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Introduction

The purpose of this paper is to introduce a new emerging
area of research — the theory of path homology on digraphs, that
is also known as GLMY-homology.

There exists a number of ways to define the notion of homol-
ogy for graphs and digraphs, for example, clique homology ([6],
[33]) or singular homology ([3], [33], [37]). However, the path
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homology has certain advantages as it enjoys adequate functorial
properties with respect to graph-theoretical operations, such as
morphisms of digraphs, Cartesian products, joins, homotopy etc.
The notion of path homology has a rich mathematical content,
and I hope that it will become a useful tool in various areas of
pure and applied mathematics.

Sections 1 and 3 contain a survey of the results obtained
in [18], [20], [22], [26], [29], [30], while the results of Sec-
tions 2, 4, 5 and 6 are entirely new.

For further reading on this subject and related topics I rec-
ommend [1], [2], [4], [S], [7], [8], [9], [10], [11], [12], [13], [14],
(151, (161, [171, [19]1, [21], 23], [24], [25], [27], (28], [31], [32],
[35], [36].

1. Spaces of Jd-Invariant Paths

The material of this section is based on [20] and [22].

1.1 Paths and the Boundary Operator

Let V be a finite set whose elements will be called vertices.
For any p > 0, an elementary p-path is any sequence iy, ...,1p
of p+1 vertices of V (allowing repetitions). Fix a field K and
denote by A, = A, (V,K) the K-linear space that consists of all
formal K-linear combinations of elementary p-paths in V. Any
element of A, is called a p-path.

An elementary p-path i, ...,i, as an element of A, will be
denoted by €ig...ip- For example, we have

A0:<e,-:ieV>, Al:(e,-j:i,jeV>, Azi(éijkii,j,kev>
Any p-path u can be written in a form u =
Digiiynipey WO €y iy, Where w0 € K.

Definition. Define for any p > 1 a linear boundary operator
d:Ap,—A,_1 by

ig.nnigeneip

14

(1.1 d¢iy..i, = X, (—1)7e; =
q=0

where ~ means omission of the index. Set A_; = {0} and define

J :A0—>A,1by8:0.

For example, de; =0, de;j = e —e; and de;jp = eji — e+
€ij.

Lemma 1.1 ([20], [22, Lemma 2.1]). We have 9% = 0.

Proof. Indeed, for any p > 2 we have

P
82eio,__;p = Z (—l)q ae o~

- 2 N nn
0<g<r<p 0--tq-- relp

After switching ¢ and r in the last sum we see that the two sums
cancel out, whence (92@50___;p = 0. This implies 0%u = 0 for all
ue O

Hence, we obtain a chain complex A, (V):

0« A & A & & A £, L

Definition. An elementary p-path e;, ;, is called regular if iy #
ix4q forall k =0,..., p—1, and irregular otherwise.

Let Z,, be the subspace of A, spanned by irregular p-paths
eiy...i,» We claim that dZ,, C Z, ;. Indeed, if ¢;,_;, is irregular
then iy = iy for some k. We have

aeiou.ip = €i)..ip — Cigiy...ip T -

k e+
(1.2) +(=1)"€igir_yigsigsnip T (—1) * €igy...ip_1ikigsa.. iy

+...+ (*] )[7 Cig...ipy1 -

By iy = ix4+1 the two terms in the middle line of (1.2) cancel out,
whereas all other terms are non-regular, whence 8ei0__,ip €L, 1.

Hence, d is well-defined on the quotient spaces R, :=
A, /Z,, and we obtain the chain complex R, (V):

9 P P P} P
0 < Ro <« R + ... & Rpo1 & Ry &

By setting all irregular p-paths to be equal to 0, we can identify
R, with the subspace of A, spanned by all regular paths. For
example, if i # j then e;;; € R and

dejji = eji —eii+eij = eji +eij

because ¢;; = 0 in R,.

1.2 Chain Complex Q,

Definition. A digraph (directed graph) is a pair G = (V,E) of
a set V of vertices and E C {V x V \ diag} is a set of arrows
(directed edges). If (i, j) € E then we write i — .

Definition. Let G = (V,E) be a digraph. An elementary p-path
ig...1p on 'V is called allowed if iy — i; | forany k=0,...,p—1,
and non-allowed otherwise.

