognition of his many contributions
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to both algebraic and differential topology, and for

putting up with the author as his PhD advisee in the

mid-1970’s.

1. Vector Bundle Obstructions to
Embeddings and Immersions

Let Mn and Nn+k be smooth (C∞) manifolds of di-

mensions n and n + k respectively. We will assume

k≥ 1. Recall that a smooth embedding of Mn into Nn+k

is a C∞-differentiable map which we denote by

e : Mn ↪→ Nn+k

that maps Mn diffeomorphically onto its image. Asso-

ciated to such an embedding is a k-dimensional nor-

mal bundle νk
e →Mn. A conceptually easy way to think

of this normal bundle is by first endowing the am-

bient manifold Nn+k with a Riemannian metric, and

then defining the normal space νe(x) for x ∈ Mn, to

be the orthogonal complement of the image of the

n-dimensional tangent space, De(TxMn) in Te(x)N
n+k. We

write

νe(x) = De(TxMn)⊥ ⊂ Te(x)N
n+k.

Notice that a Riemannian metric is not crucial in the

definition of this bundle, since there is an isomor-

phism from the orthogonal complement to the quo-

tient space,

De(TxMn)⊥ ∼= Te(x)N
n+k/De(TxMn).

Therefore the normal bundle could be defined as the

quotient bundle e∗(T Nn+k)/T Mn, where e∗(T Nn+k) is the

pull-back of the tangent bundle of Nn+k to Mn via the

embedding e. Notice that the definition of this quo-

tient bundle does not require the use of a metric. This

in particular implies that the more conceptual defini-

tion, using a choice of metric, has an isomorphism

type that is independent of that choice.

Since the normal bundle of an embedding e : Mn ↪→
Nn+k can be viewed as the orthogonal complement

bundle to the image of the tangent bundle T Mn in-

side T Nn+k, it satisfies the following equation of vec-

tor bundles over Mn:

T Mn⊕ν
k
e
∼= e∗(T Nn+k).

Since the isomorphism type of a pull-back vector bun-

dle only depends on the homotopy type of the map

being pulled back, we can conclude the following:

Proposition 1. If a map f : Mn→ Nn+k is homotopic to

an embedding, then there exists a k-dimensional vector

bundle ν →Mn satisfying the equation

T Mn⊕ν ∼= f ∗(T Nn+k).

If a vector bundle ν with this property exists we call it

a “virtual normal bundle”.

Thus the nonexistence of a virtual normal bun-

dle is an “obstruction” to the map f : Mn→ Nn+k being

homotopic to an embedding.

Recall that an immersion j : Mn # Nn+k is a differ-

entiable map whose derivative is a bundle monomor-

phism. That is, at every x ∈Mn,

D jx : TxMn→ Tj(x)N
n+k

is a linear monomorphism. Recall that as a conse-

quence of the implicit function theorem, an immer-

sion is a local embedding. This means that around

every x ∈ Mn, there is an open neighborhood Ux ⊂ Mn

so that the restriction of j to Ux is an embedding

j : Ux ↪→Mn. In particular this means that immersions

have normal bundles as well. Again, we can define it

as the quotient bundle

ν
k
j = j∗(T Nn+k)/T Mn,

which again is isomorphic to the orthogonal comple-

ment bundle defined just as it is for embeddings.

Thus the nonexistence of a virtual normal bundle is

an obstruction to the existence of an immersion, just

as it is to the existence of an embedding. That is, we

can strengthen Proposition 1 to include immersions

as well as embeddings. But a theorem of Hirsch and

Smale, which we examinemore closely in the next sec-

tion, says that in the case of immersions, the virtual

normal bundle obstruction is a complete obstruction

to the existence of an immersion. In particular the fol-

lowing theorem holds:

Theorem 2 (Hirsch and Smale, 1959 [25] [38]). If Mn is

a closed, smooth n-manifold, with n≥ 2, and Nn+k is any

smooth (n+ k)-dimensional manifold with k ≥ 1, then
a map f : Mn → Nn+k is homotopic to an immersion if

and only if there exists a k-dimensional vector bundle

ν →Mn satisfying the equation

T Mn⊕ν ∼= f ∗(T Nn+k).

In other words, for every virtual normal ν there is

an immersion f̃ : Mn # Nn+k which is homotopic to f ,
whose normal bundle ν f̃ is isomorphic to ν . Further-

more, two immersions j0 : Mn # Nn+k and j1 : Mn # Nn+k

are isotopic (i.e there is a continuous, one parameter

family of immersions ht : Mn # Nn+k, t ∈ [0,1], so that

h0 = j0, h1 = j1) if and only if their normal bundles are

isomorphic ν j0
∼= ν j1 .

As we will see in the next section, Hirsch and

Smale actually proved a generalization of this theo-

rem that is extremely powerful in its applications. But

an important special case of the above theorem oc-

curs when the target (ambient) manifold is Rn+k. Since
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all maps f : Mn → Rn+k are homotopic to a constant

map, and the tangent bundle of Euclidean space is

trivial, we have the following corollary of Theorem 2.

Corollary 3. A closed smooth n-dimensional manifold

Mn admits an immersion into Rn+k if and only if there

is a k-dimensional vector bundle νk over Mn with the

property that

T Mn⊕ν
k ∼= εn+k.

Here εn+k is the trivial (n + k)-dimensional bundle,

εn+k = Mn ×Rn+k. We refer to such a bundle νk as a

“k-dimensional inverse” of the tangent bundle.

Furthermore, isotopy classes of immersions Mn #
Rn+k are in bijective correspondence with isomorphism

classes of k-dimensional inverse bundles of T Mn.

Comments. Using standard vector bundle theory and

in particular the theory of classifying spaces that

we will describe in the next section, one can show

that any finite dimensional vector bundle ζ → X (n)

over an n-dimensional finite CW -complex X (n) has a

k-dimensional inverse νk → X (n) for k ≥ n. Moreover

any two such k-dimensional inverses are isomorphic

if k ≥ n+1. Now by Morse theory one knows that any

closed n-dimensional manifold is homotopy equiv-

alent to an n-dimensional, finite CW -complex. Thus

Corollary 3 implies that every closed n-manifold im-

merses in R2n, and any two immersions in Rn+k for

k > n are isotopic.

2. Foundational Work of Whitney,
Smale, and Hirsch

2.1 Smale-Hirsch Theory, and “Turning a Sphere

Inside out”

As mentioned in the last section, an amazing fact

due to Smale and Hirsch (late 1950’s) is that the nor-

mal bundle is a complete invariant of an immersion.

We will now describe a more general theorem that

they proved. To do so, throughout this section, Mn will

denote a smooth (C∞) closed, n-dimensional manifold

with n≥ 2, and Nn+k will be any smoothmanifold of di-

mension n+k with k≥ 1. Consider the space of all im-

mersions, Imm(Mn,Nn+k). This space is topologized as

a subspace of the space of continuous maps from Mn

to Nn+k, which in turn is endowed with the compact-

open topology.

As we recalled earlier, the derivative of an im-

mersion j : Mn # Nn+k. is a bundle monomorphism be-

tween their tangent bundles

D j : T Mn→ T Nn+k.

So we now consider the space of all bundle monomor-

phisms, Mono(T Mn,T Nn+k). Recall that a bundle

monomorphism between any two bundles ζ → X and

ξ → Y is a pair of maps f : X → Y and φ : ζ → ξ that

make the following diagram commute

ζ
φ−−−−→ ξy y

X −−−−→
f

Y

and where φ is a linear monomorphism on each fiber,

φx : ζx ↪→ ξx. We therefore topologize the space of bun-

dle monomorphisms Mono(ζ ,ξ ) to be a subspace of

the product of the space of continuous maps from

X to Y , and the space of continuous maps from ζ to

ξ , both of which are endowed with the compact-open

topology.

With these topologies, one may think of the

derivative as a continuous map

D : Imm(Mn,Nn+k)→Mono(T Mn,T Nn+k).

The following amazing theorem was proved by

Smale [38] in the case when Mn is a sphere, and then

generalized by Hirsch [25].

Theorem 4 (Hirsch and Smale, 1959 [38] [25]). The

derivative map

D : Imm(Mn,Nn+k)→Mono(T Mn,T Nn+k)

f → D f : T Mn ↪→ T Nn+k

is a (weak) homotopy equivalence.

Here are a couple simple consequences of this re-

sult:

Consequences:

1. The space Imm(Mn,Nn+k) is nonempty if and

only if the space Mono(T Mn,T Nn+k) is nonempty. In

particular if one can, using vector bundle theory, find

a bundle monomorphism between their tangent bun-

dles, then one knows their exists an immersion of Mn

into Nn+k.

2. The fact that the path components of

Imm(Mn,Nn+k) and of Mono(T Mn,T Nn+k) are in bijec-

tive correspondence means that two immersions j1 :
Mn # Nn+k and j2 : Mn # Nn+k are isotopic (which is

equivalent to them living in the same path compo-

nent of Imm(Mn,Nn+k)), if and only if their derivatives

are in the same path component of Mono(T Mn,T Nn+k).

Furthermore this is true if and only if the pull-back

bundles over Mn, j∗1(T Nn+k) and j∗2(T Nn+k) are isomor-

phic.

Now consider the special case when the target

manifold is Euclidean space, Imm(Mn,Rn+k). In this

case, the derivative of an immersion j : Mn # Rn+k as-

signs to every point x ∈ Mn a linear monomorphism,
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TxMn ↪→ Rn+k. We can think of this construction in

terms of a fiber bundle

Vn,n+k→ V(T Mn)
p−→Mn

Here V(T Mn) is the space of pairs (x,u), where x ∈Mn

and u : TxMn → Rn+k is a linear monomorphism. The

map p : V(T Mn)→ Mn is defined by p(x,u) = x. Notice
that the fibers of this fiber bundle are all homeo-

morphic to the Stiefel manifold Vn,n+k of all linear

monomorphisms Rn ↪→ Rn+k. In this case, since Rn+k

is contractible, the space of bundle monomorphisms

Mono(Mn,Rn+k) is homotopy equivalent to the space

of sections of this fiber bundle, which we denote by

Γ(V(T Mn)). This allows one to compute the homotopy

type of the space of bundle monomorphisms, and

thus by Theorem 4 the space of immersions of Mn

into Rn+k in terms of the homotopy type of the Stiefel

manifold.

In particular Smale proved the important special

case of Theorem 4 when Mn = Sn and Nn+k =Rn+k, and

a consequence of which became one of the most cel-

ebrated works of the 20th century. He proved the fol-

lowing:

Theorem 5 (Smale, 1958 [38]). The set of isotopy

classes of immersions of Sn into Rn+k is in bijec-

tive correspondence with the set of path components,

π0(Imm(Sn,Rn+k)), and for k > 1,

π0(Imm(Sn,Rn+k))∼= πn(Vn,n+k).

For k = 1, there is a surjection

πn(Vn,n+1)→ π0(Imm(Sn,Rn+1)).

Moreover Vn,n+1 ' SO(n + 1), the special orthogonal

group.

