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Introduction
The purpose of this paper is to introduce a new emerging

area of research – the theory of path homology on digraphs, that
is also known as GLMY-homology.

There exists a number of ways to define the notion of homol-
ogy for graphs and digraphs, for example, clique homology ([6],
[33]) or singular homology ([3], [33], [37]). However, the path
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homology has certain advantages as it enjoys adequate functorial
properties with respect to graph-theoretical operations, such as
morphisms of digraphs, Cartesian products, joins, homotopy etc.
The notion of path homology has a rich mathematical content,
and I hope that it will become a useful tool in various areas of
pure and applied mathematics.

Sections 1 and 3 contain a survey of the results obtained
in [18], [20], [22], [26], [29], [30], while the results of Sec-
tions 2, 4, 5 and 6 are entirely new.

For further reading on this subject and related topics I rec-
ommend [1], [2], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [19], [21], [23], [24], [25], [27], [28], [31], [32],
[35], [36].

1. Spaces of ∂ -Invariant Paths
The material of this section is based on [20] and [22].

1.1 Paths and the Boundary Operator

Let V be a finite set whose elements will be called vertices.
For any p ≥ 0, an elementary p-path is any sequence i0, ..., ip

of p+ 1 vertices of V (allowing repetitions). Fix a field K and
denote by Λp = Λp (V,K) the K-linear space that consists of all
formal K-linear combinations of elementary p-paths in V . Any
element of Λp is called a p-path.

An elementary p-path i0, ..., ip as an element of Λp will be
denoted by ei0...ip . For example, we have

Λ0 = 〈ei : i∈V 〉, Λ1 = 〈ei j : i, j ∈V 〉, Λ2 = 〈ei jk : i, j,k ∈V 〉

Any p-path u can be written in a form u =

∑i0,i1,...,ip∈V ui0 i1 ...ip ei0i1...ip , where ui0 i1 ...ip ∈K.

Definition. Define for any p ≥ 1 a linear boundary operator
∂ : Λp→ Λp−1 by

(1.1) ∂ei0...ip =
p

∑
q=0

(−1)q ei0...îq...ip
,

where ̂means omission of the index. Set Λ−1 = {0} and define
∂ : Λ0→ ∆−1 by ∂ = 0.

For example, ∂ei = 0, ∂ei j = e j− ei and ∂ei jk = e jk− eik +

ei j.

Lemma 1.1 ([20], [22, Lemma 2.1]). We have ∂ 2 = 0.

Proof. Indeed, for any p≥ 2 we have

∂
2ei0...ip =

p

∑
q=0

(−1)q
∂ei0...îq...ip

=
p

∑
q=0

(−1)q

(
q−1

∑
r=0

(−1)r ei0...îr ...îq...ip

+
p

∑
r=q+1

(−1)r−1 ei0...îq...îr ...ip

)
= ∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq...ip

− ∑
0≤q<r≤p

(−1)q+r ei0...îq...îr ...ip
.

After switching q and r in the last sum we see that the two sums
cancel out, whence ∂ 2ei0...ip = 0. This implies ∂ 2u = 0 for all
u ∈ Λp.

Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂← Λ1

∂← . . .
∂← Λp−1

∂← Λp
∂← . . .

Definition. An elementary p-path ei0...ip is called regular if ik 6=
ik+1 for all k = 0, ..., p−1, and irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular p-paths
ei0...ip . We claim that ∂Ip ⊂ Ip−1. Indeed, if ei0...ip is irregular
then ik = ik+1 for some k. We have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+(−1)k ei0...ik−1ik+1ik+2...ip +(−1)k+1 ei0...ik−1ik ik+2...ip(1.2)
+ ...+(−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1.2) cancel out,
whereas all other terms are non-regular, whence ∂ei0...ip ∈ Ip−1.

Hence, ∂ is well-defined on the quotient spaces Rp :=
Λp/Ip, and we obtain the chain complex R∗ (V ):

0 ← R0
∂← R1

∂← . . .
∂← Rp−1

∂← Rp
∂← . . .

By setting all irregular p-paths to be equal to 0, we can identify
Rp with the subspace of Λp spanned by all regular paths. For
example, if i 6= j then ei ji ∈R2 and

∂ei ji = e ji− eii + ei j = e ji + ei j

because eii = 0 in R2.

1.2 Chain Complex Ω∗

Definition. A digraph (directed graph) is a pair G = (V,E) of
a set V of vertices and E ⊂ {V ×V \ diag} is a set of arrows
(directed edges). If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path
i0...ip on V is called allowed if ik→ ik+1 for any k = 0, ..., p−1,
and non-allowed otherwise.

Let Ap = Ap (G) be K-linear subspace of Λp spanned by
allowed elementary p-paths:

Ap = 〈ei0...ip : i0...ip is allowed〉.

The elements ofAp are called allowed p-paths. Since any allowed
path is regular, we have Ap ⊂Rp.

We would like to build a chain complex based on subspaces
Ap of Rp. However, the spaces Ap are in general not invariant
for ∂ . For example, in the digraph

a• −→ b• −→ c•
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we have eabc ∈A2 but ∂eabc = ebc− eac + eab /∈A1 because eac

is non-allowed.
Consider the following subspace of Ap

Ωp ≡Ωp (G) :=
{

u ∈Ap : ∂u ∈Ap−1
}
.

We claim that ∂Ωp ⊂Ωp−1. Indeed, u ∈Ωp implies ∂u ∈Ap−1

and ∂ (∂u) = 0 ∈Ap−2, whence ∂u ∈Ωp−1.

Definition. The elements of Ωp are called ∂ -invariant p-paths.

Thus, we obtain a chain complex Ω∗ = Ω∗ (G):

(1.3) 0 ← Ω0
∂← Ω1

∂← . . .
∂← Ωp−1

∂← Ωp
∂← . . .

By construction we have Ω0 =A0 and Ω1 =A1, while in general
Ωp ⊂Ap.

Proposition 1.2 ([20]). If dimΩn ≤ 1 then Ωp = {0} for all
p≥ n+1.

We say that a pair a,b forms a double arrow if a→ b and
b→ a.

Proposition 1.3 ([20]). If G contains no double arrow and
dimΩn ≤ 2 then Ωn = {0} for all p≥ n+2.

1.3 Path Homology

Definition. Path homologies of G are defined as the homologies
of the chain complex Ω∗ (G):

Hp = Hp (G) = ker∂ |Ωp

/
Im∂ |Ωp+1 .

For a vector space U over K we write

|U |= dimKU.

Define the Betti numbers of G by

βp = βp(G) =
∣∣Hp
∣∣ .

For any N ∈N define the Euler characteristic of G of the order N
by

χ
(N) = χ

(N)(G) =
N

∑
p=0

(−1)p ∣∣Ωp
∣∣ .

If the sequence
{

Ωp
}

is finite in the sense that Ωp = {0} for large
enough p, then, for large enough N,

χ
(N) = χ :=

∞

∑
p=0

(−1)p ∣∣Ωp
∣∣= ∞

∑
p=0

(−1)p
βp.

Proposition 1.4. If X and Y are two disjoint digraphs then

(1.4) βp (X tY ) = βp (X)+βp (Y ) .

Proof. Clearly, any allowed elementary p-path on X tY is con-
tained in X or Y . It follows that the same property is true for
∂ -invariant paths, so that

Ωp (X tY ) = Ωp (X)⊕Ωp (Y ) .

Hence, the same identity holds for homology groups, whence
(1.4) follows.

Proposition 1.5. We have β0 (G) = #of connected components
of G.

Proof. It suffices to prove that if G is connected then β0 = 1. We
have β0 = |Ω0|− |∂Ω1|. Let the set of vertices of G be {1, ...,n}
so that |Ω0|= n. Since Ω1 is spanned by all arrows ei j, i→ j, the
space ∂Ω1 is spanned by all differences e j−ei where i→ j. Since
there is an edge path between the vertex 1 and any other vertex
i, it follows that ∂Ω1 contains ei− e1 for any vertex i > 1. These
n−1 elements of ∂Ω1 are linearly independent while any other
difference e j − ei is expressed as (e j− e1)− (ei− e1). Hence,
|∂Ω1|= n−1 and β0 = 1.

1.4 Digraph Morphisms

Let X and Y be two digraphs. For simplicity of notations,
we denote the sets of vertices of X and Y by the same letters X
resp. Y .

Definition. A mapping f : X → Y between the sets of vertices
of X and Y called a digraph map (or morphism) if

a→ b on X ⇒ f (a) → f (b) or f (a) = f (b) on Y.

In other words, any arrow of X under the mapping f either goes
to an arrow of Y or collapses to a vertex of Y .

We say that a digraph Y is a subgraph of a digraph X if
the sets of vertices and arrows of Y are subset of the sets of
vertices and arrows of X , respectively. In this case we have a
natural inclusion i : Y → X that is clearly a digraph morphism. A
subgraph Y of X is called induced if, for any two vertices a,b of
Y such that there is an arrow a→ b in X , there is also an arrow
a→ b in Y .

To give another example of a morphism, assume that a ver-
tex set of a digraph X splits into a disjoint union of n subsets
A1, ...,An, and construct a digraph Y of n vertices a1, ...,an that is
obtained from X by merging all the vertices from Ai into a single
vertex ai of Y . More precisely, we have an arrow ai→ a j in Y if
and only if there are x ∈ Ai and y ∈ A j such that x→ y in X .

An example of a merging map µ

We have a natural merging map µ : X→Y such that µ (x) =
ai for any x ∈ Ai. Clearly, a merging map is a digraph morphism
that keeps any arrow x→ y if x and y belong to different sets Ai

and collapses an arrow x→ y into a vertex if x,y belong to the
same Ai.
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Any digraph morphism f : X → Y induces a mapping f∗ :
Λn (X)→ Λn (Y ) as follows: first set

f∗
(
ei0...in

)
= e f (i0)... f (in),

and then extend f∗ by linearity to all of Λn (X).

Proposition 1.6. Let f : X → Y be a digraph morphism. Then
the induced mapping f∗ : Λn (X)→ Λn (Y ) extends to a chain
mapping f∗ : Ωn (X)→ Ωn (Y ) and, hence, to homomorphism
f∗ : Hn (X)→ Hn (Y ).

Proof. If ei0...in is irregular then f∗
(
ei0...in

)
is also irregular.

Therefore, f∗ maps the space In (X) of irregular paths on X
into In (Y ). It follows that f∗ maps Rn (X) = Λn (X)/In (X) into
Rn (Y ).

Next, f∗maps the spaceAn (X) of allowed paths intoAn (Y ):
if ei0...in is allowed then ik → ik+1 for all k, which implies that
either f (ik)→ f (ik+1) for all k and, hence, f∗

(
ei0...in

)
is also

allowed, or f (ik) = f (ik+1) for some k so that f∗
(
ei0...in

)
is

irregular, thus f∗
(
ei0...in

)
= 0.

Clearly, f∗ commutes with ∂ , which implies that f∗ maps
Ωn (X) into Ωn (Y ) and f∗ is a chain mapping. Consequently,
we obtain a homomorphism of homology groups f∗ : Hn(X)→
Hn(Y ).

Further examples of digraph morphisms will be given in
Sections 1.8 and 2.3.

1.5 Examples of ∂ -Invariant Paths

A triangle is a sequence of three distinct vertices a,b,c such
that a→ b→ c, a→ c.

It determines a 2-path eabc ∈ Ω2 because eabc ∈ A2 and
∂eabc = ebc− eac + eab ∈A1.

A square is a sequence of four distinct vertices a,b,b′,c such
that a→ b→ c, a→ b′→ c while a 6→ c.

It determines a 2-path u = eabc−eab′c ∈Ω2 because u ∈A2

and

∂u = (ebc− eac + eab)− (eb′c− eac + eab′)

= eab + ebc− eab′ − eb′c ∈A1.

An m-square is a sequence of m+3 distinct vertices

a, b0, b1, ..., bm, c

such that a→ bk→ c ∀k = 0, . . . ,m, while a 6→ c.
An m-square determines ∂ -invariant 2-paths

ui j = eabic− eab jc ∈Ω2 for all i, j = 0, ...,m,

and among them the following m paths are linearly independent:

u0 j = eab0c− eab jc, j = 1, ...,m.

Clearly, an 1-square is a square in the above sense. Any m-square
with m≥ 2 is called a multisquare.

A p-simplex (or p-clique) is a configuration of p+1 distinct
vertices, say, 0,1, ..., p, such that i→ j ∀i < j. It determines a
p-path e01...p ∈Ωp. Here is a 3-simplex:

A p-snake is a configuration of p+ 1 distinct vertices, say
0,1, . . . , p, with the following arrows:

i→ i+1 for all i = 0, ..., p−1,
i→ i+2 for all i = 0, ..., p−2.

In particular, any triple i(i+1)(i+2) forms a triangle for
i = 0, . . . , p−2.

A p-snake determines a ∂ -invariant p-path e01...p. Indeed,
this path is obviously allowed, and its boundary

∂e01...p =
p

∑
q=0

(−1)q e0...(q−1)(q+1)...p

is also allowed because q−1→ q+1. Hence, ei0...ip ∈Ωp.

A toy snake

Clearly, a p-simplex contains a p-snake.
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A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as shown here: A 3-cube determines a
∂ -invariant 3-path

u = e0237− e0137 + e0157− e0457 + e0467− e0267 ∈Ω3

because u ∈A3 and

∂u = (e013− e023)+(e157− e137)+(e237− e267)

− (e046− e026)− (e457− e467)− (e015− e045) ∈A2.

A trapezohedron of order m≥ 2 is a configuration of 2m+2
distinct vertices

a, b, i0, . . . , im−1, j0, . . . , jm−1

with 4m arrows:

a→ ik, jk→ b

and

ik→ jk, ik→ jk+1,

for all k = 0, . . . ,m−1, where k is understood modm.
The trapezohedron gives rise to the following ∂ -invariant

3-path:

(1.5) τm =
m−1

∑
k=0

(
eaik jkb− eaik jk+1b

)
.

Indeed, τm is clearly allowed, and its boundary is also allowed
because

∂τm =
m−1

∑
k=0

∂
(
eaik jkb− eaik jk+1b

)
=

m−1

∑
k=0

(
eik jkb− eik jk+1b

)
−

m−1

∑
k=0

(
eaik jk − eaik jk+1

)
(1.6)

−
m−1

∑
k=0

(
ea jkb− ea jk+1b

)
+

m−1

∑
k=0

(
eaikb− eaikb

)
,(1.7)

where the both sums in (1.6) are allowed, while both sums in
(1.7) vanish.

A trapezohedron of order m = 2 is shown here:

In this case we have

τ2 = eai0 j0b− eai0 j1b + eai1 j1b− eai1 j0b.

A trapezohedron of order m≥ 3 can be realized as a convex
polyhedron in R3 with flat faces. For example, a trapezohedron
of order m = 3 coincides with a 3-cube:

In this case we have

τ3 = eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + eai2 j2b− eai2 j0b,

and τ3 coincides (up to a sign) with the aforementioned 3-path
determined by a 3-cube.

A trapezohedron of order m = 4 is a tetragonal trapezohe-
dron:

In this case we have

τ4 = eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b

+ eai2 j2b− eai2 j3b + eai3 j3b− eai3 j0b.

1.6 Examples of Spaces Ωp and Hp

Here is a triangle as a digraph:
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We have Ω1 = 〈e01,e02,e12〉, Ω2 = 〈e012〉. Since ker∂ |Ω1 =

〈e01−e02+e12〉 and e01−e02+e12 = ∂e012, it follows that H1 =

{0}, Ωp = {0} for p≥ 3 and Hp = {0} for p≥ 2.

Here is a square as a digraph:

We have Ω1 = 〈e01,e02,e13,e23〉, Ω2 = 〈e013− e023〉. Since
ker∂ |Ω1 = 〈e01 − e02 + e13 − e23〉 and e01 − e02 + e13 − e23 =

∂ (e013− e023) it follows that H1 = {0}, Ωp = {0} for p≥ 3 and
Hp = {0} for p≥ 2.

Here is a 4-cycle that is called a diamond:

We have Ω1 = 〈e02,e03,e12,e13〉, H1 = ker∂ |Ω1 = 〈e02 −
e03− e12 + e13〉, Ωp = {0} and Hp = {0} for all p≥ 2.

Consider a hexagon with two diagonals:

Here Ω2 = 〈e013−e023, e014−e024〉, H1 = 〈e13−e53+e54−
e14〉, Ωp = {0} for p≥ 3 and Hp = {0} for p≥ 2.

Consider an octahedron based on a diamond:

Space Ω2 is spanned by 8 triangles:

Ω2 = 〈e024,e034,e025,e035,e124,e134,e125,e135〉,
H2 = 〈e024− e034− e025 + e035− e124 + e134 + e125− e135〉,
Ωp = {0} for p≥ 3 and Hp = {0} for p = 1 and p≥ 3.

Consider an octahedron based on a square:

Ω2 = 〈e024,e025,e014,e015,e234,e235,e134,e135,e013− e023〉,
Ω3 = 〈e0234− e0134, e0235− e0135〉, Ωp = {0} ∀p≥ 4.

We have ker∂ |Ω2 = 〈u,v〉 where

u = e024 + e234− e014− e134 +(e013− e023)

v = e025 + e235− e015− e135 +(e013− e023)

but H2 = {0} because

u = ∂ (e0234− e0134) and v = ∂ (e0235− e0135) .

In fact, Hp = {0} for all p≥ 1.

Consider a 3-cube:

Space Ω2 is spanned by 6 squares:

Ω2 = 〈e013− e023, e015− e045, e026− e046, e137− e157,

e237− e267, e457− e467〉

Space Ω3 is spanned by one 3-cube:

Ω3 = 〈e0237− e0137 + e0157− e0457 + e0467− e0267〉
Ωp = {0} for all p≥ 4 and Hp = {0} for all p≥ 1.

1.7 An Example of Computation of Ωp and Hp

Consider a square with a diagonal:

We have Ω0 = A0 = 〈e0,e1,e2,e3〉, |Ω0| =

4, Ω1 = A1 = 〈e01,e02,e13,e23,e30〉, |Ω1| = 5, and
A2 = 〈e013,e023,e130,e230,e301,e302〉, |A2| = 6. To deter-
mine Ω2, let us first compute ∂ |A2 modA1:

∂e013 = e13− e03 + e01 =−e03 modA1

∂e023 = e23− e03 + e02 =−e03 modA1

∂e130 = e30− e10 + e13 =−e10 modA1

∂e230 = e30− e20 + e23 =−e20 modA1

∂e301 = e01− e31 + e30 =−e31 modA1
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∂e302 = e02− e32 + e30 =−e32 modA1

We have

D := matrix of ∂ |A2 modA1

=



e013 e023 e130 e230 e301 e302

e03 −1 −1 0
e10 −1
e20 −1
e31 −1
e32 0 −1


and

Ω2 = ker∂ |A2 modA1 = nullspaceD = 〈e013− e023〉.

One can show that
{

Ωp
}
= 0 for all p ≥ 3 (which also follows

from Proposition 1.2) and, hence,
{

Hp
}
= 0 for all p≥ 3.

Let us compute H1 and H2. We have for the basis in Ω1:

∂e01 =−e0 + e1

∂e02 =−e0 + e2

∂e13 =−e1 + e3

∂e23 =−e2 + e3

∂e30 = e0− e3

Therefore,

D := matrix of ∂ |Ω1 =


e01 e02 e13 e23 e30

e0 −1 −1 0 0 1
e1 1 0 −1 0 0
e2 0 1 0 −1 0
e3 0 0 1 1 −1


and

ker∂ |Ω1 = nullspaceD = 〈e01 +e13−e02−e23, e01 +e13 +e30〉.

Similarly, for the basis in Ω2 we have

∂ (e013− e023) = (e13− e03 + e01)− (e23− e03 + e02)

= e01 + e13− e02− e23

whence

Im∂ |Ω2 = 〈e01 + e13− e02− e23〉 and ker∂ |Ω2 = {0} .

It follows that H2 = {0} and

H1 = ker∂ |Ω1/Im∂ |Ω2 = 〈e01 + e13 + e30〉.

As we have seen, computation of the spaces Ωp (G) and Hp (G)

amounts to computing ranks and null-spaces of matrices. We
currently use for numerical computation of Hp (G,F2) a C++

program written by Chao Chen in 2012.

Problem 1.7. Devise an efficient algorithm/software for compu-
tation of the spaces Ωp for arbitrary digraphs, possibly avoiding
null-spaces of large matrices. Such algorithms exist for Ω2 and
Ω3. Are there simpler ways of computing directly dimΩp without
computing the bases of Ωp?

1.8 Structure of Ω2

As we know, Ω0 = 〈ei〉 consists of all vertices and Ω1 =〈
ei j : i→ j

〉
consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x,y) of distinct
vertices x,y such that x 6→ y but x→ z→ y for some vertex z. We
write in this case x ⇀ y

Theorem 1.8 ([21, Proposition 2.9], [20]).

(a) We have |Ω2| = |A2| − s where s is the number of semi-
arrows.

(b) The space Ω2 is spanned by all triangles eabc, squares eabc−
eab′c and double arrows eaba.

Proof. (a) Recall that

A2 = span{eabc : abc is allowed}

and

Ω2 = {v ∈A2 : ∂v ∈A1}= {v ∈A2 : ∂v = 0modA1} .

If abc is allowed then ab and bc are arrows, whence

∂eabc = ebc− eac + eab =−eac modA1.

If a = c or a→ c then eac = 0modA1. Otherwise ac is a semi-
arrow, and in this case

eac 6= 0 modA1.

For any v ∈A2, we have

v = ∑
{a→b→c}

vabceabc

from which it follows that

∂v =− ∑
{a→b→c,a⇀c}

vabceac modA1.

The condition ∂v = 0modA1 is equivalent to

∑
{a→b→c, a⇀c}

vabceac = 0modA1,

which in turn is equivalent to

(1.8) ∑
b∈V

vabc = 0 for any semi− arrow ac.

The number of the equations in (1.8) is exactly s, and they all are
linearly independent for different semi-arrows, because a triple
abc determines at most one semi-arrow. Hence, Ω2 is obtained
from A2 by imposing s linearly independent conditions, which
implies |Ω2|= |A2|− s.

(b) Any allowed 2-path ω can be represented as a sum of
elementary 2-paths ei jk with i→ j→ k multiplied with a scalar
c 6= 0. If k = i then ei jk is a double arrow. If i 6= k and i→ k
then ei jk is a triangle. Subtracting from ω all double arrows and
triangles, we can assume that ω has no such terms any more.
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Then, for any term ei jk in ω we have i 6= k and i 6→ k. Fix such a
pair i,k and consider any vertex j with i→ j→ k. Assume that
ei jk enters ω with a coefficient c j 6= 0. Set

(1.9) ωik = ∑
j

c jei jk

so that ω = ∑ik ωik. It suffices to verify that each ωik is a linear
combination of squares. The 1-path ∂ω is the sum of 1-paths of
the form

∂
(
c jei jk

)
= c jei j− c jeik + c je jk.

Since ∂ω is allowed but eik is not allowed, the term c jeik should
cancel out after we sum up all such terms over all possible j, that
is,

(1.10) ∑
j

c j = 0.

Denote by { j0, j1, ..., jm} the sequence of all possible vertices j
with i→ j→ k so that we obtain an m-square:

An m-square {i,{ jl}m
l=0 ,k}

Then we obtain from (1.9)

ωik =
m

∑
l=0

c jl ei jlk =
m

∑
l=1

c jl

(
ei jlk− ei j0k

)
because by (1.10)

c j0 =−
l

∑
l=1

c jl .

We conclude that ωik is a linear combination of squares.

Example 1.9. Let the digraph G be an m-square shown on the
above picture. It has one semi-arrow i ⇀ k so that s = 1. Since
|A2|= m+1, we conclude that |Ω2|= m. Indeed, the basis in Ω2

is given by the sequence of m squares
{

ei j0k− ei jlk
}m

l=1.
Observe that a triangle eabc and a double arrow eaba are

images of a square e013− e023 under merging maps (cf. Subsec-
tion 1.4) as shown on these pictures:

a merging map from a square onto a triangle
e013− e023 7→ eabc− eacc = eabc

a merging map from a square onto a double arrow
e013− e023 7→ eaba− eaaa = eaba

Hence, we can rephrase Theorem 1.8 as follows: Ω2 is
spanned by squares and their morphism images. Or: squares are
basic shapes of Ω2.

1.9 Path Complex

The material of this section is based on [20], [22] and [26].
We discuss here the notion of path complex that unifies digraphs
and simplicial complexes.

Definition. A path complex on a finite set V is a collection P
of elementary paths on V such that if i0i1...ip−1ip ∈ P then also
i1...ip and i0...ip−1 belong to P .

For example, each digraph G = (V,E) gives rise to a path
complex P that consists of all allowed elementary paths, that is,
of the paths i0 → i1 → ...→ ip. In general, all paths in a path
complex P are also called allowed.

The above definitions of ∂ -invariant paths, spaces Ωp and
Hp go through without any change to general path complexes in
place of digraphs because they are based on the notion of allowed
paths only. In fact, most of the results that are proved for path
homology theory for digraphs remain true also for a more general
setting of path complexes.

Let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V is a
collection S of subsets of V such that if σ ∈ S then any subset of
σ is also an element of S.

Let us enumerate all elements of V so that any subset σ of
V can be regarded as a path i0...ip with i0 < i1 < .... < ip. The
above definition means that if i0...ip ∈ S then also any sub-path
ik0 ...ikq with 0 ≤ k0 < k1 < ... < kq ≤ p belongs to S. Hence, a
simplicial complex S is a path complex, and the theory of path
homologies applies for S.

In this case, Ap consists of linear combinations of all
p-dimensional simplexes in S and Ωp = Ap because ∂ei0...ip

is always allowed if ei0...ip is allowed. Hence, the path homol-
ogy theory of a path complex S coincides with the simplicial
homology theory of S.

Schematic relation between path complexes, digraphs and
simplicial complexes
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Let S be a simplicial complex with the vertex set V as above.
Define a digraph GS as follows: the vertex set of GS is S, and for
two simplexes a,b ∈ S we have an arrow a→ b provided a ⊃ b
and |a|= |b|+1, that is, when b is a face of a of codim = 1. The
digraph GS is called the Hasse diagram of S.

If S is realized geometrically as a collection of simplexes in
Rn then GS can be realized on the set of vertices BS consisting of
barycenters of the simplexes of S as on the picture. The relation
between simplicial homology Hsimpl with the path homology H
is given by the following theorem.

Theorem 1.10 ([26, Corollary 5.4]). We have

Hsimpl
∗ (S)∼= H∗ (GS) .

1.10 Triangulation as a Closed Path

Given a closed oriented n-dimensional manifold M, let T be
its triangulation, that is, a partition into n-dimensional simplexes.
Denote by V = {0,1, ...} the set of all vertices of the simplexes
from T and by E – the set of all edges, so that (V,E) is a graph
embedded on M.

Let us introduce make each edge (i, j) ∈ E into an arrow
i→ j if i < j and into j→ i if i > j. Then each simplex from T
becomes a digraph-simplex. Denote by −→T the set of all digraph
simplexes constructed in this way. That is, i0...in ∈

−→
T if i0...in is

a monotone increasing sequence that determines a simplex from
T . Clearly, any such path i0...ip is allowed.

For any simplex from T with the vertices i0...in define the
quantity σ i0...in to be equal to 1 if the orientation of the simplex
i0...in matches the orientation of the manifold M, and −1 other-
wise. Then consider the following allowed n-path on the digraph
G = (V,E):

(1.11) σ = ∑
i0...in∈

−→
T

σ
i0...in ei0...in .

Lemma 1.11 ([20]). The path σ is closed, that is, ∂σ = 0, which,
in particular, implies that σ is ∂ -invariant.

Proof. Observe that ∂σ is a linear combination with coefficients
±1 of the terms e j0... jn−1 where the sequence j0, ..., jn−1 is mono-
tone increasing and forms an (n−1)-dimensional face of one of
the n-simplexes from T .

In fact, every (n−1)-face arises from two n-simplexes, say,
from

A = j0... jk−1a jk... jn−1 and B = j0... jl−1b jl ... jn−1.

That is, the n-simplexes A and B have a common
(n−1)-dimensional face j0... jn−1.

We have

∂e j0... jk−1a jk ... jn−1 = ...+(−1)k e j0... jk−1 jk ... jn−1 + ... .

Since interchanging the order of two neighboring vertices in an
n-simplex changes its orientation, we have

σ
j0... jk−1a jk ... jn−1 = (−1)k

σ
a j0... jk−1 jk ... jn−1 .

Multiplying the above lines, we obtain

∂ (σAeA) = ...+σ
a j0... jn−1 e j0... jn−1 + ... ,

and in the same way

∂ (σBeB) = ...+σ
b j0... jn−1 e j0... jn−1 + ...

However, the vertices a and b are located on the opposite sides
of the face j0... jn−1, which implies that the simplexes a j0... jn−1

and b j0... jn−1 have the opposite orientations relative to that of
M. Hence,

σ
a j0... jn−1 +σ

b j0... jn−1 = 0,

which means that the term e j0... jn−1 cancels out in the sum
∂ (σAeA+σBeB) and, hence, in ∂σ . This proves that ∂σ = 0.

The closed path σ defined by (1.11) is called a surface path
on M.

There is a number of examples when a surface path σ hap-
pens to be exact, that is, σ = ∂v for some (n+1)-path v. In this
case v is called a solid path on M because v represents a “solid”
shape whose boundary is given by a surface path. If σ is not exact
then σ determines a non-trivial homology class from Hn (G) and,
hence, represents a “cavity” in triangulation T .