Let A, = A, (G) be K-linear subspace of A, spanned by
allowed elementary p-paths:

A, = (eiom,-p tip...ip is allowed).

0 iQ..eiq--ip
g=
p q—1 The elements of A, are called allowed p-paths. Since any allowed
r
=2 (=17 2 (1) Cly.ndyoniy..ip path is regular, we have A, C R,,.
=0 =0 We would like to build a chain complex based on subspaces
+ i (_l)r—l e ~ - A, of R,. However, the spaces A, are in general not invariant
gt 10---lg-eetre--p for d. For example, in the digraph
= —1)""e, - -
ogz:}gp( ) elo...lr.“lq.ulp g N ﬁ N $
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we have e . € Ay but degpe = epe — eqc +eqp ¢ Aj because e,
is non-allowed.
Consider the following subspace of A,

Q,=Q,(G):={ucA,:duc A, }.
We claim that BQP C Q1. Indeed, u € ), implies duc Api
and d (du) =0 € A,_», whence du € Q,,_;.
Definition. The elements of €, are called d-invariant p-paths.
Thus, we obtain a chain complex Q, = Q, (G):

13)0 « Q £ 0 & ... 2 q,, &g & ..

By construction we have Qy = Ap and Q; = A, while in general
Qp, CAp.

Proposition 1.2 ([20]). If dimQ, <1 then Q, = {0} for all
p>n+1.

We say that a pair a,b forms a double arrow if a — b and
b—a.

Proposition 1.3 ([20]). If G contains no double arrow and
dimQ, <2 then Q,, = {0} forall p > n+2.

1.3 Path Homology

Definition. Path homologies of G are defined as the homologies
of the chain complex Q, (G):

H, = H, (G) = kerd|g,/Imd|q

p+1”
For a vector space U over K we write
|U| = dimg U.
Define the Betti numbers of G by

By =By(G) = |Hp} :
For any N € N define the Euler characteristic of G of the order N
by

N
AN =xM(G) =Y (~1)"|Q,].
p=0

If the sequence {2, } is finite in the sense that Q, = {0} for large
enough p, then, for large enough N,

=) =

xNV ==Y (=17 = X (=1 By

p=0 p=0

Proposition 1.4. If X and Y are two disjoint digraphs then

(1.4) By (XUY) =By (X)+ By (Y).

Proof. Clearly, any allowed elementary p-path on X UY is con-
tained in X or Y. It follows that the same property is true for
d-invariant paths, so that

Q, (XUY) =0, (X)5Q, (¥).

Hence, the same identity holds for homology groups, whence
(1.4) follows. O

Proposition 1.5. We have By (G) = #of connected components
of G.

Proof. It suffices to prove that if G is connected then Sy = 1. We
have fy = Qo] — |0Q1]|. Let the set of vertices of G be {1,...,n}
so that |Qg| = n. Since Q is spanned by all arrows ¢;;, i — j, the
space d€2; is spanned by all differences e; — e; where i — j. Since
there is an edge path between the vertex 1 and any other vertex
i, it follows that dQ; contains e; — e for any vertex i > 1. These
n— 1 elements of dQ; are linearly independent while any other
difference e; —¢; is expressed as (e; —e;) — (e; —e1). Hence,
\891|:n71and[30:1. O

1.4 Digraph Morphisms

Let X and Y be two digraphs. For simplicity of notations,
we denote the sets of vertices of X and Y by the same letters X
resp. Y.

Definition. A mapping f : X — Y between the sets of vertices
of X and Y called a digraph map (or morphism) if

a—bonX = f(a) — f(b) or f(a)=f(b) onY.

In other words, any arrow of X under the mapping f either goes
to an arrow of ¥ or collapses to a vertex of Y.

We say that a digraph Y is a subgraph of a digraph X if
the sets of vertices and arrows of Y are subset of the sets of
vertices and arrows of X, respectively. In this case we have a
natural inclusion i : ¥ — X that is clearly a digraph morphism. A
subgraph Y of X is called induced if, for any two vertices a,b of
Y such that there is an arrow a — b in X, there is also an arrow
a—binY.