Smale then observed that since SO(3) is homeo-

morphic to the projective space, RP3, and since its

universal covering space is the sphere S3, one knows

that the second homotopy group is trivial

π2(V2,3) = π2(SO(3))∼= π2(RP3)∼= π2(S
3) = 0.

From this theorem one can conclude that the space

Imm(S2,R3) is path connected. This means that any

two immersions of S2 in R3 are isotopic! In particular

one can isotop the identity immersion of S2 as the unit

sphere to its opposite (t1, t2, t3)→ (−t1,−t2,−t3). Such an

isotopy (or regular homotopy) is called an “eversion”

of S2. So one can “turn a sphere inside out!”.

Remarks:

1. The Hirsch-Smale theorem was an early example

of a type of theorem that is now known as an “h-

principle”. Over the years these have been stud-

ied and greatly generalized by Gromov, Eliash-

berg, Mishachev, Vassiliev, and many others.

2. This homotopy theoretic argument for the ex-

istence of an eversion of S2 in R3 is, of course,

nonconstructive. In fact in Smale’s paper he re-

marked that he did not know how such an ever-

sion might be constructed. However explicit con-

structions of eversions were eventually discov-

ered by Shapiro, Phillips, Morin, Thurston, and

others.

2.2 Whitney’s Embedding and Immersion

Theorems, and Translating Immersion

Questions into Homotopy Theory

Recall Whitney’s famous embedding and immer-

sion theorem:

Theorem 6 (Whitney, 1944 [47] [48]).

• Let Mn be a closed n-dimensional manifold, n ≥ 2.
Then there is an embedding e : Mn ↪→ R2n.

• Any two embeddings of Mn into R2n+k for k≥ 1 are

isotopic.

• There is an immersion j : Mn # R2n−1.

• Any two immersions of Mn into R2n+k for k > 0 are

isotopic.

Let e(n) be the smallest integer so that every

closed n-manifold embeds in Rn+e(n). By Whitney’s the-

orem one knows that e(n) ≤ n. Notice that for n = 1
or 2, e(n) = n as the circle embedded in R2 and the

Klein bottle embedded in R4 demonstrate. More gen-

erally, Whitney also knew that RP2k
does not embed

in R2k+1−1 by a characteristic class argument. (This

was, perhaps, the earliest characteristic class argu-

ment regarding embeddings.) So Whitney’s theorem

is the best possible in dimensions equal to a power

of 2.

Whitney’s result can be improved to e(n) ≤ n− 1
unless n is a power of 2. This is a result of Haefliger

and Hirsch [26], [24] (for n > 4) and C. T. C. Wall [43]

(for n = 3). In general, though, unless n is a power of

2, a closed formula for e(n) is still not known, and it

is a difficult and deep question.

Consider the corresponding question about im-

mersions. Let φ(n) be the smallest integer so that ev-

ery closed n-manifold immerses in Rn+φ(n).

By the Hirsch-Smale Theorem 4, this can be

translated to a question about vector bundle theory.

Namely, we have the following corollary:

Corollary 7 (Hirsch-Smale). φ(n) is equal to the small-

est integer so that Mono(T Mn,TRn+φ(n)) is nonempty for

every closed n-manifold Mn.

Given a bundle monomorphism j : T Mn → TRn+k

and a point x ∈ Mn, consider the linear embedding

jx : TxMn ↪→ Rn+k. Let νx ⊂ Rn+k be the orthogonal com-

plement of the image of jx. Then the collection {νx :
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x ∈Mn} defines a k-dimensional vector bundle ν→Mn

with the property that

T Mn⊕ν ∼= εn+k

where εn+k is the trivial bundle of dimension n+ k. In
other words, ν is a k-dimensional inverse of T Mn.

Hirsch-Smale theory says that this “virtual nor-

mal bundle” ν → Mn is isomorphic to an honest nor-

mal bundle ν f →Mn of an immersion

f : Mn # Rn+k.

Corollary 8 (Hirsch-Smale).

• Mn immerses in Rn+k if and only if Mn has a “vir-

tual normal bundle” of dimension k.
• φ(n) is equal to the smallest integer for

which every closed n-manifold Mn admits a

φ(n)-dimensional virtual normal bundle (i.e a φ(n)
dimensional inverse to T Mn).

Hirsch-Smale theory (Theorem 4) thus reduces

the problem of finding the best Euclidean space im-

mersion dimension for any n-manifold (φ(n)) to a

question in vector bundle theory.

We now want to reduce the bundle theory ques-

tion to a question of homotopy theory, via the use of

classifying spaces. A quick introduction to the theory

of classifying spaces can be found in [17].

A basic result in this theory states that for any

topological group G, there is a “universal principal

G-bundle” G→ EG
p−→ BG. The term “universal” comes

from the following property.

Given a map f : X → BG, consider the pullback

bundle G→ f ∗(EG)→ X , where

f ∗(EG) = {(x,u) ∈ X×EG : f (x) = p(u)}

This pullback construction induces a set map

ρEG : [X ,BG]→ PrinG(X).

Here [X ,BG]means homotopy classes of maps from X
to BG, and PrinG(X) is the set of isomorphism classes

of principal G-bundles over X . The statement that p :
EG→ BG is universal means that ρEG is a bijection for

every space X of the homotopy type of aCW -complex.

Universal bundles always exist, and are unique

up to fiberwise homotopy equivalence. BG is called

a “classifying space” of the group G.
For G = O(n) there is a bijection between isomor-

phism classes of principal O(n) bundles and isomor-

phism classes of n-dimensional vector bundles,

PrinO(n)(X)
∼=−→Vectn(X).

(E→ X)→ (E×O(n)Rn→ X)

This implies that there is a bijection,

[X ,BO(n)]∼=Vectn(X).

So bundle theory can be studied via homotopy

theory. We now apply this fact to immersion theory.

A corollary to Whitney’s Immersion Theorem 6

states that any two immersions of a closed n-manifold

Mn into RL are isotopic (“regularly homotopic”) if L >

2n. So by combining Hirsch-Smale theory with Whit-

ney’s theorem, we can conclude that for L large, ev-

ery manifold Mn is equipped with a map, which is well

defined up to homotopy,

ν
L
M : Mn→ BO(L)

that classifies a normal bundle of an immersion into

codimension L Euclidean space. By taking the limit

over L, we call the resulting space BO, and we call the

map,

νM : Mn→ BO

the “stable normal bundle” map for Mn. Again, it is

well-defined up to homotopy.

We then get the following interpretation of the

Hirsch-Smale Theorem 4 when applied to this setting.

Notice that it describes the immersion problem en-

tirely in terms of homotopy theory:

Corollary 9. A closed n-manifold Mn admits an immer-

sion intoRn+k if an only if there is amap νk : Mn→BO(k)
making the following diagram homotopy commute:

Mn νk

−−−−→ BO(k)

=

y y
Mn −−−−→

νM
BO

Thus the Euclidean space immersion problem has

been entirely translated to a question of “homotopy

lifting” the stable normal bundle map.

3. The Immersion Conjecture I: Work
of W. Massey, R. Brown, and the
Program of E. H. Brown Jr. and
F. P. Peterson

3.1 Cohomology and Cobordism

In order to get an idea for what is the smallest in-

teger φ(n) for which the stable normal bundle map

νMn : Mn → BO of any closed n-manifold Mn lifts to

BO(φ(n)), we look for cohomological obstructions.

We begin by recalling the following cohomology

calculations. All coefficients will be Z/2, and the ring
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structures of the cohomologies come from the stan-

dard cup products.

H∗(BO;Z2)∼= Z2[w1, · · · ,wi, · · · ]
H∗(BO(k);Z2)∼= Z2[w1, · · · ,wk]

where wi ∈ H i(BO;Z/2) is known as the ith Stiefel-

Whitney characteristic class. The inclusion map

BO(k) ↪→ BO induces a ring homomorphism in coho-

mology which sends w j to 0 for j > k,
We write w̄k(M) = ν∗Mn(wk) ∈ Hk(Mn;Z/2). This is

known as the kth normal Stiefel-Whitney class of Mn.

Since the homotopy type of the stable normal bun-

dle map νMn : Mn → BO is a well defined invariant of

the manifold Mn, the normal Stiefel-Whitney classes

are also cohomological invariants of Mn. We therefore

have the following corollary of these cohomological

calculations:

Corollary 10. If w̄k(Mn) 6= 0 then Mn does not immerse

in Rn+k−1.

Example. It is a well-known, standard calculation that

w̄2k−1(RP2k
) 6= 0 in H2k−1(RP2k

;Z2). A good reference is

the text by Milnor and Stasheff [33]. This calculation

was first done by Whitney in [47]. By his immersion

theorem,RP2k
#R2k+1−1, but since w̄2k−1(RP2k

) 6= 0, then

RP2k
does not immerse in R2k+1−2.

Notice that as a consequence of Whitney’s im-

mersion theorem, which can be interpreted as saying

that φ(n)≤ n−1, and this example, which implies that

φ(2k) ≥ 2k − 1, we may conclude that φ(2k) = 2k. This

implies that Whitney’s theorem is best possible for

n = 2k.

Continuing to look for cohomological obstruc-

tions to immersing manifolds, we note that in 1960

W. Massey [31] made the following important calcu-

lation, which involved inputting Poincaré duality into

Stiefel-Whitney class calculations. The following is his

result.

Theorem 11 (Massey, 1960 [31]). For Mn a closed

n-manifold, w̄i(Mn) = 0 for i > n−α(n), where α(n) = the

number of ones in the binary expansion of n.

Furthermore, this result is the best possible as the

following example demonstrates:

Write n as a sum of distinct powers of 2:

n = 2i1 +2i2 + · · ·+2ir .

So in this case r = α(n).
Let Mn = RP2i1 × ·· ·×RP2ir

. We observe that there

is a Stiefel-Whitney class obstruction to Mn immersing

in R2n−α(n)−1. To see this one uses a product formula

for Stiefel-Whitney classes (the “Cartan formula”), to

conclude that

w̄n−α(n)(M
n) = w̄(2i1−1)+(2i2−1)+···+(2ir−1)(RP

2i1 ×·· ·×RP2ir
)

= w̄(2i1−1)(RP
2i1 )× w̄(2i2−1)(RP

2i2 )×·· ·

× w̄(2ir−1)(RP
2ir
)

6= 0.

Using Corollary 10 we conclude that this

n-dimensional manifold Mn = RP2i1 × ·· · ×RP2ir
does

not immerse in R2n−α(n)−1. In other words, this exam-

ple, together with Whitney’s Immersion Theorem 6

demonstrates hat the best immersion dimension n+
φ(n) for all n-manifolds Mn, satisfies

(1) n−α(n)≤ φ(n)≤ n−1.

Equivalently, using the calculations of

H∗(BO(k);Z/2) given above, Massey’s theorem

can be interpreted as saying that the following

cohomological theorem is true.