Example 1.12. M = S1. A triangulation of S1 is a polygon, and
the corresponding digraph G is called cyclic.

On each edge (i, j) of a polygon we choose an arrow i→ j
arbitrary (not necessarily if i < j). We have

σ = ∑
i→ j

σ
i jei j

where we have σ i j = 1 if the arrow i→ j goes counterclockwise,
and σ i j =−1 otherwise.
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For the digraph on the picture we have

σ = e01− e21 + e23 + e34− e54 + e50.

If a polygon G is a triangle or a square then Ωp = {0} for p≥ 3
and Hp = {0} for all p ≥ 1. Otherwise we have the following
statement.

Proposition 1.13 ([20]). If a polygon G is neither a triangle
nor a square then Ωp = {0} and Hp = {0} for all p ≥ 2 while
H1 = 〈σ〉.

Proof. We have Ωp = {0} for all p≥ 2 by Theorem 1.8. Hence,
dimHp = 0 for p≥ 2. For the Euler characteristic, we have

χ = dimΩ0−dimΩ1 = 0.

Since also

χ = dimH0−dimH1

and dimH0 = 1, we obtain dimH1 = 1.
It remains to see that σ is a non-zero element of H1. The path

σ is closed by Lemma 1.11. In this case this can also be seen
directly because by construction we have σ i(i+1)−σ (i+1)i ≡ 1
whence, for any vertex i,

(∂σ)i = ∑
j∈V

(
σ

ji−σ
i j)

= σ
(i−1)i +σ

(i+1)i−σ
i(i−1)−σ

i(i+1) = 1−1 = 0.

Finally, σ 6= 0 in H1 because Im∂ |Ω2 = {0}.

Example 1.14. Let M = Sn and let a triangulation of the n-sphere
Sn be given by the surface of an (n+1)-simplex.

Then G is a (n+1)-simplex digraph. On this picture n = 2
and

σ = e123− e023 + e013− e012 = ∂e0123

so that e0123 is a solid path representing a tetrahedron.
For an arbitrary n we also have σ = ∂e0...n+1 so that e0...n+1

is a solid path representing an (n+1)-simplex.

Example 1.15. Let M = S2 and let a triangulation of S2 be given
by an octahedron (see also Subsection 1.6). Consider two cases
of numbering of vertices and, respectively, orientation of arrows.

An octahedron based on a square:

We have H2 = {0}; it is easy to see that

σ = e024− e025− e014 + e015− e234 + e235 + e134− e135

= ∂ (e0134− e0234 + e0135− e0235)

Hence, v = e0134− e0234 + e0135− e0235 is a solid path and the
octahedron represents a solid shape.

An octahedron based on a diamond:

We have H2 = 〈σ〉 where

σ = e024− e034− e025 + e035− e124 + e134 + e125− e135

so that this octahedron represents a cavity.

Example 1.16. Let M = S2 and let a triangulation of S2 be given
by an icosahedron:

Chose a numbering of vertices as shown here and arrows
i→ j if i∼ j and i < j.

We have |V |= 12, |E|= 30, H1 = {0}, and H2 = 〈σ〉where

σ =−e019 + e012− e1211 + e026 + e059− e056 + e5610

− e139 + e1311− e267 + e6710− e2711− e349 + e348

− e4810 + e3811− e459 + e4510 + e7810− e7811.

Hence, the icosahedron represents a cavity.
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Conjecture 1.17. For icosahedron dimH2 (G) = 1 for any num-
bering of the vertices.

Conjecture 1.18. For a general triangulation of Sn, the homol-
ogy group Hn (G) is either trivial or is generated by σ . All other
homology groups Hp (G) are trivial.

1.11 Homological Dimension

In this section K= F2.

Definition. Define the homological dimension of a digraph G by

dimh G = sup{k : |Hk (G)|> 0} .

Let G be a polygon (a cyclic digraph).

If G is neither triangle nor square, then |H1|= 1 and
∣∣Hp
∣∣= 0

for p≥ 2 whence dimh G = 1.
Let G be either a triangle or a square:

Then
∣∣Hp
∣∣= 0 for p≥ 1 and dimh G = 0.

Let G be an octahedron based on a diamond:

Then |H2|= 1,
∣∣Hp
∣∣= 0 for p≥ 3, whence dimh G = 2.

Let us give an example of a digraph with ∞ homological
dimension that is due to Gabor Lippner and Paul Horn [34]. Fix
some n ≥ 5. We construct a digraph LH (n) of 2n vertices that
are denoted by

1,2, ...,n and −1,−2, ...,−n,

and the arrows between vertices x,y in LH (n) are defined as
follows:

(1.12) x→ y if |y|= |x|+1 or if |x|= n−1 and |y|= 2,

so that LH (n) has 4n edges. In fact, LH (n) is obtained from the
complete multipartite digraph −→K 2,2, ...,2︸ ︷︷ ︸

n

by adding the last 4

arrows.

Example 1.19. Here is the digraph LH (5).

It is obtained from −→K 2,2,2,2,2 by adding four arrows.
For this digraph βp > 0 provided

p = 1mod3.

Proposition 1.20 ([34]). If p = 1mod (n−2) and p≥ n−1 then
the homology group Hp (LH (n)) is non-trivial.

Hence, for the digraph LH (n), non-trivial homology groups
Hp occur for arbitrarily large p. Consequently, we have

dimh LH (n) = ∞.

There are digraphs with non-trivial homology group Hp for all
value of p – see below Example 3.27.

Proof. Let p = (n−2)k+ 1 for some k ≥ 1. Let us construct a
family of allowed paths in LH (n) as follows. First, consider a
numerical sequence of p+1 = (n−2)k+2 numbers:

(1.13) 1,2,3, ...,n−1︸ ︷︷ ︸,2,3, ...,n−1︸ ︷︷ ︸, ...,2,3, ...,n−1︸ ︷︷ ︸,n,
where the group 2,3, ...,n−1 is repeated k times, and then give
arbitrarily the signs + and − to each number in this sequence.
Clearly, we obtain in this way an allowed elementary p-path in
LH (n). For any such a path u, denote by σ (u) the number of ‘−’
in u, and consider the path

(1.14) ω = ∑
u
(−1)σ(u) u,

where the summation is taken over all paths u obtained in this
way from the sequence (1.13).

Let us verify that ∂ω = 0 (and, hence, ω ∈Ωp). Indeed, let
u = u0...up be one of the elementary paths in the sum (1.14). The
boundary ∂u is the sum of the terms

(1.15) (−1)i u0...ui−1ui+1...up

that are obtained from u by omitting ui. Fix some i and consider
a path

ũ = u0...ui−1 (−ui)ui+1...up ,

where only the sign of ui is changed. Then ∂ ũ contains also the
term (1.15). However, u and ũ enter ω with opposite signs so that
the term (1.15) cancels out in the sum (1.14). Hence, we obtain
∂ω = 0.

Let us verify that ω 6= ∂v for any allowed path v, which will
imply that ω determines a non-trivial element in Hp. Assume
from the contrary that ω = ∂v for some v ∈Ap+1. For that, v has
to contain an allowed elementary p+1-path that contains both a
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vertex 1 and a vertex n (otherwise, 1 and n cannot appear in the
same path (1.13)). Let

u = u0....up+1

be such an allowed elementary p+1-path, where

|u0|= 1 and
∣∣up+1

∣∣= n.

We have ui→ ui+1 and, hence, as it follows from the definition
of arrows in (1.12),

|ui+1|= |ui|+1mod (n−2) .

Therefore, ∣∣up+1
∣∣= |u0|+ p+1mod (n−2) ,

from which it follows that

n = p+2mod (n−2)

and

p = 0mod (n−2) ,

which contradicts the hypotheses.

2. Trapezohedra and Structure of Ω3

2.1 Spaces Ωp and Hp for Trapezohedron

For any integer m ≥ 2, define a trapezohedron Tm of order
m as follows:

Tm is a digraph of 2m+2 vertices

a, b, i0, ..., im−1, j0, j1, ..., jm−1

and 4m arrows

a→ ik→ jk→ b, ik→ jk+1

for all k = 0, . . . ,m−1modm.
A fragment of Tm is shown here:

It is clear that all allowed paths in Tm have the length ≤ 3,
whence Ωp (Tm) = {0} for all p > 3.

Proposition 2.1. For the trapezohedron Tm we have

|Ω2|= 2m, |Ω3|= 1,

and Hp = {0} for all p≥ 1.

Proof. It is easy to detect all squares in Tm:

(2.16) eaik−1 jk − eaik jk and eik jkb− eik jk+1b,

where k = 0, ...,m−1. Hence, Tm contains 2m squares, and they
are linearly independent. Since there are no triangles in Tm, we
conclude by Theorem 1.8 that |Ω2|= 2m.

All allowed 3-paths in Tm are as follows:

eaik jkb and eaik jk+1b,

also for all k = 0, ...,m−1. Let us find all linear combinations of
these paths that are ∂ -invariant. Consider such a linear combina-
tion

ω =
m−1

∑
k=0

(
αkeaik jkb +βkeaik jk+1b

)
with coefficients αk,βk, and assume that ω is ∂ -invariant. We
have

∂ω =
m−1

∑
k=0

∂
(
αkeaik jkb +βkeaik jk+1b

)

=
m−1

∑
k=0

(
αkeik jkb +βkeik jk+1b

)
−

m−1

∑
k=0

(
αkeaik jk +βkeaik jk+1

)(2.17)

−
m−1

∑
k=0

(
αkea jkb +βkea jk+1b

)
+

m−1

∑
k=0

(
αkeaikb +βkeaikb

)
.

(2.18)

Both sums in (2.17) consist of allowed paths. In the rightmost
sum in (2.18) the path eaikb is not allowed and, hence, must cancel
out, which yields

αk =−βk.

The leftmost sum in (2.18) is then equal to

m−1

∑
k=0

(
αkea jkb−αkea jk+1b

)
=

m−1

∑
k=0

(αk−αk−1)ea jkb,

and it must vanish as ea jkb is not allowed, whence

αk = αk−1.

Setting αk ≡ α and, hence, βk =−α , we obtain that

ω = α

m−1

∑
k=0

(
eaik jkb− eaik jk+1b

)
= ατm

so that Ω3 = 〈τm〉 and |Ω3|= 1.
It follows from (2.17)–(2.18) that

∂τm =
m−1

∑
k=0

(
eik jkb− eik jk+1b

)
−

m−1

∑
k=0

(
eaik jk − eaik jk+1

)
6= 0.

This implies ker∂ |Ω3 = 0, whence H3 = {0}.
Let us show that H2 = {0}. Since dimIm∂ |Ω3 = 1, it suffices

to show that

(2.19) dimker∂ |Ω2 = 1.
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Consider the following general element of Ω2:

u =
m−1

∑
k=0

αk
(
eaik−1 jk − eaik jk

)
+βk

(
eik jkb− eik jk+1b

)
with arbitrary coefficients αk,βk. We have

∂u =
m−1

∑
k=0

αk
(
eaik−1 + eik−1 jk − eaik − eik jk

)
+βk

(
e jkb + eik jk − e jk+1b− eik jk+1

)
=

m−1

∑
k=0

(αk+1−αk)eaik +
m−1

∑
k=0

(βk−βk−1)e jkb

+
m−1

∑
k=0

(βk−αk)eik jk +
m−1

∑
k=0

(αk+1−βk)eik jk+1 .

The condition ∂u = 0 is equivalent to

αk+1 = αk = βk = βk−1 for all k = 0, ....,m−1

which implies (2.19).
Finally, we determine |H1| by means of the Euler character-

istic

χ = |Ω0|− |Ω1|+ |Ω2|− |Ω3|= (2m+2)−4m+2m−1 = 1.

Hence, we obtain

|H0|− |H1|+ |H2|− |H3|= 1,

which yields |H1|= 0.

2.2 A Cluster Basis in Ωp

We start with the following definition.

Definition. A p-path v = ∑vi0...ip ei0...ip is called an (a,b)-cluster
if all the elementary paths ei0...ip with non-zero values of vi0...ip

have i0 = a and ip = b. A path v is called a cluster if it is an
(a,b)-cluster for some a,b.

Lemma 2.2. Any ∂ -invariant p-path is a sum of ∂ -invariant
clusters.

Proof. Let v ∈ Ωp. For any points a,b ∈ V , denote by va,b the
sum of all terms vi0...ip ei0...ip with i0 = a and ip = b.

Then va,b is a cluster and v = ∑a,b∈V va,b, that is, v is a
sum of clusters. Let us prove that each non-zero cluster va,b is
∂ -invariant.

Since v is allowed, also all non-zero terms vi0...ip ei0...ip are
allowed, whence va,b is also allowed. Let us prove that ∂va.b is
allowed, which will yield the ∂ -invariance of va.b. The path va,b

is a linear combination of allowed paths of the form eai1...ip−1b.
We have

∂eai1...ip−1b = ei1...ip−1b+(−1)p eai1...ip−1 +
p−1

∑
k=1

(−1)k eai1..îk ...ip−1b.

The terms ei1...ip−1b and eai1...ip−1 are clearly allowed, while among
the terms eai1..îk ...ip−1b there may be non-allowed. In the full ex-
pansion of

∂v = ∑
a,b∈V

∂va,b

all non-allowed terms must cancel out. Since all the terms
eai1..îk ...ip−1b form a (a,b)-cluster, they cannot cancel with terms
containing different values of a or b. Therefore, they have to can-
cel already within ∂va,b, which implies that ∂va,b is allowed.

Definition. For any p-path v=∑vi0...ip ei0...ip define its width ‖v‖
as the number of non-zero coefficients vi0...ip .

Definition. A ∂ -invariant path ω is called minimal if ω cannot
be represented as a sum of other ∂ -invariant paths with smaller
widths.

Example 2.3. A square ω = eabc − eab′c has width 2 and is
minimal because eabc and eab′c having width 1 are not ∂ -invariant.

Let a,{b0,b1,b2} ,c be a 2-square. The following path

ω = eab0c + eab1c−2eab2c

is ∂ -invariant, has width 3 but is not minimal because it can be
represented as a sum of two squares:

ω =
(
eab0c− eab2c

)
+(eab1c− eab2c),

where each square has width 2.

Lemma 2.4. Every ∂ -invariant cluster is a sum of minimal
∂ -invariant clusters.

Proof. Let ω be a ∂ -invariant cluster that is not minimal. Then
we have

(2.20) ω =
n

∑
k=1

ω
(k),

where each ω(k) is a ∂ -invariant path with ‖ω(k)‖ < ‖ω‖. By
Lemma 2.2, each ω(k) is a sum of clusters ω

(k)
a,b , and it is clear

from the definition of ω
(k)
a,b that

‖ω(k)
a,b‖ ≤ ‖ω

(k)‖.

Hence, we can replace in (2.20) each ω(k) by ∑a,b ω
(k)
a,b and, hence,

assume without loss of generality that all terms ω(k) in (2.20) are
∂ -invariant clusters.

If some ω(k) in this sum is not minimal then we replace it
further with a sum of ∂ -invariant clusters with smaller widths.
Continuing this procedure we obtain in the end a representation
ω as a sum of minimal ∂ -invariant clusters.
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Proposition 2.5. The space Ωp has a basis that consists of min-
imal ∂ -invariant clusters.

Proof. Indeed, let M denote the set of all minimal ∂ -invariant
clusters in Ωp. By Lemma 2.4, every element of Ωp is a sum of
elements of M. Choosing in M a maximal linearly independent
subset, we obtain a basis in Ωp.

2.3 Structure of Ω3

We use here the trapezohedra Tm and associated trapezo-
hedral paths τm defined in Sections 1.5 and 2.1 (see (1.5)), that
are ∂ -invariant 3-paths for all m ≥ 2. We prove here in Theo-
rem 2.10 that if G contains no multisquare (see Subsection 1.5)
then Ω3 (G) has a basis that consists of trapezohedral paths and
their morphism images.

We start with some examples.

Example 2.6. Here is a merging map from T2 onto a 3-snake:

The trapezohedral path τ2 is given by

τ2 = e0123− e0153 + e0453− e0423,

and its merging image is the 3-path

v = e0123− e0133 + e0233− e0223 = e0123,

that is, the 3-path e0123 associated with a 3-snake.

Example 2.7. Here is a merging morphism of T3 (= a 3-cube)
onto a pyramid:

The cubical 3-path is given by

τ3 = e0237− e0137 + e0157− e0457 + e0467− e0267

and its merging image of τ3 is the following ∂ -invariant 3-path
in a pyramid:

v = e0234− e0134 + e0144− e0444 + e0444− e0244 = e0234− e0134.

Example 2.8. Consider another merging morphism of T3 onto a
prism:

The merging image of τ3 is the following ∂ -invariant 3-path in
the prism:

u = e0233− e0133 + e0153− e0453 + e0423− e0223

= e0153− e0453 + e0423.

Example 2.9. Here is a merging morphism µ : T4 → G where
the digraph G is a broken cube that is shown in the right panel:

The path τ4 in the present notation is given by

τ4 = e0159− e0169 + e0269− e0279 + e0379− e0389 + e0489− e0459,

and the merging image of τ4 is the following ∂ -invariant 3-path
on the broken cube:

v = e0158− e0168 + e0268− e0278 + e0378− e0388 + e0488− e0458

(2.21)

= e0158− e0168 + e0268− e0278 + e0378− e0458.

One can show that Ω3 (G) = 〈v〉.
The next theorem describes the structure of Ω3 (G) for a

general digraph G but under the following hypothesis:

(2.22) G contains neither multisquares nor double arrows.

Under the hypothesis (2.22), Ω2 (G) has a basis that consists
of triangles and squares. The condition (2.22) implies that if
a→ b→ c and a 6→ c then there is at most one b′ 6= b such that
a→ b′→ c.

Theorem 2.10. Under the hypothesis (2.22), there is a basis in
Ω3 (G) that consists of trapezohedral paths τm with m ≥ 2 and
their merging images.

Hence, trapezohedra are basic shapes for Ω3.

Proof. By Proposition 2.5, Ω3 has a basis that consists of minimal
∂ -invariant clusters. Let a path ω ∈Ω3 be a minimal ∂ -invariant
(a,b)-cluster. It suffices to prove that ω is a merging image of
one of the trapezohedral paths τm up to a constant factor.

Denote by P the set of all elementary terms eai jb of ω .
Clearly, the number |P| of elements in P is equal to ‖ω‖. We
claim that, for any eai jb ∈ P,

either a→ j or a↗ j
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where the notation a↗ j means that a and j form a diagonal of
a square.

Indeed, if a 6→ j then the term ea jb appearing in ∂eai jb is
non-allowed and should be cancelled in ∂ω by the boundary of
another elementary 3-path from P that can only be of the form
eai′ jb with

a→ i′→ j

Hence, a and j form diagonal of a square a, i, i′, j.

By hypothesis (2.22), the vertex i′ with these properties is
unique. Hence, in this case we have

(2.23) ω = ceai jb− ceai′ jb + ...

for some scalar c 6= 0. In the same way, we have

either i→ b or i↗ b.

and, for some eai j′b ∈ P and c 6= 0,

(2.24) ω = ceai jb− ceai j′b + ... .

If for some path eai jb ∈ P we have both conditions

a→ j and i→ b

then eai jb is ∂ -invariant and, by the minimality of ω ,

ω = consteai jb.

Since eai jb is in this case a 3-snake, the path ω is a merging image
of τ2.

Next, we can assume that, for any path eai jb ∈ P, we have

a 6→ j or i 6→ b

which is equivalent to

(2.25) a↗ j or i↗ b.

Define a graph structure on P with edges of two types (i) and (ii)
as follows: for two distinct elements eai jb and eai′ j′b of P we write

eai jb
(i)∼ eai′ j′b if a↗ j and j = j′.

and

eai jb
(ii)∼ eai′ j′b if i↗ b and i′ = i.

Clearly, both relations (i)∼ and (ii)∼ are symmetric. We refer to the
relations (i)∼ and (ii)∼ as the edges in P of the first and, respectively,
second type.

Cases eai jb
(i)∼ eai′ j′b and eai jb

(ii)∼ eai′ j′b

By the hypothesis (2.22), for any eai jb ∈ P there is at most
one edge of the first type and at most one edge of the second type.
In particular, the degree of any vertex of the graph (P,∼) is at
most 2.

Fix a path eai jb ∈ P. By the above argument, if a↗ j then

there exists eai′ jb ∈P such that eai jb
(i)∼ eai′ jb and ω satisfies (2.23).

Similarly, if i↗ b then there exists eai j′b ∈ P such that eai jb
(ii)∼

eai j′b and ω satisfies (2.24). In particular, the degree of any vertex
of the graph P is at least 1.

Let us prove that the graph (P,∼) is connected. If P not
connected then P is a disjoint union of its connected components
{Pk}n

k=1 where n > 1. Denote by ω(k) the sum of all elementary
terms of ω lying in Pk, with the same coefficients as in ω , so that

(2.26) ω =
n

∑
k=1

ω
(k).

Let us verify that each ω(k) is ∂ -invariant. Clearly, ω(k) is allowed,
and let us prove that ∂ω(k) is allowed. Indeed, let ∂ω(k) contain
a non-allowed term. The latter comes from the boundary ∂eai jb

of some elementary term eai jb of ω(k) and, hence, is either eaib or
ea jb, let it be eaib, which means i 6→ b. The term eaib cancels out
in ∂ω , which can only happen when ω contains another term of
the form eai j′b. However, then

eai jb ∼ eai j′b

so that eai j′b belongs to the same connected component Pk and,
hence, must be an elementary term of ω(k). This proves that ∂ω(k)

is allowed and, hence, ω(k) is ∂ -invariant.
If the number n of the terms in (2.26) is greater than 1 then

the number of vertices in each Pk is strictly less that in P, which
implies ‖ωk‖ < ‖ω‖. However, in this case the representation
(2.26) is not possible because ω is minimal. Hence, n = 1 and P
is connected.
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Since each vertex of P has at most two adjacent edges, there
are only two possibilities:

(A) P is a simple closed polygon;
(B) P is a linear graph.

Consider first the case (A). In this case every vertex of P has
two edges: exactly one edge of each type (i), (ii).

Thus, the number of edges is even, let 2m, and P has neces-
sarily the following form:
(2.27)
eai0 j0b

(ii)∼ eai0 j1b
(i)∼ eai1 j1b

(ii)∼ . . .
(i)∼ eaim−1 jm−1b

(ii)∼ eaim−1 j0b
(i)∼ eai0 j0b

for some vertices {ik}m−1
k=0 and { jk}m−1

k=0 of G. Note that necessarily
m≥ 2 because if m = 1 then (2.27) becomes

eai0 j0b
(ii)∼ eai0 j1b

(i)∼ eai0 j0b,

which is impossible because edges of different types between the
same vertices of P do not exist.

Since all the terms in (2.27) enter ω with the same coeffi-
cients ±c (cf. (2.23) and (2.24)), we see that

ω = c(eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + ...

+ eaim−1 jm−1b− eaim−1 j0b).(2.28)

If all vertices a, {ik}m−1
k=0 , { jk}m−1

k=0 , b are distinct then they
form a trapezohedron Tm:

In this case we have by (1.5) and (2.28)

ω = cτm.

If some of these vertices coincide then the configuration (2.27)
is a merging image of Tm, and ω is a merging image of cτm.

Consider now the case (B). In this case the linear graph P
has two end vertices of degree 1, while all other vertices have
degree 2. Depending on the type of edges at the end vertices of
P, we have two essentially different subcases:

case (B1): the end vertices of P have edges of different
types.

case (B2): the end vertices of P both have edges of type (ii)
(the case of type (i) is similar).

Consider first the case (B1) when the graph P must have the
form
(2.29)
eai0 j0b

(ii)∼ eai0 j1b
(i)∼ eai1 j1b

(ii)∼ eai1 j2b
(i)∼ . . .

(ii)∼ eaim−1 jmb
(i)∼ eaim jmb.

Consequently, we have

ω = c
(
eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + ...

− eaim−1 jmb + eaim jmb
)
.(2.30)

Since

(2.31) ∂ω = c
(
−ea j0b + eaimb

)
modA2

and ∂ω ∈A2, we must have either ea j0b = eaimb or both ea j0b and
eaimb are allowed, that is,

(2.32) a→ j0 and im→ b.

In the former case we have j0 = im whence (2.32) follows again
so that (2.32) is satisfied in both cases.

We claim that in the case (B1) the configuration (2.29) is a
merging image of Tm+2.

Indeed, denote the vertices of Tm+2 also by
a,{ik}m+1

k=0 ,{ jk}m+1
k=0 ,b, and map all the vertices of Tm+2,

except for im+1, jm+1, to the vertices of G with the same names;
then merge

im+1 7→ j0 and jm+1 7→ b.

The arrows a → im+1, im → jm+1, im+1 → jm+1 in Tm+2 are
mapped to the arrows

a→ j0, im→ b, j0→ b

in G (cf. (2.32)), while the arrows im+1→ j0 and jm+1→ b go to
vertices. It follows that this mapping of Tm+2 into G is a digraph
morphism. Since by (1.5)

τm+2 = (eai0 j0b− eai0 j1b)+(eai1 j1b− eai1 j2b)+ ...
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+(eaim jmb− eaim jm+1b)+(eaim+1 jm+1b− eaim+1 j0b),

the image of τm+2 is the following path, where we replace im+1

by j0 and jm+1 by b:

u = (eai0 j0b− eai0 j1b)+(eai1 j1b− eai1 j2b)+ ...

+(eaim jmb− eaimbb)+(ea j0bb− ea j0 j0b)

= eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + ...− eaim−1 jmb + eaim jmb.

Comparison with (2.30) shows that ω = cu, that is, ω is a merging
image of cτm+2.

For example, in the case m = 1, this merging morphism of
T3 is shown here:

Clearly, it coincides with the merging morphism of Example 2.8
mapping a 3-cube onto a prism.

Consider now the case (B2) when the graph P has the form

eai0 j0b
(ii)∼ eai0 j1b

(i)∼ eai1 j1b
(ii)∼ eai1 j2b

(i)∼ . . .
(i)∼ eaim−1 jm−1b

(ii)∼ eaim−1 jmb,(2.33)

so that

ω = c(eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + ...

+ eaim−1 jm−1b− eaim−1 jmb).(2.34)

Since

∂ω = c
(
−ea j0b + ea jmb

)
modA2,

it follows that either j0 = jm or

(2.35) a→ j0 and a→ jm.

However, j0 = jm is not possible because it would imply that

eai0 j0b
(i)∼ eaim−1 j0b

and the line graph P would close into a polygon, which gives the
case (A). Hence, (2.35) is satisfied. We claim that the configura-
tion (2.33) is then a merging image of Tm+1.

Indeed, we denote the vertices of Tm+1 also by
a,{ik}m

k=0 ,{ jk}m
k=0 ,b, and then map all the vertices of Tm+1,

except for im, to the vertices of G with the same names; then map
im to a.

Clearly, the following arrows

im→ j0 and im→ jm

in Tm+1 are mapped to the arrows

a→ j0 and a→ jm

in G as in (2.35), and the arrow a→ im goes to a vertex. Hence,
we obtain a merging morphism of Tm+1 into G. Since by (1.5)

τm+1 = (eai0 j0b− eai0 j1b)+(eai1 j1b− eai1 j2b)+ ...

+(eaim−1 jm−1b− eaim−1 jmb)+(eaim jmb− eaim j0b),

the image of τm+1 is the following path, where we replace im by a:

v = (eai0 j0b− eai0 j1b)+(eai1 j1b− eai1 j2b)+ ...

+(eaim−1 jm−1b− eaim−1 jmb)+(eaa jmb− eaa j0b)

= eai0 j0b− eai0 j1b + eai1 j1b− eai1 j2b + ...

+ eaim−1 jm−1b− eaim−1 jmb.

Comparison with (2.34) shows that ω = cv so that ω is a merging
image of cτm+1.

For example, in the case m = 3, the above morphism is
equivalent to the merging morphism of Example 2.9 mapping T4

onto a broken cube. In the case m = 2 we obtain the following
merging image of a 3-cube:

Problem 2.11. Prove Theorem 2.10 in the general case without
the hypothesis (2.22).

Problem 2.12. Devise an algorithm for computing a basis in Ω3

based on Theorem 2.10.

Problem 2.13. State and prove similar results for Ω4. Are the
basic shapes in Ω4 given by polyhedra in R4? Devise an algo-
rithm for computing a basis in Ω4. The same questions for Ωp

with p > 4.
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3. Künneth Formulas
The material in this section is based on [22] and [29].

3.1 Cross Product of Paths

Given two finite sets X ,Y , consider their product

Z = X×Y = {(a,b) : a ∈ X and b ∈ Y} .

Let z = z0z1...zr be a regular elementary r-path on Z, where
zk = (ak,bk) with ak ∈ X and bk ∈ Y . We say that z is stair-like
if, for any k = 1, ...,r, either ak−1 = ak or bk−1 = bk is satisfied.
That is, any couple zk−1zk of consecutive vertices is either vertical
(when ak−1 = ak) or horizontal (when bk−1 = bk).

Given a stair-like path z on Z, define its projection onto
X as an elementary path x on X obtained from z by removing
Y -components in all the vertices of z and then by collapsing in
the resulting sequence any subsequence of repeated vertices to
one vertex.

In the same way define projection of z onto Y and denote it
by y.

The projections x = x0...xp and y = y0...yq are regular ele-
mentary paths, and p+q = r.