To give another example of a morphism, assume that a ver-
tex set of a digraph X splits into a disjoint union of n subsets
Ay,...,Ay, and construct a digraph Y of n vertices ay, ..., a, thatis
obtained from X by merging all the vertices from A; into a single
vertex a; of Y. More precisely, we have an arrow a; — a; in Y if
and only if there are x € A; and y € A; such that x — y in X.

as |

An example of a merging map u

We have a natural merging map u : X — Y such that u (x) =
a; for any x € A;. Clearly, a merging map is a digraph morphism
that keeps any arrow x — y if x and y belong to different sets A;
and collapses an arrow x — y into a vertex if x,y belong to the
same A;.
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Any digraph morphism f : X — Y induces a mapping f :
Ap (X) = Ay (Y) as follows: first set

Fo (Cigein) = €1ig)...f (i)
and then extend f; by linearity to all of A, (X).

Proposition 1.6. Let f: X — Y be a digraph morphism. Then
the induced mapping fi. : Ay (X) = A, (Y) extends to a chain
mapping fi : Q,(X) — Q, (Y) and, hence, to homomorphism
fe i Hy(X) = Hy (V).

Proof. If ej,.;, is irregular then f (e;,..;,) is also irregular.
Therefore, f, maps the space Z,(X) of irregular paths on X
into Z, (Y). It follows that f, maps R, (X) = A, (X) /Z, (X) into
Ry (Y).

Next, f. maps the space A, (X) of allowed paths into A, (Y):
if e;,..;, is allowed then i — i for all k, which implies that
either f(ix) — f (ix41) for all k and, hence, fi (ej,..i,) is also
allowed, or f (i) = f (ix1) for some k so that f. (e;..,) is
irregular, thus f. (ej,..;,) = 0.

Clearly, f. commutes with @, which implies that f, maps
Q, (X) into Q,(Y) and f. is a chain mapping. Consequently,
we obtain a homomorphism of homology groups f : H,(X) —
Hy(Y). O

Further examples of digraph morphisms will be given in
Sections 1.8 and 2.3.

1.5 Examples of J-Invariant Paths

C

a b

A triangle is a sequence of three distinct vertices a, b, c such
thata - b —c, a—c.

It determines a 2-path ey, € Q) because ey € Az and
aeabc = €pc — €ac t+€aqp € -Al .

b’ c

a b

A square is a sequence of four distinct vertices a, b, b, ¢ such
thata — b — c,a — b’ — c while a 4 c.
It determines a 2-path u = e — €4/ € L2 because u € Ay

by by

P

C
An m-square is a sequence of m -+ 3 distinct vertices
a, bO: bl7 () bm7 c

such that a — by — ¢ Vk=0,...,m, while a /4 c.
An m-square determines d-invariant 2-paths

Ujj = €ab;c — Cabjc €Q, foralli,j=0,...,m,
and among them the following m paths are linearly independent:
Uoj = €abyc — €abjc> J=1...,m

Clearly, an 1-square is a square in the above sense. Any m-square
with m > 2 is called a multisquare.

A p-simplex (or p-clique) is a configuration of p+ 1 distinct
vertices, say, 0,1,...,p, such that i — j Vi < j. It determines a
p-path eq.., € Q,. Here is a 3-simplex:

3

i1 i+1 i+3

A p-snake is a configuration of p + 1 distinct vertices, say
0,1,..., p, with the following arrows:

i—i+1 foralli=0,....p—1,
i—i+2 foralli=0,...,p—2.

In particular, any triple i (i+ 1) (i+2) forms a triangle for
i=0,....,p—2.
A p-snake determines a d-invariant p-path eq;_.. p- Indeed,
this path is obviously allowed, and its boundary
p
deol..p = z(,)(_1)‘]60..‘(6171)((14»1)...[1
g=

is also allowed because ¢ — 1 — g+ 1. Hence, €ig...ip € Q.

du = (epc — eac +eap) — (e — €ac +ear) A toy snake
= €ab+epc —€ary — e € Al Clearly, a p-simplex contains a p-snake.
64 Noricks or THE ICCM VoLUME 10, NUMBER 2



0 1

A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as shown here: A 3-cube determines a
d-invariant 3-path

U = ep237 — €0137 + €0157 — €0457 + €0467 — €0267 € £23

because u € A3 and

du = (eg13 — e023) + (e157 — €137) + (€237 — €267)

— (eoas — e0ps) — (eas7 — eas7) — (€015 — €pas) € As.