Theorem 12 (Massey [31]). For every n-manifold there

exists a homomorphism of graded rings,

θMn : H∗(BO(n−α(n));Z2)→ H∗(Mn;Z2)

making the following diagram commute:

H∗(BO;Z2).
ν∗Mn−−−−→ H∗(Mn;Z2)y y=

H∗(BO(n−α(n));Z2).
θMn−−−−→ H∗(Mn;Z2)

Notice that if the homomorphism θMn can be real-

ized by a map ν̃Mn : Mn→ BO(n−α(n)) that lifts the sta-
ble normal bundle map νMn : Mn→ BO, then by Hirsch-

Smale theory, ν̃Mn would classify the normal bundle

of an immersion j : Mn # R2n−α(n). This leads to the

following conjecture, originally due to Massey.

Immersion Conjecture (Massey) φ(n) = n−α(n). That
is, every closed n-manifold Mn # R2n−α(n).

By the above example, (Mn =RP2i1 ×·· ·×RP2ir
), this

conjecture is as strong as possible.

3.2 Cobordisms, Spectra, and the Steenrod Algebra

We now begin the description of a program that

eventually led to a solution of this conjecture. As one

does with many questions in differential topology,

we will start with R. Thom’s work on cobordism the-

ory. Thom’s work was one of the real breakthroughs

in manifold theory, and in particular showed how

the disciplines of differential topology and algebraic

topology are inseparable. In particular Thom’s results

spurred on the development of stable homotopy the-

ory, an area that is still extremely active, and an area

that is under constant development.

We begin with the notion of the Thom space of a

vector bundle ζ → X , which we will denote by Xζ . We
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will assume the bundle has been given a Euclidean

metric, and one defines Xζ by

Xζ = D(ζ )/S(ζ )

where D(ζ ) is the unit disk bundle, D(ζ ) = {v∈ ζ : |v| ≤
1}, and S(ζ ) is the unit sphere bundle S(ζ ) = {v ∈ ζ :
|v| = 1}. Notice that if the base space X is compact,

the Thom space Xζ is homeomorphic to the one-point

compactification, ζ ∪∞.

The following is the classical Thom isomorphism

theorem (with Z/2-coefficients).

Theorem 13. Let ζ k be a k-dimensional vector bundle

over a connected space X . The Thom space Xζ k
satisfies

the following properties.

1.

Hk(Xζ k
;Z/2)∼= Z/2

generated by a class uk ∈ Hk(Xζ k
;Z/2) called the

Thom class.

2. For every n ≥ 0, there is an isomorphism of

Hn(X ;Z/2) with Hn+k(Xζ k
;Z/2) given by the cup

product with uk:

∪uk : Hn(X ;Z/2)∼= Hn(D(ζ k);Z/2)
∼=−→ Hn+k(D(ζ k),S(ζ k);Z/2)

∼= H̃n+k(Xζ k
;Z/2).

Let γn→ BO(n) be the universal vector bundle

γn = EO(n)×O(n)Rn→ BO(n).

This has a concrete description as follows. A good

model for the universal principal bundle

EO(n)→ BO(n)

is to let EO(n) be the infinite dimensional Stiefel man-

ifold of linear monomorphisms Rn ↪→ R∞, and BO(n)
can be taken to be the resulting infinite dimensional

Grassmannian manifold of n-dimensional linear sub-

spaces of R∞. The map EO(n)→ BO(n) is defined by

taking the image subspace of a linear monomor-

phism. With these models, the universal vector bun-

dle EO(n)×O(n) Rn is the space of pairs (V,v) where

V ⊂ R∞ is an n-dimensional subspace, and v ∈ V is a

vector. Then, of course the map EO(n)×O(n)Rn→ BO(n)
simply maps (V,v) to V , viewed as an element of the

Grassmannian.

Using Thom’s original notation, we let MO(n) be
the Thom space MO(n) = BO(n)γn .

Consider the inclusion map

ι : BO(k)→ BO(k+1).

Observe that the pull-back of γk+1 over BO(k) via the

map ι , ι∗(γk+1) is simply the (k+1)-dimensional bundle

γk⊕ ε1. The Thom space of this bundle is the suspen-

sion ΣMO(k). Therefore on the Thom space level the

inclusion map ι induces a map

(2) ιk : ΣMO(k)→MO(k+1).

These maps give the collection of space {MO(k); k≥ 0}
the structure of a spectrum. For our purposes we use

the following definition of a spectrum.

Definition 1. A spectrum E is a sequence of spaces

{En} together with maps en : ΣEn → En+1. These maps

are called the structure maps of the spectrum E.

The above is the classical definition of spectrum,

going back to Lima [29] and Whitehead [46]. In the

current literature the above structure is often re-

ferred to as a “prespectrum”. Studying categories of

spectra satisfying appropriate properties is of great

importance in modern homotopy theory, but we will

not be concerned with the strict definitions of these

categories in this expository paper.

Spectra have homotopy and homology groups.

They are defined by

πqE= lim−→
k→∞

πq+kEk

HqE= lim−→
k→∞

H̃q+kEk(3)

where the limits are defined using the structure maps

en and the suspension homomorphisms.

The following are perhaps the most important ex-

amples of spectra:

Examples.

1. For a space X with a basepoint x0 ∈ X , we define
its suspension spectrum by

Σ
∞X = {ΣnX , id}.

Notice that by the suspension isomorphism,

H∗(Σ∞X) = H̃∗(X) and π∗(Σ
∞X) are the stable homotopy

groups of X . When X = S0, the zero dimensional

sphere (i.e the two-point space), then Σ∞(S0) is called

the sphere spectrum, which we denote by S. The

nth-space of the sphere spectrum is the n-dimensional

sphere, Sn.

2. Let G be an abelian group, and let K(G,n) be an
Eilenberg-MacLane space of type (G,n) for n > 0. This
means that K(G,n) is a space with

πq(K(G,n)) =

{
G, if q = n

0 otherwise.

It is a well known property of Eilenberg-MacLane

spaces that if X is any space of the homotopy type of

a CW -complex with basepoint, then the set of homo-

topy classes of basepoint preserving maps [X ,K(G,n)]
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is isomorphic to the cohomology group, Hn(X ;G). This

leads to the fact that

Hn(K(G,n);G)∼= Hom(G,G)

and there is a fundamental class ιn ∈Hn(K(G,n);G) cor-

responding to the identity homomorphism. Since, by

the suspension isomorphism,

Hn+1(ΣK(G,n);G)∼= Hn(K(G,n);G)∼= Hom(G,G)

there is a map, well defined up to homotopy

ιn : ΣK(G,n)→ K(G,n+1)

corresponding to the fundamental class. The col-

lection {K(G,n), ιn} defines a spectrum called the

“Eilenberg-MacLane spectrum”, which we denote by

HG.
3. LetMO= {MO(n), ιn} be the Thom spectrum de-

fined by (2).

As described in [1], given a spectrum E, one

can suspend or desuspend E, and study homotopy

classes of maps of any degree from spaces to E. (A
map of degree one from X to E is a map from X to

ΣE.) In particular E defines a generalized homology

and cohomology theories a follows. Given a space X
of the homotopy type of a CW -complex define

Eq(X) = [X+,E]q = lim−→
k

[Σk(X+),Ek+q],

Eq(X) = πq(E∧X+) = lim−→
k

πq+k(Ek ∧X+),

where X+ denotes X with a disjoint basepoint. (Note.

Given a based space Y and a spectrum E one can de-

fine the smash product spectrum E∧Y to be the se-

quence of spaces {En ∧Y} and structure maps en ∧ 1 :
Σ(En∧Y ) = ΣEn∧Y → En+1∧Y .)

When E = HG, a classical result of Whitehead

[46] states that the generalized (co)homology this

spectrum represents is simply ordinary (co)homology

with coefficients in G. When E = MO, the associated

(co)homology theory is called the (co)bordism groups

of a space X .

The following theorem, and its proof, have had a

huge impact on algebraic and differential topology.

Theorem 14 (Thom, 1954 [41]). There is an isomor-

phism between the homotopy groups of the Thom

spectrum,

πn(MO) = lim
k→∞

πn+k(MO(k))

and the set of cobordism classes of closed n-manifolds,

ηn. This is defined to be the set of equivalence classes

of n-dimensional closed manifolds, defined by saying

Mn
1 is cobordant to Mn

2 if there is an (n+1) dimensional

manifold with boundary, W n+1, with

∂W n+1 = Mn
1 tMn

2 .

The abelian group structure on ηn corresponding

to the group structure on stable homotopy groups

is simply induced by disjoint union. The identity el-

ement in this group is the empty set /0 (by conven-

tion /0 can be viewed as a manifold of any dimension).

Notice that this group consists entirely of elements

of order 2, which one sees because for any closed

n-manifold Mn, the disjoint union Mn tMn is cobor-

dant to the empty set /0 because it is the boundary

of W n+1 = Mn× [0,1]. Furthermore, the graded abelian

groups η∗ ∼= πs
∗(MO) actually form a graded ring, with

the product given by cartesian product of manifolds.

Thom also did a complete calculation of these

graded rings.

Theorem 15 ([41]).

η∗ ∼= Z2[b2,b4,b5, · · · ,br, · · · : r 6= 2k−1].

In other words, η∗ is a polynomial algebra over the

field Z/2 with one generator br of dimension r > 0 so

long as r is not of the form 2k−1 for any integer k > 0.

In fact Thom gave a complete description of the

homotopy type of the spectrum MO.

Theorem 16 ([41]). The spectrum MO has the homo-

topy type of a wedge of Eilenberg-MacLane spectra,

MO'
∨
ω∈I

Σ
|ω|HZ/2

where the indexing set I consists of all monomi-

als in Z/2[b2,b4, · · · ,br · · · , : r 6= 2k − 1]. The notation

|ω| refers to the dimension of the monomial bω ∈
Z/2[b2,b4, · · · ,br · · · , : r 6= 2k−1].

In order to understandmore about the immersion

conjecture and how it was proved, it is important to

recall a bit about how Thom proved this theorem. His

main tool was the Steenrod algebra, which we now

discuss.

Recall that the Steenrod squaring operations, Sqi,

i≥ 0, satisfy the following axioms:

Axioms.

1. Sqi is a natural transformation of abelian group

valued functors

Sqi : Hn(−;Z/2)→ Hn+i(−;Z/2)

for every n,
2. Sq0 = 1 the identity transformation

3. Sqi(x) = 0 if the dimension of x is less than i
4. Sqi(x) = x2 if the dimension of x equals i
5. The Steenrod satisfy the product formula known

as the “Cartan formula”:

Sqi(xy) = ∑
j
(Sq jx)(Sqi− jy).
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6. Sq1 is the Bockstein homomorphism of the coef-

ficient sequence

0→ Z/2→ Z/4→ Z/2→ 0.

7. The Steenrod squares satisfy the “Adem rela-

tions”:

For a < 2b,

SqaSqb = ∑
j

(
b− j−1

a−2 j

)
Sqa+b− jSq j

where the binomial coefficients are taken mod 2.