Every vertex (xi,y j) of the path z can be represented as a
point (i, j) of Z2 so that the path z is represented by a staircase
S (z) in Z2 connecting (0,0) and (p,q).

Define the elevation L(z) of z as the number of cells in Z2
+

below the staircase S (z).
For given elementary regular paths x on X and y onY , denote

by Σx,y the set of all stair-like paths z on Z whose projections on
X and Y are respectively x and y.

Definition. Define the cross product of the paths ex and ey as a
path ex× ey on Z as follows:

(3.36) ex× ey = ∑
z∈Σx,y

(−1)L(z) ez

and extend it by linearity to all u ∈Rp (X) and v ∈Rq (Y ) so that
u× v ∈Rp+q (Z).

Example 3.1. Let us denote the vertices on X by letters a,b,c etc
and the vertices on Y by integers 1,2,3, etc so that the vertices

on Z can be denoted as a1,b2 etc as the fields on a chessboard.
Then we have

ea× e12 = ea1a2, eab× e1 = ea1b1

eab× e12 = ea1b1b2− ea1a2b2

eab× e123 = ea1b1b2b3− ea1a2b2b3 + ea1a2a3b3

eabc× e123 = ea1b1c1c2c3− ea1b1b2c2c3 + ea1b1b2b3c3

+ ea1a2b2c2c3− ea1a2b2b3c3 + ea1a2a3b3c3

Lemma 3.2 ([29, Proposition 4.4]). If u∈Rp (X) and v∈Rq (Y )
where p,q≥ 0, then

(3.37) ∂ (u× v) = (∂u)× v+(−1)p u× (∂v) .

3.2 Cartesian Product of Digraphs

Denote a digraph and its set of vertices by the same letters
to simplify notation. Given two digraphs X and Y , define their
Cartesian product as a digraph Z = X�Y as follows:

• the set of vertices of Z is X×Y , that is, the vertices of Z are
the couples (a,b) where a ∈ X and b ∈ Y ;

• the edges in Z are of two types: (a,b)→ (a′,b)where a→ a′

(a horizontal edge) and (a,b)→ (a,b′) where b→ b′ (a
vertical edge):

b′• . . .

(
a,b′
)
• →

(
a′,b′

)
• . . .

↑ ↑ ↑

b• . . .
(a,b)
• →

(
a′,b
)
• . . .

Y � X . . . •
a

→ •
a′

. . .

It follows that any allowed elementary path in Z is stair-like.
Moreover, any regular elementary path on Z is allowed if

and only if it is stair-like and its projections onto X and Y are
allowed.

It follows from definition (3.36) of the cross product that

(3.38) u ∈Ap (X) and v ∈Aq (Y ) ⇒ u× v ∈Ap+q (Z) .

Furthermore, the following is true.

Lemma 3.3 ([29, Proposition 4.6]). If u∈Ωp (X) and v∈Ωq (Y )
then

u× v ∈Ωp+q (Z) .

Proof. u× v is allowed by (3.38). Since ∂u and ∂v are allowed,
by (3.38) also ∂u×v and u×∂v are allowed. By (3.37), ∂ (u× v)
is also allowed. Hence, u× v ∈Ωp+q (Z).
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Theorem 3.4 ([29, Theorem 5.1]). Any ∂ -invariant path w on
Z = X�Y admits a representation of the form

w =
m

∑
i=1

ui× vi

for some finite m, where ui and vi are ∂ -invariant paths on X and
Y , respectively.

3.3 Künneth Formula for Product

Here is the main result of this section.

Theorem 3.5 (Künneth formula for product [29, Theorem 4.7]).
Let X ,Y be two finite digraphs. Then, for any r ≥ 0,

(3.39) Ωr (X�Y )∼=
⊕

{p,q≥0:p+q=r}
Ωp (X)⊗Ωq (Y ) ,

where the isomorphism is given by

u⊗ v 7→ u× v

for u ∈Ωp (X) and v ∈Ωq (Y ).
Consequently, we have

(3.40) Hr (X�Y )∼=
⊕

{p,q≥0:p+q=r}
Hp (X)⊗Hq (Y )

and

βr (X�Y ) = ∑
{p,q≥0:p+q=r}

βp (X)βq (Y ) .

Example 3.6. Let X be an interval and Y be a square:

X = a•→ •b and Y =

Then Z = X�Y is a 3-cube:

We have:

Ω1 (X) = 〈eab〉, Ωp (X) = 0 for p≥ 2,

Ω1 (Y ) = 〈e01, e13, e23, e02〉,
Ω2 (Y ) = 〈e013− e023〉, Ωq (Y ) = 0 for q≥ 3.

By (3.39) we obtain

Ω3 (Z)∼= Ω1 (X)⊗Ω2 (Y ) = 〈eab× (e013− e023)〉.

Let us compute the cross-products:

eab× e013 = ea0b0b1b3− ea0a1b1b3 + ea0a1a3b3

= e0457− e0157 + e0137

and

eab× e023 = e0467− e0267 + e0237.

Hence, we obtain

Ω3 (Z) = 〈e0457− e0157 + e0137− e0467 + e0267− e0237〉.

That is, Ω3 is generated by a single ∂ -invariant 3-path that is
associated with the 3-cube.

Example 3.7. Denote by T the following 3-cycle (= 1-torus):

T =

Consider the 2-torus G = T�T that is shown here:

G =

Let us compute Ωr (G) and Hr (G). We have

Ω0 (T ) = 〈e0,e1,e2〉,
Ω1 (T ) = 〈e01,e12,e20〉,
Ωp (T ) = {0} for p≥ 2.

By (3.39) we obtain Ωr = {0} for r ≥ 3 and

Ω2 (G) = Ω1 (T )⊗Ω1 (T )

= 〈eab× e01, eab× e12, eab× e20, ebc× e01, ebc× e12,

ebc× e20, eca× e01, eca× e12, eca× e20〉.

DECEMBER 2022 NOTICES OF THE ICCM 79



Using

eab× ei j = eaibib j− eaia j b j

we obtain that

Ω2 (G) = 〈ea0b0b1− ea0a1b1, ea1b1b2− ea1a2b2,

ea2b2b0− ea2a0b0, eb0c0c1− eb0b1c1,

eb1c1c2− eb1b2c2, eb2c2c0− eb2b0c0,

ec0a0a1− ec0c1a1, ec1a1a2− ec1c2a2,

ec2a2a0− ec2c0a0〉.

That is,

Ω2 (G) = 〈e034− e014, e145− e125, e253− e203,

e367− e347, e478− e458, e586− e536

e601− e671, e712− e782, e820− e860〉(3.41)

so that Ω2 (G) is generated by 9 squares.
This can be visualized using the following embedding of G

onto a topological torus:

Let us compute the homology groups of G. We know that

H0 (T ) = 〈e0〉, H1 (T ) = 〈e01 + e12 + e20〉,
Hp (T ) = {0} for p≥ 2.

By (3.40) we obtain

H1 (G) = H0 (T )⊗H1 (T )+H1 (T )⊗H0 (T ) = 〈v1,v2〉

where

v1 = ea× (e01 + e12 + e20) = ea0a1 + ea1a2 + ea2a0

= e01 + e12 + e20

v2 = (eab + ebc + eca)× e0 = ea0b0 + eb0c0 + ec0a0

= e03 + e36 + e60.

Again by (3.40) we get

H2 (G) = H1 (T )⊗H1 (T ) = 〈u〉,

where

u = (eab + ebc + eca)× (e01 + e12 + e20) ,

Hence,

u = ea0b0b1− ea0a1b1 + ea1b1b2− ea1a2b2 + ea2b2b0− ea2a0b0

+ eb0c0c1− eb0b1c1 + eb1c1c2− eb1b2c2 + eb2c2c0− eb2b0c0

+ ec0a0a1− ec0c1a1 + ec1a1a2− ec1c2a2 + ec2a2a0− ec2c0a0,

that is,

u = (e034− e014)+(e145− e125)+(e253− e203)

+(e367− e347)+(e478− e458)+(e586− e536)

+(e601− e671)+(e712− e782)+(e820− e860) .(3.42)

Finally, Hr (G) = 0 for all r ≥ 3.

3.4 An Example: n-Cube

Define the n-cube as follows:

n-cube= I�n = I�I�...�I︸ ︷︷ ︸
n

,

where I = {0→ 1} and n∈N. Hence, each vertex a of the n-cube
can be identified with a binary sequence (a1, ...,an). For example,
0 = (0, ...,0) and 1 = (1, ...,1) are the corners of the n-cube.

For two vertices a, b of the n-cube, there is an arrow a→ b
if bk = ak +1 for exactly one value of k and bk = ak for all other
values of k. Denote

|a|= a1 + ...+an.

We write a� b if there is an allowed path from a to b, that is

a� b ⇔ ak ≤ bk for all k = 1, . . . ,n.

For any pair a � b consider an induced subgraph Da,b of the
n-cube as follows: the vertices of Da,b are all vertices c of I�n

such that

a� c� b

and an arrow c1→ c2 exists in Da,b exactly when this arrow exists
in I�n. Here is a 4-cube and its subgraph Da,b (the arrows go from
top to bottom):

The mapping c 7→ c− a provides an isomorphism of Da,b

onto a p-cube with

p = |b|− |a| .

Assuming that a � b, denote by Pa,b the set of all elementary
allowed paths going from a to b. All paths of Pa,b lie in Da,b, each
path in Pa,b has the length p = |b|− |a|, and the total number of
the paths in Pa,b is p!.
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Lemma 3.8. There is a function σ : Pa,b→ {0,1} such that the
following p-path

(3.43) ωa,b = ∑
x∈Pa,b

(−1)σ(x) ex

is ∂ -invariant.

For example, in a 3-cube as shown here, we have

ω0,1 = e01,

ω0,3 = e013− e023,

and

ω0,7 = e0137− e0237− e0157 + e0457 + e0267− e0467

(cf. Example 3.6).

Proof. Without loss of generality, we can assume that a = 0,
b = 1, and prove the claim by induction in n = p. The induction
basis for n = 1 is obvious. For the induction step from n to n+1
we use Lemma 3.3 that says that the cross product of ∂ -invariant
paths is ∂ -invariant. Denote by 0′ = (0,0) and 1′ = (1,1) the
corners of the (n+1)-cube.

A path x ∈ P0,1 and z ∈ Σx,y

Taking the cross product of the n-path ω0,1 on I�n and the
1-path y = e01 on I, and using (3.36), we obtain the following
∂ -invariant (n+1)-path on I�(n+1):

ω0,1× e01 = ∑
x∈P0,1

(−1)σ(x) ex× ey

= ∑
x∈P0,1

∑
z∈Σx,y

(−1)σ(x) (−1)L(z) ez,

where z is any stair-like path on (n+1)-cube that projects onto x
and y, respectively.

Clearly, z runs over all paths P0′,1′ . Setting

σ (z) = σ (x)+L(z) mod2

and

ω0′,1′ = ω0,1× e01,

we obtain

ω0′,1′ = ∑
z∈P0′ ,1′

(−1)σ(z) ez,

which concludes the proof.

Proposition 3.9. For any p≥ 0, we have

Ωp (n-cube) =
〈
ωa,b : a� b and |b|− |a|= p

〉
.

Moreover,
{

ωa,b
}

is a basis of Ωp (n-cube).

Proof. The proof is again by induction in n. The induction basis
for n = 1 is obvious. For the induction step from n to n+1 we use
the Künneth formula (3.39). By this formula and by the induction
hypothesis, we obtain that the basis in Ωp ((n+1)-cube) consists
of the following p-paths:{

ωa,b× e01 : ωa,b ∈Ωp−1 (n-cube)
}

∪
{

ωa,b× ei : ωa,b ∈Ωp (n-cube) , i = 0,1
}

As above, the products ωa,b × e01 give us all the p-paths
ω(a,0),(b,1), while ωa,b× ei give us all the p-paths ω(a,0),(b,0) and
ω(a,1),(b,1). Clearly, we obtain in this way all p-paths ωa′,b′ with
a′,b′ ∈ (n+1)-cube, which concludes the proof.

3.5 Augmented Chain Complex

In this section we use the augmented chain complexes

0 ← K ∂← Λ0
∂← . . .

∂← Λp−1
∂← Λp

∂← . . .(3.44)

0 ← K ∂← R0
∂← . . .

∂← Rp−1
∂← Rp

∂← . . .(3.45)

and

(3.46) 0 ← K ∂← Ω0
∂← . . .

∂← Ωp−1
∂← Ωp

∂← . . . ,

with the added space Λ−1 = R−1 = Ω−1 = K. The operator
∂ : Λ0→ Λ−1 is define by

∂ei = e = the unity of K

which matches the definition (1.1) for p = 0.
The homology groups of (3.46) are called the reduced ho-

mology groups of G and are denoted by H̃p(G). We have

H̃p(G) = Hp(G) for p≥ 1 and H̃0(G) = H0(G)/K.

Define the reduced Betti numbers: β̃p(G) = dim H̃p(G). We have

β̃p(G) = βp(G) for p≥ 1 and β̃0(G) = β0(G)−1.

For a disjoint union X tY of two digraphs we have by (1.4)

(3.47) β̃r (X tY ) = β̃r (X)+ β̃r (Y )+1{r=0}.

The augmented chain complex (3.46) as opposed to (1.3) will
also be used in Subsection 6.9. In all other places we continue
using the chain complex (1.3).
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3.6 A Join of Two Digraphs

Let X ,Y be two digraphs.

Definition. The join X ∗Y of the digraphs X ,Y is a digraph
whose set of vertices is a disjoint union of the sets of vertices of
X and Y , and the set of arrows consists of all arrows of X and Y
as well as from all arrows x→ y where x ∈ X and y ∈ Y .

Example 3.10. For example, for the digraphs {·, ·} of two ver-
tices and no arrows, we have

{0,1}∗{2,3}=

a diamond

and

∗{4,5}=

an octahedron

Definition. Let p,q ≥ −1. For a p-path u on X and a q-path v
on Y , define the join uv as a (p+q+1)-path on X ∗Y as follows:
first define it for elementary paths by

ei0...ip e j0... jq = ei0...ip j0... jq ,

and then extend this definition by linearity to all u and v.

A join path ei0...ip e j0... jq on X ∗Y

If u and v are allowed on X , resp.Y , then uv is clearly allowed
on Z = X ∗Y .

Lemma 3.11 (Product rule for join [20], [29, Lemma 2.4]). For
all p,q≥−1 and u ∈ Λp, v ∈ Λq we have

(3.48) ∂ (uv) = (∂u)v+(−1)p+1 u∂v.

If u ∈ Ωp (X) and v ∈ Ωq (Y ) then ∂u and ∂v are allowed,
which implies by (3.48) that ∂ (uv) is also allowed, that is, uv ∈
Ωp+q+1 (Z). The product rule implies also that the join uv is
well defined for the reduced homology classes: if u ∈ H̃p (X) and
v ∈ H̃q (Y ) then uv ∈ H̃p+q+1 (Z).

3.7 Künneth Formula for Join

Let X ,Y be two digraphs.

Theorem 3.12 (Künneth formula for join [29, Theorem 3.3]).
We have the following isomorphism: for any r ≥−1,

(3.49) Ωr (X ∗Y )∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗Ωq (Y ))

that is given by the map u⊗ v 7→ uv with u ∈ Ωp (X) and v ∈
Ωq (Y ), and, for any r ≥ 0,

H̃r (X ∗Y ) ∼=
⊕

{p,q≥0:p+q=r−1}
H̃p (X)⊗ H̃q (Y )(3.50)

β̃r (X ∗Y ) ∼= ∑
{p,q≥0:p+q=r−1}

β̃p (X) β̃q (Y ) .(3.51)

The identity (3.49) means that any path in Ωr (Z) can be
obtained as linear combination of joins uv where u ∈Ωp (X) and
v ∈ Ωq (Y ) with p+ q+ 1 = r, and (3.50) means the same for
homology classes.

Example 3.13. Let Y consist of a single vertex. In this case the
join X ∗Y is called a cone over X . Since all homology groups
H̃∗ (Y ) are trivial, the cone X ∗Y is also homologically trivial by
(3.50). For example, the following digraphs are cones and, hence,
they are homologically trivial.

Example 3.14. Let Y consist of m vertices without arrows. Then
the join X ∗Y is called the m-suspension of X and is denoted by
susmX .

Here is an example of susmX with m = 3:

Since β̃0 (Y ) = m− 1 and β̃p (Y ) = 0 for p ≥ 1, we obtain
from (3.51) that

β̃r (susmX) = (m−1) β̃r−1 (X) .

For example, on this picture X = sus2 {·, ·}whence β̃1 (X) =

1 and β̃p (X) = 0 for p 6= 1.
For G = sus3X we have β̃2 (G) = 2 and β̃r (G) = 0 for r 6= 2.

Observe that the operation ∗ of digraphs is associative. For
a sequence X1, ...,Xl of l digraphs we obtain by induction from
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(3.49), (3.50) and (3.51) that

Ωr (X1 ∗X2 ∗ ...∗Xl)

(3.52)

∼=
⊕

{pi≥−1: p1+p2+...+pl=r−l+1}
Ωp1 (X1)⊗ ...⊗Ωpl (Xl)

H̃r (X1 ∗X2 ∗ ...∗Xl)

(3.53)

∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl (Xl)

β̃r (X1 ∗X2 ∗ ...∗Xl)

(3.54)

= ∑
{pi≥0: p1+p2+...+pl=r−l+1}

β̃p1 (X1) ...β̃pl (Xl) .

Example 3.15. Consider an octahedron Z = X1 ∗X2 ∗X3 where

X1 = {0,1} , X2 = {2,3} , X3 = {4,5} .

(see Example 3.10). Then we have

Ω2 (Z) =
⊕

{pi≥−1: p1+p2+p3=2−3+1}
Ωp1 (X1)⊗Ωp2 (X2)⊗Ωp3 (X3)

= Ω0 (X1)⊗Ω0 (X2)⊗Ω0 (X3)

= 〈e0,e1〉⊗〈e2,e3〉⊗〈e4,e5〉
= 〈e024,e025,e034,e035,e124,e125,e134,e135〉

and

H2 (Z) = H̃2 (Z)

=
⊕

{pi≥0: p1+p2+p3=2−3+1}
H̃p1 (X1)⊗ H̃p2 (X2)⊗ H̃p3 (X3)

= H̃0 (X1)⊗ H̃0 (X2)⊗ H̃0 (X3)

= 〈e0− e1〉⊗〈e2− e3〉⊗〈e4− e5〉
= 〈e024− e025− e034 + e035− e124 + e125 + e134− e135〉.

3.8 Linear Join

The material in this section is based on [30]. Given a digraph
G of l vertices {1,2, ..., l} and a sequence X1, ...,Xl of l digraphs,
define their generalized join (X1...Xl)G = XG as follows: XG is
obtained from the disjoint union

⊔
i Xi of digraphs Xi by keeping

all the arrows in each Xi and by adding arrows x→ y whenever
x ∈ Xi, y ∈ X j and i→ j in G.

The digraph XG is also referred to as a G-join of X1, ...,Xl ,
and G is called the base of XG.

The main problem to be discussed here is

how to compute the homology groups and Betti numbers of XG.

Denote by Kl a complete digraph with vertices {1, ..., l} and
arrows

i→ j⇔ i < j ,

that is, Kl is an (l−1)-simplex. For example, K2 = {1→ 2} and
K3 = {1→ 2→ 3,1→ 3} is a triangle.

The digraph XKl is called a complete join of X1, ...,Xl . It is
easy to see that

XKl = X1 ∗X2 ∗ ...∗Xl

It follows from (3.54) that, for any r ≥ 0,

(3.55) β̃r
(
XKl

)
= ∑
{pi≥0: p1+p2+...+pl=r−l+1}

β̃p1 (X1) ...β̃pl (Xl) .

Denote by Il the monotone linear digraph with the vertices
{1, ..., l} and arrows i→ i+1:

(3.56) Il = {1→ 2→ ...→ l}.

If G = Il then we use the following simplified notation:

(X1X2...Xl)Il
= X1X2...Xl

and refer to this digraph as a monotone linear join of X1, ...,Xl .
Clearly, X1X2...Xn can be constructed as follows: first take a

disjoint union
⊔l

i=1 Xi and then add arrows from any vertex of Xi

to any vertex of Xi+1 (see Example 4.13).
In the case l = 2 we obviously have X1X2 = X1 ∗X2 but in

general X1X2...Xl is a subgraph of X1 ∗X2 ∗ ...∗Xl . For example,
we have

{0}{1,2}{3}=

while {0}∗{1,2}∗{3}= .

Theorem 3.16 ([30]). We have
(3.57)
H̃r (X1X2...Xl)∼=

⊕
{pi≥0: p1+p2+...+pl=r−l+1}

H̃p1 (X1)⊗...⊗H̃pl (Xl)

and
(3.58)

β̃r (X1X2...Xl) = ∑
{pi≥0: p1+p2+...+pl=r−l+1}

β̃p1 (X1) ...β̃pl (Xl) .

Moreover, if dimp Xi < ∞ for all i, then also dimp (X1...Xl)< ∞.

It follows from comparison of (3.53) and (3.57), that the
linear join X1X2...Xl and the complete join X1 ∗X2 ∗ ... ∗Xl are
homologically equivalent.
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Example 3.17. Assume that one of the digraphs Xi is homolog-
ically trivial, that is, β̃p (Xi) = 0 for all p and some i. Then by
(3.58) the digraph X1X2...Xl is also homologically trivial.

Example 3.18. Assume that all digraphs Xi have no arrows.
In this case the only non-trivial Betti numbers are β̃0 (Xi), and
we obtain from (3.58) that the only non-trivial Betti number of
X1X2...Xl is

(3.59) β̃l−1 (X1X2...Xl) = β̃0 (X1) ...β̃0 (Xl) .

This particular case of Theorem 3.16 was proved in [7].
Here is an example of a monotone linear join:

X = X1X2X3

where each Xi = {·, ·}.

Since β̃0 (Xi) = 1, it follows from (3.59) that the only non-
trivial Betti number of X is β2 (X) = 1.

Example 3.19. Let the base G be a square:

We have

G = {1}{2,3}{4}

which implies that

XG = X1 (X2tX3)X4.

By Theorem 3.16 and (3.47) we obtain that

β̃r (XG) = ∑
{pi≥0: p1+p2+p3=r−2}

β̃p1 (X1) β̃p2 (X2tX3) β̃p3 (X4)

= ∑
{pi≥0: p1+p2+p3=r−2}

β̃p1 (X1)
(
β̃p2 (X2)+ β̃p2 (X3)

+1{p2=0}
)
β̃p3 (X4)

= β̃r (X1X2X4)+ β̃r (X1X3X4)+ β̃r−1 (X1X4) .(3.60)

For a general base G, if i1...ik is an arbitrary sequence of
vertices in G then denote

Xi1...ik = Xi1 Xi2 ...Xik .

Note that by (3.58)

β̃r
(
Xi1...ik

)
= ∑

p1+...+pk=r−(k−1)
p1,...,pk≥0

β̃p1 (Xi1) ...β̃pk

(
Xik

)
.

Using this notation, we can rewrite (3.60) as follows: if G is a
square then

β̃r (XG) = β̃r (X124)+ β̃r (X134)+ β̃r−1 (X14) .

Example 3.20. Let G be an octahedron based on the diamond:

We have

G = {1,2}∗{3,4}∗{5,6}

whence

XG = (X1tX2)∗ (X3tX4)∗ (X5tX6) .

By (3.55) we obtain

β̃r (XG) ∑
{pi≥0: p1+p2+p3=r−2}

β̃p1(X1tX2)β̃p2(X3tX4)

× β̃p3(X5tX6)

= ∑
{pi≥0: p1+p2+p3=r−2}

(β̃p1(X1)+ β̃p1(X2)+1{p1=0})

× (β̃p2(X3)+ β̃p2(X4)+1{p2=0})

× (β̃p3(X5)t β̃p3(X6)+1{p3=0})

= β̃r(X135)+ β̃r(X145)+ β̃r(X235)+ β̃r(X245)+ β̃r(X136)

+ β̃r(X146)+ β̃r(X236)+ β̃r(X246)+ β̃r−1(X13)+ β̃r−1(X23)

+ β̃r−1(X14)+ β̃r−1(X24)+ β̃r−1(X15)+ β̃r−1(X25)

+ β̃r−1(X35)+ β̃r−1(X45)+ β̃r−1(X16)+ β̃r−1(X26)

+ β̃r−1(X36)+ β̃r−1(X46)+ β̃r−2(X1)+ β̃r−2(X2)+ β̃r−2(X3)

+ β̃r−2(X4)+ β̃r−2(X5)+ β̃r−2(X6)+1{r=2}.

3.9 Subgraphs and Mayer-Vietoris Exact Sequence

The material of this section is based on [18].
A digraph Y is called a subgraph of a digraph X if both sets

of vertices and arrows of Y are subsets of those sets of X . Any
allowed path in Y is therefore also allowed in X . Since the natural
inclusion map i : Y → X commutes with ∂ , we obtain that every
∂ -invariant path in Y is also ∂ -invariant in X .

A converse is not always true: even if ea0...ap is an allowed
path in X and all the vertices a0, . . . ,ap lie in Y , this path is not
necessarily allowed in Y because some of its arrows may not be
in Y .

A subgraph Y is called induced if together with two vertices
a,b∈Y it contains also the arrow a→ b if this arrow is present in
X . For an induced subgraph Y , if ea0...ap is an allowed path in X
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and all the vertices a0, . . . ,ap lie in Y then ea0...ap is also allowed
in Y . Consequently, if ω is a ∂ -invariant path in X and if all the
vertices of ω are contained in Y then ω is also ∂ -invariant in Y .

If Y1 and Y2 are two subgraphs of X then their union Y1∪Y2

is a subgraph of X whose sets of vertices and arrows are unions
of those of Y1 and Y2, respectively. In the same way one defines
the intersection Y1 ∩Y2. If Y1 and Y2 are induced then Y1 ∩Y2 is
also induced.

Assume that a digraph X is a union of two subgraphs Y1 and
Y2, that is,

X = Y1∪Y2.

In particular, every arrow of X lies in Y1 or Y2. Denote

Z = Y1∩Y2.

Then we have the following commutative diagram of the natural
inclusions of the digraphs:

(3.61)
Z

i1−→ Y1
i2 ↓ ↓ j1

Y2
j2−→ X .

For any p≥−1 the commutative diagram (3.61) induces a com-
mutative diagram

(3.62)
Rp(Z)

i1∗−→ Rp(Y1)

↓i2∗ ↓ j1∗

Rp(Y2)
j2∗−→ Rp(X),

where all homomorphisms are injective. Observe that all homo-
morphisms i∗ and j∗ commute with the boundary operator ∂ and
map allowed paths to the allowed ones.

Consider the following homomorphisms:

(3.63) 0−→Rp(Z)
δ−→Rp(Y1)⊕Rp(Y2)

γ−→Rp(X)−→ 0,

where
(3.64)

δ (z) = (i1∗ (z) , i
2
∗ (z)) and γ(y1,y2) = j1

∗(y1)− j2
∗(y2)

for all z ∈ Z and yi ∈ Yi. The map δ is evidently injective.

Lemma 3.21 ([18, Lemma 3.23]). In the sequence (3.63) we
have Imδ = kerγ .

Proof. For any z ∈ Z we have

γ (δ (z)) = j1
∗ ◦ i1∗ (z)− j2

∗ ◦ i2∗ (z) = 0,

so that γ ◦δ = 0 and, hence, Imδ ⊂ kerγ . To prove the opposite
inclusion, observe that

kerγ =
{
(y1,y2) ∈Rp(Y1)⊕Rp(Y2) : j1

∗(y1) = j2
∗(y2)

}
,

that is, y1 and y2 coincide as paths in X . Since y1 is a path
in Y1 and y2 is a path in Y2, it follows that y1 and y2 can be
identified with the same path z in Z = Y1 ∩Y2. It follows that
δ (z) = (y1,y2) and, hence, (y1,y2) ∈ Imδ , which finishes the
proof of Imδ = kerγ .

For all (y1,y2) ∈Rp(Y1)⊕Rp(Y2) set

∂ (y1,y2) := (∂y1,∂y2) ∈Rp−1(Y1)⊕Rp−1(Y2).

Also, we say that (y1,y2) is allowed if both y1,y2 are allowed.
Since i∗ and j∗ commute with the boundary operator ∂ , it

follows that δ and γ also commute with ∂ , that is, the following
diagram is commutative:

0 0

↓ ↓
0 . . . ← Rn−1(Z)

∂← Rn(Z)
∂← . . .

↓δ ↓δ

0 . . . ← Rn−1(Y1)⊕Rn−1(Y2)
∂← Rn(Y1)⊕Rn(Y2)

∂← . . .

↓γ ↓γ

0 . . . ← Rn−1(X)
∂← Rn(X)

∂← . . .

↓ ↓
0 0

Indeed, for z ∈Rn (Z) we have

δ ◦∂ (z) =
(
i1∗ (∂ z) , i2∗ (∂ z)

)
=
(
∂ i1∗ (z) ,∂ i2∗ (z)

)
= ∂ ◦δ (z)

and for (y1,y2) ∈Rn(Y1)⊕Rn(Y2) we have

γ ◦∂ (y1,y2) = j1
∗ (∂y1)− j∗2 (∂y2) = ∂ j1

∗ (y1)−∂ j∗2 (y2)

= ∂ ◦ γ (y1,y2) .