-1

jm~l

A trapezohedron of order m > 2 is a configuration of 2m+ 2
distinct vertices

a, b7 iO? Tt l.m,I, j07 Tty jm,I

with 4m arrows:
a<—+ik, jk<—>b
and
ik = i, k= Jktls

forall k =0,...,m— 1, where k is understood modm.
The trapezohedron gives rise to the following d-invariant
3-path:

m—1
(1.5) Tn= Y,
k=0

(euikjkb - euikjk+1b) :

Indeed, 7, is clearly allowed, and its boundary is also allowed

because
m—1
9Ty = J (eaikjkh - eaikjk+1b)
k=0
m—1 m—1
(1.6) = (eikjkb - eiij.b) - z (eaikjk - eaik./'k+1>
k=0 k=0
m—1 m—1
(1.7) = X (eajp —€ajeip) + 2, (Cairh — Caiph)
k=0 k=0

where the both sums in (1.6) are allowed, while both sums in
(1.7) vanish.

A trapezohedron of order m = 2 is shown here:

a

io i

In this case we have

T2 = €aiy job — €aigj1b T €aiy j1b — €aiy job-

A trapezohedron of order m > 3 can be realized as a convex
polyhedron in R3 with flat faces. For example, a trapezohedron
of order m = 3 coincides with a 3-cube:

In this case we have
3= eai()job - eai()j]b + eailjlb - eailjgb + eaizjzb - eai2j0b7

and 73 coincides (up to a sign) with the aforementioned 3-path
determined by a 3-cube.

A trapezohedron of order m = 4 is a tetragonal trapezohe-
dron:

% b
. .3
Ji /

b

In this case we have

T4 = €qiy job — €aigj1b T €aiy jib — Caiy job

+ Caiy job — €aiy j3b + C€aiz j3b — €ais job-

1.6 Examples of Spaces 2, and H,

Here is a triangle as a digraph:
2
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We have Q; = (eo1,e02,e12), Q2 = (eo12). Since kerd|g, =
<60] —en +€12> and eg) —epp +e12 = 86‘0]2, it follows that H;
{0}, Q, = {0} for p >3 and H, = {0} for p > 2.

Here is a square as a digraph:

2 >—e3

0 !

We have Q = (eo1,e02,€13,€23), Q2 = (€013 — eg23). Since
kerd|o, = (eo1 —eon +e13 —e23) and egr —ep2 + €13 — €23 =
d (e013 — e23) it follows that Hy = {0}, Q, = {0} for p > 3 and
H,={0}for p>2.

Here is a 4-cycle that is called a diamond:

3 1

0 T2
We have Qi = (en2,e03,¢12,¢13), H) = kerd|a, = (en2 —
ez —en+e3), Q, = {0} and H, = {0} for all p > 2.

Consider a hexagon with two diagonals:

5

0

Here € = (eg13 — €023, €014 —e024), Hi = (€13 —es3+e54 —
e14), Qp = {0} for p >3 and H, = {0} for p > 2.

Consider an octahedron based on a diamond:
4

5

Space €, is spanned by 8 triangles:

Q) = (e024, €034, €025, €035, €124, €134, €125, €135) 5
Hy = (eqo4 — ep3a — €ps + €035 — €124 + €134 + €125 — €135),
Q, = {0} for p >3 and H, = {0} for p=1and p > 3.

Consider an octahedron based on a square:

Q= <6024,602576()14,6‘015,623476235,6‘134,613576()13 - 6023>7

Q3 = (eo234 — €0134, €0235 —€0135), p = {0} Vp > 4.

5

We have kerd|q, = (u,v) where

u = eg4 +e234 —eo1a — €134 + (€013 — €023)

Vv = egas + €235 — epis — €135 + (€013 — €023)
but H, = {0} because
u =0 (e0234 —eo134) and v = d (egn35 — €0135) -

In fact, H, = {0} for all p > 1.

Consider a 3-cube:

%}

0 1

Space € is spanned by 6 squares:

Q= <3013 — €023, €015 — €045, €026 — €046, €137 — €157,

€237 — €267, €457 — e467>

Space €3 is spanned by one 3-cube:

Q3 = (e0237 — €0137 + €0157 — €0457 + €0467 — €0267)
Q, ={0} forall p >4 and H, = {0} forall p > 1.