Axioms (6) and (7) can be shown to be con-

sequences of axioms (1)–(5). The Steenrod opera-

tions act on the cohomology of spectra as well

as spaces. One of their important features is how

they are related to the Stiefel-Whitney characteristic

classes. Recall from Theorem 13 that if one is given

a k-dimensional vector bundle ζ k→ X then the Thom

class uk ∈Hk(Xζ k
;Z/2) defines the Thom isomorphism,

∪uk : Hq(X ;Z/2)
∼=−→ H̃q+k(Xζ k

;Z/2)

Then the Steenrod squaring operations, when applied

to the Thom class are related to the Stiefel-Whitney

classes of the bundle ζ k by the formula:

(4) wi(ζ
k)∪uk = Sqi(uk) ∈ Hk+i(Xζ k

;Z/2).

The mod 2 Steenrod algebra A is the algebra gen-

erated operations Sqi subject to the Adem relations.

From the axioms it is not difficult to construct an ad-

ditive basis for A. Namely, if I = (i1, · · · , iq) is a finite

sequence of positive integers, let SqI be the product

SqI = Sqi1 Sqi2 · · ·Sqiq .

We say that the sequence I is admissible if is ≥ 2is+1

for every s = 1, . . . ,q−1.
For any space (or spectrum) X , H∗(X ;Z/2) has the

structure of an A-module by axiom (1) above. By us-

ing the axioms to study this module structure on the

cohomology of products of infinite dimensional pro-

jective spaces, RP∞×·· ·×RP∞, one can prove the fol-

lowing without much difficulty.

Proposition 17.

1. {SqI : I admissible} is a basis for A as a graded vec-

tor space over Z/2.
2. {Sq2r

r ≥ 0} generates A as a graded algebra over

Z/2.

A has more structure as well. It is a “Hopf alge-

bra”, meaning that it is both an algebra and a coal-

gebra, and the coproduct is a map of algebras. The

coproduct map

∆ : A→A⊗A

is defined to be the map of algebras induced by the

Cartan formula,

Sqi→∑
j

Sq j⊗Sqi− j.

One can check directly that this does give a well-

defined map of algebras by seeing that it respects the

Adem relations.

A calculation of the cohomology of Eilenberg-

MacLane spaces by H. Cartan and J.P. Serre showed

that the Steenrod algebra A is indeed the alge-

bra of all cohomology operations, which is to say

all natural transformations from cohomology with

Z/2-coefficients to itself, viewed as a functor from

the category of spaces of the homotopy type of

CW -complexes to the category of graded abelian

groups. The representing spectrum of cohomology

with Z/2-coefficients is the Eilenberg-MacLane spec-

trum HZ/2, so Cartan’s calculation can be interpreted

as saying that the Steenrod algebra A is the cohomol-

ogy of HZ/2,

A∼= H∗(HZ/2;Z/2).

Thom proved Theorem 14 by a general construc-

tion, now known as the “Pontrjagin-Thom construc-

tion”. This establishes that any cobordism theory,

i.e where one might insist that the manifolds have

certain structures such as an orientation, or an al-

most complex structure, can be described in terms

of the homotopy groups of a certain Thom spectrum.

The primary work in Thom’s proof of Theorems 15

and 16, was to show that the mod 2 cohomology of

the Thom spectrum MO is a free module over the

Steenrod algebra, with one generator corresponding

to every monomial basis element in the polynomial

algebra Z/2[b2,b4, · · · ,br · · · , : r 6= 2k−1].

(5) H∗(MO; Z/2)∼=
⊕
ω∈I

Σ
|ω|A

where, as above, the indexing set I consists of all

monomials in Z/2[b2,b4, · · · ,br · · · , : r 6= 2k − 1]. The no-

tation Σ|ω|A means that the grading of the Steenrod

algebra A is shifted by the dimension of the mono-

mial bI ∈ Z/2[b2,b4, · · · ,br · · · , : r 6= 2k−1].
From this it is a rather formal argument to show

that the spectrum MO is homotopy equivalent to a

wedge of Eilenberg-MacLane spectra (proving Theo-

rem 16), thus determining its homotopy groups (and

proving Theorem 15).

Furthermore, from Thom’s calculations one can

describe examples of manifolds Br representing gen-

erators br of the cobordism ring.

We define B2i to be RP2i
. For general n, suppose

recursively that Bk has been defined for k < n. Write n
as a sum of distinct powers of 2,

n = 2i1 +2i2 + · · ·+2ir with i1 < i2 < · · ·< ir.
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Notice again that r = α(n).
We can then write n = 2i1 + 2m, where m = 2i2−1 +

· · ·+2ir−1. We then define

Bn = S2i1 ×Z2 Bm×Bm.

Using the fact that these manifolds are iterated

Z/2-equivariant products of spheres and projective

spaces, it is possible to directly show inductively, us-

ing Whitney’s immersion RP2 j
# R2 j+1−1, that these

generators admit immersions

Bm # R2m−α(m).

Furthermore, by taking disjoint unions and products

of these manifolds and immersions, one can prove

the following theorem due to R, Brown [10]. This ar-

gument was carried out in [16].

Theorem 18 (Brown [10]). Every closed n-manifold is

cobordant to one that immerses in R2n−α(n).

Notice that this gives more evidence for the truth

of the immersion conjecture.

3.3 The Brown-Peterson Approach to the

Immersion Conjecture

This brings us to the program of E.H. Brown Jr.

and F.P. Peterson that eventually led to a proof of the

immersion conjecture.

Consider the stable normal bundle map

νM : Mn→ BO.

Consider the exact sequence in cohomology:

0→ IMn → H∗(BO;Z/2)
ν∗M−→ H∗(Mn;Z/2)

Here IMn is the kernel of ν∗M , and is an ideal in

H∗(BO;Z/2)∼= Z2[w1, · · ·wi, · · · ].
Define

In =
⋂
Mn

IMn .

One may view this as the ideal of all relations among

the normal Stiefel-Whitney classes of all n-manifolds.

Massey’s Theorem 11 above can be interpreted to say

that wi ∈ In for i > n−α(n).
In 1963 Brown and Peterson calculated the ideal

In ⊂H∗(BO;Z/2) explicitly. It is easier to state their re-

sult in terms of the Thom isomorphic image of the

ideal,

φ(In)⊂ H∗(MO;Z/2)

where φ =∪un : H∗(BO;Z/2)
∼=−→H∗(MO;Z/2) is the Thom

isomorphism.

In fact we will describe the quotient module,

H∗(MO;Z/2)/φ(In). Now recall Thom’s cohomology

calculation (5) of H∗(MO;Z/2). In particular it is a free

module over the Steenrod algebra A, with a very ex-

plicit basis. The quotient module H∗(MO;Z/2)/φ(In)

was shown by Brown and Peterson to split as a sum

of cyclic modules over the Steenrod algebra, indexed

by the same basis. In order to describe these cyclic

modules over A, we begin by recalling that being a

connective Hopf algebra, A admits a canonical anti-

automorphism. More explicitly, given the connectiv-

ity of A, we can write the coproduct of an element

a ∈A in the form

∆(a) = a⊗1+1⊗a+∑
i

ai⊗bi ∈A⊗A

where the gradings of ai and bi are both positive for all

i in this sum. Then the canonical antiautomorphism

χ : A→A is defined recursively (using the grading) by

the rules χ(1) = 1 and

(6) χ(a)+a+∑
i

aiχ(bi) = 0.

It is easy to see from this definition that

χ
2 = 1 and(7)

χ(ab) = χ(b)χ(a) forall a,b ∈A.

The canonical antiautomorphism χ : A→ A plays

an important role in understanding how the action

of the Steenrod algebra behaves with respect to

Poincaré duality. More specifically, let Mn be a closed

n-manifold with stable normal bundle νMn having

Thom spectrum TνMn . This spectrum is defined as fol-

lows. Let e : Mn ↪→RL be an embedding of Mn into some

large dimension Euclidean space. Let νe be its nor-

mal bundle and Mνe the corresponding Thom space.

Consider its suspension spectrum Σ∞(Mνe). Then the

Thom spectrum is defined to be the desuspension

TνMn = Σ
−L

Σ
∞(Mνe).

Notice that in the cohomology of the Thom spectrum,

the Thom class has dimension zero:

uMn ∈ H0(TνMn ;Z/2).

Define the left ideal J̃(Mn)⊂A by

J̃(Mn) = {a ∈A : auMn = 0}.

We can then take the intersection of these ideals to

define the left ideal

J̃n =
⋂
Mn

J̃(Mn)

where the intersection is taken over all closed

n-manifolds Mn. The following is the main calcula-

tional result that Brown and Peterson needed to com-

pute all relations among the normal Stiefel- Whitney

classes of n-manifolds.
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Theorem 19 (Brown and Peterson [5] [6]).

J̃n = J[ n
2 ]
= A{χ(Sqi) : 2i > n}.

Outline of proof.

This theorem was proved by considering the fol-

lowing composite isomorphism

D : Hq(M
n;Z/2)

P.D−−→ Hn−q(Mn;Z/2)
Φ−→ Hn−q(TνMn)

where P.D is the Poincaré duality isomorphism and Φ

is the Thom isomorphism. They heavily use the fol-

lowing identity originally due to Wu.

Lemma 20. For a ∈A having degree i,

D(χ(a)∗([M
n])) = a(uMn) ∈ H i(T(νMn ;Z/2),

where [Mn] ∈Hn(Mn;Z/2) is the fundamental class, and

if b ∈ A is an operation in mod 2 cohomology of de-

gree i, b : Hq(−;Z/2)→Hq+i(−;Z/2), then b∗ denotes the
dual operation in mod 2 homology, b∗ : Hr(−;Z/2)→
Hr−i(−;Z/2).

From this Brown and Peterson were able to show

the following:

Lemma 21. Let a ∈A have degree i. Then a ∈ J̃n if and

only if

χ(a) : Hn−i(X ;Z/2)→ Hn(X ;Z/2)

is zero for every space X .

From this Theorem 19 followed from rather stan-

dard calculations.

This theorem allowed Brown and Peterson to de-

scribe the ideal In ⊂ H∗(BO;Z/2) indirectly by explic-

itly describing the quotient space after applying the

Thom isomorphism. Namely, they proved the fol-

lowing (compare with the cohomology calculation of

H∗(MO;Z/2) given in (5)).

Theorem 22 (Brown and Peterson [5] [6]). Let I be the
indexing set of monomials in the cobordism ring η∗ ∼=
π∗(MO) = Z/2[b2,b4, · · · ,br · · · , : r 6= 2k−1].

H∗(MO;Z/2)/φ(In) =
⊕

ω∈I,|ω|≤n

Σ
|ω|A/J

[
n−|ω|

2 ]
,

where, for ω ∈ I, |ω| is the grading of the monomial

bω ∈ Z/2[b2,b4, · · · ,br · · · , : r 6= 2k−1].

The next major step toward the proof of the im-

mersion conjecture was accomplished by Brown and

Gitler [4] in 1973. In that paper, Brown and Gitler

proved the following:

Theorem 23. There exist spectra Bm, m≥ 0, satisfying
the following properties:

1. H∗(Bm;Z/2)∼=A/Jm =A/A{χ(Sqi) : i > m} as mod-

ules over the Steenrod algebra

2. Let um : Bm → HZ/2 represent the generator of

H∗(Bm;Z/2) as a module over the Steenrod alge-

bra. Then if X is any space of the homotopy type

of a CW -complex,

um∗ : πq(Bm∧X+)→ πq(HZ/2∧X+)∼= Hq(X ;Z/2)

is surjective for q≤ 2m+1.