Observe also that δ and γ map allowed paths to allowed ones,
which follows from the same properties of i∗ and j∗. Since δ and
γ commute with ∂ , it follows that δ and γ map ∂ -invariant paths
to ∂ -invariant ones. Hence, we obtain the following sequence of
homomorphisms

(3.65) 0−→Ωp(Z)
δ−→Ωp(Y1)⊕Ωp(Y2)

γ−→Ωp(X)−→ 0,

where δ is injective as above.

Lemma 3.22 ([18, Lemma 3.24]). In (3.65) we have Imδ = kerγ .
If in addition

∀x ∈Ωp (X) we have x = y1 + y2

for some y1 ∈Ωp (Y1) and y2 ∈Ωp (Y2) ,(3.66)

then γ in (3.65) is surjective and (3.65) is a short exact sequence.

Proof. Since γ ◦ δ = 0, we have Imδ ⊂ kerγ . Let us prove the
opposite inclusion. Let y1 ∈Ωp(Y1) and y2 ∈Ωp(Y2) be such that
(y1,y2) ∈ kerγ , that is, j1

∗(y1) = j2
∗(y2). By Lemma 3.21, y1 and

y2 can be identified with a path z ∈ Ap (Z). Then ∂ z = ∂y1 ∈
Ap−1(Y1) and ∂ z = ∂y2 ∈ Ap−1(Y2), that is ∂ z ∈ Ap−1(Z) and,
hence, z ∈ Ωp(Z). Therefore, (y1,y2) = δ (z), which was to be
proved.

Let us prove that the map γ in (3.65) is surjective. For any
x ∈ Ωp (X) we have by hypothesis that x = y1 + y2 where y1 ∈
Ωp (Y1) and y2 ∈Ωp (Y2). Then we have γ (y1,−y2) = x so that γ

is surjective.

The condition (3.66) can be equivalently stated as follows:
there is a basis in Ωp (X) such that any element of this basis is a
sum of elements of Ωp (Y1) and Ωp (Y2).
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Theorem 3.23 (Mayer-Vietoris exact sequence [18, Theorem
3.25]). Let

X = Y1∪Y2, Z = Y1∩Y2

and assume that the hypothesis (3.66) is satisfied for any p≥ 2.
Then we have a long exact sequence of homology groups:

· · · → H̃n(Z)
δ→ H̃n(Y1)⊕ H̃n(Y2)

γ→ H̃n(X)
β→ H̃n−1(Z)

δ→ H̃n−1(Y1)⊕ H̃n−1(Y2)→ ···(3.67)

where δ = (i1∗, i
2
∗), γ(y1,y2) = j1

∗(y1)− j2
∗(y2), and β is a con-

necting homomorphism.

Proof. Note that (3.66) is trivially satisfied for p≤ 1. Hence, this
condition is satisfied for all p. By the above construction, we have
the following commutative diagram
(3.68)

0 0

↓ ↓
0 ... ← Ωn−1(Z)

∂← Ωn(Z)
∂← . . .

↓δ ↓δ

0 ... ← Ωn−1(Y1)⊕Ωn−1(Y2)
∂← Ωn(Y1)⊕Ωn(Y2)

∂← . . .

↓γ ↓γ

0 ... ← Ωn−1(X)
∂← Ωn(X)

∂← . . .

↓ ↓
0 0

where each column is a short exact sequence by Lemma 3.22.
The claim follows from the zig-zag lemma and from

H̃∗ (Ω∗(Y1)⊕Ω∗(Y2))∼= H̃∗(Y1)⊕ H̃∗(Y2).

Any p-path u ∈Rp (X) has the form

u = ∑
i0...ip

ui0...ip ei0...ip

with the coefficients ui0...ip ∈ K. We say that ei0...ip (or
ui0...ip ei0...ip ) is an elementary term of u if ui0...ip 6= 0.

The next lemma provides sufficient conditions for the hy-
pothesis (3.66).

Lemma 3.24. Assume that the following two conditions are sat-
isfied:

(i) For any p≥ 2 and for any x ∈Ωp (X), any elementary term
of x lies in one of the subgraphs Y1, Y2 and is allowed in this
subgraph.

(ii) For any square eabc − eab′c in X , if a,b,c ∈ Yk for some
k = 1,2 then also b′ ∈ Yk.

Then the condition (3.66) is satisfied.

Proof. Fix x ∈ Ωp for some p ≥ 2. Denote by y1 the sum of all
elementary terms of x that lie in Y1 and are allowed in Y1. Set
y2 = x− y1. By (i), y2 is a sum of some elementary terms of x
that lie in Y2 and are allowed in Y2. Since x = y1 + y2, it suffices
to verify that both y1 and y2 are ∂ -invariant, that is, ∂y1 and ∂y2

are allowed. Assume that ∂y1 is not allowed. Then ∂y1 contains

a non-allowed elementary term, say

(3.69) constei0...îq...ip

(where 1 ≤ q ≤ p− 1) that comes from the boundary of a term
ei0..ip of y1. This term must cancel out in ∂x, which means that x
must contain another elementary term e j0... jp with

i0...iq−1 îq iq+1...ip = j0... jq−1 ĵq jq+1... jp.

Consequently, ik = jk for all k 6= q. Hence, we obtain the following
square in X :

(3.70) eiq−1iqiq+1 − eiq−1 jqiq+1 .

Since iq−1, iq and iq+1 belong to Y1 then by (ii) also jq ∈ Y1.
Hence, e j0... jp lies in Y1 and the non-allowed term (3.69) cancels
also in ∂y1. Therefore, ∂y1 is allowed and y1 is ∂ -invariant. In
the same way also y2 is ∂ -invariant.

In this picture we show a situation when each of the paths
i0...ip, j0... jp belongs to one of the digraphs Y1, Y2, while the
condition (ii) is not satisfied: the square (3.70) has the vertices
iq−1, iq, iq+1 in Y1 while jq /∈ Y1.

Corollary 3.25. Assume that the hypothesis (3.66) is satisfied.

(a) If, for some n, the homology groups H̃n(Z) and H̃n−1(Z) are
trivial, then

(3.71) H̃n(X)∼= H̃n(Y1)⊕ H̃n(Y2).

(b) If, for some n, the homology groups H̃n(Y1), H̃n(Y2),
H̃n−1(Y1), H̃n−1(Y2) are trivial, then

(3.72) H̃n(X)∼= H̃n−1(Z).

(c) If, for some n, the homology groups H̃n−1(Y1), H̃n−1(Y2) and
H̃n(Z) are trivial, then

(3.73)
dim H̃n (X) = dim H̃n (Y1)+dim H̃n (Y2)+dim H̃n−1 (Z) .

Proof. (a) We have the following fragment of (3.67):

0 = H̃n(Z)→ H̃n(Y1)⊕ H̃n(Y2)→ H̃n(X)→ H̃n−1(Z) = 0,

whence (3.71) follows.
(b) We have the following fragment of (3.67):

0 = H̃n(Y1)⊕ H̃n(Y2)→ H̃n(X)→ H̃n−1(Z)

→ H̃n−1(Y1)⊕ H̃n−1(Y2) = 0 ,

whence (3.72) follows.
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(c) We have the following fragment of (3.67):

0 = H̃n(Z)→ H̃n(Y1)⊕ H̃n(Y2)
γ→ H̃n(X)

β→ H̃n−1(Z)

→ H̃n−1(Y1)⊕ H̃n−1(Y2) = 0.

Hence, γ is injective and β is surjective, and Imγ = kerβ . By the
rank-nullity theorem we have

dim H̃n (X) = dimkerβ +dimImβ

= dimImγ +dimImβ

= dim H̃n (Y1)+dim H̃n (Y2)+dim H̃n−1 (Z) ,

which was to be proved.

Example 3.26. Assume that Z consists of a single vertex v. In this
case Y1 and Y2 are necessarily induced subgraphs. Alternatively,
one can say that X is obtained by merging digraphs Y1 and Y2

at one vertex v. Let us verify that the hypotheses (i) and (ii) of
Lemma 3.24 are satisfied. For any x∈Ωp (X)with p≥ 2 consider
an elementary term cei0...ip of x and show that ei0...ip lies in Y1 or
in Y2. Assume that this is not the case, that is, one of the vertices
i1, ..., ip−1 is v, say v = iq, while iq−1 and iq+1 belong to different
Y1, Y2.

The path ∂ei0...ip contains the term

ei0...iq−1iq+1..ip

that is not allowed because iq−1 6→ iq+1. This term must be can-
celled in ∂x using another elementary term of x.

However if another elementary term e j0... jp of x contains
ei0...iq−1iq+1...ip in its boundary then

i0...iq−1iq+1...ip = j0... jq−1 jq+1... jp

which implies jq = v because this is the only choice of jq to make
j0... jp allowed. Hence, ei0...ip = e j0... jp and the above cancellation
is not possible, which proves (i).

The condition (ii) is obvious: if eabc− eab′c is a square in
X and a,b,c ∈ Y1 while b′ /∈ Y1 then both a and c must coincide
with v, which is not possible.

Since H̃∗ (Z) = {0}, Corollary 3.25 (a) applies in this case
and yields (3.71) for all n. Consequently, we have

(3.74) β̃n(X) = β̃n(Y1)+ β̃n(Y2).

Example 3.27. Denote by Y1 the digraph LH (5) from Exam-
ple 1.19. For this digraph

βp (Y1)> 0 for all p = 1mod3.

More precisely, β1 (Y1) = 1 and βp (Y1) = 4 if p = 1mod3 and
p > 1. Set

Y2 = sus2Y1 and Y3 = sus2Y2.

Using the formula β̃r (sus2G) = β̃r−1 (G) from Example 3.14, we
obtain that

βp (Y2)> 0 for all p = 2mod3

and

βp (Y3)> 0 for all p = 0mod3.

Let X be a digraph that is obtained from disjoint digraphs Y1, Y2

and Y3 by merging them at one vertex. By (3.74) we obtain for all
p≥ 1

βp(X) = βp(Y1)+βp(Y2)+βp(Y3).

Since βp (Yi)> 0 for p = imod3, it follows that

βp (X)> 0 for all p.

Hence, we obtain an example of a digraph with non-trivial ho-
mology groups Hp for all p.

Example 3.28. Let X be an octahedron as here:

Let Y1 and Y2 be induced subgraphs consisting of the upper
and lower pyramids. Then Z is the diamond in the middle section
of X .

The space Ω2 (X) is spanned by 8 triangles:

e024, e034, e025, e035, e124, e134, e125, e135,

each of them lying in Y1 or Y2, and Ωp(X) = {0} for all p≥ 3.
Hence, the hypothesis of Theorem 3.23 is satisfied.
Note that all H̃∗ (Y1) and H̃∗ (Y2) are trivial, while the only

nontrivial group H̃p (Z) is

H1 (Z) = 〈e02− e12 + e13− e03〉 .

By Corollary 3.25 (b) we conclude that H2(X)∼= H1(Z). Indeed,
we have seen in Example 3.15 that H2 (X) is one-dimensional.

Example 3.29. Let Y2 be an induced connected subgraph of X
such that X \Y2 has a single vertex b and two arrows a→ b and
b→ c where a,c are distinct vertices of Y2. We assume further
that a 6⇀ c in Y2 (while in X we have either a→ c or a ⇀ c). Let
us related Hp (X) to Hp (Y2).

Denote by Y1 an induced subgraph of X with the vertices
a,b,c, and set Z = Y1∩Y2.

Then Z is an induced subgraph with two vertices a and c.
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Here is an example of this configuration:

Let us verify that the conditions (i) , (ii) of Lemma 3.24 are
satisfied.

Let αei0...ip be an elementary term of x ∈ Ωp (X) where
p ≥ 2. Let us show that the path i0...ip lies in Y1 or Y2. If i0...ip

does not contain b then it lies in Y2. Let b be one of the vertices
i0...ip, say b = ik.

If

(3.75) p = 2 and k = 1,

then ei0...ip = eabc and the path abc is contained in Y1.
Assume that (3.75) is not satisfied, so that either k ≥ 2 or

k ≤ p−2.
If k ≥ 2 then ei0...ip = e...ik−2ab... and ∂ei0...ip contains the

term e...ik−2b... that is non-allowed and cannot be cancelled by
other terms of x.

Similarly, if k ≤ p− 2 then ei0...ip = e...bcik+2... and ∂ei0...ip

contains a non-allowed term e...bik+2... that cannot be cancelled
by other terms of x. Hence, the condition (i) is satisfied.

The condition (ii) is obvious: if s is a square in X that does
not lie in Y2 then s must contain the vertex b and, hence,

s = eabc− eab′c

where b′ ∈ Y2. However, since ac is not a semi-arrow in Y2, the
path ab′c cannot be allowed.

Since

Hn (Z) = {0} ∀n≥ 1 and Hn (Y1) = {0} ∀n≥ 2,

we obtain by Corollary 3.25 (a) that

Hn(X)∼= Hn(Y2) for all n≥ 2.

In order to determine H1 (X), observe that H̃0(Y1), H̃0(Y2) and
H̃1(Z) are trivial, and we conclude by Corollary 3.25 (c) that

dimH1 (X) = dimH1 (Y1)+dimH1 (Y2)+dim H̃0 (Z) .

Next, consider three cases.
Case 1. Let a→ c. Then H1 (Y1) = {0} and H̃0 (Z) = {0}

whence

dimH1 (X) = dimH1 (Y2) .

Case 2. Let a 6→ c and c→ a. Then H̃0 (Z) = {0} and

H1 (Y1) = 〈eab + ebc + eca〉 ,

whence

(3.76) dimH1 (X) = dimH1 (Y2)+1.

Case 3. Let a 6→ c and c 6→ a. Then H1 (Y1) = {0},
dim H̃0 (Z) = 1, and we obtain again (3.76).

Example 3.30. Let Y1, Y2 be induced subgraphs of X as shown
here:

The digraph X contains a ∂ -invariant snake e012 ...10 that does
not lie in any of the subgraphs Y1, Y2. Hence, the hypothesis
(3.66) of Theorem 3.23 is not satisfied, and the condition (i) of
Lemma 3.24 fails as well.

Example 3.31. Consider the following digraph X of 10 vertices
and induced subgraphs Y1 and Y2 as follows:

– Y1 contains the vertices {1,2,4,6,8,9},
– Y2 contains all the vertices except for 6.

Hence, Z contains the vertices {1,2,4,8,9}. Digraphs Y1,Y2,Z
are homologically trivial, while dimH2 (X) = 1.

In fact, we have

H2 (X) = 〈e012− (e014− e034)+(e025− e035)− (e126− e146)

− (e259− e269)− (e348− e378)+(e359− e379)

− (e469− e489)− e789〉.(3.77)

Therefore, (3.71) fails for n = 2. The condition (3.66) fails as
well because the square

(3.78) e259− e269

is ∂ -invariant on X but it not a sum of ∂ -invariant paths on Y1

and Y2.
For the same reason also the hypothesis (ii) of Lemma 3.24

fails: in the square (3.78) the vertices 2,6,9 belong to Y1 while 5
does not. Note that the hypothesis (i) of Lemma 3.24 is satisfied
in this case. Indeed, one can show that

Ω2 = 〈e012 ,e789 ,e014− e034 , e025− e035, e126− e146 ,

e259− e269, e348− e378 ,e359− e379 ,e469− e489 〉,(3.79)

and Ωp = {0} for p > 2 so that (i) follows from the observation
that every elementary term in (3.79) lies in Y1 or Y2.

Example 3.32. Consider the following modification of the pre-
vious example with an added vertex 10 and arrows 2→ 10→ 9.
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The digraphs Y1, Y2 are still homologically trivial, while Z
is a polygon so that dimH1 (Z) = 1, Hp (Z) = {0} for p≥ 2.

Condition (3.66) is satisfied, in particular, because the square
(3.78) is a sum of two squares

(e2109− e269)+(e259− e2109)

lying in Y1 and Y2, respectively,
By Corollary 3.25 (b) we conclude that dimH2 (X) =

dimH1 (Z) = 1. Indeed, in this case H2 (X) is also given by (3.77).
Note that the condition (ii) of Lemma 3.24 fails in this case

for the same reason as in the previous example.

4. Fixed Point Theorems for Digraph Maps
4.1 Lefschetz Number and a Fixed Point Theorem

Everywhere here K=R (or K=Q). Let fn : Ωn→Ωn be a
sequence of linear mappings that commutes with ∂ , that is,

(4.80) ∂ ◦ fn+1 = fn ◦∂

for any n≥ 0. In other words, the following diagram is commu-
tative:

(4.81)
Ωn−1

∂←− Ωn
∂←− Ωn+1

↓ fn−1 ↓ fn ↓ fn+1

Ωn−1
∂←− Ωn

∂←− Ωn+1 .

Denote

Zn = ker∂ |Ωn , Bn = Im∂ |Ωn+1 ,

so that

Hn = Zn/Bn.

It follows from (4.80) that fn acts on Zn, Bn and Hn.

Definition. Denote shortly by f the sequence { fn} of the map-
pings as above. For any non-negative integer N, define the Lef-
schetz number of f of order N by

(4.82) L(N) ( f ) =
N

∑
n=0

(−1)n trace fn|Ωn .

For example, if each fn = id then

L(N) ( f ) =
N

∑
n=0

(−1)n dimΩn = χ
(N).

Proposition 4.1. The following identity holds:

(4.83) L(N) ( f ) :=
N

∑
n=0

(−1)n trace fn|Hn +(−1)N trace fN |BN .

Proof. Using the following identity (that will be proved in Sub-
section 4.2)

(4.84) trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn ,

we obtain

N

∑
n=0

(−1)n trace fn|Hn

=
N

∑
n=0

(−1)n trace fn|Ωn −
N

∑
n=1

(−1)n trace fn−1|Bn−1

−
N

∑
n=0

(−1)n trace fn|Bn

=
N

∑
n=0

(−1)n trace fn|Ωn +
N−1

∑
k=0

(−1)k trace fk|Bk

−
N

∑
n=0

(−1)n trace fn|Bn

=
N

∑
n=0

(−1)n trace fn|Ωn − (−1)N trace fN |BN

= L(N) ( f )− (−1)N trace fN |BN ,

whence (4.82) follows.

Let now f : G→ G be a digraph map, that is,

i→ j⇒ f (i)→ f ( j) or f (i) = f ( j) .

In Subsection 1.4 we have defined an induced mapping f∗ : Λn→
Λn as follows: first set

f∗
(
ei0...in

)
= e f (i0)... f (in),

and then extend f to Λn by linearity. By Proposition 1.6, f∗
extends to linear mappings Ωn→Ωn and Hn→ Hn.

In this section we denote f∗ for simplicity also by f . Hence,
we obtain the diagram (4.81) where all fn = f . In particular,
L(N) ( f ) is defined.

Theorem 4.2. Let f : G→ G be a digraph map. If, for some
N ≥ 0, we have L(N) ( f ) 6= 0 then f has a fixed point, that is, a
vertex a such that f (a) = a.

We use the definition of a cluster from Subsection 2.2. For
example, eabc−eab′c is an (a,c)-cluster whereas eabc+eacb is not
a cluster.

Lemma 4.3. In each Ωp there is an orthogonal basis (with
respect to the natural inner product 〈·, ·〉) that consists of clusters.

Proof. Let C be the set of all ∂ -invariant clusters in Ωp. By
Lemma 2.2, Ωp is spanned by C. Choosing in C a maximal linearly
independent subset, we obtain a basis B in Ωp that consists of
clusters. Let us show how to make an orthogonal basis of clusters.
Let u,v be two elements from B.
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Let u be an (a,b)-cluster and v be an (a′,b′)-cluster. If
(a,b) 6= (a′,b′) then clearly u⊥v.

If B has more than one (a,b)-cluster, then among all
(a,b)-clusters in B, we run a Gram-Schmidt orthogonalization
process and obtain an orthogonal set of (a,b)-clusters in B. Note
that during this process all newly arising elements are again
(a,b)-clusters. Doing that for all pairs (a,b), we obtain an or-
thogonal basis in Ωp that consists of clusters.

Proof of Theorem 4.2. Assume that f has no fixed point. We will
prove that

(4.85) trace f |Ωn = 0 for any n≥ 0,

which gives by (4.82) that L(N) ( f ) = 0 thus contradicting the
hypothesis that L(N) ( f ) 6= 0.

By Lemma 4.3, there is an orthogonal basis u1, ...,um in
Ωn, where all uk are clusters. Denote by (ci j) the matrix of the
operator f : Ωn→Ωn in this basis, that is,

f (u j) =
m

∑
i=1

ci jui, whence ci j =

〈
f (u j) ,ui

〉
‖ui‖2 .

Consequently, we have

trace f |Ωn =
m

∑
k=1

ckk =
m

∑
k=1

〈 f (uk) ,uk〉
‖uk‖2 .

It remains to show that f (uk)⊥uk, which will imply (4.85). In-
deed, let uk be an (a,b)-cluster, that is, uk is a linear combination
of elementary n-paths of the form

(4.86) eai1...in−1b,

where a,b are fixed while i1, ..., in−1 are variable. Then f (uk) is
a linear combination of the n-paths

(4.87) e f (a) f ( j1)... f ( jn−1) f (b),

where j1, ..., jn−1 are variable. Since a 6= f (a), we see that the
paths (4.86) and (4.87) are orthogonal, which implies that f (uk)

and uk are orthogonal, too, which was to be proved.

4.2 Rank-Nullity Formulas for Trace

The purpose of this section is to prove the identity (4.84)
– see Lemma 4.6 below. Recall that we have a commutative
diagram

Ωn−1
∂←− Ωn

∂←− Ωn+1

↓ fn−1 ↓ fn ↓ fn+1

Ωn−1
∂←− Ωn

∂←− Ωn+1

and

Zn = ker∂ |Ωn , Bn = Im∂ |Ωn+1 , Hn = Zn/Bn.

Lemma 4.4. We have

(4.88) trace fn|Hn = trace fn|Zn − trace fn|Bn .

Proof. Let u1, ...,ul be a basis of Bn. Choose in Zn elements
v1, ...,vk so that the sequence u1, ...,ul ,v1, ...,vk is a basis of Zn.
Then

fn (ui) =
l

∑
j=1

ai ju j

and

fn (vi) =
k

∑
j=1

bi jv j + terms with u j.

For the homology classes we have

fn ([vi]) =
k

∑
j=1

bi j [v j] .

It follows that

trace fn|Zn =
l

∑
i=1

aii +
k

∑
i=1

bii = trace fk|Bn + trace fn|Hn ,

which is equivalent to (4.88).

Lemma 4.5. We have the identity

trace fn|Zn + trace fn−1|Bn−1 = trace fn|Ωn .

For example, if fn and fn−1 are the identity operators then
this becomes the rank-nullity theorem for the operator ∂ :

(4.89) dimZn +dimBn−1 = dimΩn.

Proof. Let v1, ...vk be a basis in Zn and u′1, ...,u
′
l be a basis in

Bn−1. Choose any vector ui ∈ ∂−1 (u′i), that is, ∂ui = u′i. Let us
show that the sequence v1, ...,vk,u1, ...,ul is linearly independent
in Ωn.

Indeed, if there is a vanishing linear combination

l

∑
i=1

αiui +
k

∑
j=1

β jv j = 0,

then it follows that

0 = ∂

l

∑
i=1

αiui +∂

k

∑
j=1

β jv j =
l

∑
i=1

αiu
′
i +0,

whence it follows that all αi = 0. Consequently, ∑
k
j=1 β jv j = 0

and, hence, also all β j = 0.
Since by (4.89) k+ l = dimΩn, it follows that the sequence

v1, ...,vk,u1, ...,ul is a basis in Ωn.
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Hence, for some coefficients ai j and bi j,

(4.90) fn (ui) =
l

∑
j=1

ai ju j + terms with v j

and

fn (vi) =
k

∑
j=1

bi jv j.

The latter expansion contains no u j because fn (Zn)⊂ Zn. Hence,

trace fn|Ωn =
l

∑
i=1

aii +
k

∑
i=1

bii.

On the other hand, we have

trace fn|Zn =
k

∑
i=1

bii.

It remains to prove that

trace fn−1|Bn−1 =
l

∑
i=1

aii.

Since fn−1 maps Bn−1 into itself, there are coefficients a′i j such
that

(4.91) fn−1
(
u′i
)
=

l

∑
j=1

a′i ju
′
j.

It follows from (4.90) that

(4.92) ∂ fn (ui) =
l

∑
j=1

ai j∂u j +0 =
l

∑
j=1

ai ju
′
j.

On the other hand, using (4.80) and (4.91), we obtain that

∂ fn (ui) = fn−1 (∂ui) = fn−1
(
u′i
)
=

l

∑
j=1

a′i ju
′
j.

Comparison with (4.92) shows that a′i j = ai j and, hence,

trace fn−1|Bn−1 =
l

∑
i=1

a′ii =
l

∑
i=1

aii,

which finishes the proof.

Finally, we can prove (4.84).

Lemma 4.6. The following identity holds

(4.93) trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn .

Proof. By Lemma 4.4 we have

trace fn|Hn = trace fn|Zn − trace fn|Bn ,

and by Lemma 4.5

trace fn|Zn = trace fn|Ωn − trace fn−1|Bn−1 ,

which yields (4.93).

4.3 A Fixed Point Theorem in Terms of Homology

Definition. Define the path dimension of a digraph G by

dimp G = sup{n : |Ωn|> 0} .

Assume that dimp G < ∞. Then for any N > dimp G we have
by (4.83)

(4.94) L(N) ( f ) =
N

∑
n=0

(−1)n trace f |Ωn =
N

∑
n=0

(−1)n trace f |Hn .

Recall the definition of the homological dimension:

dimh G = sup{n : |Hn|> 0} .

Theorem 4.7. Let G be a connected digraph. Let dimp G < ∞

and dimh G = 0. Then any digraph map f : G→ G has a fixed
point.

Proof. The condition dimh G = 0 means that Hn = {0} for all
n ≥ 1, and the connectedness means that |H0| = 1. The space
H0 is spanned by a single homology class [ea] where a is one
of the vertices. Then f (ea) = e f (a) ∼ ea so that f ([ea]) = [ea].
It follows that trace f |H0 = 1 while trace f |Hn = 0 for all n ≥ 1.
By (4.94) we obtain L(N) ( f ) = 1 6= 0, and by Theorem 4.2 we
conclude that f has a fixed point.

The condition that a mapping f : G→G is a digraph map can
be reformulated as follows. Define a directed distance between
vertices a,b of G by

−→
d (a,b) = inf{n : ∃ a path a→ i1→ ...→ in−1→ b︸ ︷︷ ︸

n arrows

}.

Then f is a digraph map if and only if

−→
d ( f (a), f (b))≤

−→
d (a,b) for all a,b ∈V.

Let us relax this condition.

Problem 4.8. Devise a fixed point theorem for maps f : G→ G
with

−→
d ( f (a), f (b))≤C

−→
d (a,b) for all a,b ∈V,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f , assuming
that f is a digraph isomorphism, which is equivalent to

−→
d ( f (a), f (b)) =

−→
d (a,b) for all a,b ∈V.

Problem 4.9. Devise a fixed point theorem for a digraph iso-
morphism f : G→ G.

4.4 Examples

Example 4.10. First consider some simple examples of digraphs
satisfying the hypotheses of Theorem 4.7.
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The triviality of H∗ (that is, dimh G = 0) for each of these
digraphs was mentioned in the previous sections. The finiteness
of the path dimension follows from the fact that all arrows go in
the direction of increase of numbering of the vertices so that the
length of allowed paths is bounded.

Note that in all digraphs of Example 4.10, a fixed point theo-
rem can be obtained much simpler from the following elementary
result.

Proposition 4.11. Assume that a digraph G = (V,E) satisfies the
following two conditions:

(i) there is no closed elementary allowed p-path with p≥ 2,
that is, for any allowed p-path ei0...ip , we have i0 6= ip;

(ii) there exists a vertex a such that there is an elementary
allowed path from a to any other vertex x.

Then any digraph map f : G→ G has a fixed point.

Proof. Consider the sequence of sets Vn ⊂V defined by

V0 =V, Vn+1 = f (Vn) for n≥ 0.

By induction we have Vn+1 ⊂ Vn. Since all sets Vn are finite, we
obtain that Vn+1 = Vn for large enough n. Fix such n so that we
have Vn+1 =Vn.

For each x ∈V set xk = f k (x). Then there is an elementary
allowed path from ak to xk for any k ≥ 0.

In particular, there is an allowed path from an to any other
vertex of Vn, and that from an+1 to any other vertex of Vn+1 =Vn.

Hence, if an 6= an+1 then there are allowed paths from an to
an+1 and from an+1 to an.

Therefore, there is a closed allowed path starting and ending
at an, which is not possible. Hence, an = an+1, that is, an is a
fixed point of f .

Next, we give an example of a digraph that satisfies the
hypotheses of Theorem 4.7 but not those of Proposition 4.11.

Example 4.12. Consider the following digraph G with 7 vertices
and 16 arrows.

There are closed allowed paths

0→ 2→ 1→ 0, 5→ 0→ 6→ 5

etc. Hence, there are arbitrarily long allowed paths. Nevertheless,
one can show that

dimp G < 6,

and that G is homologically trivial.
Hence, G satisfies the hypotheses of Theorem 4.7, and we

conclude that any digraph map f : G→ G has a fixed point.

The next example provides a large family of digraphs satis-
fying the hypotheses of Theorem 4.7.

Example 4.13. Given n digraphs X1, ...,Xn, define their mono-
tone linear join X1X2...Xn as follows: take first a disjoint union⊔n

i=1 Xi and then add arrows from any vertex x of Xi to any vertex
y of Xi+1.