1.7 An Example of Computation of Q, and H),

Consider a square with a diagonal:

2 3
0 1
We have Qp = Ay = (eo,e1,e2,€3), Q0| =
4, Q; = A = {eo,em,e13,e3,€30), || = 5, and

Ar = (eo13, €023, €130, €230, €301, €302), |A2| = 6. To deter-
mine £y, let us first compute d| 4, mod A;:

degi3 = eg3 —eg3 +eg) = —eg3 mod A
dems = ex3 — g3 + g2 = —ep3 mod.Aj
deizo = e3p —e10+e13 = —ejp mod A;
dexzp = e30 — ez +e23 = —exp mod.Aj

desor = eo1 — €31 +e30 = —e3; mod A

66 Norickes oF THE ICCM
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despn = epr — e +e30 = —e3p mod A
‘We have

D := matrix of d| 4, mod A
€013 €023 €130 €230 €301 €302
eps  —1 —1 0
€10 —1
€20 —1
e31 -1
es3n 0 —1

and
Q; =kerd| 4, mod.A; = nullspace D = (eg13 — €023)-

One can show that {QP} =0 for all p > 3 (which also follows
from Proposition 1.2) and, hence, {Hl,} =0forall p > 3.
Let us compute H; and H>. We have for the basis in Q;:

degl = —eg+ e
degy = —ep+ e
dejz = —ej +e3
dex; = —er+e3

8630 —=ep—e3
Therefore,

€or €02 €13 €23 €30
eg —1 -1 0 0
el 1 0O -1 0 0
e 0 1 0O -1 0
e3 0 0 1 1 -1

D := matrix of d|g, =

and
kerd|q, = nullspace D = (ep; +e13 —ep2 — €23, €01 + €13+ €30).
Similarly, for the basis in 2, we have
d (eo13 — e023) = (e13 — o3 +eo1) — (€23 — €03 + €02)
=eo| +e13—ep —ex
whence
Imd|g, = (eo1 +e13 —ep2 —e23) and  kerd|q, = {0}.
It follows that H, = {0} and
Hi =kerd|q, /Imd|q, = (eo1 +e13+€30).

As we have seen, computation of the spaces Q, (G) and H,, (G)
amounts to computing ranks and null-spaces of matrices. We
currently use for numerical computation of H, (G,IF,) a C++
program written by Chao Chen in 2012.

Problem 1.7. Devise an efficient algorithm/software for compu-
tation of the spaces L, for arbitrary digraphs, possibly avoiding
null-spaces of large matrices. Such algorithms exist for Q; and
Q3. Are there simpler ways of computing directly dimQ, without
computing the bases of Q,,?

1.8 Structure of Q)

As we know, Qo = (e;) consists of all vertices and Q| =
<eij = j> consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x,y) of distinct
vertices x, y such that x /4 y but x — z — y for some vertex z. We
write in this case x — y

Theorem 1.8 ([21, Proposition 2.9], [20]).

(a) We have |Qu| = |Az| — s where s is the number of semi-
arrows.

(b) The space ; is spanned by all triangles eqp., squares egpe —
eqpc and double arrows egp,,.

Proof. (a) Recall that
Ay = span{egp. : abc is allowed }
and
W={vedr:dveA }={veAr:dv=0modA,}.
If abc is allowed then ab and bc are arrows, whence
deupe = epe — Cac + eap = —eqe mod Aj.

If a = c or a — c then ¢, = 0mod .A;. Otherwise ac is a semi-
arrow, and in this case

€ac 70 mod.A;.

For any v € A, we have

abc
v= z V% eupe

{a—b—c}

from which it follows that

ov=— 2 v, mod Aj.
{a—b—c,a—c}

The condition dv = 0mod.A; is equivalent to

Ve, =0mod Ay,
{a—b—c, a—c}

which in turn is equivalent to

(1.8) z v =0  for any semi — arrow ac.
bev

The number of the equations in (1.8) is exactly s, and they all are
linearly independent for different semi-arrows, because a triple
abc determines at most one semi-arrow. Hence, €, is obtained
from A, by imposing s linearly independent conditions, which
implies |Q;| = |Az| — s.