Furthermore, these properties characterize the homo-

topy type of the spectra Bm.

For any connected, closed n-manifold Mn, there

is a well-known “Spanier-Whitehead duality” between

Mn and the Thom spectrum of its stable normal bun-

dle, TνMn . A consequence of this duality implies that

Hq(TνMn ;Z/2)∼= Hn−q(M
n;Z/2), forall q≥ 0.

Using this duality one can conclude the following:

Corollary 24. Let Mn be a connected, closed n-dimen-

sional manifold. Let αr ∈Hr(TνMn ;Z/2), 0≤ r≤ n, be any
cohomology class, represented by a map of spectra

which by abuse of notation we also call

αr : TνMn → Σ
rHZ/2.

Then there is a map of spectra

α̃r : TνMn → Σ
rB[ n−r

2 ],

such that the composition

TνMn
α̃r−→ Σ

rB[ n−r
2 ]

u
[ n−r

2 ]

−−−→ Σ
rHZ/2

is homotopic to αr. Here [ n−r
2 ] denotes the integral part

of the real number n−r
2 . In particular the Thom class

uMn : TνMn →HZ/2

lifts to a map

ũMn : TνMn → B[ n
2 ]
.

This theorem was proved by Brown and Gitler by

a rather complicated obstruction theory argument.

They basically proved that there are no obstructions

to the existence of spectra Bn satisfying these proper-

ties. The relevance of these properties to the immer-

sion conjecture, and specifically the homotopy lifting

properties needed to prove the immersion conjecture

is the following corollary of this theorem.

Let νMn : Mn→BO be the stable normal bundlemap

of a connected, closed n-dimensional manifold, and

let

ν
t
Mn : T νMn →MO

is the induced map of Thom spectra. Define the spec-

trum MO/In to be the wedge of Brown-Gitler spectra

indexed by themonomial basis of the cobordism ring:
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Definition 2.

MO/In =
∨

ω∈I,|ω|≤n

Σ
|ω|B

[
n−|ω|

2 ]

Notice that by Theorem 22 we have that

H∗(MO/In;Z/2)∼= H∗(MO;Z/2)/φ(In)(8)

∼=
⊕

ω∈I,|ω|≤n

Σ
|ω|A/J

[
n−|ω|

2 ]

as modules over the Steenrod algebra. This property

is what motivated the notation of “MO/In” for this

spectrum.

As above, let um : Bm→HZ/2 be a map that repre-

sents the generator of H∗(Bm;Z/2)∼=A/Jm as a (cyclic)

module over the Steenrod algebra. Taking a wedge of

these maps produces a map

(9)

vn :MO/In =
∨

ω∈I,|ω|≤n

Σ
|ω|B

[
n−|ω|

2 ]

∨u
[
n−|ω|

2−−−−−→
∨

ω∈In

Σ
|ω|HZ/2=MO.

As a consequence of Corollary 24 one immediate

has the following.

Corollary 25. Let Mn be a closed n-manifold with sta-

ble normal bundle νMn : Mn → BO and induced Thom

spectrum map ν t
Mn : TνMn →MO. Then there is a map

of spectra

ν̃
t
Mn : TνMn →MO/In

that lifts ν t
Mn : TνMn →MO in the sense that the compo-

sition

TνMn
ν̃t

Mn−−→MO/In
vn−→MO

is homotopic to ν t
Mn .

Because of this corollary, the spectrumMO/In can

be viewed as a “universal spectrum for the Thom

spectra of stable normal bundles of n-manifolds”. In

order to pursue these ideas one needed a way of go-

ing from this kind of structure on the level of Thom

spectra, to structure on the level of the stable normal

bundles themselves. Brown and Peterson eventually

accomplished this as well [9]. But before we describe

how this was done, we go back to Brown-Gitler spec-

tra and describe an explicit construction of them that

is related to Artin’s braid groups, which play an im-

portant role in knot theory and geometric group the-

ory. This description was also useful in the proof of

the immersion conjecture.

Let βk be Artin’s braid group on k strings. An el-

ement b ∈ βk can be thought of as a configuration of

k strings, connecting two sets of k fixed points, each

set lying in parallel planes in R3. Thus one can picture

b ∈ βk as follows:

More precisely, an element b ∈ βk is an isotopy

class of such configurations. The group multiplica-

tion in βk is given by juxtaposition of braids. The

clearest way of making this definition precise is by

defining βk to be the fundamental group of the con-

figuration space of k unordered points in R2. That is,

if we let

Fk = {(t1, · · · , tk) ∈ (R2)k : ti 6= t j if i 6= j},

and we let Ck be the orbit space of the natural, free

action of the symmetric group Σk on Fk given by per-

mutation of coordinates,

Ck = Fk/Σk.

Then βk is defined to be the fundamental of Ck:

(10) βk = π1(Ck).

It is also not difficult to see that the configuration

spaces Ck are Eilenberg-MacLane spaces:

Ck = K(βk,1)

See [34] for example.

The configuration space Ck also comes equipped

with a natural k-dimensional vector bundle which we

call γk. It is defined by

γk = Fk×Σk R
k→ Fk/Σk =Ck.

Alternatively, γk is defined by the k-dimensional rep-

resentation of the braid group βk defined by associ-

ating to a braid the permutation matrix given by the

permutation of the endpoints of the strings.

Notice that the Thom space of γk is given by

Cγk
k = Fk+ ∧Σk Sk

where we are thinking of the sphere Sk as Sk = Rk ∪∞,

with the action of Σk given by permuting coordinates

(and ∞ is a fixed point).

The relevance of the braid groups and the spaces

Ck and Cγk
k to Brown-Gitler spectra and the Immersion

Conjecture are the following two results:

Theorem 26 (Mahowald [30]). Let Tγk be the Thom

spectrum

Tγk = Σ
−k

Σ
∞(Cγk

k ) = Σ
−k

Σ
∞

(
Fk+ ∧Σk Sk

)
.
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That is, Tγk is the spectrum whose k-fold suspension is

the suspension spectrum of the Thom space,

Σ
kTγk = Σ

∞

(
Fk+ ∧Σk Sk

)
.

Then as modules over the Steenrod algebra,

H∗(Tγk;Z/2)∼= A/J[ k
2 ]
.

Notice that this is the same cohomology as the

Brown-Gitler spectrum. Mahowald also conjectured

that Tγk is indeed homotopy equivalent to the corre-

sponding Brown-Gitler spectrum. This conjecture was

proved by Brown and Peterson.

Theorem 27 (Brown and Peterson [8]). There is a map

of spectra

gk : Tγk→ B[ k
2 ]

that induces an isomorphism in cohomology with co-

efficients in Z/2. (Such a map is called a “2-primary

weak homotopy equivalence”.)

Putting these results together we have the follow-

ing:

Corollary 28. There is a 2-primary weak homotopy

equivalence

MO/In '
∨

ω∈I,|ω|≤n

Σ
|ω|Tγn−|ω|

=
∨

ω∈I,|ω|≤n

Σ
2|ω|−n

(
Fn−|ω|+ ∧Σn−|ω| S

n−|ω|
)
.

This in turn, using Corollary 25, implies the lift-

ing, on the level of Thom spectra, of stable normal

bundle maps to these Thom spectra of the braid

group representations. This is related to the notion

of “braid orientations” of manifolds which was stud-

ied by F. Cohen [11] and the author [14].

We now go back to the Brown-Peterson pro-

gram. Notice that by the definition of the ideal In ⊂
H∗(BO;Z/2), together with Massey’s calculation, one

can conclude that in cohomology, for any n-manifold

Mn, there is a commutative diagram

(11)

H∗(BO)
ν∗M−−−−→ H∗Mny x

H∗(BO(n−α(n)) −−−−→
Massey

H∗(BO)/In.

Basically, the Brown-Peterson program was to show

that one could realize this diagram by a diagram of

maps between spaces. This is broken down into the

following steps:

1. Show that there exist spaces “BO/In” together

with maps ρn : BO/In → BO satisfying the follow-

ing properties:

(a). In cohomology the map ρ∗n : H∗(BO;Z/2)→
H∗(BO/In;Z/2) is surjective with kernel In ⊂
H∗(BO;Z/2), and

(b) For every n manifold Mn, there is a map

ν̃Mn : Mn → BO/In making the following diagram

homotopy commute:

Mn ν̃Mn−−−−→ BO/In

=

y yρn

Mn −−−−→
νM

BO.

2. There is a map ρ̃n : BO/In→ BO(n−α(n)) that lifts
(up to homotopy) the map ρn : BO/In→ BO.

Notice that if these steps could be completed,

then for every closed n-manifold, one would have the

following homotopy commutative diagram, realizing

the cohomology diagram (11) above:

(12)

Mn ν̃Mn−−−−→ BO/In

νMn

y yρ̃n

BO ←−−−− BO(n−α(n)).

We now have the information necessary to do this

program on the Thom spectrum level. Namely we will

prove the following. This was originally proved by

Brown and Peterson in [7].

Theorem 29 (Brown and Peterson, 1977 [7]). Let Mn

be a closed n-dimensional manifold. Let νMn : Mn→ BO
be the stable normal bundlemap, and let T νMn :TνMn→
MO be the corresponding map of Thom Spectra. Let

MO(k) = Σ−kΣ∞MO(k) be the Thom spectrum of the uni-

versal bundle over BO(k). Then there is a map of spec-

tra

T̃ νMn : TνMn →MO(n−α(n))

so that the composition

TνMn
T̃ νMn−−−→MO(n−α(n))→MO

is homotopic to T νMn : TνMn →MO.

Notice that by Corollary 25, in order to prove this

theorem it suffices to prove the following “universal”

result:

Theorem 30. There is a map

ṽn : MO/In→MO(n−α(n))

so that the composition

MO/In
ṽn−→MO(n−α(n))→MO

is homotopic to the map vn : MO/In→MO described in

equation (9).
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Note. The reason that Theorem 30 implies Theo-

rem 29 is that by Corollary 25, the stable normal

bundle map νMn : Mn→ BO has induced map of Thom

spectra ν t
Mn : TνMn →MO that factors through a map

ν̃ t
Mn : TνMn → MO/In. Furthermore, Theorem 30 sup-

plies us with a map ṽn : MO/In →MO(n−α(n)), so we

have the resulting composition

T̃ νMn : TνMn
ν̃t

Mn−−→MO/In
ṽn−→MO(n−α(n))

that satisfies Theorem 29.

Proof. (Sketch). Recall that fromDefinition 2 and The-

orem (16), we have that

MO/In =
∨

ω∈I,|ω|≤n

Σ
|ω|B n−|ω|

2
and MO'

∨
ω∈I

Σ
|ω|HZ/2.

