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Abstract. Comparing and recognizing metrics can

be extraordinarily difficult because of the group

of diffeomorphisms. Two metrics, that could even

be the same, could look completely different in

different coordinates. This is the gauge problem.

The general gauge problem is extremely subtle for

non-compact spaces. Often it can be avoided if one

uses some additional structure of the particular

situation. However, in many problems there is no

additional structure. Instead we solve the gauge

problem directly in great generality.

The techniques and ideas apply to many problems.

We use them to solve a well-known open problem in

Ricci flow.

We solve the gauge problem by solving a nonlinear

system of PDEs. The PDE produces a diffeomorphism

that fixes an appropriate gauge in the spirit of

the slice theorem for group actions. We then show

optimal bounds for the displacement function of the

diffeomorphism.

0. Introduction

Suppose we have two weighted manifolds

(Mi,gi, fi) for i = 1, 2 satisfying some PDE. Assume that

on a large, but compact set, the manifolds Mi, metrics

gi and weights e− fi almost agree after identification

by a diffeomorphism.
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• Are the manifolds, metrics and weights the same

everywhere after some identification?

This is a common problem in many questions. The

major obstacle for understanding this in general is

the infinite dimensional gauge group of diffeomor-

phisms:

• Two metrics, that could even be the same, could

look very different in different coordinates.

In some situations the gauge problem can be

avoided if there is some additional structure. A classi-

cal example is the Killing-Hopf theorem that classifies

constant curvature metrics. This classification uses

that the curvature tensor is constant to construct a

“canonical” isometry between the two spaces. In gen-

eral, the gauge problem can be solved when there is

strong asymptotic decay and circumvented when the

space is characterized in a coordinate-free way, such

as a large symmetry group, the vanishing of a special

tensor, or a strong curvature condition.

In the problems we will be interested in, the man-

ifold will be non-compact and we will not have any

special structure. Thus, we will be forced to deal with

the gauge problem head on. The flip side of this is

that once we do that it gives new tools with broad

applications.

0.1 Where Do Questions Like These Arise?

Problems about identifying spaces occur in many

different situations. The one we are interested in

here comes from Ricci flow. A one parameter family

(M,g(t)) of manifolds flows by the Ricci flow, [H], if

gt =−2Ricg(t) ,
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where Ricg(t) is the Ricci curvature of the evolvingmet-

ric g(t) and gt is the time derivative of the metric.

The key to understand Ricci flow is the singulari-

ties that form. The simplest singularity is a homothet-

ically shrinking sphere that disappears (becomes ex-

tinct) at a point. The product of a sphere with R gives

a shrinking cylinder; this singularity, called a neck

pinch, is much more complicated than the spherical

extinction. In dimension three, spherical extinctions

and neck pinches are essentially the only singulari-

ties. Adding another R factor, gives the so-called bub-

ble sheet singularity that is only recently partially un-

derstood. With each additional R factor, the singular-

ities become more complicated and the sets where

they occur are larger.

A triple (M,g, f ) of a manifold M, metric g and

function f on M is a gradient shrinking Ricci soliton

(or shrinker ) if it satisfies

Ric+Hess f =
1
2

g .

Shrinkers give special solutions of the Ricci flow that

evolve by rescaling up to diffeomorphism and are sin-

gularity models. They arise as time-slices of limits of

rescalings (magnifications) of the flow around a fixed

future singular point in space-time. Such limits are

said to be tangent flows at the singularity. Even when

M is compact, the shrinker is typically non-compact

and the convergence is on compact subsets. Shrinkers

also arise in other important ways, such as blow-

downs from −∞ for ancient flows with bounded en-

tropy. Ancient flows are flows that have existed for all

prior times; every tangent flow is ancient. Shrinkers

are the key singularities in Ricci flow and will be our

focus here.

Among shrinkers, cylinders are particularly im-

portant; they are the most prevalent. This is be-

cause the Almgren-Federer-White dimension reduc-

tion divides the singular set into strata whose dimen-

sion is the dimension of translation-invariance of the

blowup. For Ricci flow, this suggests:

• Top strata of the singular set corresponds to

points where the blowup is Rn−2 ×N2.

• The next strata consists of points where the

blowup is Rn−3 ×N3.