A monotone linear join X1X2...Xn

Proposition 4.14. Assume that the following two conditions are
satisfied:

(i) for all i, dimp Xi < ∞;
(ii) there exists i such that Xi is connected and dimh Xi = 0.

Then any digraph map f in X = X1...Xn has a fixed point.

Proof. It follows from Theorem 3.16 that the digraph X is homo-
logically trivial and dimp X < ∞ (see also Example 3.17). Hence,
the claim follows from Theorem 4.7.

Let us now consider some examples when the hypotheses of
Theorem 4.7 are not satisfied.

Example 4.15. Assume that G contains a double arrow {a � b}.
Then

dimp G = ∞

because each Ωp contains p-paths eababab... and ebababa.... Define
a map f : G→ G by

f (a) = b and f (x) = a for all x 6= a.
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Clearly, f is a digraph map without fixed points. Hence, the
hypotheses dimp G < ∞ is essential for Theorem 4.7.

Example 4.16. Here are some examples of digraphs that admit
digraph maps f without fixed points. All they have dimp G < ∞

but dimh G > 0.

Problem 4.17. Suppose that H1 (G) contains a non-trivial class
e01 + e12 + e20 (like for 1-torus). Is it true that there exists a
digraph map f : G→ G without a fixed point?

Example 4.18. Consider the following digraph G with 7 vertices
and 14 arrows:

G has the following arrows:

i→ i+1 and i→ i+2

where addition is considered mod7.
Let us first show that∣∣Ωp

∣∣= 14 for all p≥ 1

and ∣∣Hp
∣∣= 0 for all p≥ 2.

This digraph can also be shown as a periodic snake:

where the vertices with the same numbers are merged (like a
Möbius band).

Each elementary p-path

(4.95) ωi = ei(i+1)(i+2)...(i+p)

is snake-like and, hence, is ∂ -invariant. Let us refer to any path
(4.95) as a p-snake. Hence, we obtain in Ωp already 7 linearly
independent p-snakes {ωi}6

i=0. Another group of 7 linearly in-
dependent p-paths in Ωp is given by the boundaries ∂ϖi of
(p+1)-snakes

ϖi = ei(i+1)(i+2)...(i+p)(i+p+1).

Hence, we obtain that

Ωp = 〈ωi,∂ϖi〉6i=0

and dimΩp = 14. Since ∂ (∂ϖi) = 0, while ∂ωi are linearly in-
dependent for p≥ 2, we obtain that

dimker∂ |Ωp = 7.

By the rank-nullity theorem we have

dimIm∂ |Ωp+1 = 14−7 = 7,

whence Hp = {0} for all p ≥ 2. For the case p = 1 we have, in
fact,

H1 = 〈e01 + e12 + e23 + e34 + e45 + e56 + e60〉 .

Hence, we have dimp G=∞ and dimh G= 0. The hypothesis
dimp G < ∞ of Theorem 4.7 is not satisfied, and the conclusion of
Theorem 4.7 fails as well because the digraph map f (i) = i+1
has no fixed point.

Problem 4.19. Devise a fixed point theorem that would work with
digraphs containing double arrows. For that we need to impose
additional restriction on f : G→ G, for example, let us assume
that f is a digraph isomorphism, that is,

a→ b⇒ f (a)→ f (b) .

Problem 4.20. Assume that G is connected, dimh G = 0 and that
G has no double arrow. Prove or disprove the claim that any
digraph map f : G→ G has a fixed point. Of course, the main
interest here lies in the case when

dimp G = ∞.

Example 4.21. Here is a candidate for a positive example with
dimp G = ∞.

This is the above snake with an additional vertex 7 such that

7→ i for all i ∈ {0, ...,6} .

DECEMBER 2022 NOTICES OF THE ICCM 93



For this digraph

dimh G = 0 and dimp G = ∞.

Problem 4.22. Prove that any digraph map f : G→ G for the
above digraph has a fixed point.

Example 4.23. Here is a candidate for a counterexample.

For this digraph we have

dimh G = 0 and dimp G = ∞.

All spaces Ωp are non-trivial because G contains a periodic
snake

e01234560123456...

Problem 4.24. Construct for this digraph a digraph map f with-
out fixed points (or prove a fixed point theorem for this digraph).
Simple rotations f (i) = i+ amod8 are not digraph maps here.
For example, for f (i) = i+4 the arrow 0→ 3 goes to 4 6→ 7, for
f (i) = i+5 the arrow 5→ 0 goes to 2 6→ 5.

Problem 4.25. Devise convenient sufficient conditions for
dimp G < ∞.

5. Combinatorial Curvature of Digraphs
5.1 Motivation

Let Γ be a finite planar graph. There is the following old
notion of a combinatorial curvature Kx at any vertex x of Γ:

(5.96) Kx = 1− deg(x)
2

+ ∑
f3x

1
deg( f )

,

where the sum is taken over all faces f containing x and deg( f )
denotes the number of vertices of f . For example, if all faces are
triangles then we obtain

(5.97) Kx = 1− deg(x)
2

+
deg∆ (x)

3
,

where deg∆ (x) is the number of triangles having x as a vertex.
In general, denoting by V , E and F the number of vertices,

edges and faces of Γ and observing that

∑
x

deg(x) = 2E and ∑
x

∑
f3x

1
deg( f )

= ∑
f

∑
x∈ f

1
deg( f )

= F,

we obtain

∑
x

Kx =V −E +F = χ.

We try to realize this idea on digraph: to “distribute” the Euler
characteristic over all vertices and, hence, to obtain an analog of
the Gauss curvature that satisfies the Gauss-Bonnet theorem.

5.2 Curvature Operator

Let G = (V,E) be a finite digraph and K = R. We would
like to generalize (5.96) to arbitrary digraphs, so that the faces
in (5.96) should be replaced by the elements of a basis in Ωp.
However, the result should be independent of the choice of a
basis.

Fix p ≥ 0. Any function f : V → R on the vertices induces
an linear operator

Tf : Rp→Rp

by

Tf ei0...ip = ( f (i0)+ ...+ f (ip))ei0...ip .

For example, for a constant function f = 1 on V , we have
T1ei0...ip = (p+1)ei0...ip and, hence,

(5.98) T1ω = (p+1)ω for any ω ∈Rp.

If f = 1x where x ∈V , then

(5.99) T1x ei0...ip = mei0...ip ,

where m is the number of occurrences of x in i0, ..., ip.
Fix in Rp an inner product 〈·, ·〉. For example, this can be

a natural inner product when all regular elementary paths ei0...ip

form an orthonormal basis in Rp.

Let Πp : Rp→Ωp be the orthogonal projection onto Ωp.
Considering Tf as an operator from Ωp to Rp, we obtain the

following operator in Ωp:

T ′f := Πp ◦Tf : Ωp→Ωp.

Definition. Define the incidence of f and Ωp by

[ f ,Ωp] := traceT ′f .

Definition. For any ω = ∑ω i0...ip ei0...ip ∈ Ωp define the inci-
dence of f and ω by

[ f ,ω] :=
〈
Tf ω,ω

〉
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Lemma 5.1. For any orthogonal basis {ωk} in Ωp we have

(5.100) [ f ,Ωp] = ∑
k

[ f ,ωk]

‖ωk‖2 .

Proof. It suffices to prove (5.100) for orthonormal basis when
‖ωk‖= 1 for all k. By the definition of the trace, we have

traceT ′f = ∑
k

〈
T ′f ωk,ωk

〉
.

Moreover, for every ω ∈Ωp we have〈
T ′f ω,ω

〉
=
〈
ΠpTf ω,ω

〉
=
〈
Tf ω,Πpω

〉
=
〈
Tf ω,ω

〉
= [ f ,ω]

from which (5.100) follows.

Definition. For any N ∈ N define the curvature operator K(N) :
RV → R of order N by

K(N) f =
N

∑
p=0

(−1)p

p+1
[ f ,Ωp] .

If Ωp = {0} for all p > N, then write K(N)
f = K f .

5.3 The Gauss-Bonnet Formula

For f = 1x with x ∈V , we write

[x,Ωp] := [1x,Ωp] and [x,ω] := [1x,ω] ,

If {ωk} is an orthogonal basis of Ωp, then by (5.100)

(5.101) [x,Ωp] = ∑
k

[x,ωk]

‖ωk‖2 .

If the inner product is natural so that
{

ei0...ip

}
is orthonormal

then by (5.99) [
x,ei0...ip

]
= m,

where m is the number of occurrences of x in i0, ..., ip. For exam-
ple,

[a,eabca] = 2, [b,eabca] = 1, [d,eabca] = 0.

In this case, for ω = ∑ω i0...ip ei0...ip we have

[x,ω] = ∑
i0...ip∈V

(
ω

i0...ip
)2 [

x,ei0...ip

]
.

Definition. For any N ∈ N define the curvature of order N at a
vertex x by

K(N)
x := K(N)1x =

N

∑
p=0

(−1)p

p+1
[x,Ωp] .

Set also

K(N)
total = ∑

x∈V
K(N)

x .

Recall that the Euler characteristic is given by

χ
(N) :=

N

∑
p=0

(−1)p dimΩp.

Proposition 5.2 (Gauss-Bonnet). For any choice of the inner
product in Rp and for any N we have

K(N)
total = χ

(N).

Proof. Since ∑x∈V 1x = 1, we obtain that

K(N)
total = ∑

x∈V
K(N)

x = ∑
x∈V

K(N)1x = K(N)1 =
N

∑
p=0

(−1)p [1,Ωp]

p+1
.

On the other hand, by (5.98)

[1,ω] = 〈T1ω,ω〉= (p+1)‖ω‖2 .

If {ωk} is an orthogonal basis in Ωp then by (5.100)

[1,Ωp] = ∑
k

[1,ωk]

‖ωk‖2 = (p+1)dimΩp,

which implies

K(N)
total =

N

∑
p=0

(−1)p dimΩp = χ
(N).

Remark 5.3. If Ωp = {0} for all p > N then

χ :=
N

∑
p=0

(−1)p dimΩp =
N

∑
p=0

(−1)p dimHp.

Remark 5.4. It can happen that Ωp 6= {0} for all p. An example
of such a digraph is given in Example 1.19. A simpler example
is G = {a � b}. For this digraph we have

Ω0 = 〈ea,eb〉, Ω1 = 〈eab,eba〉, Ω3 = 〈eaba,ebab〉,
Ω4 = 〈eabab,ebaba〉 , etc,

so that
∣∣Ωp
∣∣= 2 for all p≥ 0. Indeed, eaba ∈A2 and

∂eaba = eba− eaa + eab = eba + eab ∈A1

so that eaba ∈Ω2. Similarly, eabab ∈A3 and

∂eabab = ebab− eaab + eabb− eaba = ebab− eaba ∈A2

so that eabab ∈Ω3, etc.

If Ωp 6= {0} for all p, then one can always truncate the chain
complex to make it finite by setting ΩN+1 = {0} for some N:

0 ← Ω0
∂← Ω1

∂← . . .
∂← ΩN−1

∂← ΩN ← 0

and work with homology groups of this complex. This corre-
sponds to declaring all paths of length > N non-allowed.
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5.4 Examples of Computation of Curvature

Let us fix in Rp the natural inner product. Using the or-
thonormal basis {ei} in Ω0 we obtain

[x,Ω0] = ∑
i
[x,ei] = 1

and, using the orthonormal basis
{

ei j
}

with i→ j in Ω1, we
obtain

[x,Ω1] = ∑
i→ j

[x,ei j] = deg(x) .

Therefore,

K(1)
x = 1− deg(x)

2

and, for any N ≥ 1,

(5.102) K(N)
x = 1− deg(x)

2
+

N

∑
p=2

(−1)p

p+1
[x,Ωp] .

By Theorem 1.8, in the absence of double arrows the space Ω2

has always a basis of triangles and squares (but this basis is not
necessarily orthogonal).

For a triangle eabc ∈Ω2 we have

(5.103) [x,eabc] =

{
1, x ∈ {a,b,c}
0, otherwise

and for a square eabc− eab′c ∈Ω2

(5.104) [x,eabc− eab′c] =


2, x ∈ {a,c}
1, x ∈ {b,b′}
0, otherwise

In particular, if G has no square then Ω2 has a basis {ωk} that
consists of all triangles in G. This basis is orthonormal and

[x,Ω2] = ∑
k

[x,ωk] = deg∆ (x) := #triangles containing x.

It follows that

K(2)
x = 1− deg(x)

2
+

deg∆ (x)
3

,

which matches with (5.97).

Example 5.5. Let G be a linear digraph, for example,

· · ·• → •← •→ • . . .

Then by (5.102) we have Kx =
1
2 for the endpoints, and Kx = 0

for the interior points.

Example 5.6. Let G be a cyclic digraph (polygon) different from
triangle or square:

Then we have Ωp = {0} for p > 1.
Hence by (5.102), for any vertex x,

Kx = 1− deg(x)
2

= 0.

and Ktotal = 0. Note also that χ = |Ω0|− |Ω1|= 6−6 = 0.

Example 5.7. Consider a dodecahedron (with any orientation of
edges):

We have |Ω0| = 20, |Ω1| = 30, |Ω2| = 0, and |H1| = 11,∣∣Hp
∣∣= 0 for p > 1.
Then, for any vertex x,

Kx = 1− deg(x)
2

=−1
2

and Ktotal =−10.
For comparison, note that χ = 1−11 = 20−30 =−10.

Example 5.8. Let G be a triangle. We have Ω2 = 〈e012〉 and
Ωp = {0} for p > 2.

Hence, for each vertex x,

Kx = 1− deg(x)
2

+
deg∆ (x)

3
=

1
3
.

and Ktotal = 1. For comparison, χ = |Ω0| − |Ω1|+ |Ω2| = 3−
3+1 = 1.

Example 5.9. Let G be a square. Then Ω2 = 〈e013− e023〉 and
Ωp = {0} for p > 2.

Since ‖e013− e023‖2 = 2, we obtain

[0,Ω2] =
1
2
[0,e013− e023] = 1, [3,Ω2] = 1
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[1,Ω2] =
1
2
[1,e013− e023] =

1
2
, [2,Ω2] =

1
2
.

It follows that

K3 = K0 = 1− deg(0)
2

+
1
3
=

1
3
,

K2 = K1 = 1− deg(1)
2

+
1
6
=

1
6
,

and Ktotal = 1 = χ .

Example 5.10. Let G be a 3-simplex:

We have

Ω2 = 〈e012,e013,e023,e123〉, Ω3 = 〈e0123〉
Ωp = {0} for p > 3.

It follows that, for any vertex x,

[x,Ω2] = deg∆ (x) = 3 and [x,Ω3] = 1

whence

Kx = 1− deg(x)
2

+
[x,Ω2]

3
− [x,Ω3]

4
=

1
4

and Ktotal = 1 = χ .

Example 5.11. Let G be an n-simplex, that is, a digraph with a
set of vertices {0,1, ...,n} and edges i→ j whenever i < j. Then,
for any p = 0,1, ...,n

Ωp =Ap = 〈ei0...ip : i0 < i1 < ... < ip〉

so that dimΩp =
(n+1

p+1

)
. It follows that, for any vertex x,

[x,Ωp] = #
{

ei0...ip such that x ∈
{

i0, ..., ip
}}

=
(n

p

)
,

and

Kx =
n

∑
p=0

(−1)p

(n
p

)
p+1

.

Change j = p+1 gives

(n+1)Kx =
n+1

∑
j=1

(−1) j−1
(n+1)

( n
j−1

)
j

=
n+1

∑
j=1

(−1) j−1 (n+1
j

)
= 1,

whence

Kx =
1

n+1
and Ktotal = 1.

Example 5.12. Let G be a bipyramid:

We have |Ω0|= 5, |Ω1|= 9,

Ω2 = 〈e013,e123,e023,e014,e124,e024,e012〉
Ω3 = 〈e0123,e0124〉

and
∣∣Ωp
∣∣= 0 for p≥ 4.

Hence,

χ = |Ω0|− |Ω1|+ |Ω2|− |Ω3|= 5−9+7−2 = 1.

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

3,4 3 1 1− 3
2 +

3
3 −

1
4 = 1

4
0,1,2 5 2 1− 4

2 +
5
3 −

2
4 = 1

6

Consequently, Ktotal =
2
4 +

3
6 = 1.

Example 5.13. Let G be a 3-cube.

We have

Ω2 = 〈e013− e023, e015− e045, e026− e046,

e137− e157, e237− e267, e457− e467〉

(note that this basis in Ω2 is orthogonal),

Ω3 = 〈e0237− e0137 + e0157− e0457 + e0467− e0267〉,
χ = |Ω0|− |Ω1|+ |Ω2|− |Ω3|= 8−12+6−1 = 1.

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

0,7 6
2 = 3 6

6 = 1 1− 3
2 +

3
3 −

1
4 = 1

4
1,2,3,4,5,6 4

2 = 2 2
6 = 1

3 1− 3
2 +

2
3 −

1
12 = 1

12 = 1
12

Consequently, Ktotal =
2
4 +

6
12 = 1 = χ .
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Example 5.14. Consider on octahedron based on a diamond:

We have

Ω2 = 〈e024,e034,e025,e035,e124,e134,e125,e135〉

and Ωp = {0} for all p≥ 3.
For any vertex x we obtain

[x,Ω2] = deg∆ (x) = 4

whence

Kx = 1− deg(x)
2

+
deg∆ (x)

3
= 1− 4

2
+

4
3
=

1
3

and Ktotal =
6
3 = 2 = χ .

Example 5.15. Here is yet another octahedron, based on a square,
but with the opposite orientation of the edges 2∼ 5 and 3∼ 5.

In this case we have to orthogonalize the bases:

Ω2 = 〈e014, e015, e024, e052, e134, e153, e234, e523,

e013− e023, e013− e053, e524− e534〉
= 〈e014, e015, e024, e052, e134, e153, e234, e523,

e013− e023, e013 + e023−2e053, e524− e534〉
Ω3 = 〈e0153, e0523, e5234, e0134− e0234,

e0534− e0134− e0524〉
= 〈e0153, e0523, e5234, e0134− e0234,

e0134 + e0234−2e0534 +2e0524〉
Ω4 = 〈e05234〉, Ωp = {0} for p≥ 5.

In fact, Ω4 is generated by a 4-snake 05234.

Here is computation of the curvature:

x [x,Ω2 ] [x,Ω3] [x,Ω4] 1− deg(x)
2 +

[
x,Ω2

]
3 −

[
x,Ω3

]
4 +

[
x,Ω4

]
5 = Kx

0 4+ 2
2 + 6

6 = 6 2+ 2
2 + 10

10 = 4 1 1− 4
2 + 6

3 −
4
4 + 1

5 = 1
5

1 4+ 1
2 + 1

6 = 14
3 1+ 1

2 + 1
10 = 8

5 0 1− 4
2 +

14/3
3 − 8/5

4 = 7
45

2 4+ 1
2 + 1

6 + 1
2 = 31

6 2+ 1
2 + 5

10 = 3 1 1− 4
2 +

31/6
3 − 3

4 + 1
5 = 31

180

3 4+ 2
2 + 6

6 + 1
2 = 13

2 3+ 2
2 + 6

10 = 23
5 1 1− 4

2 +
13/2

3 − 23/5
4 + 1

5 = 13
60 = 13

60

4 4+ 2
2 = 5 1+ 2

2 + 10
10 = 3 1 1− 4

2 + 5
3 −

3
4 + 1

5 = 7
60

5 4+ 4
6 + 2

2 = 17
3 3+ 8

10 = 19
5 1 1− 4

2 +
17/3

3 − 19/5
4 + 1

5 = 5
36

We have

χ = |Ω0|− |Ω1|+ |Ω2|− |Ω3|+ |Ω4|= 6−12+11−5+1 = 1

and

Ktotal =
1
5 +

7
45 +

31
180 +

13
60 +

7
60 +

5
36 = 1 = χ.

Example 5.16. Consider the following digraph G that is given
by an m-square:

The space Ω2 consists of squares eabic−eab jc and their linear
combinations, while Ωp = {0} for all p > 2. It is easy to see that
Ω2 has the following basis:

(5.105) Ω2 = 〈eab0c− eab jc〉
m
j=1

so that |Ω2|= m and

Ktotal = χ = |Ω0|− |Ω1|+ |Ω2|= (m+3)−2(m+1)+m = 1.

Orthogonalization of (5.105) gives the following orthogonal
basis for Ω2:

ω1 = eab0c− eab1c

ω2 = eab0c + eab1c−2eab2c

...

ωi = eab0c + ...+ eabi−1c− ieabic

...

ωm = eab0c + ...+ eabm−1c−meabmc

We have

[a,ωi] = [c,ωi] = ‖ωi‖2 = i(i+1)

while

[b j,ωi] =


0, j > i
1, j < i
j2, j = i

,

which implies

(5.106) [a,Ω2] =
m

∑
i=1

[a,ωi]

‖ωi‖2 = m
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and

[b j,Ω2] =
m

∑
i=1

[b j,ωi]

i(i+1)
=

j2

j ( j+1)
+

m

∑
i= j+1

1
i(i+1)

= 1− 1
m+1

=
m

m+1
.(5.107)

It follows that

Kc = Ka = 1− deg(a)
2

+
[a,Ω2]

3
= 1− m+1

2
+

m
3
=

1
2
− m

6

and

Kb j = 1−
deg(b j)

2
+

[b j,Ω2]

3
=

m
3(m+1)

.

Example 5.17. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges, and 26 faces, among them 8
triangular and 18 rectangular.

Let us make it into a digraph G by choosing direction i→ j
on an edge (i, j) if i < j. Then each face becomes a triangle or
square.

For this digraph |H2|= 1 and Hp = {0} for p = 1 and p > 2.
We have |Ω2|= 26 and Ωp = {0} for p≥ 3. Ω2 is generated

by 8 triangles and 18 squares:

Ω2 = 〈e023, e178, e456, e91011, e121415, e131920, e161718, e212223,

e018− e038, e0113− e01213, e0214− e01214, e1719− e11319,

e236− e246, e2416− e21416, e3611− e3811, e4517− e41617,

e51011− e5611, e51022− e51722, e7811− e7911, e7921− e71921,

e91022− e92122, e121320− e121520, e141518− e141618,

e151823− e152023, e172223− e171823, e192023− e192123〉,

while the generator of H2 is a signed sum of all these 2-paths.
This basis in Ω2 is orthogonal. Hence, we compute the cur-

vature:

x = 0,11,23 1,3,4,6,8,9,12,13, 2,5,7,14, 10

15,16,18,20,21 17,19,22

[x,Ω2] = 1+ 6
2 = 4 1+ 4

2 = 3 1+ 5
2 = 7

2 1+ 3
2 = 5

2

1− deg(x)
2 + [x,Ω2 ]

3 = 1− 4
2 +

4
3 1− 4

2 +
3
3 1− 4

2 +
7/2
3 1− 4

2 +
5/2
3

Kx = 1
3 = 0 = 1

6 =− 1
6

It follows that

Ktotal =
3
3 +

7
6 −

1
6 = 2.

For comparison

χ = |Ω0|− |Ω1|+ |Ω2|= 24−48+26 = 2

= |H0|− |H1|+ |H2| .

Example 5.18. Consider the following pyramid:

Let us make it into a digraph G by choosing direction i→ j
on an edge i∼ j if i < j. We have |Ω0|= 8, |Ω1|= 18,

Ω2 = 〈e017,e027,e037,e047,e057,e067,e012,e023,

e034,e045,e056,e127,e237,e347,e457,e567〉
Ω3 = 〈e0127,e0237,e0347,e0457,e0567〉
Ωp = {0} for p≥ 4.

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

0,7 11 5 1− 7
2 +

11
3 −

5
4 =− 1

12
1,6 3 1 1− 3

2 +
3
3 −

1
4 = 1

4
2,3,4,5 5 2 1− 4

2 +
5
3 −

2
4 = 1

6

It follows that Ktotal = − 2
12 +

2
4 +

4
6 = 1. For comparison χ =

8−18+16−5 = 1.

Example 5.19. Let us compute the curvature of icosahedron (cf.
Example 1.16):

Here we choose arrow i→ j if i∼ j and i < j. We have

|H1|= 0, |H2|= 1,
∣∣Hp
∣∣= 0 for p > 2

|Ω0|= 12, |Ω1|= 30, |Ω2|= 25, |Ω3|= 6,

|Ω4|= 1 and Ωp = {0} for p≥ 5.

Hence,

χ = |H0|− |H1|+ |H2|
= |Ω0|− |Ω1|+ |Ω2|− |Ω3|+ |Ω4|= 2.
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Here are the orthogonal bases in Ω2,Ω3,Ω4:

Ω2 = 〈e019, e012, e1211, e026, e059, e056, e5610, e139, e1311,

e267, e6710, e2711, e349, e348, e4810, e3811, e459, e4510,

e7810, e7811, e0111− e0211, e0510− e0610,

e2610− e2710, e3410− e3810, e027− e067〉
Ω3 = 〈e01211, e05610, e34810, e0267,

e26710,−e06710 + e02710− e02610 〉
Ω4 = 〈e026710〉

since the path e026710 is “snake like” and, hence, is ∂ -invariant.
Computation of the curvature:

x = 0 1 2 3,11

[x,Ω2 ] = 6+ 4
2 = 8 5+ 1

2 = 11
2 5+ 4

2 = 7 5+ 2
2 = 6

[x,Ω3 ] = 3+ 3
3 = 4 1 3+ 2

3 = 11
3 1

[x,Ω4 ] = 1 0 1 0

∑
4
p=0 (−1)p

[
x,Ωp

]
p+1 1− 5

2 + 8
3 −

4
4 + 1

5 1− 5
2 +

11/2
3 − 1

4 1− 5
2 + 7

3 −
11/3

4 + 1
5 1− 5

2 + 6
3 −

1
4

Kx = 11
30 = 1

12 = 7
60 = 1

4

4, 5, 8 6 7 9 10

5+ 1
2 = 11

2 5+ 3
2 = 13

2 5+ 3
2 = 13

2 5 5+ 6
2 = 8

1 3+ 2
3 = 11

3 2+ 2
3 = 8

3 0 3+ 3
3 = 4

0 1 1 0 1

1− 5
2 +

11/2
3 − 1

4 1− 5
2 +

13/2
3 − 11/3

4 + 1
5 1− 5

2 +
13/2

3 − 8/3
4 + 1

5 1− 5
2 + 5

3 1− 5
2 + 8

3 −
4
4 + 1

5

= 1
12 =− 1

20 = 1
5 = 1

6 = 11
30

Note that K6 =− 1
20 < 0.

The total curvature:

Ktotal =
11
30 ·2+

1
12 ·4+

7
60 +

1
4 ·2−

1
20 +

1
5 +

1
6 = 2.

Example 5.20. Let us compute the curvature of the 2-torus G =

T�T , where T = {0→ 1→ 2→ 0}.
Here is the 2-torus G embedded onto a topological torus:

In Example 3.7 we have computed the basis in Ω2 (G) as
follows (see (3.41)):

Ω2 (G) = 〈e034− e014, e145− e125, e253− e203,

e367− e347, e478− e458, e586− e536

e601− e671, e712− e782, e820− e860〉.

This basis in Ω2 (G) is orthogonal and ‖ω‖2 = 2 for any element
ω of the basis. Besides, for any vertex x, we have [x,ω] = 2 for

two of ω , [x,ω] = 1 for two of ω , and [x,ω] = 0 for the rest of ω .
Hence,

[x,Ω2] = ∑
ω

[x,ω]

‖ω‖2 =
2 ·2+2 ·1

2
= 3

and, for any x ∈ G,

Kx = 1− deg(x)
2

+
[x,Ω2]

3
= 1− 4

2
+

3
3
= 0.

Example 5.21. Consider the digraph G from Example 4.18.

This digraph has 7 vertices {0, ...,6} and 14 arrows as fol-
lows:

i→ i+1 and i→ i+2

where addition is considered mod7.
Fix p ≥ 1 and consider for any i = 0, ...,6 the following

∂ -invariant p-path

ωi = ei(i+1)(i+2)...(i+p)

and (p+1)-path

ϖi = ei(i+1)(i+2)...(i+p)(i+p+1).

It was shown in Example 4.18 that dimΩp = 14 and that the
space Ωp has a basis 〈ωi,∂ϖi〉6i=0.

Let us now compute the curvature K(N)
x . The sequence {ωi}

is orthonormal, but {∂ϖi} is not, which is clear from

∂ϖi = ωi+1 +
p

∑
q=1

(−1)q ei...î+q...(i+p+1)+(−1)p+1
ωi.

Let us replace each ∂ϖi with

vi = ∂ϖi− (−1)p+1
ωi−ωi+1 =

p

∑
q=1

(−1)q ei...î+q...(i+p+1).

Then we obtain that Ωp has an orthogonal basis {ωi,vi}6
i=0.

By symmetry, [x,ωi] is the same for all vertices x and i. Since

∑
x,i
[x,ωi] = 7(p+1) ,

and ‖ωi‖= 1, we obtain

∑
i

[x,ωi]

‖ωi‖2 = p+1.
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For vi we have

∑
x,i
[x,vi] = 7(p+1) p

and ‖vi‖2 = p whence

∑
i

[x,vi]

‖vi‖2 =
(p+1) p

p
= p+1.

Hence,

[x,Ωp] = 2(p+1) ,

which implies that

K(N)
x = 1+

N

∑
p=1

(−1)p 2 = (−1)N .

Hence,
{

K(N)
}

is a periodic sequence in N.

Problem 5.22. Describe classes of strongly regular digraphs
having a non-trivial periodic sequence

{
K(N)

}∞

N=1.