Furthermore the map vn : MO/In →MO is given by a

wedge of maps of the form

vn,ω : Σ
|ω|B n−|ω|

2
= S|ω|∧B n−|ω|

2

1∧ j n−|ω|
2−−−−−→ S|ω|∧HZ/2(13)

= Σ
|ω|HZ/2 ↪→MO,

where jk : Bk → HZ/2 represents the generator of

H∗(Bk;Z/2) as a module over the Steenrod algebra, A.
In order to understand this map better, we recall

somemultiplicative structure possessed by the Thom

spectrum MO. Consider the Whitney sum map on the

level of classifying spaces,

µ : BO(k)×BO(r)→ BO(k+ r)

On the vector bundle level, this is the map that classi-

fies the Whitney sum of vector bundles. On the group

level this map is induced by the pairing

O(k)×O(r)→ O(k+ r)

given by “block sum”. That is, it takes a k× k-matrix

and an r× r- matrix and puts them in the upper left

hand k× k – block and the lower right hand r× r –

block, respectively, of a (k + r)× (k + r)-dimensional

matrix, with all other entries being zero. On the Thom

space level, this defines a map

µ
t : MO(k)∧MO(r)→MO(k+ r)

and on the Thom spectrum level this induces a prod-

uct, which by abuse of notation we also call µ t ,

µ
t : MO∧MO→MO.

This gives the spectrum MO the structure of a “ring

spectrum”.

Note. The fact that one can take smash products of

spectra in an appropriately associative and functorial

way is, perhaps surprisingly, technically quite diffi-

cult. But the technology necessary to do this is now

part of every homotopy theorist’s “tool kit”.

This structure allows us to understand the split-

ting of MO as a wedge of Eilenberg-MacLane spectra

a bit better.

Let ω ∈ I be a monomial basis element of the

cobordism ring η∗. By Thom’s Theorem 14, η∗ ∼=
π∗(MO), so we may let

bω : S|ω|→MO

represent the homotopy class defined by ω ∈ η∗. Now

let

ιω : Σ
|ω|HZ/2→MO

be the inclusion given by the Thom splitting of MO
(Theorem 16). This splitting map is given by the com-

position

ιω : S|ω|∧HZ/2
bω∧ι1−−−→MO∧MO µt

−→MO.

To prove Theorem 29 we need to show that the

map vn : MO/In →MO, factors through MO(n−α(n)).
By the above, it therefore suffices to show that the

maps

vn,ω : S|ω|∧B n−|ω|
2

1∧ j n−|ω|
2−−−−−→ S|ω|∧HZ/2

bω∧ι1−−−→MO∧MO µt

−→MO

factors through MO(n−α(n)).
To do this we first observe that the homotopy

group interpretation of R. Brown’s Theorem 18 about

every n-manifold being cobordant to one that im-

merses in R2n−α(n), is that

(14) πk(MO(n−α(n)))→ πk(MO)

is surjective. Therefore the homotopy class bω lifts to

a class

b̃ω : S|ω|→MO(|ω|−α(|ω|)).

Also, the calculations done of the mod 2 cohomol-

ogy of the Brown Gitler spectra Bk, as well as odd

primary calculations about Brown-Gitler spectra and

braid groups done in [13] and [12], say that Bk has

the weak homotopy type of a finite CW -spectrum (i.e

a spectrum made up of CW -complexes and cellular

structure maps), of dimension 2k−α(k). Obstruction
theory then tells us that the generating map

Bk
jk−→HZ/2

ι1−→MO

factors through MO(2k−α(k)):

j̃k : Bk→MO(2k−α(k)).
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Therefore the map

vn,ω : S|ω|∧B n−|ω|
2

1∧ j n−|ω|
2−−−−−→ S|ω|∧HZ/2

bω∧ι1−−−→MO∧MO µt

−→MO

lifts to the composition

ṽn,ω : S|ω|∧B n−|ω|
2

(15)

b̃ω∧ j̃ n−|ω|
2−−−−−−→MO(|ω|−α(|ω|)∧MO(n−|ω|−α(n−|ω|)

µt

−→MO(n−α(|ω|)−α(n−|ω|))→MO(n−α(n)),

where the lastmap is the inclusion that exists because

α(k)+α(r)≥ α(k+ r).

As argued above, this is what is needed to complete

the proof of this theorem.

As mentioned above, Theorem 29 gives us the

Thom spectrum analogue of the immersion conjec-

ture. More precisely, this theorem tells us that the

stable normal bundle map of a closed n-manifold,

νMn : Mn → BO has induced map of Thom spectra,

ν t
Mn : TνMn → MO that factors through MO(n− α(n)).
The immersion conjecture would be proved once one

shows that the actual stable normal bundle map fac-

tors through BO(n−α(n)).
To do this, Brown and Peterson’s program is to es-

sentially “de-Thom-ify” the above constructions and

arguments. The first major step in this was com-

pleted by Brown and Peterson [9] in 1979. For each n
they constructed what they called a “universal space

for normal bundles of n-manifolds”, “BO/In”, together

with maps

ρn : BO/In→ BO

that satisfies the following properties:

1. H∗(BO/In;Z/2) ∼= H∗(BO;Z/2)/In and ρ∗n :
H∗(BO;Z/2) → H∗(BO/In;Z/2) is the projection

map.

2. The Thom spectrum of ρn : BO/In → BO is MO/In,

as defined above.

3. For every n manifold Mn, there is a map ν̃M : Mn→
BO/In making the following diagram homotopy

commute:

Mn ν̃M−−−−→ BO/In

=

y yρn

Mn −−−−→
νM

BO.

This Brown-Peterson construction of BO/In was

obstruction theoretic. They used a kind of Moore-

Postnikov tower to show that no obstructions to

the existence to these spaces with these properties

exist. They did not construct explicit models for

these spaces. But the existence of these spaces al-

lows one to reduce the study of the Immersion Con-

jecture about the best immersion dimensions of all

n-manifolds, to a homotopy theoretic question about

these spaces, and the maps ρn : BO/In → BO. Namely

their program proceeds with the following question:

Question. Is there a map ρ̃n : BO/In→ BO(n−α(n)) lift-
ing ρn : BO/In→ BO?

Notice that if the answer is yes, then by Brown

and Peterson’s theorem, for any n-manifold, the com-

position

Mn ν̃M−→ BO/In
ρ̃n−→ BO(n−α(n))

would be a lifting of the stable normal bundle map

νM : Mn→ BO, and by Hirsch-Smale, this would classify

the normal bundle of an immersion

Mn # R2n−α(n).

Theorem 31 (C. 1985). Such a lifting ρ̃n : BO/In →
BO(n−α(n)) exists, and therefore the immersion con-

jecture is true.

4. The Immersion Conjecture II:
Outline of Its Solution: The
Homotopy Theory

The proof of Theorem 31 was homotopy theo-

retic. Since the spaces BO/In were only understood in

terms of their homotopy theoretic andmanifold theo-

retic properties, the existence of the required liftings

ρ̃n : BO/In→BO(n−α(n))was proved using a homotopy

theoretic, and indeed an obstruction theoretic, argu-

ment. It was quite technical. In this section we review

the ingredients of that proof given in [15], and men-

tion a couple of places where the proof might be sim-

plified, given a more modern understanding of the

relevant homotopy theory.

The basic object of study in the proof of the im-

mersion conjecture was the Moore- Postnikov tower

for the inclusion map ιn−α(n) : BO(n−α(n))→ BO. This
is a tower of fibrations of the form

K j K1

↓ ↓
BO(n−α(n))→ ···X j→ X j−1 · · · → X1→ BO(16)

where each K j → X j → X j−1 is a fibration with fiber K j

being an Eilenberg-MacLane space, where X0 =BO. The
tower converges to BO(n−α(n)).
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The idea of the proof is to use an induction ar-

gument that assumes that the map ρn : BO/In → BO
lifts to a map ρn, j−1 : BO/In → X j−1 satisfying certain

properties, and then show that the inductive step of

finding an appropriate map ρn, j : BO/In→ X j could be

completed.

K j K1

↓ ↓
BO(n−α(n))→ ···X j→ X j−1 · · · → X1→ BO

↑ ρn, j−1 ↑ ρn

BO/In
=−→ BO/In

The first step in completing the inductive argu-

ment was to study the corresponding diagram on the

level of Thom spectra:

L j L1(17)

↓ ↓
MO(n−α(n))→ ···(X j)

γ → (X j−1)
γ · · · → (X1)

γ →MO
↑ T ρn, j−1 ↑ T ρn

MO/In
=−→ MO/In

Here L j is the (homotopy) fiber of the induced

map of Thom spectra, (X j)
γ → (X j−1)

γ .

Now from Theorem 30 we know that the map of

Thom spectra T ρn : MO/In →MO has a lifting all the

way up the tower to MO(n−α(n)). The idea is to then

use this lifting to show that an appropriate lifting on

the level of base spaces exists. In order to understand

the relationship between the obstructions to obtain-

ing liftings on the Thom spectrum level and liftings

on the base space level, one needs to understand

how the successive homotopy fibers L j of the map

of Thom spectra (X j)
γ → (X j−1)

γ compare to the ho-

motopy fibers K j of the map of base spaces X j→ X j−1.

This was studied by Brown and Peterson in their pa-

per constructing the BO/In spaces [9]. Central in their

study was understanding how Steenrod algebra inter-

acts with the Thom isomorphism. We recall their re-

sult now.

Let f : B→ BO be a map that induces an isomor-

phism in homotopy groups through dimension k. Let
V be a graded Z/2-vector space withVq = 0 for q≤ k. Let
K(V ) be the corresponding Eilenberg-MacLane space

and suppose γ : B→K(V ) is amapwith homotopy fiber

B1. So we have a “two stage system over BO”:

B1
ι−−−−→ B

f−−−−→ BO

γ

y
K(V )

Let T and T1 be the associated Thom spectra of the

maps f : B→ BO and f ◦ ι : B1→ BO.

Consider the induced (co)fibration sequence of

spectra:

T1→ T→ T/T1.

The goal is to understand, at least through a range of

dimensions, the homotopy type of the cofiber T/T1

in terms of the Eilenberg-MacLane space K(V ). Brown

and Peterson showed that, through a range of dimen-

sions, the cohomology H∗(T/T1;Z/2) can be described

in terms of the vector space V , the Steenrod algebra

A, and the cohomology of BO, H∗(BO;Z/2). We now

describe their result more carefully.

Let A(BO) be the semi-tensor product of the

Steenrod algebra A with H∗(BO;Z/2). That is,

A(BO) =A⊗H∗(BO;Z/2)

with the algebra structure defined by

(a⊗u)(b⊗ v) = ∑
i

ab′i⊗ (χ(b′′i )u)v

where if ∆ :A→A⊗A is the Cartan diagonal map, then

∆(b) = ∑i b′i⊗b′′i . To remember this twisted multiplica-

tion we denote a⊗u by a◦u.
Given any map g : X → BO, then of course

H∗(X ;Z/2) has the structure of a graded module over

the graded algebra H∗(BO;Z/2). This induces a A(BO)

module structure on the cohomology of the Thom

spectrum Tg:

A(BO)⊗H∗(Tg;Z/2)→ H∗(Tg;Z/2)

(a◦u)(φ(x)) = a(φ(u∪ x))

where x ∈H∗(X ;Z/2), φ : H∗(X ;Z/2)
∼=−→H∗(Tg;Z/2) is the

Thom isomorphism.