The N’s are themselves shrinkers and have been clas-

sified in low dimensions by Cao-Chen-Zhu, Hamilton,

Ivey, Naber, Ni-Wallach, Perelman. In dimensions two

and three, they are N2 = S2 or RP2 and N3 = S3 or S2×R
(plus quotients). The classification in dimension three

relies on an equation for the 2-tensor Ric
S that fails in

higher dimensions where there is no similar classifi-

cation. In fact, there are huge families of shrinkers in

higher dimensions. Combining dimension reduction

with the classification in low dimensions, we see that

the most prevalent singularities are:

S2 ×Rn−2 followed by S3 ×Rn−3 (and quotients).

As one approaches a singularity in the flow and

magnifies, one would like to know which singularity

it is. Since most singularities are non-compact yet the

evolving manifolds are closed, one only sees a com-

pact piece of the singularity at each time as one ap-

proaches it. The next theorem recognizes the most

prevalent singularities from just a compact piece.

Theorem 0.1 ([CM1]). Cylindrical shrinkers S`×Rn−`

are strongly rigid for any `.

The theorem holds for products of Rn−` with quo-

tients of S` and a large class of other positive Ein-

stein manifolds; see [CM1] for details. Strong rigidity

means that if another shrinker is close enough on a

large compact set, then it must agree.

In most problems in geometric PDEs, it would be

unthinkable to control an entire solution from just

knowing roughly how it looks on a compact set. This

is exactly what we do here. If one knew exactly how it

looked like on a compact set, it would be much less

surprising and essentially follow from unique contin-

uation. The surprising thing here is that we only as-

sume closeness and only on a compact set and this is

enough to characterize the shrinker. This is an illus-

tration of a shrinker principle which roughly says that

“uniqueness radiates outwards”. Nothing like this is

true for Einsteinmanifolds (or steady solitons), where

gravitational instantons contain arbitrarily large arbi-

trarily Euclidean regions. The shrinker principle was

originally discovered in mean curvature flow [CIM],

[CM2]. It has been conjectured since that something

similar holds for Ricci flow, but the gauge group has

been one of the major obstacles. Using extrinsic coor-

dinates, the gauge is circumvented in mean curvature

flow.

Tangent flows are limits of a subsequence of

rescalings at the singularity. A priori different sub-

sequences might give different limits. Using Theo-

rem 0.1, we get the following uniqueness:

Theorem 0.2 ([CM1]). For a Ricci flow, if one tangent

flow at a point in space-time is a cylinder, then all

other tangent flows at that point are also cylinders.

Unlike most results in Ricci flow, these results

hold for every n and `. Increasing the dimension of

the Euclidean factor is a subtle problem (e.g. surgery,

cylindrical estimates, and k-convexity estimates only

allow small Euclidean factors). For general n and `,

cylinders do not have a coordinate-free characteriza-

tion. This is a major part of the difficulty, forcing us

to address the gauge problem head on.
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At singularities where the tangent flows are com-

pact shrinkers the singularities are isolated in space-

time. For compact shrinkers, rigidity was proven in

dimension three by Hamilton in 1982 and by Huisken

in 1985 for higher dimensional spheres.

Rigidity for necks Sn−1 ×R was proven indepen-

dently by Li-Wang [LW]. They are able to circumvent

the gauge problem by using that their Euclidean fac-

tor is a line. They do that, in part, by using tensors

with special properties on the product of a sphere

with a line to prove asymptotic structure and approx-

imate symmetry. Once they have this, they are able to

use again that their Euclidean factor is a line to apply

Brendle’s symmetry improvement to get O(n) symme-

try and, finally, Kotschwar’s classification of rotation-

ally symmetric shrinkers.

0.2 Further Applications

Rigidity and uniqueness of blowups are funda-

mental questions in regularity theory that have many

applications. For instance in mean curvature flow,

they play a major role in understanding the singular

set, proving optimal regularity, understanding soli-

tons, classifying ancient solutions, and understand-

ing low entropy flows.

1. What Is Needed for Rigidity?

We need to show that if two shrinkers are close

on a large but compact set, then they agree identically

everywhere. This will be done by iterating two esti-

mates: extension and improvement. Extension shows

that the shrinkers remain close even on a fixed larger

scale, but with a loss in the estimates. Improvement

recovers this loss and shows that they are even closer

on the larger scale. Once we have this, we can iterate

the argument to get estimates on larger and larger

scales, eventually giving the strong rigidity. Estimates

proving polynomial losses will be played off against

estimates with exponential gains.