5.5 Computation of [x,Ω2]

Recall that Ω2 has always a basis that consists of triangles,
double arrows and squares. All different triangles and double
arrows in G are always linearly independent and mutually or-
thogonal. Moreover, they are orthogonal to all squares. However,
squares may be not mutually orthogonal in general.

In a special case when G contains no multisquares, are all
squares orthogonal (and, hence, linearly independent). Indeed,
if two squares are not orthogonal then they must have the same
elementary term, say, eabc− eab′c and eabc− eab′′c, which yields
a 2-square a,{b,b′,b′′} ,c (cf. Subsection 1.5).

Let us introduce the following notation:

degl(x) = #{double arrows a � b : x ∈ {a,b}} ,

deg∆(x) = #{triangles eabc : x ∈ {a,b,c} ,
deg�1

(x) = #
{

squares eabc− eab′c : x ∈
{

b,b′
}}

,

deg�2
(x) = #{squares eabc− eab′c : x ∈ {a,c}} .

Lemma 5.23. Assume that G contains no multisquares. Then,
for any vertex x ∈ G,
(5.108)

[x,Ω2] = 3degl(x)+deg∆(x)+
1
2

deg�1
(x)+deg�2

(x).

Proof. Let {ωn} be the sequence of all double arrows, triangles
and squares in Ω2. By hypothesis, the sequence {ωn} forms an
orthogonal basis in Ω2.

Any double arrow a � b induces two independent elements
eaba and ebab of Ω2. Clearly, we have

[x,eaba]+ [x,ebab] =

{
3, x ∈ {a,b}
0, otherwise.

Hence,

(5.109) ∑
ωn is a double arrow

[x,ωn]

‖ω‖2 = 3degl(x).

For a triangle eabc ∈Ω2 we have

[x,eabc] =

{
1, x ∈ {a,b,c}
0, otherwise

and, hence,

(5.110) ∑
ωn is a triangle

[x,ωn]

‖ω‖2 = deg∆(x).

For a square eabc− eab′c ∈Ω2 we have

[x,eabc− eab′c] =


2, x ∈ {a,c}
1, x ∈ {b,b′}
0, otherwise

.

Hence,

∑
ωn is a square

[x,ωn]

‖ω‖2 =
1
2

deg�1
(x)+deg�2

(x).

Since {ωn} is an orthogonal basis that consists of all double
arrows, triangles and squares, we obtain

[x,Ω2] = ∑
n

[x,ωn]

‖ωn‖2

= 3degl(x)+deg∆(x)+
1
2

deg�1
(x)+deg�2

(x).

Example 5.24. For the prism as shown here we have:

deg∆ (x) = 1 for all x;

deg�1
(0) = 0, deg�2

(1) = 2

deg�1
(1) = 1, deg�2

(1) = 1

deg�1
(2) = 2, deg�2

(2) = 0

deg�1
(3) = 2, deg�2

(3) = 0

deg�1
(4) = 1, deg�2

(4) = 1

deg�1
(5) = 0, deg�2

(5) = 2.

Consequently, we obtain by (5.108)

[x,Ω2] =


3, x = 0, 5
5
2 , x = 1, 4
2, x = 2, 3

.

Since Ω3 = 〈e0125 − e0145 + e0345〉, Ω4 = {0} and

[x,Ω3] =
1
3


3, x = 0, 5
2, x = 1, 4
1, x = 2, 3

,
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it follows that

Kx = 1− deg(x)
2

+
[x,Ω2]

3
− [x,Ω3]

4
=


1
4 , x = 0, 5
1
6 , x = 1, 4
1

12 , x = 2, 3
.

Example 5.25. Consider a rhombic dodecahedron:

The arrows along the edges point in direction of the higher
vertex number. The faces give rise to 12 squares forming a basis
in space Ω2, and Ωp = {0} for all p≥ 3.

For x ∈ {0,13} we have deg(x) = 3,

deg�1
(x) = 0, deg�2

(x) = 3,

whence [x,Ω2] = 3 and

Kx = 1− 3
2 +

3
3 = 1

2 .

For x ∈ {3,5,6,7,9,10} we have deg(x) = 3, deg�1
(x) = 2,

deg�2
(x) = 1, whence [x,Ω2] = 2 and

Kx = 1− 3
2 +

2
3 = 1

6 .

Finally, for x∈{1,2,4,8,11,12}we have deg(x)= 4, deg�1
(x)=

2, deg�2
(x) = 2, whence [x,Ω2] = 3 and

Kx = 1− 4
2 +

2
3 = 0.

Example 5.26. Consider a trapezohedron Tm as in Subsec-
tion 2.1.

By Proposition 2.1, the space Ω2 is spanned by 2m squares
as follows:

Ω2 =
〈
eaik−1 jk − eaik jk ,eik jkb− eik jk+1b

〉m−1
m=0 ;

also, Ω3 = 〈τm〉, where

τm =
m−1

∑
k=0

(
eaik jkb− eaik jk+1b

)
,

and Ωp = {0} for all p≥ 4.
For all vertices we have deg∆ (x) = 0. For x ∈ {a,b} we

have deg�1
(x) = 0, deg�2

(x) = m, whence [x,Ω2] = m. Since
deg(x) = m and

[x,Ω3] =
[x,τm]

‖τm‖2 =
m
m

= 1,

we obtain

Ka = Kb = 1− m
2 + m

3 −
1
4 = 3

4 −
m
6 .

For all other vertices x ∈ {ik, jk} we have

deg�1
(x) = 2, deg�2

(x) = 1,

whence [x,Ω2] = 2. Since deg(x) = 3 and

[x,Ω3] =
[x,τm]

‖τm‖2 =
2
m
,

we obtain

Kx = 1− 3
2 +

2
3 −

1/m
4 = 1

6 −
1

4m .

The total curvature

Ktotal = 2
(

3
4 −

m
6

)
+2m

(
1
6 −

1
4m

)
= 1

matches the Euler characteristic χ = 1.

Example 5.27. Consider a broken cube from Example 2.9. Then
we have:

Ω2 is spanned by 6 squares and 2 triangles,

Ω3 = 〈e0158− e0168 + e0268− e0278 + e0378− e0458〉

and Ωp = {0} for p≥ 4.
For x= 0 we have deg�1

(0)= 0, deg�2
(0)= 4, deg∆ (0)= 0

whence [0,Ω2] = 4.
Since deg(0) = 4 and [0,Ω3] = 1, it follows that

K0 = 1− 4
2 +

4
3 −

1
4 = 1

12 .

For x ∈ {1,2,6} we have deg�1
(x) = 2, deg�2

(0) = 1,
deg∆ (x) = 0 whence [x,Ω2] = 2. Since deg(x) = 3 and [x,Ω3] =
1
3 , it follows that

Kx = 1− 3
2 +

2
3 −

1/3
4 = 1

12 .

For x∈ {3,4}we have deg�1
(x) = 2, deg�2

(x) = 0, deg∆ (x) = 1
whence [x,Ω2] = 2. Since deg(x) = 3 and [x,Ω3] =

1
6 , it follows

that

Kx = 1− 3
2 +

2
3 −

1/6
4 = 1

8 .
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For x∈ {5,7}we have deg�1
(x) = 1, deg�2

(x) = 1, deg∆ (x) = 1
whence [x,Ω2] = 5/2. Since deg(x)= 3 and [x,Ω3] =

1
3 , it follows

that

Kx = 1− 3
2 +

5/2
3 −

1/3
4 = 1

4 .

Finally, for x = 8 we have deg�1
(8) = 0, deg�2

(8) = 3,
deg∆ (8) = 2 whence [8,Ω2] = 5. Since deg(8) = 5 and [8,Ω3] =

1, it follows that

K8 = 1− 5
2 +

5
3 −

1
4 =− 1

12 .

Example 5.28. Consider again a rhombicuboctahedron (see Ex-
ample 5.17).

We have for all vertices

deg(x) = 4 and deg∆(x) = 1.

All squares are linearly independent and Ω3 = {0} (cf. Exam-
ple 5.17).

For x = 11: deg�1
(x) = 0, deg�2

(x) = 3,

[x,Ω2] = 4, Kx = 1− 4
2
+

4
3
=

1
3
.

For x = 19: deg�1
(x) = 1, deg�2

(x) = 2,

[x,Ω2] =
7
2
, Kx = 1− 4

2
+

7/2
3

=
1
6
.

For x = 13: deg�1
(x) = 2, deg�2

(x) = 1,

[x,Ω2] = 3, Kx = 1− 4
2
+

3
3
= 0.

For x = 10 we have deg�1
(x) = 3, deg�2

(x) = 0, whence
[x,Ω2] =

5
2 and

Kx = 1− 4
2 +

5/2
3 =− 1

6 .

Consider now a general case when G may contain mul-
tisquares. Fix a semi-arrow a ⇀ c and denote by {bi}m

i=0 the
sequence of all vertices bi such that a→ bi→ c. Let m≥ 1. Then
we have an m-square

(5.111) σ = {a,{bi}m
i=0 ,c}

that gives rise the following to the following family of squares

(5.112)
{

eabic− eab jc : 0≤ i < j ≤ m
}

(cf. Subsection 1.5 and Example 5.16).

An m-square

The family (5.112) contains m linearly independent squares,
for example, they are

(5.113)
{

eab0c− eabic
}m

i=1 .

As in Example 5.16, let {ωi}m
i=1 be an orthogonalization of the

sequence (5.113). Using the computations (5.106) and (5.107) of
Example 5.16 we obtain

(5.114)
m

∑
i=1

[x,ωi]

‖ωi‖2 =


m, x ∈ {a,c}

m
m+1 , x ∈ {bi}m

i=0

0, otherwise.

For any m-square σ as in (5.111), denote

(5.115) [x,σ ] =


m, x ∈ {a,c}

m
m+1 , x ∈ {bi}m

i=0

0, otherwise,

so that

(5.116) [x,σ ] =
m

∑
i=1

[x,ωi]

‖ωi‖2 .

Proposition 5.29. For any vertex x ∈ G, we have

(5.117) [x,Ω2] = 3degl(x)+deg∆(x)+ ∑
σ is an m−square

m≥1

[x,σ ] .

Proof. Indeed, each m-square contributes m linearly independent
elements to Ω2, and different multiple squares give rise to mutu-
ally orthogonal elements. Hence, using in each multiple square
an orthogonal basis and adding to them all double arrows and tri-
angles, we obtain an orthogonal basis in Ω2. Hence, combining
(5.101), (5.109), (5.110) and (5.116), we obtain (5.117).

Let us prove the following identity for [x,σ ] that may be
useful for computer assisted computations.

Lemma 5.30. Let si j = eabic−eab jc be all squares in an m-square
σ as in (5.112). Then we have, for all x,

(5.118) [x,σ ] =
1

m+1 ∑
0≤i< j≤m

[x,si j].

Proof. Indeed, if x ∈ {a,c} then [x,si j] = 2 and the number of
terms in the above sum is m(m+1)

2 , so that the right hand side of
(5.118) equals to m as well as the left hand side. If x = bk then

[x,si j] =

{
1, i = k or j = k,
0, otherwise

and the number of 1’s in the sum (5.118) is m, so that the right
hand side of (5.118) equals to m

m+1 as well as the left hand side.
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Finally, if x does not belong to {a,c,bk} then the both sides of
(5.118) vanish.

For any vertex x denote

degm�1
(x) = #

{
m−squares

{
a,
{

b j
}
,c
}

: x ∈
{

b j
}}

and

degm�2
(x) = #

{
m−squares

{
a,
{

b j
}
,c
}

: x ∈ {a,c}
}
.

Corollary 5.31. For any x ∈ G we have

[x,Ω2] = 3degl(x)+deg∆(x)

+ ∑
m≥1

( m
m+1

degm�1
(x)+mdegm�2

(x)
)
.(5.119)

Proof. Indeed, this follows from (5.115) and (5.117).

Clearly, the identity (5.108) is a particular case of (5.119) in
the case when all m-squares are 1-squares.

Example 5.32. Consider a randomly generated digraph:

We have |Ω0|= 15, |Ω1|= 39, |Ω2|= 28, |Ω3|= 4, Ωp =

{0} for p≥ 4, |H1|= 2, |H2|= 1, Hp = {0} for p≥ 3.
In particular,

χ = |H0|− |H1|+ |H2|
= |Ω0|− |Ω1|+ |Ω2|− |Ω3|= 0.

Here are the bases in Ω2,Ω3:

Ω2 = 〈e13214− e131214, e13214− e13914, e0214− e0914,

e143− e163, e1413− e1613, e506− e516, e7214− e7914,

e914− e9124, e1014− e10124, e1072− e10112,

e10113− e10143, e1109− e1179, e1151− e1171,

e1243− e12143, e1271− e12141, e791, e91214, e9141,

e1071, e10117, e10127, e101214, e10141, e1102, e1135,

e1150, e1172, e13912〉
Ω3 = 〈e101172, e1391214, e101271− e1012141,

e110214− e110914 + e117914− e117214 〉.

Note that the above basis in Ω2 is not orthogonal: it contains a
2-square

σ = {13→{2,9,12}→ 14}

that corresponds to two squares

e13214− e131214 and e13214− e13914,

while all other squares in the above basis of Ω2 are 1-squares.
For the vertex x = 13 we have then

deg2�1
(x) = 0, deg2�2

(x) = 1

as well as

deg∆ (x) = 1, deg�1
(x) = 0, deg�2

(x) = 1,

whence by (5.119)

[13,Ω2] = deg∆(x)+
1
2

deg�1
(x)+deg�2

(x)+
2
3

deg2�1
(x)

+2deg�2
(x)

= 1+1+2 = 4

Since also deg(13) = 6 and [13,Ω3] = 1, we obtain

K13 = 1− 6
2
+

4
3
− 1

4
=−11

12
.

Since the vertex x = 2 we have

deg2�1
(x) = 1, deg2�2

(x) = 0

and

deg∆ (x) = 2, deg�1
(x) = 2, deg�2

(x) = 1,

whence

[2,Ω2] = 2+
2
2
+1+

2
3
=

14
3
.

Since also deg(2) = 5 and [2,Ω3] =
3
2 , we obtain

K2 = 1− 5
2
+

14/3
3
− 3/2

4
=−23

72
.

Computation of the curvature at all other vertices yields

{Kx}14
x=0 = {− 7

24 ,−
1

12 ,−
23
72 ,−

1
6 ,

1
6 ,

1
6 ,−

1
3 ,

1
6 ,0,

13
72 ,

2
3 ,

1
6 ,

1
18 ,−

11
12 ,

13
24}.

5.6 Curvature of n-Cube

We use the notation of Subsection 3.4 where n-cube was
defined. The purpose of this section is to prove the following
statement.

Theorem 5.33. For any vertex x in n-cube we have

Kx (n-cube) =
1

(n+1)
( n
|x|
) .

For example, in a 4-cube that is shown here, for the marked
vertex x we have |x|= 2 and

Kx =
1

5
(4

2

) = 1
30

.
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Let us first prove some lemmas about binomial coefficients.

Lemma 5.34. We have for all M ≥ l ≥ 0

(5.120)
l

∑
j=0

(
M
j

)
(−1) j = (−1)l

(
M−1

l

)
.

Proof. Induction in M. For M = l we have

l

∑
j=0

(
l
j

)
(−1) j = (1−1)l = 0 = (−1)l

(
l−1

l

)
.

Induction step from M to M+1. We have

l

∑
j=0

(
M+1

j

)
(−1) j =

l

∑
j=0

((
M
j

)
+

(
M

j−1

))
(−1) j

= (−1)l
(

M−1
l

)
+

l

∑
j=1

(
M

j−1

)
(−1) j

= (−1)l
(

M−1
l

)
−

l−1

∑
i=0

(
M
i

)
(−1)i

= (−1)l
(

M−1
l

)
− (−1)l−1

(
M−1
l−1

)
= (−1)l

(
M
l

)
.

Lemma 5.35. We have for all N ≥ 0 and M ≥ 1

(5.121)
N

∑
l=0

(
N
l

)
(−1)l

l +M
=

1

M
(N+M

M

)
Proof. We start with the identity

N

∑
l=0

(
N
l

)
(−z)l = (1− z)N

for all z ∈ R, whence

N

∑
l=0

(
N
l

)
(−z)l+M−1 = (−1)M−1 (1− z)N zM−1.

Integrating this identity from 0 to 1, we obtain

−
N

∑
l=0

(
N
l

)
(−z)l+M

l +M

∣∣∣∣∣
1

0

= (−1)M−1 B(N +1,M)

= (−1)M−1 Γ(N +1)Γ(M)

Γ(N +M+1)

= (−1)M−−1 N!(M−1)!
(N +M)!

= (−1)M−1 1

M
(N+M

M

)
while the left hand side is equal to

−
N

∑
l=0

(
N
l

)
(−1)l+M

l +M
= (−1)M+1

N

∑
l=0

(
N
l

)
(−1)l

l +M
,

which proves the claim.

Lemma 5.36. We have

Km :=
m

∑
k=0

n−m

∑
l=0

(
m
k

)(
n−m

l

)
(−1)k+l(k+l

l

)
(k+ l +1)

=
1

(m+1)
(n+1

m+1

) .
Proof. Set

Sm,l =
m

∑
k=0

(
m
k

)
(−1)k+l(k+l

l

)
(k+ l +1)

= l!
m

∑
k=0

(
m
k

)
(−1)k+l

(k+1) ...(k+ l)(k+ l +1)

= l!
m

∑
k=0

(−1)k+l m(m−1) ...(m− k+1)
(k+ l +1)!

=
l!

(m+ l +1) ...(m+1)

×
m

∑
k=0

(−1)k+l(m+ l +1)....(m+1)m(m−1)...(m− k+1)
(k+ l +1)!

=− 1

(l +1)
(m+l+1

l+1

) m

∑
k=0

(
m+ l +1
k+ l +1

)
(−1)k+l+1

=− 1

(l +1)
(m+l+1

l+1

) m+l+1

∑
j=l+1

(
m+ l +1

j

)
(−1) j

=
1

(l +1)
(m+l+1

l+1

) l

∑
j=0

(
m+ l +1

j

)
(−1) j

By (5.120) with M = m+ l +1 we obtain

l

∑
j=0

(
m+ l +1

j

)
(−1) j = (−1)l

(
m+ l

l

)
whence

Sm,l =
(−1)l

(l +1)
(m+l+1

l+1

)(m+ l
l

)

=
(−1)l l!m!
(m+ l +1)!

(m+ l)!
l!m!

=
(−1)l

m+ l +1
.

Therefore, by (5.121) with N = n−m and M = m+1,

Km =
n−m

∑
l=0

(
n−m

l

)
Sm,l =

n−m

∑
l=0

(
n−m

l

)
(−1)l

m+ l +1

=
1

(m+1)
(n+1

m+1

) .
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Proof of Theorem 5.33. Fix a vertex x of the n-cube and non-
negative integers k, l, p such that

k+ l = p.

Let a and b be two vertices in the n-cube such

(5.122) a� x� b, |x|− |a|= k, and |b|− |x|= l.

The cube Da,b has dimension |b|−|a|= p, and for any ∂ -invariant
p-path ωa,b between a and b (cf. (3.43)), we have∥∥ωa,b

∥∥2
= p! and

[
x,ωa,b

]
= k!l!.

Indeed, ωa,b is an alternating sum of all the elementary allowed
paths from a to b, and the number of the elementary allowed
paths from a to b going through x is k!l!, because the number of
such paths from a to x is equal to k! and that from x to b is equal
to l!.

Hence, we have for such ωa,b[
x,ωa,b

]∥∥ωa,b
∥∥2 =

k!l!
p!

=
1(k+l
k

) .
Set m = |x| and observe that the number of vertices a � x with
|x| − |a| = k is equal to

(m
k

)
. Indeed, in the binary representa-

tions a = (a1, ...an,) and x = (x1, ...xn,), we have ai ≤ xi and
∑i (xi−ai) = k which is only possible if ai = 0 at k out of m
positions where xi = 1.

Similarly, the number of the vertices b� x with |b|− |x|= l
is equal to

(n−m
l

)
. Hence, the number of pairs a,b satisfying

(5.122) is equal to (
m
k

)(
n−m

l

)
.

By Proposition 3.9, all p-paths ωa,b with a� b form an orthogonal
basis in Ωp (n-cube). If x does not satisfy the condition a� x� b
then we have [

x,ωa,b
]
= 0.

Hence, we obtain

[x,Ωp] = ∑
a�x�b
|b|−|a|=p

[
x,ωa,b

]∥∥ωa,b
∥∥

= ∑
k+l=p
a�x�b

|x|−|a|=k, |b|−|x|=l

[
x,ωa,b

]∥∥ωa,b
∥∥ = ∑

k+l=p

(
m
k

)(
n−m

l

)
1(k+l
k

) ,
which implies by Lemma 5.36 that

Kx = ∑
p≥0

(−1)p

p+1
[x,Ωp]

=
m

∑
k=0

n−m

∑
l=0

(
m
k

)(
n−m

l

)
(−1)k+l(k+l

l

)
(k+ l +1)

=
1

(m+1)
(n+1

m+1

)
=

m!(n−m)!
(n+1)!

=
1

(n+1)
(n

m

) .

Note that the number of vertices x with |x| = m is equal to(n
m

)
whence

Ktotal =
n

∑
m=0

1

(n+1)
(n

m

)(n
m

)
=

n

∑
m=0

1
n+1

= 1,

as expected because χ = 1.

5.7 Curvature of a Join

The main result of this section is Proposition 5.39 below.
Recall that a join Z = X ∗Y of two digraphs was defined in
Subsection 3.6.

Let us first prove two lemmas. Everywhere 〈·, ·〉 denotes the
natural inner product in all spaces Λ∗ (X), Λ∗ (Y ) and Λ∗ (Z).

Lemma 5.37 ([29, Lemma 3.10]). If u,u′ ∈ Λ∗ (X) and v,v′ ∈
Λ∗ (Y ) then

(5.123)
〈
uv,u′v′

〉
Z =

〈
u,u′

〉
X

〈
v,v′
〉

Y .

Proof. Indeed, due to bilinearity it suffices to prove (5.123) if
u,u′,v,v′ are elementary paths, say

u = ei0...ip , u′ = ei′0...i
′
p′
, v = e j0... jq , v′ = e j′0... j

′
q′
.

Then〈
uv,u′v′

〉
Z = 〈ei0...ip j0... jq ,ei′0...i

′
p′ j′0... j

′
q′
〉= δ

i′0...i
′
p′ j′0... j

′
q′

i0...ip j0... jq

= δ
i′0...i

′
p′

i0...ip
δ

j′0... j
′
q′

j0... jq
= 〈ei0...ip ,ei′0...i

′
p′
〉〈e j0... jq ,e j′0... j

′
q′
〉

=
〈
u,u′

〉
X

〈
v,v′
〉

Y .

Lemma 5.38. Let Z = X ∗Y be the join of two digraphs X and
Y . Then, for all x ∈ X and r ≥ 0 we have
(5.124)

[x,Ωr (Z)] = [x,Ωr (X)]+ ∑
p+q=r−1,

p,q≥0

[x,Ωp (X)]dimΩq (Y ) .

Proof. Let Bp (X) be an orthonormal basis in Ωp (X) and Bq (Y )
be an orthonormal basis in Ωq (Y ), for all p,q ≥ 0. By Theo-
rem 3.12, we obtain the following basis in Ωr (Z): it consists of
all elements of Br (X), Br (Y ) as well as of the elements of the
form
(5.125){

uv : u ∈ Bp (X) ,v ∈ Bq (Y ) , p+q = r−1, p,q≥ 0
}
.
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Note that the set (5.125) is empty if r = 0, so it makes sense to
consider it only if r ≥ 1. This basis in also orthonormal due to
the identity (5.123). Therefore, we obtain, for any x ∈ X and any
r ≥ 0

[x,Ωr (Z)] = ∑
u∈Br(X)

(Txu,u)+ ∑
v∈Br(Y )

(Txv,v)

+ ∑
p+q=r−1,

p,q≥0

∑
u∈Bp(X)
v∈Bq(Y )

(Tx (uv) ,uv) .

Since Txv = 0 and Tx (uv) = (Txu)v, we obtain

(Tx (uv) ,uv) = ((Txu)v,uv) = (Txu,u)(v,v) = (Txu,u)

and

∑
u∈Bp(X)
v∈Bq(Y )

(Tx (uv) ,uv) = [x,Ωp (X)]dimΩq (Y ) ,

whence (5.124) follows.

Proposition 5.39. Let Z = X ∗Y be the join of two digraphs X
and Y . Assume that ΩN (X) and ΩN (Y ) vanish for large enough
N. Then, for any x ∈ X , we have

(5.126) Kx (Z) = Kx (X)− ∑
p≥0

(−1)p Cp (Y ) [x,Ωp (X)] ,

where

Cp (Y ) = ∑
q≥0

(−1)q

p+q+2
dimΩq (Y ) .

A similar formula holds for Ky (Z) for y ∈ Y :

Ky (Z) = Ky (Y )−∑
q≥0

(−1)q Cq (X) [y,Ωq (Y )] ,

where

Cq (X) = ∑
p≥0

(−1)p

p+q+2
dimΩp (X) .

Proof. It follows from (5.124) that

Kx (Z) = ∑
r≥0

(−1)r [x,Ωr (Z)]
r+1

= Kx (X)+ ∑
p,q≥0

(−1)p+q+1

p+q+2
[x,Ωp (X)]dimΩq (Y )

= Kx (X)

− ∑
p≥0

(−1)p

(
∑
q≥0

(−1)q

p+q+2
dimΩq (Y )

)
[x,Ωp (X)] ,

which was to be proven.

Example 5.40. Consider on octahedron Z based on a square:

We have

Z = X ∗Y

where X is the following square:

X = {0→ 1→ 3, 0→ 2→ 3}

and Y = {4,5}.
Since Ωq (Y ) is non-trivial only for q= 0 and dimΩ0 (Y )= 2,

we obtain

Cp (Y ) =
2

p+2
.

As we have computed in Example 5.9,

[0,Ω2 (X)] = [3,Ω2 (X)] = 1, [1,Ω2 (X)] = [2,Ω2 (X)] =
1
2

and

K0 (X) = K3 (X) =
1
3
, K1 (X) = K2 (X) =

1
6
.

Hence, we obtain by (5.126), for x = 0 or 3,

Kx (Z) =
1
3
− ∑

p≥0
(−1)p 2

p+2
[x,Ωp (X)]

=
1
3
−1+

2
3
·2− 2

4
·1 =

1
6
,

and for x = 1 or 2,

Kx (Z) =
1
6
− ∑

p≥0
(−1)p 2

p+2
[x,Ωp (X)]

=
1
6
−1+

2
3
·2− 2

4
· 1

2
=

1
4
.

Next, we have

Cq (X) = ∑
p≥0

(−1)p

p+q+2
dimΩp (X) =

4
q+2

− 4
q+3

+
1

q+4
.

Since [y,Ω0 (Y )] = 1, Ωq (Y ) = {0} for q≥ 1, and Ky (Y ) = 1, we
obtain, for y = 4 or 5,

Ky (Z) = 1−C0 (X) [y,Ω0 (Y )] = 1−
(

4
2
− 4

3
+

1
4

)
=

1
12

.
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5.8 Strongly Regular Digraphs

Recall that a graph is called regular if deg(x) is constant.

Definition. We say that a digraph G is strongly regular if the
function x 7→ [x,Ωp] is constant for any p (in particular, G is
regular because deg(x) = [x,Ω1] is constant).

For a strongly regular digraph G the function x 7→ Kx is
constant, and we set

K(G) := Kx =
χ (G)

|V |
.

Recall the definition of m-suspension susmG: it is obtained
by adding to G new m vertices {y1, ...,ym} and all arrows x→
yi ∀x ∈ G.

In other words, susmG = G∗Y where

Y = {y1, ...,ym} .

Theorem 5.41. Let G be a strongly regular digraph, such that
for some k,m ∈ N and any p≥ 0

(binom (k,m)) dimΩp(G) =

(
k

p+1

)
mp+1.

Then susmG is strongly regular, and for all p≥ 0

(binom (k+1,m)) dimΩp(susmG) =

(
k+1
p+1

)
mp+1.

Proof. We have

|X |= dimΩ0 (X) =

(
k
1

)
n = kn.

Since for any x ∈ X

∑
x∈X

[x,Ωp (X)] = [1,Ωp (X)] = (p+1)dimΩp (X) ,

it follows that

[x,Ωp (X)] =
(p+1)dimΩp (X)

|X |
=

p+1
kn

(
k

p+1

)
np+1

=

(
k−1

p

)
np.

Since dimΩ0 (Y ) = n and Ωq (Y ) = {0} for all q≥ 1, we obtain
from (5.124) that, for r ≥ 1,

[x,Ωr (Z)] = [x,Ωr (X)]+n [x,Ωr−1 (X)]

=

(
k−1

r

)
nr +n

(
k−1
r−1

)
nr−1 =

(
k
r

)
nr.

In the same way, for any y ∈ Y and r ≥ 1,

[y,Ωr (Z)] = [y,Ωr (Y )]+ ∑
p+q=r−1,

p,q≥0

[y,Ωq (Y )]dimΩp (X)

= dimΩr−1 (X) =

(
k
r

)
nr.

It follows that, for all z ∈ Z,

[z,Ωr (Z)] =

(
k
r

)
nr.

Consequently, we have

dimΩr (Z) =
|Z| [z,Ωr (Z)]

r+1
=
|X |+ |Y |

r+1

(
k
r

)
nr =

kn+n
r+1

(
k
r

)
nr

=

(
k+1
r+1

)
nr+1.