Consider the map

ψ : (A(BO)⊗V )∗→ H∗+1(Tg/Tg1).

defined by

ψ(a◦u⊗ v) = a(u∪φ(γ̃∗(v)))

where we are identifying v ∈ V with the correspond-

ing cohomology class v∈H∗(K(V );Z/2), and here φ de-

notes the relative Thom isomorphism. In [5] Brown

and Peterson proved the following:

Theorem 32 ([5]). The map

ψ : (A(BO)⊗V )q→ Hq+1(Tg/Tg1)

is an isomorphism for q≤ 2k.

Moreover, since A(BO)⊗V is a free module over

the Steenrod algebra A, one can conclude that the

cofiber Tg/Tg1 has the homotopy type of a wedge

of Eilenberg-MacLane spectra through dimension 2k.
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Applying this to the Postnikov tower 16, one can

conclude that the homotopy (co)fibers L j of the in-

duced tower of Thom spectra 17 have the homo-

topy type of Eilenberg-MacLane spectra through di-

mension 2(n−α(n))≥ n (assuming n > 3). In particular

the homotopy type of these spectra are determined,

through this range, as free A(BO)-modules on the ho-

motopy type of the fibers K j of Postnikov system (16).

This was a crucial fact in the obstruction theory ar-

guments of [15] in knowing when lifts on the level of

Thom spectra “de-Thom-ify” to give lifts on the level

of base spaces.

There were two other ingredients in the obstruc-

tion theory arguments (i.e lifting arguments) of [15].

1. Stable homotopy properties of the spaces BO/In.

This produced a “stable lifting” of the map ρn :
BO/In→ BO(n−α(n)).

2. The existence of certain multiplicative properties

of the disjoint union of the space

Π

nBO/In. These

showed how the liftings of the BO/Ik’s for k < n
force liftings on a large skeleton of BO/In.

The first of these ingredients can be stated in the

following theorem.

Theorem 33 ([15]). For sufficiently large N ≥ 0, the
N-fold suspension of the map ρn : BO/In → BO lifts to

ΣNBO(n−α(n)). That is, there is a map

ρ
N
n : Σ

NBO/In→ Σ
NBO(n−α(n))

making the following diagram homotopy commute:

ΣNBO/In
ρN

n−−−−→ ΣNBO(n−α(n))

=

y y
ΣNBO/In −−−−→

ΣN ρn

ΣNBO.

Proof. (Sketch). The obstruction to the existence of a

stable lifting map ρN
n : ΣNBO/In→ ΣNBO(n−α(n)) is the

composition

Σ
NBO/In

ΣN ρn−−−→ Σ
NBO→ Σ

N(BO/BO(n−α(n))).

That is, one can find such a lifting if and only if

this composition is null-homotopic. Now one can

show in a rather direct way, using a stable splitting

theorem of Snaith [40] stated below, that the quo-

tient space BO/BO(n−α(n)) has the same homotopy

type, through dimension n, as a product of mod-2

Eilenberg-MacLane spaces. Since BO/In has the same

homotopy type as an n-dimensionalCW -complex, this

obstruction is entirely cohomological. But the fact

that all cohomological obstructions vanish follows

fromMassey’s result (Theorem 11 above) and the def-

inition of the ideal In.

Here is Snaith’s splitting result referenced above:

Theorem 34 (Snaith [40]). There is a weak homotopy

equivalence of suspension spectra,

Σ
∞BO' Σ

∞(BO(1)∨BO(2)/BO(1)∨·· ·
∨BO(m)/BO(m−1)∨·· ·)

At this point have the required lifting on the

Thom spectrum level, and stably (i.e after taking sus-

pension spectra). And we also know the result at the

level of cobordism theory (i.e that every n-manifold is

cobordant to one that immerses in R2n−α(n)).

The final ingredient we need is that there are

“multiplicative structures”

BO/Ik×BO/Im→ BO/Ik+m(18)

S1×Z2 (BO/Ik)
2→ BO/I2k.

These multiplicative structures were produced

using the universal normal space properties of the

Brown-Peterson spaces BO/In as well as cobordism

theory arguments. It also used the description of

the Brown-Gitler spectra as Thom spectra of bundles

over the classifying spaces of braid groups (Theo-

rem 27) and the well-known multiplicative structure

that these classifying spaces possess.

These multiplicative structures, including the in-

duced structures on homology, were used in the fol-

lowing way. If one strengthened the inductive as-

sumptions to assume that there exist liftings of the

spaces BO/Ik to BO(k−α(k)) for k < n that respect, in

an appropriate sense, these multiplicative structures,

then this forces the obstructions to the lifting of BO/In

to BO(n−α(n)) to be zero on the (n− 1)-dimensional

skeleton of any CW -complex of the homotopy type

of BO/In. The n-dimensional cells were analyzed and

shown to not contribute an obstruction by using the

existence of the stable lifting. This argument then

produced, via a complicated inductive argument, a

lifting of the map ρn : BO/In → BO up the Moore-

Postnikov tower and thereby the required lifting

ρ̃n : BO/In→ BO(n−α(n)).

Comments. The primary reason for this complicated

inductive obstruction theoretic argument was the fact

that the Brown-Peterson spaces BO/In were not con-

structed explicitly. That is to say there are no ex-

plicit models known for them. They were shown to ex-

ist with the appropriate properties by an obstruction

theoretic argument. In particular one does not have

a clear cell decomposition of the spaces BO/In that

would allow for a more concrete obstruction theory

argument for the required lifting to BO(n−α(n)). How-
ever in the 35–40 years since the writing of [15], much
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has been learned by the algebraic topology commu-

nity. For example the multiplicative structures de-

scribed above (18) suggest that the disjoint union

Π

nBO/In has the structure of an algebra over an E2

operad. The conjecture of this structure was made

by Mike Hopkins. Indeed if one takes the operad

of little 2-dimensional disks, which are models of

the classifying spaces of braid groups, one might be

able to find explicit models of the BO/In’s that come

equipped with cell decompositions that respect this

E2-structure. The recent work of Galatius, Kupers, and

Randal-Williams on E2-cell decompositions [20] might

be relevant. If such explicit models can be found,

surely the obstruction theory argument needed to

prove the immersion conjecture could be simplified

greatly.

5. Manifolds with Structure,
Projective Spaces, and the
Goodwillie-Weiss Embedding
Calculus

Up until now, the bulk of this paper has been

a discussion of the techniques used in the proof of

the immersion conjecture. In this section we com-

ment on three topics. The first has to do with mani-

folds with structures such as orientations, spin struc-

tures, or stably almost complex structures. The sec-

ond is about the question of finding the best immer-

sion dimensions for specific manifolds, and in partic-

ular real projective spaces. Finally we give a brief de-

scription of another more modern approach to study-

ing the question of embeddings of manifolds origi-

nally introduced by Goodwillie and Weiss, which re-

lies heavily on homotopy theoretic techniques.

5.1 Manifolds with Structure

At the end of the author’s lecture on “Immersions

of manifolds and homotopy theory” at the Mathemat-

ics Science Literature Lecture Series of Harvard Uni-

versity in 2020 (upon which these notes are based),

the moderator, M.J. Hopkins asked if there were re-

sults similar to the immersion conjecture, or per-

haps any of its motivating preliminary results, known

for other classes of manifolds, such as orientable,

Spin, or stably almost complex manifolds. Of course,

as pointed out above, one of the most important

motivating factors in the original immersion con-

jecture were the calculations done by Massey and

Brown-Peterson of the relations among the normal

Stiefel-Whitney classes of n-manifolds. In response

to the Hopkins’s question, I mentioned that many

years ago, a PhD student of mine, A. Koonce did

some calculations analogous to the Brown-Peterson

Stiefel-Whitney class calculations [5], that computed

relations among the K(n)-characteristic classes of al-

most complex manifolds. Here the K(n) are “Morava

K-theory” spectra that have proven to be extremely

important in homotopy theory over the last 45 years.

Koonce’s results can be found in [27].

At the time the question was asked, I did not re-

member that Massey and Peterson [32] and Papas-

tavridis [36] did some calculations of Stiefel-Whitney

classes of orientable manifolds and of manifolds with

spin structures. I was reminded of this shortly after

the lecture by Donald Davis. Davis and Wilson [19]

then wrote a paper giving a much cleaner exposition

of these old results, clarified their implications, and

extended them in significant ways. Among their re-

sults is the following:

Theorem 35 (Davis and Wilson [19]). Let εn = 0 if n is

congruent to 1 mod 4, otherwise let εn = 1. As above, let
w̄ j(Mn) denote the jth Stiefel-Whitney class of the stable

normal bundle of a closed manifold Mn. Then there ex-

ists a closed orientable n-manifold Mn with w̄n−k(Mn) 6= 0
if and only if k ≥ α(n)+ εn.

The following is an immediate corollary.

Corollary 36. There exists a closed orientable

n-manifold which cannot be immersed in R2n−α(n)−εn−1.

Notice that says that for n congruent to 1 mod 4,
one cannot find a better general immersion theorem

for orientable n-manifolds than what the immersion

conjecture guarantees for all n-manifolds. For n not

congruent to 1 mod 4, the best result one might con-

jecture is that it might be possible to immerse ori-

entable n-manifolds in R2n−α(n)−1. This is a fascinating

open problem.

5.2 Immersions of Projective Spaces

The immersion conjecture is a statement about

all closed n-dimensional manifolds. But particular

n-manifolds may immerse in a much lower dimension

than is guaranteed by the immersion conjecture. To

state an obvious example, the n-dimensional sphere

Sn has a standard immersion, indeed embedding, into

Rn+1. So given a particular n-manifold Mn, finding it’s

best immersion dimension using Smale-Hirsch theory

as well as the homotopy theory of classifying spaces

is an important and often difficult problem. More

specifically one would like to answer the following

question:

Question: Given a fixed n-dimensional closed mani-

fold Mn, what is the smallest k such that Mn # Rn+k.

By Smale-Hirsch theory and the theory of classi-

fying spaces discussed above, this is equivalent to the

following homotopy theoretic question.
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Question: Give a fixed n-dimensional closed manifold

Mn find the smallest k such that there exists a map

ν
k
Mn : Mn→ BO(k)

that lifts the stable normal bundle map νMn : Mn→ BO.
That is, the composition

Mn νk
Mn−−→ BO(k)→ BO

is homotopic to the stable normal bundle map νMn .

Probably the most studied of such specific man-

ifolds are projective spaces, Mn = RPn. In these cases

there has been much work over many years. But still

the final general answer is not known. Prominent

among the contributers to our knowledge about this

problem include, J. Adem, L. Astey, A. Berrick, D.

Davis, S. Gitler, I. James, M. Mahowald, R.J. Milgram,

and others. All of their work uses homotopy theo-

retic obstruction theory of different types, including

K-theory, other generalized cohomology theories, sta-

ble and unstable homotopy theory, etc. Indeed, so

many different types of obstruction theory have been

used to study this problem that the projective space

immersion problem became known not only as an im-

portant example of how homotopy theory can be used

to study a basic question about manifolds, but con-

versely it became a testing ground for new homotopy

theoretic technology. Indeed, around 1980, Mark Ma-

howald, one of the leading homotopy theorists of the

second half of the twentieth century and beyond, told

the author that to him, the main value of the projec-

tive space immersion problem is that it is a good test

for the efficacy of an obstruction theory.