Four key ingredients in the proof of strong rigid-

ity are:

1. Gauge fixing.

2. New polynomial growth estimates for PDEs.

3. Propagation of almost splitting.

4. Quadratic rigidity in the right gauge.

We will use new polynomial growth estimates as in-

gredients in both (1) and (3).

1.1 Gauge Fixing

Fix (M,g, f ). We are given a diffeomorphism from

a large compact set in M to a second weighted space.

• The pull-back metric and weight are g + h and

e− f−k.

• h and k are small on the compact set.

Composing with a diffeomorphism on M gives a dif-

ferent h and k. We want to mod out by this group ac-

tion. This is gauge fixing.

One of the most interesting results of transfor-

mation groups is the existence of slices. A slice for

the action of a group on a manifold is a submanifold

which is transverse to the orbits near a given point.

Ebin and Palais proved the existence of a slice for

the diffeomorphism group of a compact manifold act-

ing on the space of all Riemannian metrics. The slice

can be thought of as the gauge fixing on the compact

manifold. However, manifolds are not compact here.

In our setting, gauge fixing is choosing a diffeo-

morphism Φ on M so the new h is orthogonal to

the group action. This is a nonlinear PDE for Φ. Or-

thogonality corresponds to making div f h = 0, where
div f (h) = e f div(e− f h) = div(h)−h(∇ f , ·). The solution to

the nonlinear PDE asks to find a diffeomorphism Φ

so that h̃ = Φ∗ (g+h)−g satisfies

div f h̃ = 0 .(1.1)

Terms involving div f come up again and again, so

many quantities simplify in this gauge and having

them drop out as they do when div f h̃= 0 makes things

possible to analyze.

We construct the diffeomorphism Φ that solves

this nonlinear PDE using an iteration scheme for the

linearized operator P on vector fields Y . Using opti-

mal polynomial bounds on P, we show sharp polyno-

mial bounds for the displacement function of Φ

x → distg(x,Φ(x)) .

For applications, it is crucial that we only assume

closeness on a compact set and, in particular, a priori

the two shrinkers do not need to be diffeomorphic.

This means that we cannot fix the gauge at the out-

set. Instead we need to apply our gauge fixing proce-

dure iteratively to fix the gauge on larger and larger

scales as we move outward and show closeness on

larger and larger scales. To pull this off requires very

strong estimates for the displacement which is what

we show. Our optimal estimates show that the dis-

placement of the gauge fixing diffeomorphism grows

at a sharp polynomial rate. The bound is relative so

closeness on the initial scale implies closeness at a

larger scale.

On a shrinker (M,g, f ) there is a natural gaussian

L2 norm given by ‖u‖2
L2 =

∫
M u2 e− f . Diffeomorphisms

near the identity are infinitesimally generated by in-

tegrating a vector field X . The infinitesimal change of

the metric is given by the Lie derivative of the met-

ric with respect to X . This is equal to − 1
2 div∗f X , where
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div∗f is the operator adjoint of div f with respect the to

gaussian inner product. Thus, if we define the opera-

tor P by

P X = div f ◦div∗f X ,

then the linearization of (1.1) is to find a vector field

X with

P X =
1
2

div f h .

A detailed analysis of P and its properties play an

important role in the gauge fixing.

The canonical second order elliptic “drift Lapla-

cian” that is self-adjoint and positive definite with re-

spect to the gaussian inner product is a generalized

Ornstein-Uhlenbeck operator. On tensors u this oper-

ator is given by Lu = ∆u−∇∇ f u. Given a vector field X
on a shrinker, the two operators L and P are related

by the identity

−2P X = ∇div f X +LX +
1
2

X .

The unweighted version of P was used implicitly by

Bochner to show that closed manifolds with negative

Ricci curvature have no Killing fields. The unweighted

operator was later used by Bochner and Yano, to show

that the isometry group of such manifolds is finite.

The unweighted operator also arises in general rel-

ativity and fluid dynamics. The weighted operator

P appears to have been largely overlooked. The re-

lationship between P and the unweighted version,

used by Bochner, mirrors the relationship between

the Ornstein-Uhlenbeck operator and the Laplacian.