Finally, for r = 0 we obtain

dimΩ0 (Z) = kn+n = (k+1)n =

(
k+1
0+1

)
n0+1.

5.9 Digraphs of Constant Curvature

For the digraph G as in Theorem 5.41 we have

χ(G) = ∑
p≥0

(−1)p dimΩp =
k−1

∑
p=0

(−1)p
(

k
p+1

)
mp+1

=−
k

∑
j=1

(−1) j
(

k
j

)
m j = 1− (1−m)k .

It follows that

K(G) =
χ(G)

|V |
=

χ(G)

dimΩ0
=

1− (1−m)k

km
.

Of course, the same formula is true for K(susmG) with k replaced
by k+1:

K(susmG) =
1− (1−m)k+1

(k+1)m

Example 5.42. We have seen that a triangle (= 2-simplex) is
strongly regular and

dimΩ0 = 3, dimΩ1 = 3, dimΩ2 = 1, dimΩp = 0 for p≥ 3

that is, the sequence
{

dimΩp
}

p≥0 is the sequence
( 3

p+1

)
that

satisfies (binom(3,1)). The 1-suspension of an n-simplex is an
(n+1)-simplex. Hence, we obtain by induction that the n-simplex
is strongly regular and satisfies (binom (n+1,1)). In particular,

K (n−simplex) =
1

n+1
.
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For any m ∈ N denote by Dm a digraph with m vertices and
no arrows. Then

dimΩ0 (Dm) = m =

(
1

p+1

)
mp+1 for p = 0,

dimΩp (Dm) = 0 =

(
1

p+1

)
mp+1 for p≥ 1,

so that (binom(1,m)) is satisfied. Clearly, Dm is strongly regular.
For any k ∈ N define digraph D∗km as the k-th join power of

Dm, that is,

D∗1m = Dm

and

D∗(k+1)
m = D∗km ∗Dm = susmD∗km .

Here are digraphs D∗1m , D∗2m , D∗3m , D∗4m :

In fact, D∗km is a digraph version of a complete k-partite
graph Km,m,...,m where the index m repeats k times, that can also
be denoted by −→K m,m,...,m.

Using Theorem 5.41, by obtain by induction that D∗km is
strongly regular and satisfies (binom (k,m)).

Hence, D∗km has a constant curvature

(5.127) K(D∗km ) =
1− (1−m)k

km
.

One can show that the only non-trivial Betti number of D∗km is
βk−1 = (m−1)k (see [7]).

Example 5.43. For m = 1 we have by (5.127)

K(D∗k1 ) =
1
k
.

Clearly, D∗k1 is a (k−1)-simplex:

Example 5.44. For m = 2 we have by (5.127)

K(D∗k2 ) =

{
0, k even,
1
k , k odd.

For example, D∗22 is a diamond: that is an analogue of 1-sphere.
We have K(D∗22 ) = 0.

We can regard D∗(k+1)
2 as a digraph analogue of a k-sphere Sk

because D∗(k+1)
2 is obtained from D∗k2 by 2-suspension, similarly

to how Sk is obtained from Sk−1. Besides, the only non-trivial
Betti number of D∗(k+1)

2 is βk = 1 like the Betti numbers for Sk.
Here is D∗32 , that is an octahedron, based on a diamond:

It is an analogue of 2-sphere; it has constant curvature 1
3 .

D∗42 is an analogue of 3-sphere; it has constant curvature 0.

Example 5.45. For m = 3 we have by (5.127)

K(D∗k3 ) =
1− (−2)k

3k
=

1
3k

{
1−2k, k even,
1+2k, k odd.

Here is D∗23 that is a directed version of K3,3:

We have K(D∗23 ) =− 1
2 and K(D∗33 ) = 1.

5.10 Cartesian Product and Curvature

Recall that a Cartesian product X�Y of two digraphs was
defined in Subsection 3.2.

Theorem 5.46. Let X be any digraph with a finite chain sequence{
Ωp
}

and Y be a cyclic digraph {0→ 1→ 2→ ...→ 0} of at
least 3 vertices. Then, with respect to the natural inner product
〈·, ·〉, we have

Kz (X�Y ) = 0 for any z ∈ X�Y.

In particular, we have K(T�n) = 0. Recall that in Exam-
ple 5.20 we have computed directly that K(T�2) = 0.

Proof. Let Y = (V,E). Then

Ω0 (Y ) = 〈ea : a ∈V 〉 , Ω1 (Y ) = {eab : ab ∈ E} ,
Ωp (Y ) = {0} for p > 2.

We have

Kx(X) = ∑
p≥0

(−1)p [x,Ωp]

p+1
.
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Denote by Bp (X) an orthogonal basis in Ωp (X) so that

[x,Ωp] = ∑
ω∈Bp(X)

[x,ω]

‖ω‖2 .

We have by Theorem 3.5

Bp (Z) =
{

u× ea, v× eab : u ∈ Bp (X) , v ∈ Bp−1 (X) ,

a ∈V, ab ∈ E
}
.

This basis is orthogonal due to the identity

(5.128)
〈
u×ω,u′×ω

′〉
Z =

(
p+q

p

)〈
u,u′

〉
X

〈
ω,ω ′

〉
Y ,

where u ∈ Ωp (X), u′ ∈ Ωp′ (X), ω ∈ Ωq (Y ), ω ′ ∈ Ωq′ (Y ) (see
[29, Lemma 4.13]).

Hence, we have

[z,Ωp (Z)] = ∑
u∈Bp(X)

a∈V

[z,u× ea]

‖u× ea‖2 + ∑
v∈Bp−1(X)

ab∈E

[z,v× eab]

‖v× eab‖2 .

Let u = ∑ui0...ip ei0...ip so that

u× ea = ∑
i0...ip

ui0...ip ei0...ip × ea.

We have for z = (x,y)

[z,ei0...ip × ea] = [(x,y) ,e(i0a)(i1a) ...
(
ipa
)] = [x,ei0...ip ][y,a],

whence

∑
a∈V

[
z,ei0...ip × ea

]
= [x,ei0...ip ].

It follows that

∑
a∈V

[z,u× ea] = ∑
a∈V

∑
i0...ip

(ui0...ip)2[z,ei0...ip × ea]

= ∑
i0...ip

∑
a∈V

(ui0...ip2)[z,ei0...ip × ea]

= ∑
i0...ip

(ui0...ip)2[x,ei0...ip ] = [x,u] .

Since also ‖u× ea‖= ‖u‖, we obtain

∑
u∈Bp(X)

∑
a∈V

[z,u× ea]

‖u× ea‖2 = ∑
u∈Bp(X)

[x,u]

‖u‖2 = [x,Ωp (X)] .

Now let us handle the term [z,v× eab]. Let v =

∑i0...ip vi0...ip−1 ei0...ip−1 so that

v× eab = ∑
i0...ip

vi0...ip−1 ei0...ip−1 × eab.

We have

ei0...ip−1 × eab =
p−1

∑
k=0

(−1)p−1−k e(i0a)(i1a) ...(ika)(ikb) ....
(
ip−1b

).

Note that

[(x,y) ,e(i0a)(i1a) ...(ika)(ikb) ....
(
ip−1b

)] =


[x,ei0...ik ], y = a
[x,eik ...ip−1 ], y = b
0, otherwise.

Considering all arrows ab ∈ E, there is exactly one a = y and
exactly one b = y. It follows that

∑
ab∈E

[(x,y) ,e(i0a)(i1a) ...(ika)(ikb) ....
(
ip−1b

)] = [x,ei0...ik ]+ [x,eik ...ip−1 ]

= [x,ei0...ip−1 ]+1{x=ik}

and

∑
ab∈E

[z,ei0...ip−1 × eab] =
p−1

∑
k=0

([x,ei0...ip−1 ]+1{x=ik})

= (p+1) [x,ei0...ip−1 ].

We obtain that

∑
ab∈E

[z,v× eab] = ∑
i0...ip

∑
ab∈E

(vi0...ip−1)2[z,ei0...ip−1 × eab]

= (p+1) ∑
i0...ip

(vi0...ip−1)2[x,ei0...ip−1 ]

= (p+1) [x,v] .

Since ∥∥∥ei0...ip−1 × eab

∥∥∥2
= p,

we have

‖v× eab‖2 = ∑
i0...ip

(vi0...ip−1)2 p = p‖v‖2 ,

whence

∑
ab∈E

[z,v× eab]

‖v× eab‖2 =
p+1

p
[x,v]

‖v‖2

and

∑
v∈Bp−1(X)

∑
ab∈E

[z,v× eab]

‖v× eab‖2 =
p+1

p
[x,Ωp−1 (X)] .

We obtain

[z,Ωp (Z)] = [x,Ωp (X)]+
p+1

p
[x,Ωp−1 (X)] ,

whence it follows that

Kz−1 = ∑
p≥1

(−1)p [z,Ωp (Z)]

p+1

= ∑
p≥1

(−1)p [x,Ωp (X)]

p+1
+ ∑

p≥1
(−1)p [x,Ωp−1 (X)]

p

= (Kx−1)−Kx =−1,

that is, Kz = 0.
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5.11 Some Problems

Problem 5.47. How to compute K (X�Y ) for general digraphs
X ,Y?

Problem 5.48. Is |Ω2|= 25 true for an icosahedron (see Exam-
ple 5.19) with any numbering of the vertices?

Problem 5.49. Let a digraph G be determined by a triangulation
of S2 (see Subsection 1.10). Assume that deg(x)≤ 4 for all x∈G.
Is it true that Kx ≥ 0 for all x ∈ G?

We have verified above that Kx ≥ 0 for the following tri-
angulations of S2: simplex, bipyramid, octahedron, but with
specific orientations of edges (the question remains open when
the numbering of vertices is arbitrary). All these digraphs have
deg(x)≤ 4. We have seen that Kx < 0 can occur for icosahedron
with deg(x) = 5 and for a pyramid with deg(x) = 7.

Problem 5.50. Denote D = maxx∈G deg(x). Is it true that |Kx| ≤
CD for some constantCD depending only on D? What about upper
bounds for |K(2)

x | and |K(3)
x |?

Note that Kx can be take arbitrarily large positive and nega-
tive values. For example, for a strongly regular digraph satisfying
(binom (k,m)), we have

Kx =
1− (1−m)k

km
,

while D = 2dimΩ1
dimΩ0

= (k−1)m. In this case one can verify that
|Kx| ≤ e0.3D.

Problem 5.51. What can be said about the curvature of random
digraphs?

Problem 5.52. LetS be a simplicial complex and GS be its Hasse
diagram (see Subsection 1.9). Is there any relation of Kx (GS) to
properties of S? For example, we have

Ktotal (GS) = χ (GS) = χsimp (S) .

Can one give an explicit formula for computing Kσ (GS) for any
simplex σ ∈ S?

6. Hodge Laplacian on Digraphs
In this section K = R. Let us fix an arbitrary inner product

〈·, ·〉 in each of the spaces Rp so that we have an inner product
also in all Ωp. In all examples we use the natural inner product.

6.1 Definition and Spectral Properties of ∆p

For the operator ∂ : Ωp→Ωp−1, consider the adjoint opera-
tor ∂ ∗ : Ωp−1→Ωp. By the definition of an adjoint operator, we
have

〈∂u,v〉= 〈u,∂ ∗v〉 for all u ∈Ωp and v ∈Ωp−1.

Definition. Define the Hodge-Laplace operator ∆p : Ωp → Ωp

by

(6.129) ∆pu = ∂
∗
∂u+∂∂

∗u.

The pairs ∂ ∗, ∂ and ∂ , ∂ ∗ appearing in (6.129) are the
following operators:

Ωp−1
∂

�
∂ ∗

Ωp and Ωp

∂

�
∂ ∗

Ωp+1.

Proposition 6.1. The operator ∆p is self-adjoint and non-
negative definite.

Proof. We have for all u,v ∈Ωp〈
∆pu,v

〉
= 〈∂ ∗∂u+∂∂

∗u,v〉= 〈∂u,∂v〉+〈∂ ∗u,∂ ∗v〉=
〈
u,∆pv

〉
so that ∆p is self-adjoint, and

(6.130)
〈
∆pu,u

〉
= ‖∂u‖2 +‖∂ ∗u‖2 ≥ 0,

so that ∆p ≥ 0.

Hence, the spectrum of ∆p is real, non-negative and consists
of a finite sequence of eigenvalues.

Proposition 6.2. Denote D = maxi∈V deg(i). If 〈·, ·〉 is the natu-
ral inner product then spec∆0 ⊂ [0,2D].

Proof. By the variational principle, it suffices to prove that for
all u ∈Ω0

〈∆0u,u〉
‖u‖2 ≤ 2D.

Since ∂u = 0, we have by (6.130)

〈∆0u,u〉= ‖∂ ∗u‖2 .

Since for any i→ j〈
∂
∗u,ei j

〉
=
〈
u,∂ei j

〉
=
〈
u,e j− ei

〉
= u j−ui,

it follows that

‖∂ ∗u‖2 = ∑
i→ j

(u j−ui)2 ≤ 2 ∑
i→ j

(u j)2 +2 ∑
i→ j

(ui)2

= 2∑
i

deg(i)(ui)2 ≤ 2D‖u‖2 ,(6.131)

whence the claim follows.

The bottom eigenvalue of ∆0 is always 0 because if all uk = 1
then by (6.131) ∂ ∗u = 0 and, hence, ∆0u = ∂∂ ∗u = 0. If G a
complete bipartite graph KD,D, then G is D-regular and 2D is the
top eigenvalue of ∆0.

For a general p, the multiplicity of 0 as an eigenvalue of
∆p is equal to the Betti number βp as we will see below in
Corollary 6.7.

Problem 6.3. Find reasonable upper bounds for spec∆p. The
question amounts to obtaining an upper bound for the Rayleigh
quotient for non-zero u ∈Ωp:

‖∂u‖2 +‖∂ ∗u‖2

‖u‖2 ≤?

Problem 6.4. Find estimates of the eigenvalues of ∆p in terms of
geometric and combinatorial properties of G.
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6.2 Harmonic Paths

A path u ∈Ωp is called harmonic if ∆pu = 0.

Lemma 6.5 ([23, Lemma 3.2]). A path u ∈ Ωp is harmonic if
and only if ∂u = 0 and ∂ ∗u = 0.

Proof. Indeed, if ∂u = 0 and ∂ ∗u = 0 then by (6.129) we have
∆pu = 0. Conversely, if ∆pu = 0 then we obtain by (6.130) that

‖∂u‖2 +‖∂ ∗u‖2 =
〈
∆pu,u

〉
= 0,

whence ‖∂u‖= ‖∂ ∗u‖= 0.

Denote by Hp the set of all harmonic paths in Ωp, so that
Hp is a subspace of Ωp.

Theorem 6.6 (Hodge decomposition [23, Lemma 3.3]). The
space Ωp is an orthogonal sum:

(6.132) Ωp = ∂Ωp+1
⊕

∂
∗
Ωp−1

⊕
Hp.

Proof. If u ∈ ∂Ωp+1 and v ∈ ∂ ∗Ωp−1 then u = ∂u′ and v = ∂ ∗v′,
and we have

〈u,v〉= 〈∂u′,∂ ∗v′〉=
〈
∂

2u′,v′
〉
= 0,

so that the subspaces ∂Ωp+1 and ∂ ∗Ωp−1 are orthogonal.

Denote by K the orthogonal complement of ∂Ωp+1
⊕

∂ ∗Ωp−1 in
Ωp. Then we have

w ∈ K⇔ 〈w,u〉= 0 ∀u ∈ ∂Ωp+1 and 〈w,v〉= 0 ∀v ∈ ∂
∗
Ωp−1,

that is,

w ∈ K⇔ 〈w,∂u′〉= 0 ∀u′ ∈Ωp+1 and 〈w,∂ ∗v′〉= 0 ∀v′ ∈Ωp−1

⇔ 〈∂ ∗w,u′〉= 0 ∀u′ ∈Ωp+1 and 〈∂w,v′〉= 0 ∀v′ ∈Ωp−1

⇔ ∂
∗w = 0 and ∂w = 0

⇔ w ∈Hp.

Hence, K =Hp which finishes the proof.

Corollary 6.7 ([23, Corollary 3.4]). There is a natural linear
isomorphism

(6.133) Hp
∼=Hp.

In particular, dimHp = βp; that is, the multiplicity of 0 as an
eigenvalue of ∆p is equal to the Betti number βp.

Proof. Observe that Zp := ker∂ |Ωp is the orthogonal comple-
ment of ∂ ∗Ωp−1 in Ωp because, for any u ∈Ωp,

u ∈ Zp⇔ ∂u = 0⇔ 〈∂u,v〉= 0 ∀v ∈Ωp−1

⇔ 〈u,∂ ∗v〉= 0 ∀v ∈Ωp−1⇔ u⊥∂
∗
Ωp−1.

Since by (6.132)

Ωp = ∂Ωp+1
⊕

Hp

⊕
∂
∗
Ωp−1

we obtain

(6.134) Zp = (∂ ∗Ωp−1)
⊥ = ∂Ωp+1

⊕
Hp

whence Hp
∼= Zp/∂Ωp+1 = Hp.

Remark 6.8. It follows from this argument that Hp is an or-
thogonal complement of Bp in Zp and that any homology class
ω ∈Hp has a unique harmonic representative u∈Hp. In addition,
u minimizes the norm ‖·‖ among all representatives of ω .

6.3 Matrix of ∆p

Let {αi} be an orthonormal basis in Ωp, {βm} be an or-
thonormal basis in Ωp−1 and {γn} be an orthonormal basis in
Ωp+1:

Ωp−1
∂ ∗

�
∂

Ωp

∂ ∗

�
∂

Ωp+1

{βm} {αi} {γn}
.

The operator ∂ : Ωp→Ωp−1 has in the bases {αi} and {βm} the
matrix representation

(6.135) B = (〈βm,∂αi〉)m,i ,

where m is the row index and i is the column index.
Similarly, the operator ∂ ∗ : Ωp→Ωp+1 has the matrix rep-

resentation

(6.136) C = (〈γn,∂
∗
αi〉)n,i = (〈∂γn,αi〉)n,i ,

where n is the row index and i is the column index. Since ∆p =

∂ ∗∂ +(∂ ∗)∗ ∂ ∗, we obtain the matrix representation of ∆p in the
basis {αi}:

(6.137) matrix of ∆p = BT B+CTC.

More explicitly, the (i, j)-entry of the matrix of ∆p in the basis
{αi} is given by
(6.138)〈

∆pαi,α j
〉
= ∑

m
〈∂αi,βm〉

〈
∂α j,βm

〉
+∑

n
〈αi,∂γn〉

〈
α j,∂γn

〉
,

where i is the row index and j is the column index.

Example 6.9. Recall that Ω−1 = {0}, Ω0 = {ei : i ∈V} and Ω1 =

〈ekl : k→ l〉. Assuming that 〈·, ·〉 is the natural inner product, we
obtain by (6.138) that the matrix of ∆0 is〈

∆0ei,e j
〉
= ∑

k→l

〈ei,∂ekl〉
〈
e j,∂ekl

〉
= ∑

k→l

〈ei,el− ek〉
〈
e j,el− ek

〉
= ∑

k→l

(δil−δik)
(
δ jl−δ jk

)
= ∑

k→i

δi j + ∑
i→l

δi j−1{i→ j}−1{ j→i}
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= deg(i)δi j−1{i→ j}−1{ j→i}.

If G has no double arrow then

the matrix of ∆0 = diag(deg(i))−1{i∼ j},

where 1{i∼ j} is the adjacency matrix of G. Hence, in this case ∆0

is the usual unnormalized Laplacian (= Kirchhoff operator) on
functions on V . Consequently, we have

(6.139) trace∆0 = ∑
i∈V

deg(i) = 2 |E| .

6.4 Examples of Computation of the Matrix of ∆1

In this section, we denote by V and E respectively the num-
bers of vertices and arrows of the digraph in question.

Let us compute ∆1 for the natural inner product. We use the
orthonormal bases {em} in Ω0 and

{
ei j : i→ j

}
in Ω1. Let {γn}

be an orthonormal basis in Ω2.
The matrix of ∆1 has dimensions E×E and, by (6.138), its

entries are
(6.140)
〈∆1ei j,ei′ j′〉= ∑

m
〈∂ei j,em〉〈∂ei′ j′ ,em〉+∑

n
〈ei j,∂γn〉〈ei′ j′ ,∂γn〉

for all arrows i→ j and i′→ j′.
For the first sum in (6.140) we have

∑
m

〈
∂ei j,em

〉〈
∂ei′ j′ ,em

〉
= ∑

m

〈
e j− ei,em

〉〈
e j′ − ei′ ,em

〉
= ∑

m
(δ jm−δim)

(
δ j′m−δi′m

)
= δ j j′ −δi j′ −δ ji′ +δii′ =:

[
i j, i′ j′

]
.

The values of [i j, i′ j′] are shown here:

Hence, in the case p = 1, we have

(6.141) BT B =
([

i j, i′ j′
])
.

In particular, diagonal entries of BT B are equal to 2.

Example 6.10. Consider a 1-torus T = {0→ 1→ 2→ 0}. In
this case we have Ω1 = 〈e01,e12,e20〉 and

the matrix of ∆1 = BT B =
([

i j, i′ j′
])

=


e01 e12 e20

e01 [01,01] [01,12] [01,20]
e12 [12,01] [12,12] [12,20]
e20 [20,01] [20,12] [20,20]



=

 2 −1 −1
−1 2 −1
−1 −1 2

 .

The eigenvalues of ∆1 are (0,3,3).

Example 6.11. Consider a dodecahedron (as in Example 5.7):

We have V = 20, E = 30, Ω2 = {0} and |H1| = 11. In
particular, CTC = 0 and, hence, ∆1 = BT B.

The matrix of ∆1 is shown here:

The eigenvalues of ∆1 are:(
011, 25, 34, 54,

(
3±
√

5
)

3

)
,

where the subscripts show multiplicity.
For a general digraph G with Ω2 6= {0}, let us compute

the entry
〈
ei j,∂γn

〉
of the matrix C assuming that γn = γ is a

triangle or square (note that although Ω2 always has a basis of
triangles and squares, the squares in this basis do not have to be
orthogonal). If γ = eabc is a triangle then we have

〈
ei j,∂γ

〉
=
〈
ei j,eab + ebc− eac

〉
= [i j,γ] ,

where

[i j,γ] :=


1, if i j ∈ {ab,bc}
−1 if i j = ac
0, otherwise.

If γ =
eabc−eab′c√

2
is a (normalized) square then

〈
ei j,∂γ

〉
=

1√
2

〈
ei j, eab + ebc− eab′ − eb′c

〉
=

1√
2
[i j,γ] ,
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where

[i j,γ] =


1, if i j ∈ {ab ,bc}
−1 if i j ∈ {ab′,b′c}
0, otherwise.

Example 6.12. Let G be a triangle {0→ 1→ 2,0→ 2}. Then
Ω1 = 〈e01,e12,e02〉 and

BT B =
([

i j, i′ j′
])

=


e01 e12 e02

e01 [01,01] [01,12] [01,20]
e12 [12,01] [12,12] [12,20]
e02 [02,01] [02,12] [02,02]


=

 2 −1 1
−1 2 1
1 1 2

 .

The basis {γn} of Ω2 consists of a single triangle γ = e012 so that

C =

(
e01 e12 e02

e012 [01,γ] [12,γ] [02,γ]

)
=
(
1 1 −1

)
,

CTC =

 1 1 −1
1 1 −1
−1 −1 1

 ,

matrix of ∆1 = BT B+CTC =

3 0 0
0 3 0
0 0 3

 .

Example 6.13. Let G be a square {0→ 1→ 3,0→ 2→ 3}.
Then Ω1 = 〈e01,e02,e13,e23〉 and

BT B=
([

i j, i′ j′
])
=


e01 e02 e13 e23

e01 [01,01] [01,02] [01,13] [01,23]
e02 [02,01] [02,02] [02,13] [02,23]
e13 [12,01] [13,02] [13,13] [13,23]
e23 [23,01] [23,02] [23,13] [23,23]



=


2 1 −1 0
1 2 0 −1
−1 0 2 1
0 −1 1 2

 .

The basis {γn} of Ω2 consists of a single square γ =
1√
2
(e013− e023) so that

C =
1√
2

(
e01 e02 e13 e23

γ [01,γ] [02,γ] [13,γ] [23,γ]

)
=

1√
2

(
1 −1 1 −1

)
,

CTC =
1
2


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .

Hence,

matrix of ∆1 = BT B+CTC =


5
2

1
2 − 1

2 − 1
2

1
2

5
2 − 1

2 − 1
2

− 1
2 − 1

2
5
2

1
2

− 1
2 − 1

2
1
2

5
2

 ,

and the eigenvalues of ∆1 are (23, 4).

Example 6.14. Consider the following digraph:

Here V = 5, E = 6, |Ω2|= 2 and

Ω2 = 〈e014− e024,e014− e034〉 .

However, this basis is not orthogonal.
Orthogonalization gives an orthonormal basis for Ω2:

γ1 =
1√
2
(e014− e024) ,

γ2 =
1√
6
(e014 + e024−2e034) .

Since

∂γ1 =
1√
2
(e01 + e14− e02− e24) ,

∂γ2 =
1√
6
(e01 + e04 + e02 + e24−2e03−2e34) ,

we obtain

C =
(〈

ei j,∂γn
〉)

=

 e01 e14 e02 e24 e03 e34

∂γ1
1√
2

1√
2
− 1√

2
− 1√

2
0 0

∂γ2
1√
6

1√
6

1√
6

1√
6
− 2√

6
− 2√

6


=

(
1√
2

1√
2
− 1√

2
− 1√

2
0 0

1√
6

1√
6

1√
6

1√
6
− 2√

6
− 2√

6

)

and

CTC =



2
3

2
3 − 1

3 − 1
3 − 1

3 − 1
3

2
3

2
3 − 1

3 − 1
3 − 1

3 − 1
3

− 1
3 − 1

3
2
3

2
3 − 1

3 − 1
3

− 1
3 − 1

3
2
3

2
3 − 1

3 − 1
3

− 1
3 − 1

3 − 1
3 − 1

3
2
3

2
3

− 1
3 − 1

3 − 1
3 − 1

3
2
3

2
3


.
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Now we compute BT B:

BT B =
([

ei j,ei′ j′
])

=



2 −1 1 0 1 0
−1 2 0 1 0 1
1 0 2 −1 1 0
0 1 −1 2 0 1
1 0 1 0 2 −1
0 1 0 1 −1 2


,

whence

matrix of ∆1 = BT B+CTC

=



8
3 − 1

3
2
3 − 1

3
2
3 − 1

3
− 1

3
8
3 − 1

3
2
3 − 1

3
2
3

2
3 − 1

3
8
3 − 1

3
2
3 − 1

3
− 1

3
2
3 − 1

3
8
3 − 1

3
2
3

2
3 − 1

3
2
3 − 1

3
8
3 − 1

3
− 1

3
2
3 − 1

3
2
3 − 1

3
8
3


.

The eigenvalues of ∆1 are (24,3,5).

Example 6.15. Consider the following pyramid:

For this digraph V = 5, E = 8, |Ω2|= 5, and

Ω2 = 〈e014,e024,e134,e234,e013− e023〉 .

We have then

BT B =
([

i j, i′ j′
])

=



e01 e02 e13 e23 e04 e14 e24 e34

e01 2 1 −1 0 1 −1 0 0

e02 1 2 0 −1 1 0 −1 0

e13 −1 0 2 1 0 1 0 −1

e23 0 −1 1 2 0 0 1 −1

e04 1 1 0 0 2 1 1 1

e14 −1 0 1 0 1 2 1 1

e24 0 −1 0 1 1 1 2 1

e34 0 0 −1 −1 1 1 1 2


,

C =



e01 e02 e13 e23 e04 e14 e24 e34

e014 1 0 0 0 −1 1 0 0

e024 0 1 0 0 −1 0 1 0

e134 0 0 1 0 0 −1 0 1

e234 0 0 0 1 0 0 −1 1
1√
2
(e013− e023)

1√
2
− 1√

2
1√
2
− 1√

2
0 0 0 0


,

CT C =



3
2 − 1

2
1
2 − 1

2 −1 1 0 0

− 1
2

3
2 − 1

2
1
2 −1 0 1 0

1
2 − 1

2
3
2 − 1

2 0 −1 0 1

− 1
2

1
2 − 1

2
3
2 0 0 −1 1

−1 −1 0 0 2 −1 −1 0

1 0 −1 0 −1 2 0 −1

0 1 0 −1 −1 0 2 −1

0 0 1 1 0 −1 −1 2


,

matrix of ∆1 = BT B+CT C

=



7
2

1
2 − 1

2 − 1
2 0 0 0 0

1
2

7
2 − 1

2 − 1
2 0 0 0 0

− 1
2 − 1

2
7
2

1
2 0 0 0 0

− 1
2 − 1

2
1
2

7
2 0 0 0 0

0 0 0 0 4 0 0 1

0 0 0 0 0 4 1 0

0 0 0 0 0 1 4 0

0 0 0 0 1 0 0 4


.

The eigenvalues of ∆1 are (35, 53).

Example 6.16. Let G be an (n−1)-simplex, that is, the vertices
are {0,1, ...,n−1} and

i→ j⇔ i < j.

Let us show that

A := matrix of ∆1 = diag(n) .