One of the strongest results along these lines is a

“nonimmersion” result proved by D.M. Davis in 1984.

It uses an obstruction theory based on a spectrum

usually denoted by “BP〈2〉” which is an offshoot of the

Brown-Peterson spectrum “BP”. BP, in turn represents

a cohomology theory that is a summand of (almost)

complex cobordism theory, localized at a prime.

Davis’s theorem states the following.

Theorem 37 (Davis [18]). For all m, RP2m does not im-

merse in R4m−4d−2α(m−d) where d is the smallest non-

negative integer such that α(m−d)≤ d +1.

Examples: (1) When m = 2k + 1, one concludes that

RP2m does not immerse in R4m−6. The immersion con-

jecture implies that it does immerse in R2m−2, so the

best possible immersion dimension for such a mani-

fold lies in dimensions between 2m−5 and 2m−2.
(2) A more general, interesting collection of ex-

amples occurs when n is of the form n = 22k+k+2−3 ·2k.

Then this theorem implies RPn does not immerse in

R22k+k+3−6·2k+1−2. So for example, when k = 1 this says

that RP26 does not immerse in R38, yet the immersion

conjecture says it does immerse inR49. When k= 2 this
says that RP244 does not immerse in R462, whereas the

immersion conjecture says it does immerse in R483.

5.3 The Goodwillie-Weiss Calculus for Studying

Embeddings

As mentioned in the first section, the study of im-

mersions of manifolds has traditionally been much

more tractable using the techniques of homotopy the-

ory, than the study of embeddings of manifolds. This

is primarily due to two facts. The first is the theory of

Smale and Hirsch which reduces the study of immer-

sions to the study of vector bundles. The second is the

old result of algebraic topology that says that vector

bundles can be understood in terms of the homotopy

type of mapping spaces where the targets are classi-

fying spaces of the form BG, where G is typically one

of the groups O(n), SO(n), or U(n). Since Smale-Hirsch

theory does not apply to embeddings of manifolds,

for many years homotopy theoretic methods were of

limited use in studying spaces of embeddings.

A new homotopy theoretic approach was discov-

ered in the 1990’s by Goodwillie and Weiss [44], [45],

[22] with subsequent extensions and generalizations

by many others, including Klein, Sinha, Arone, Lam-

brechts, Turchin, Volic, and others (see for example

[23], [37], [3]).

This theory has become known as the

“Goodwillie-Weiss Embedding Calculus”.

The basic viewpoint in this theory is the follow-

ing. Given an n-manifold Mn, let OM be the poset of

open subsets of Mn, partially ordered by inclusion.

Given an L-manifold NL, one considers the contravari-

ant functor (“cofunctor”)

Emb(−,NL) : OM → Spaces

V → Emb(V,NL)

Of course one can also view the space of immer-

sions as a cofunctor,

Imm(−,NL) : OM → Spaces

V → Imm(V,NL)

The immersion cofunctor is a sheaf, in that

(19)

Imm(V1∪V2,NL) −−−−→ Imm(V1,NL)y .
y

Imm(V2,NL) −−−−→ Imm(V1∩V2,NL)

is a pullback square for any open subspaces V1 and V2

of Mn.

What is less obvious, is that this square is a ho-

motopy pullback square as well. This means that for
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example, if one takes homotopy groups of the four

spaces in this square, one gets a Mayer-Vietoris long

exact sequence. This was proved by Weiss [44] [45]

and is, in a sense that can be made precise, a reconsti-

tuted form of Smale-Hirsch theory. In homotopy the-

ory a cofunctor with this Mayer-Vietoris property is

called “excisive”, and by borrowing terminology from

Goodwillie’s calculus of homotopy functors (devel-

oped a bit prior to Weiss’s work) one can summarize

this excisive property by saying that the immersion

cofunctor is a “polynomial cofunctor of degree ≤ 1”.
From this viewpoint, what makes the cofunctor

Imm(−;NL)more calculable than Emb(−;NL) is that, be-

ing of degree ≤ 1, the homotopy type of the immer-

sion cofunctor is determined by this Mayer-Vietoris

property as well as how it behaves on open sets dif-

feomorphic to a disk Dn. Furthermore, in a sense that

Goodwillie and Weiss make precise, the natural trans-

formation

Emb(−;NL)→ Imm(−;NL)

is the “best approximation” to the embedding cofunc-

tor by a cofunctor of degree ≤ 1. The immersion co-

functor is therefore denoted in this theory by

Imm(−;NL) = T1(Emb(−;NL))

where the notation is meant to conjure up the notion

of being the “degree 1 Taylor polynomial” approxima-

tion to the embedding cofunctor.

The basic idea in the Goodwillie-Weiss embedding

calculus is to construct a tower of cofunctors

Emb(−;NL)→ ··· → TkEmb(−;NL)→ Tk−1Emb(−;NL)

(20)

→ ···T1Emb(−;NL) = Imm(−;NL)

that, in an appropriate sense converges to the embed-

ding cofunctor, and so that the natural transforma-

tion

ηk : Emb(−;NL)→ TkEmb(−;NL)

is the “best” approximation to the embedding cofunc-

tor by a “polynomial cofunctor of degree ≤ k”. That
is, TkEmb(−;NL) is the “degree k-Taylor polynomial”

cofunctor approximation to the embedding cofunc-

tor. We will not give the precise definition of a poly-

nomial cofunctor of degree ≤ k, but such cofunctors

are distinguished by the property that their homo-

topy types are determined by its values on tubular

neighborhoods of subsets S of Mn of cardinality ≤ k
(i.e open subsets diffeomorphic to a disjoint union of

≤ k open disks, Dn).

In order to understand the notion of “the best”

approximation by a polynomial functor of degree ≤
k we introduce a bit more terminology and recall a

theorem of Weiss [45].

Definition 3. A cofunctor F : OM→ Spaces is said to be

good if

1. it takes isotopy equivalences to homotopy equiva-

lences, and

2. for any sequence {Vi : i ≥ 0} of objects in OM (i.e

open subsets of Mn), the canonical map

F(∪iVi)→ holimiF(Vi)

is a homotopy equivalence. (Here “holim refers to

the homotopy inverse limit.)

Now let F be the category of good cofunctors.

Weiss showed that the construction of Tk extends to

all of F and proved the following.

Theorem 38 ([45]). The functor Tk :F→F and the nat-

ural transformations ηk : idF → Tk satisfy the following

properties:

• Tk takes equivalences to equivalences

• TkF is polynomial of degree ≤ k, for all F ∈ F ,
• If F is polynomial of degree ≤ k, the ηF : F→ TkF is

an equivalence, and

• For every F ∈ F , the map Tk(ηk) : TkF→ TkTkF is an

equivalence.

These properties of the construction of the “kth”

Taylor approximation TkF are what is meant by the

statement that it gives the “best” approximation to

the functor F by a polynomial functor of degree ≤ k.
The notion of convergence in this theory is some-

times known as “analyticity”, and is proved under

the appropriate hypotheses using the notion of “mul-

tiple disjunction lemmas” for concordance embed-

dings and diffeomorphisms by Goodwillie [21] and

Goodwillie-Klein-Weiss [23].

Now in order for the tower (20) to be useful for

calculations, one needs to be able to compute the ho-

motopy types of the homotopy fibers of the succes-

sive terms:

Lk(F(V ))→ TkF(V )→ Tk−1F(V ).

The functor Lk : OMn → Spaces is known as a homoge-

neous polynomial functor of degree k, in that its lower

degree Taylor approximations, TjL(V ) are contractible

for all j < k.
An impressive part of the Goodwillie-Weiss the-

ory is that they can completely classify the homo-

geneous polynomial cofunctors OMn → Spaces. For

example, let C(Mn,k) be the configuration space of

k-distinct, unordered points in Mn. That is, an ele-

ment of C(Mn,k) is a subset of Mn of cardinality k. No-
tice that this space can be viewed as the complement

of the fat diagonal in the k-fold symmetric product

Mn×·· ·×Mn/Σk. Let

p : Z→C(Mn,k)
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be a fibration with partial section s : C(Mn,k)∩Q→ Z
where Q is a neighborhood of the fat diagonal in the

symmetric product. For V ⊂ OMn one can define F(V )

to be the space of sections of p which are defined on

C(V,k) and agree with s on C(V,k)∩Q′ for some neigh-

borhood of the fat diagonal Q′ ⊂ Q. The cofunctor F
defined this way is a homogeneous polynomial co-

functor of degree k and the remarkable theorem of

Goodwillie and Weiss is that all homogeneous poly-

nomial cofunctor of degree k come about this way, for

some fibration p and section s.
Now the topology of the configuration spaces

C(Mn,k) have been well-studied over the last fifty

years, so the homotopy type of the homogeneous de-

gree k polynomial cofunctors LkF lends itself to cal-

culation.

So in the case of the embedding cofunctor, one

has a tower of fibrations (20) whose base is the space

of immersions, that “converges” to the space of em-

beddings (under appropriate hypotheses), and the ho-

motopy fibers Lk(Emb(−;NL)) have tractable homo-

topy types. One can view this as a “resolution” of

the embedding cofunctor Emb(−;NL) in terms of the

immersion cofunctor Imm(−;NL) where the “layers”

of the resolution lend themselves to calculation. Of

course how these layers fit together is another, of-

ten very difficult problem. Nonetheless over the past

25 years the Goodwillie-Weiss machinery and subse-

quent extensions and generalizations have lead to a

good bit of progress on understanding the homotopy

type of the embedding spaces Emb(Mn,NL). We end

with a quick description of some results that have

been obtained using this theory.

Examples of results using the Goodwillie-Weiss em-

bedding calculus

1. B. Munson [35] gave a complete obstruction for

an immersion Mn # RL being isotopic to an em-

bedding for 3L > 4n+ 4, extending classical work

of Haefliger.

2. I. Volic [42] studied knots, Emb(S1,R3), and he re-

lated the Goodwillie-Weiss obstruction theory to

the finite-type knot invariants of Vassiliev.

3. Arone, Lambrechts, and Volic [2] used this theory

to study the rational homotopy type of the “dif-

ference” (homotopy fiber) between embedding

and immersion spaces,

˜Emb(Mn;RL)→ Emb(Mn;RL)→ Imm(Mn;RL)

when L > 2· embedding dimension of Mn.

4. G. Arone, P. Lambrechts, V. Turchin, and I. Volic

[3] combined this theory with work of Kontse-

vich to calculate the rational homotopy type of

the space of “long knots” in RL, L≥ 4.

5. R. Koytcheff [28] related the Goodwillie-Weiss ob-

struction theory to the “Bott-Taubes integrals”,

giving invariants of knots.

6. D. Sinha [37] adapted the Goodwillie-Weiss

theory to construct a cosimplicial model for

Emb([0,1],N)where N is simply connected and has

dimension ≥ 4.
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