1.2 New Polynomial Growth Estimates for PDEs

Surprisingly, in very general settings, we show the

same polynomial growth bounds for L that Laplace

and Hermite observed on Rn for the standard gaus-

sian. Namely, suppose f is a proper Cn function and

S ≥ 0 satisfies

∆ f +S =
n
2
,(1.2)

|∇ f |2 +S = f .(1.3)

Theorem 1.4 ([CM1]). If (1.2) and (1.3) hold, u∈ L2(e− f )

and Lu =−λ u, then u grows polynomially of degree at

most 2λ .

The conditions (1.2) and (1.3) hold for all

shrinkers in both Ricci and mean curvature flow, giv-

ing a powerful new tool for a wide array of problems.

These estimates are used in both the gauge fixing and

the propagation of almost splitting. We use the rela-

tionship between L and P to translate these optimal

bounds for L into optimal bounds for P.

1.3 Propagation of Almost Splitting

One of the important new ingredients is that a

Ricci shrinker close to a product N ×Rn−` on a large

scale remains close on a fixed larger scale. The idea is

that the initial closeness will imply that L has eigen-

values that are exponentially close to 1
2 . The drift

Bochner formula on a shrinker implies that every

eigenvalue is at least 1
2 with equality only when it

splits. We show that being close to 1
2 gives that the

hessian is almost zero in L2, which is very strong on

the region where the weight f is small but says almost

nothing further out. The crucial point is that the hes-

sian can grow only polynomially, so the very small

initial bound gives bounds much further out. Thus,

the gradients of these eigenfunctions give the desired

almost parallel vector fields and almost splitting.

If a shrinker is exponentially close to a cylinder on

scale R, then almost splitting gives on scale (1+ ε)R:

(A) n − ` almost translations and a metric almost

splitting.

(B) The slices { f = c} are almost spherical.

(C) f also almost splits f = f0 +
|x|2
4 .

Combining (A) and (B) gives a diffeomorphism on

scale (1+ε)R from the cylinder to the second shrinker

and this diffeomorphism is close to an isometry. The

condition (C) guarantees that the diffeomorphism

also almost preserves f . As a result, we see that the

shrinker looks cylindrical even on the larger scale.

However, there is a loss in the estimates – it may look

less cylindrical on the larger scale – that makes this

impossible to iterate on its own.

1.4 Quadratic Rigidity

The propagation of almost splitting and gauge

fixing give that the shrinker is close to a cylinder on

a large set via a diffeomorphism that fixes the gauge.

The last of the four key ingredients is an estimate for

the difference in metrics that is small enough to be it-

erated. For this, it is essential that the gauge be right,

or else it just isn’t true. The closeness cannot be seen

via linear analysis. However, we show that there is a

second order rigidity that gives the estimate; we call

this quadratic rigidity.

To explain the estimate, let (M,g, f ) be the cylinder
and (M,g+h, f +k) the shrinker that is close on a large

compact set. We need bounds on h and k that can be

iterated. The linearization of the shrinker equation is

1
2

Lh+Hess 1
2 Tr(h)−k +div∗f div f h .(1.5)

This linearization was derived by Cao-Hamilton-

Ilmanen in their calculation of the second variation
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operator for Perelman’s entropy. The operator L acts

on 2-tensors by

Lh = Lh+2R(h) ,

and R(h) is the natural action of the Riemann tensor.

Since (M,g+h, f + k) is also a shrinker, (1.5) must

be at least quadratic in (h,k). The last two terms in

(1.5) are gauge terms – i.e., in the image of div∗f and

there is no reason for these – or h – to be small

if not in right gauge. In the right gauge, the differ-

ence h in the metrics satisfies the Jacobi equation

Lh = 0 up to higher order terms. This does not force

h to be small since cylinders have non-trivial Jacobi

fields that could potentially integrate to give nearby

shrinkers. The second variation of the shrinker equa-

tion in the direction of a Jacobi field is given by the

tensor

−2 |∇u|2 Ric−2SuHessu −S∇u⊗∇u .(1.6)

Here S is scalar curvature and u is a quadratic Hermite

polynomial that measures the projection of h onto Ja-

cobi fields. The first order Taylor expansion will give

that h is a Jacobi field to first order and, thus, |h| is

|u| up to higher order. On the other hand, the second

order Taylor expansion will imply that (1.6) vanishes

to at least third order in h. Combining these, we see

that the quadratic expression (1.6) is in fact at least

cubic in u. When u is small, this implies that u and h

vanish; we will have extra error terms so will get that

h is exponentially small, giving the improvement that

we needed to iterate.
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