Let i j and i′ j′ be two arrows. Then the (i j, i′ j′)-entry of A is

Ai j,i′ j′ =
(
BT B

)
i j,i′ j′ +

(
CTC

)
i j,i′ j′

=
[
i j, i′ j′

]
+∑

n
[i j,γn]

[
i′ j′,γn

]
,(6.142)

where {γn} is an orthonormal basis of Ω2, which we may take to
consist of all triangles in G.

If i j = i′ j′ then [i j, i′ j′] = 2. Since the arrow i j belongs to
(n−2) triangles γn, we obtain

Ai j,i j = 2+(n−2) = n,

that is, all the diagonal entries of ∆1 are equal to n. It remains to
show that if i j 6= i′ j′ then

(6.143) Ai j,i′ j′ = 0.

If i j and i′ j′ have no common vertex then they cannot belong to
the same triangle γn and, hence, all the terms in (6.142) vanish.

Suppose i′ = i and j′ 6= j:

↗• j

i′=i• → • j′

Then [i j, i′ j′] = 1 while [i j,γn] [i′ j′,γn] is nonzero only when
γn is the triangle formed by i, j, j′. In this case the arrows i j
and i′ j′ have opposite orientations with respect to γn, whence
[i j,γn] [i′ j′,γn] =−1 and (6.143) follows.

Suppose j′ = i and i′ 6= j:

↗• j

j′=i• ← •i′

Then [i j, i′ j′] =−1 while [i j,γn] [i′ j′,γn] is nonzero only when γn

is the triangle i′i j. In this case the arrows i j and i′ j′ have the
same orientation with respect to γn, whence [i j,γn] [i′ j′,γn] = 1
and again (6.143) follows.

The cases j = i′ and j = j′ are similar.
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Problem 6.17. Describe all the digraphs for which ∆1 has only
one eigenvalue.

Problem 6.18. Devise a program for computing the matrix and
spectrum of ∆1 for large digraphs.

6.5 Trace of ∆1

Recall that by (6.139)

trace∆0 = ∑
i∈V

deg(i) = 2E,

where E denotes the number of arrows. Here is a similar result
for the trace of ∆1.

Theorem 6.19. Let T be the number of triangles in Ω2, S be
the number of linearly independent squares in Ω2, and D be the
number of double arrows a � b. Then

(6.144) trace∆1 = 2E +3T +2S+4D.

By a square here we mean an allowed 2-path eabc− eab′c

such that a 6= c and a 6→ c.
For example, for the pyramid from Example 6.15 we have

E = 8, T = 4, S = 1 and D = 0, whence

trace∆1 = 2 ·8+3 ·4+2 ·1 = 30,

which matches the sum of the eigenvalues as well as the sum of
the diagonal values of the matrix of ∆1 as determined there.

Proof. Let {γn} be an orthogonal basis for Ω2. Let us first prove
that

(6.145) trace∆1 = 2E +∑
n

‖∂γn‖2

‖γn‖2 .

By (6.137), trace∆1 = traceBT B+ traceCTC. As we have seen
above (see (6.141)), all the diagonal entries of BT B are equal to
2 so that

traceBT B = 2E.

Let us compute traceCTC. Without loss of generality assume that
the basis {γn} is orthonormal basis. Let {αi} be the sequence of
all arrows. Since {αi} is an orthonormal basis for Ω1, we have
by (6.136)

C = (〈∂γn,αi〉)n,i

and, hence, (
CTC

)
i j = ∑

n
〈∂γn,αi〉

〈
∂γn,α j

〉
.

It follows that

traceCTC = ∑
i

∑
n
〈∂γn,αi〉2 = ∑

n
∑

i

〈∂γn,αi〉2 = ∑
n
‖∂γn‖2 ,

whence (6.145) follows.
As we know, Ω2 has a basis {γn} that consists of triangles,

squares and double arrows. The only non-orthogonal pairs in

this basis are pairs of squares containing the same elementary
2-path, like eabc− eab′c and eabc− eab′′c. Assume first that the
entire basis {γn} is orthogonal (which is equivalent to absence of
multisquares).

A double arrow a � b gives two elements of the basis {γn}:
eaba and ebab. If γn = eaba then

‖γn‖2 = 1, ∂γn = eba + eab, ‖∂γn‖2 = 2

and

‖∂γn‖2

‖γn‖2 = 2.

The same is true for γn = ebab so that each double arrow con-
tributes 4 to the sum

(6.146) ∑
n

‖∂γn‖2

‖γn‖2 .

If γn is a triangle eabc then

‖γn‖2 = 1, ∂γn = ebc− eac + eab, ‖∂γn‖2 = 3,

whence

‖∂γn‖2

‖γn‖2 = 3,

so that each triangle contributes 3 to the sum (6.146).
If γn is a square eabc− eab′c then

‖γn‖2 = 2, ∂γn = eab + ebc− eab′ − eb′c, ‖∂γn‖2 = 4,

so that

‖∂γn‖2

‖γn‖2 = 2,

so that each square contributes 2 to the sum (6.146). Hence,
we obtain that the sum (6.146) is equal to 3T +2S+4D, which
proves (6.144) in this case.

In the general case G may contain multisquares. Assume
that G contains the following m-square

a, {bk}m
k=0 , c

which gives rise to m linearly independent squares:

(6.147) eab0c− eab1c, eabc− eab2c, ..., eabc− eabmc .

The sequence (6.147) is not orthogonal, and its orthogonalization
gives the following sequence:

ω1 = eab0c− eab1c

ω2 = eab0c + eab1c−2eab2c

...

ωk = eab0c + ...+ eabk−1c− keabkc

...

ωm = eab0c + ...+ eabm−1c−meabmc

116 NOTICES OF THE ICCM VOLUME 10, NUMBER 2



(cf. Example 5.16). We have

∂ωk =
(
eab0 + eb0c

)
+ ...+

(
eabk−1 + ebk−1c

)
− k
(
eabk + ebkc

)
‖∂ωk‖2 = 2k+2k2, ‖ωk‖2 = k+ k2,

whence

‖∂ωk‖2

‖ωk‖2 = 2.

Hence, each ωk contributes 2 to the sum (6.146), which completes
the proof.

Since the sum of all eigenvalues is trace∆1 and the eigen-
value 0 has the multiplicity β1, we obtain that the average of the
positive eigenvalues is

λaverage =
trace∆1

E−β1
.

6.6 An Upper Bound on λmax (∆1)

Denote by λmax (A) the maximal eigenvalue of a symmetric
operator A. Recall that, by Proposition 6.2,

λmax (∆0)≤ 2max
i

deg(i) .

For any arrow i→ j in G denote by deg∆ (i j) the number of
triangles containing the arrow i→ j, and by deg� (i j) the number
of squares containing i→ j.

Theorem 6.20. Assume that there is an orthogonal basis {γn}
for Ω2 that consists of triangles and squares. Then
(6.148)
λmax (∆1)≤ 2max

i
deg(i)+3max

i→ j
deg∆ (i j)+2max

i→ j
deg� (i j) .

Proof. Recall that

λmax (∆1) = sup
u∈Ω1\{0}

(
‖∂u‖2

‖u‖2 +
‖∂ ∗u‖2

‖u‖2

)
.

Since the operators ∂ : Ω1 → Ω0 and ∂ ∗ : Ω0 → Ω1 are dual,
they have the same norm. The norm of the latter was estimated in
the proof of Proposition 6.2 (cf. (6.131)), whence we obtain the
same estimate for the norm of the former, that is, for any non-zero
u ∈Ω1,

‖∂u‖2

‖u‖2 ≤ 2max
i∈V

deg(i) .

Let us prove that

(6.149)
‖∂ ∗u‖2

‖u‖2 ≤ 3max
i→ j

deg∆ (i j)+2max
i→ j

deg� (i j) .

Let u = ∑i→ j ui jei j and, hence,

‖u‖2 = ∑
i→ j

(ui j)2

Using the basis {γn} in Ω2, we obtain

‖∂ ∗u‖2 = ∑
n

〈∂ ∗u,γn〉2

‖γn‖2 = ∑
n

〈u,∂γn〉2

‖γn‖2 .

If γn is a triangle eabc then ‖γn‖= 1,

〈u,∂γn〉= 〈u,ebc− eac + eab〉= ubc−uac +uab,

〈u,∂γn〉2 ≤ 3
(
(ubc)2 +(uac)2 +(uab)2

)
.

Summing up over all triangles γn and using that any arrow i→ j
occurs in deg∆ (i j) triangles, we obtain

∑
n:γn is a triangle

〈u,∂γn〉2

‖γn‖2 ≤ 3 ∑
i→ j

(ui j)2 deg∆ (i j)

≤ 3‖u‖2 max
i→ j

deg∆ (i j) .(6.150)

Let now γn be a square eabc − eab′c (such that a 6→ c). Then
‖γn‖2 = 2,

〈u,∂γn〉= 〈u,eab + ebc− eab′ + eb′c〉= uab +ubc−uab′ −ub′c,

〈u,∂γn〉2 ≤ 4
(
(uab)2 +(ubc)2 +(uab′)2 +(ub′c)2

)
.

Summing up over all squares γn and using that any arrow i→ j
occurs in deg� (i j) squares, we obtain

∑
n:γn is a square

〈u,∂γn〉2

‖γn‖2 ≤ 2 ∑
i→ j

(ui j)2 deg� (i j)

≤ 2‖u‖2 max
i→ j

deg� (i j) .(6.151)

Adding up (6.150) and (6.151), we obtain (6.149).

Problem 6.21. How sharp is the upper bound on λmax (∆1) in
(6.148)? Is it attained on some digraphs? Extend (6.148) to the
general case when a basis of triangles and squares requires or-
thogonalization.

6.7 Examples of Computations of spec∆1

Example 6.22. Consider an octahedron based on a diamond:

For this digraph V = 6, E = 12, |Ω2|= 8. The space Ω2 is
generated by 8 triangles:

Ω2 = 〈e024 ,e025 ,e034 ,e035 ,e124 ,e125 ,e134 ,e135〉.

Hence, T = 8, S = 0, and we obtain

trace∆1 = 2E +3T = 48.
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Since β1 = 0, it follows that

λaverage =
trace∆1

E−β1
=

48
12

= 4.

The eigenvalues of ∆1 are

(23, 46, 63) ,

where the subscript denotes the multiplicity.

Example 6.23. Consider a prism as in Example 5.24:

Since E = 9, T = 2, S = 3, we have

trace∆1 = 2E +3T +2S = 30

and

λaverage =
trace∆1

E−β1
=

30
9
.

The eigenvalues of ∆1 are

(2, ( 5
2 )2, 33, 4, 52).

Example 6.24. Consider a 3-cube:

We have V = 8, E = 12, |Ω2|= 6, Hp = {0} for p≥ 1.
Space Ω2 is generated by 6 squares, so that

S = 6 and T = 0.

Hence, we obtain by (6.144)

trace∆1 = 2E +2S = 2 ·12+2 ·6 = 36.

Since β1 = 0, we obtain

λaverage =
trace∆1

E−β1
= 3.

In fact, the eigenvalues of ∆1 on a 3-cube are

(26, 32, 43, 6).

Example 6.25. Let G be the n-cube, that is,

G = In� = I�I�...�I︸ ︷︷ ︸
n times

where I = {0→ 1} (see Subsection 3.4). Then

V = 2n, E = n2n−1, S = |Ω2|= 2n−3n(n−1)

and T = 0. Hence,

trace∆1 = 2E +2S = 2n−2n(n+3)

and

λaverage =
trace∆1

E−β1
=

2n−2n(n+3)
n2n−1 =

n+3
2

.

For example, for the 4-cube we obtain

trace∆1 = 22 ·4 ·7 = 112.

The eigenvalues of ∆1 on the 4-cube are

(210, 38, 49, 64, 8).

For the 5-cube we obtain

trace∆1 = 23 ·5 ·8 = 320.

The eigenvalues of ∆1 on the 5-cube are

(215, 320, 425, 54, 610, 85, 10).

Problem 6.26. Determine the full spectrum of ∆1 on the n-cube.
In particular, prove that

λmax = 2n and λmin = 2 n(n+1)
2

.

Prove that spec∆1 consists of all even integers from 2 to 2n and
of all odd integers from 3 to n.

The difficulty here is that the method of separation of vari-
ables does not work for ∆1 on Cartesian products.

Example 6.27. Consider the 2-torus G = T�T where T =

{0→ 1→ 2→ 0}.

Here V = 9, E = 18, |Ω2| = 9, |H1| = 2. Space Ω2 is gen-
erated by 9 squares, whence

trace∆1 = 2 ·18+2 ·9 = 54.

The eigenvalues of ∆1 on the 2-torus are

(02, (
3
2 )4, 38, 64).

118 NOTICES OF THE ICCM VOLUME 10, NUMBER 2



For the 3-torus G = T�3 we have

E = 81, S = |Ω2|= 81, |H1|= 3,

whence

trace∆1 = 2 ·81+2 ·81 = 324.

The eigenvalues of ∆1 on the 3-torus are

(03, (
3
2 )12, 330, (

9
2 )16, 612, 98).

For the n-torus G = T�n we have

E = n3n, S = |Ω2|=
n(n−1)

2
3n, |H1|= n,

whence

trace∆1 = 2E +2S = n(n+1)3n

and

λaverage = (n+1)
3n

3n−1
.

Problem 6.28. Compute the full spectrum of ∆1 for the n-torus.
In particular, prove that

λmax = (3n)2n .

In fact, λmin = 0n, which is a consequence of β1 = n.

Example 6.29. Consider a trapezohedron Tm (see Subsection 2.1
and Proposition 2.1).

For example, T4 is shown here:

We have V = 2m+ 2, E = 4m, while Ω2 is generated by
S = 2m squares. It follows that on Tm

trace∆1 = 2E +2S = 12m.

Since β1 = 0, we obtain

λaverage =
trace∆1

E−β1
=

12m
4m

= 3.

In the case m = 2 the eigenvalues of ∆1 are as follows:

(2, 35,
7
2 ±

1
2

√
17),

where

λmin =
7
2
− 1

2

√
17 = 1.438 . . . and

λmax =
7
2
+

1
2

√
17 = 5.561 . . . .

In the case m = 3 the trapezohedron T3 coincides with a 3-cube,
and as was already shown above, the eigenvalues of ∆1 are:

(26, 32, 43, 6).

In the case m = 4 the characteristic polynomial of ∆1 is

(z−2)(z−3)4 (z−5)(z2−9z+16)(z2−4z+ 7
2 )

2(z2−6z+7)2,

and the eigenvalues of ∆1 are

{2, 34, 5, 9
2 ±

1
2

√
17, (2± 1

2

√
2)2, (3±

√
2)2},

with

λmin = 2− 1
2

√
2 = 1.292 . . . and

λmax =
9
2
+

1
2

√
17 = 6.561 . . . .

In the case m = 5 the characteristic polynomial of ∆1 is

(z−2)(z− 5
2 )

4 (z−6)(z2−10z+20)(z2−7z+11)2

× (z2−5z+5)2(z2−4z+ 11
4 )2,

and the eigenvalues of ∆1 are

{2, ( 5
2 )4, 6, 5±

√
5, ( 7

2 ±
1
2

√
5)2, (

5
2 ±

1
2

√
5)2, (2± 1

2

√
5)2},

where

λmin = 2− 1
2

√
5= 0.881 . . . and λmax = 5+

√
5= 7.236 . . . .

In the case m = 6 the characteristic polynomial of ∆1 is

(z−2)5(z−3)7(z−4)2(z−7)(z−8)(z2−3z+ 3
2 )

2(z2−6z+6)2,

and the eigenvalues of ∆1 are

(25, 37, 42, 7, 8, ( 3
2 ±

1
2

√
3)2, (3±

√
3)2),

where

λmin =
3
2
− 1

2

√
3 = 0.633 . . . and λmax = 8.

In the case m = 7 the characteristic polynomial of ∆1 is

(z−2)(z−8)(z2−12z+28)(z3−6z2 + 41
4 z− 29

8 )2

× (z3−10z2 +31z−29)2(z3−7z2 + 63
4 z− 91

8 )2

× (z3−8z2 +19z−13)2.

It has eigenvalues 2 and 8, and all other eigenvalues are irrational.

Problem 6.30. Determine the full spectrum of ∆1 on the trape-
zohedron Tm for any m. In particular, what are λmin and λmax?

Example 6.31. Consider a rhombic dodecahedron as in Exam-
ple 5.25. The arrows go along edges from smaller numbers to
larger ones.
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Here V = 14, E = 24, S = 12, T = 0. It follows that

trace∆1 = 2E +2S = 72,

λaverage =
trace∆1

E−β1
=

72
24

= 3.

The characteristic polynomial of ∆1 is

(z−1)3 (z−2)3 (z−3)9 (z−4)2 (z−7)(z2−7z+8)3,

and the eigenvalues of ∆1 are

(13, 23, 39, 42, 7, ( 7
2 ±

√
17
2 )3).

Example 6.32. Consider a rhombicuboctahedron (see also Ex-
amples 5.17 and 5.28).

Here V = 24, E = 48, |Ω2| = 26. Ω2 is generated by 8
triangles and 18 squares so that T = 8, S = 18. Hence, we obtain

trace∆1 = 2E +3T +2S = 156.

Since β1 = 0, we have

λaverage =
trace∆1

E−β1
=

156
48

= 3.25.

A computation of the eigenvalues of ∆1 gives

λmin = 0.518... and λmax = 72.

There are many multiple eigenvalues: 13, 23, 33, 44, 56, etc. The
full spectrum of ∆1 is shown here:

Example 6.33. Consider the icosahedron as in Exam-
ples 1.16, 5.19.

We have here V = 12, E = 30, |Ω2| = 25. The space Ω2

is generated by 20 triangles and 5 squares (cf. Example 5.19).
Hence, T = 20, S = 5 and

trace∆1 = 2E +3T +2S = 130.

Since β1 = 0, we have

λaverage =
trace∆1

E−β1
=

130
30

= 4.333...

Computation shows that

λmin = 0.810... and λmax = (5+
√

5)3.

Other multiple eigenvalues are 65 and (5−
√

5)3. The full spec-
trum of ∆1 is shown here:

6.8 Eigenvalues of ∆1 on Trapezohedron

Here we give a partial answer to Problem 6.30. Recall that
the trapezohedra Tm were defined in Subsection 2.1.

Proposition 6.34. For any m≥ 2, the operator ∆1 on the trape-
zohedron Tm has eigenvalues λ = 2 and λ = m+1.

Proof. The vertices of Tm will be denoted as here:

Consider the following 1-paths on Tm:

v = ei0 j1 + ei1 j2 + ...+ eim−1 j0 −
(
ei0 j0 + ei1 j1 + ...+ eim−1 jm−1

)
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=
m−1

∑
k=0

(eik−1 jk − eik jk),

where the index k is regarded modm, and

u = eai0 + eai1 + ...+ eaim−1 −
(
e j0b + e j1b + ...+ e jm−1b

)
=

m−1

∑
k=0

(eaik − e jkb).

The 1-paths u and v are obviously allowed and, hence,
∂ -invariant. We will prove that

∆1v = 2v and ∆1u = (m+1)u,

which will settle the claim. We have clearly

∂v =
m−1

∑
k=0

(e jk − eik−1 − e jk + eik) = 0,

and, hence, ∂ ∗∂v = 0.
In order to compute ∂ ∗v ∈Ω2 we use the following orthog-

onal basis in Ω2 that consists of all 2m squares in Tm:

ϕk = eaik−1 jk − eaik jk and ψk = eik jkb− eik jk+1b,

where k = 0, . . . ,m−1 (cf. Proposition 2.1). We have for any k

〈∂ ∗v,ϕk〉= 〈v,∂ϕk〉=
〈
v,eik−1 jk + eaik−1 − eik jk − eaik

〉
= 2,

〈∂ ∗v,ψk〉= 〈v,∂ψk〉=
〈
v,e jkb + eik jk − e jk+1b− eik jk+1

〉
=−2,

which together with ‖ϕk‖2 = ‖ψk‖2 = 2 implies that

∂
∗v =

m−1

∑
k=0

(ϕk−ψk) .

Hence, we obtain

∆1v = ∂∂
∗v =

m−1

∑
k=0

(∂ϕk−∂ψk)

=
m−1

∑
k=0

(eik−1 jk + eaik−1 − eik jk − eaik)

−
m−1

∑
k=0

(e jkb + eik jk − e jk+1b− eik jk+1)

= 2
m−1

∑
k=0

(eik−1 jk − eik jk) = 2v.

Next, let us compute ∂ ∗u. We have for any k,

〈∂ ∗u,ϕk〉= 〈u,∂ϕk〉=
〈
u,eik−1 jk + eaik−1 − eik jk − eaik

〉
= 0,

〈∂ ∗u,ψk〉= 〈u,∂ψk〉=
〈
u,e jkb + eik jk − e jk+1b− eik jk+1

〉
= 0,

whence ∂ ∗u = 0 and, hence, ∂∂ ∗u = 0. It remains to compute
∂ ∗∂u. We have

∂u =
m−1

∑
k=0

(eik − ea− eb + e jk) =
m−1

∑
k=0

(eik + e jk)−m(ea + eb) .

For any 0-path ei and any 1-path eαβ we have〈
∂
∗ei,eαβ

〉
=
〈
ei,∂eαβ

〉
=
〈
ei,eβ − eα

〉
= δiβ −δiα

whence

∂
∗ei = ∑

α→β

(
δiβ −δiα

)
eαβ = ∑

α→i
eαi− ∑

i→β

eiβ .

It follows that

∂
∗eik = eaik − eik jk − eik jk+1 ,

∂
∗e jk = eik−1 jk + eik jk − e jkb,

∂
∗ea =−

m−1

∑
k=0

eaik , ∂
∗eb =

m−1

∑
k=0

e jkb,

whence

∆1u = ∂
∗
∂u =

m−1

∑
k=0

(eaik − eik jk − eik jk+1 + eik−1 jk + eik jk − e jkb)

+m
m−1

∑
k=0

(eaik − e jkb)

= (m+1)
m−1

∑
k=0

(eaik − e jkb) = (m+1)u,

which finishes the proof.

6.9 Spectrum of ∆p on Join

In this section we use the augmented chain complex (3.46):

(6.152) K ∂← Ω0
∂← Ω1

∂← . . .
∂← Ωp−1

∂← Ωp
∂← . . .

Denote by ∆̃p the Hodge Laplacian associated with this complex.
Of course, ∆̃p coincides with ∆p for p ≥ 1 but is different for
p =−1 and p = 0.

For example, we have for the chain complex (6.152)

〈∂ ∗e,ei〉= 〈e,∂ei〉= 〈e,e〉= 1

so that

∂
∗ei = σ := ∑

k∈V

ek

whence

∆̃−1e = ∂∂
∗e = ∂σ = |V |e.

In particular,

spec ∆̃−1 = {|V |} .

In the case p = 0 we have

∆̃0ei = ∂
∗
∂ei +∂∂

∗ei = ∂
∗e+∆0ei = ∆0ei +σ ,

that is,

(∆̃0ei)
j = (∆0ei)

j +1.
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Therefore, the matrix of ∆̃0 is obtained from the matrix of ∆0 by
adding 1 to each entry. For any u ∈Ω0 we have

∆̃0u = ∆0u+

(
∑
k∈V

uk

)
σ .

The advantage of using the chain complex (6.152) lies in the
following statements.

Lemma 6.35 ([23, Lemma 5.5]). Let X ,Y be two digraphs. Then,
for u ∈Ωp (X), v ∈Ωq (Y ) and r = p+q+1, we have

(6.153) ∆̃r (u∗ v) = (∆̃pu)∗ v+u∗ ∆̃qv.

Theorem 6.36. Let X ,Y be two digraphs. We have for any r≥ 0
(6.154)
spec ∆̃r (X ∗Y ) =

⊔
{p,q≥−1:p+q=r−1}

(
spec ∆̃p (X)+ spec ∆̃q (Y )

)
.

Here we denote by specA a sequence of all the eigenvalues of
the operator A counted with multiplicities. The sum of two such
sequences consists of all pairwise sums of the elements of the
sequences, and the disjoint union of sequences means the union
of all sequences, summing up the multiplicities. In particular, if
one of the sequences is empty then its sum with another sequence
is also empty.

Proof of Theorem 6.36. Observe that if u ∈ Ωp (X) and v ∈
Ωq (Y ) are eigenvectors such that

∆̃pu = λu and ∆̃qv = µv,

then we have by (6.153) for r = p+q+1:

∆̃r (u∗ v) = (∆̃pu)∗ v+u∗ ∆̃qv = (λ +µ)(u∗ v) ,

that is, u∗ v is an eigenvector of ∆̃r on X ∗Y with the eigenvalue
λ +µ .

In each Ωp (X) there is a basis that consists of eigenvectors
of ∆̃p; denote by {uk} the union of all such bases of Ωp (X)

across all p≥−1, with the corresponding eigenvalues {λk}. Let
{vl} be a similar sequence on Y with the eigenvalues {µl}. By
Theorem 3.12, we have, for any r ≥−1,

Ωr (X ∗Y )∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗Ωq (Y )) ,

that is, Ωr (X ∗Y ) has a basis

{uk ∗ vl : |uk|+ |vl |= r−1} .

The elements of this basis are the eigenvectors of ∆̃r on X ∗Y
with eigenvalues λk +µl , whence (6.154) follows.

In particular, for r = 0 we have

spec ∆̃0 (X ∗Y ) =
(

spec ∆̃−1 (X)+ spec ∆̃0 (Y )
)

t
(

spec ∆̃0 (X)+ spec ∆̃−1 (Y )
)

=
(
{|X |}+ spec ∆̃0 (Y )

)

t
(

spec ∆̃0 (X)+{|Y |}
)

(6.155)

and for r = 1

spec ∆̃1 (X ∗Y ) =
(

spec ∆̃−1 (X)+ spec ∆̃1 (Y )
)

t
(

spec ∆̃1 (X)+ spec ∆̃−1 (Y )
)

t
(

spec ∆̃0 (X)+ spec ∆̃0 (Y )
)
.

Since ∆̃1 = ∆1, we conclude that

spec∆1 (X ∗Y ) = ({|X |}+ spec∆1 (Y ))

t (spec∆1 (X)+{|Y |})

t
(

spec ∆̃0 (X)+ spec ∆̃0 (Y )
)
.(6.156)

6.10 Spectrum of ∆1 on Digraph Spheres

Consider a family {Sn}∞

n=0 of digraphs that is defined induc-
tively as follows: S0 = {·, ·} and

Sn+1 = sus2Sn.

For example, S1 is a diamond and S2 the octahedron (see also
Example 3.10):

The digraph Sn can be regarded as an analogue of an n-sphere.
In the notation of Subsection 5.9, we have Sn = D∗(n+1)

2 .

Proposition 6.37. We have for all n≥ 0
(6.157)

spec∆1 (S
n) =

{
2(n−1) n(n+1)

2
, (2n)n(n+1), 2(n+1) n(n+1)

2

}
.

Example 6.38. For example, we have

spec∆1(S
1) = {0,22,4}

and

spec∆1(S
2) = {23,46, 63}

as we have seen above. For n = 3 we obtain from (6.157)

spec∆1(S
3) = {46, 612, 86}.

Proof of Proposition 6.37. Let us first prove by induction that

(6.158) spec ∆̃0(S
n) =

{
(2n)n+1 ,(2n+2)n+1

}
.

For n = 0 we have

spec ∆̃0(S
0) = {0,2}
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which verifies (6.158) for n = 0. For the induction step from n−1
to n, let us observe that Sn = S0 ∗Sn−1,

∣∣S0
∣∣= 2 and

∣∣Sn−1
∣∣= 2n,

so that we obtain by (6.155)

spec ∆̃0(S
n) =

({∣∣S0
∣∣}+ spec ∆̃0(S

n−1)
)

t
(

spec ∆̃0(S
0)+

{∣∣Sn−1
∣∣})

=
(
{2}+ spec ∆̃0(S

n−1)
)
t ({0,2}+{2n})

=
(
{2}+ spec ∆̃0(S

n−1)
)
t ({2n,2n+2}) .

By the induction hypothesis we have

(6.159) spec ∆̃0(S
n−1) = {(2n−2)n ,(2n)n} ,

whence

spec ∆̃0(S
n) = {(2n)n ,(2n+2)n}t{2n,2n+2}

=
{
(2n)n+1 ,(2n+2)n+1

}
,

which was to be proved.
Let us prove (6.157). For n = 0 we have

spec∆1(S
0) = /0,

which matches (6.157). For the induction step from n− 1 to n,
we obtain by (6.156) and (6.159)

spec∆1(S
n) =

({∣∣S0
∣∣}+ spec∆1(S

n−1)
)

t
(
spec∆1(S

0)+
{∣∣Sn−1

∣∣})
t
(

spec ∆̃0(S
0)+ spec ∆̃0(S

n−1)
)

=
(
{2}+ spec∆1(S

n−1)
)

t ({0,2}+{(2n−2)n ,(2n)n})
=
(
{2}+ spec∆1(S

n−1)
)

t{(2n−2)n ,(2n)2n ,(2n+2)n} .

Using the induction hypothesis

spec∆1(S
n−1) =

{
2(n−2) n(n−1)

2
, 2(n−1)n(n−1) , (2n) n(n−1)

2

}
we obtain

spec∆1(S
n) =

{
2(n−1) n(n−1)

2
, (2n)n(n−1), 2(n+1) n(n−1)

2

}
t{2(n−1)n ,(2n)2n ,2(n+1)n ,}

=
{

2(n−1) n(n+1)
2

, (2n)n(n+1), 2(n+1) n(n+1)
2

}
,

which finishes the proof.
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