(b) Any allowed 2-path @ can be represented as a sum of
elementary 2-paths e;; with i — j — k multiplied with a scalar
¢ #0.If k=i then e;;; is a double arrow. If i # k and i — k
then ¢;j is a triangle. Subtracting from @ all double arrows and
triangles, we can assume that ® has no such terms any more.
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Then, for any term e;j; in @ we have i # k and i / k. Fix such a
pair i,k and consider any vertex j with i — j — k. Assume that
e;jx enters @ with a coefficient c; # 0. Set

(1.9) O = Y cjeiji
J

so that o = Y ;; wy. It suffices to verify that each wy is a linear
combination of squares. The 1-path dw is the sum of 1-paths of
the form

J (cjeijk) =cjejj—Cjejk +Cjeji.

Since dw is allowed but e is not allowed, the term ¢ je;;, should
cancel out after we sum up all such terms over all possible j, that
is,

(1.10) Ycj=0.
j

Denote by {jo, ji,..-; jm} the sequence of all possible vertices j
with i — j — k so that we obtain an m-square:

i
jO jm

k
An m-square {7, {ji};Zo .k}

Then we obtain from (1.9)

m m

o = Y, cieijk = X,y (€ijr — eijok)
=0 =1

because by (1.10)

!
Cjo = — 2 Cji-
=1
We conclude that @j is a linear combination of squares. O

Example 1.9. Let the digraph G be an m-square shown on the
above picture. It has one semi-arrow i — k so that s = 1. Since
| A2| = m+ 1, we conclude that |Q;| = m. Indeed, the basis in Q;
is given by the sequence of m squares {ei ok — €ijy k};":l.

Observe that a triangle e,,. and a double arrow e, are
images of a square ep;3 — eg23 under merging maps (cf. Subsec-
tion 1.4) as shown on these pictures:

a merging map from a square onto a triangle

€013 — €023 = €gbc — €acc = €abc

a merging map from a square onto a double arrow

€013 — €023 V2 €abg — €aaa = €aba

Hence, we can rephrase Theorem 1.8 as follows: € is
spanned by squares and their morphism images. Or: squares are
basic shapes of .

1.9 Path Complex

The material of this section is based on [20], [22] and [26].
We discuss here the notion of path complex that unifies digraphs
and simplicial complexes.

Definition. A path complex on a finite set V is a collection P
of elementary paths on V such that if igi;...i,—1i, € P then also
i1...ip and iy...i, | belong to P.

For example, each digraph G = (V,E) gives rise to a path
complex P that consists of all allowed elementary paths, that is,
of the paths iy — i; — ... — 7). In general, all paths in a path
complex P are also called allowed.

The above definitions of d-invariant paths, spaces €, and
H), go through without any change to general path complexes in
place of digraphs because they are based on the notion of allowed
paths only. In fact, most of the results that are proved for path
homology theory for digraphs remain true also for a more general
setting of path complexes.

Let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V is a
collection S of subsets of V such that if ¢ € S then any subset of
o is also an element of S.

Let us enumerate all elements of V' so that any subset o of
V can be regarded as a path iy...i, with iy <ij <.... <i,. The
above definition means that if iy...i, € S then also any sub-path
kg Ik, with 0 < ko < kj < ... <ky; < p belongs to S. Hence, a
simplicial complex S is a path complex, and the theory of path
homologies applies for S.

In this case, A, consists of linear combinations of all
p-dimensional simplexes in S and Q, = A, because 86,'0“',-1)
is always allowed if €ig...i 18 allowed. Hence, the path homol-
ogy theory of a path complex S coincides with the simplicial
homology theory of S.

Path complexes

O igraphs

Schematic relation between path complexes, digraphs and
simplicial complexes

68 Norickes oF THE ICCM

VOLUME 10, NUMBER 2



Let S be a simplicial complex with the vertex set V as above.
Define a digraph Gs as follows: the vertex set of Gs is S, and for
two simplexes a,b € S we have an arrow a — b provided a D b
and |a| = |b| + 1, that is, when b is a face of a of codim = 1. The
digraph G is called the Hasse diagram of S.

(a) simplicial complex S

(b) abstract digraph G

() digraph G based on By

¥

If S is realized geometrically as a collection of simplexes in
R" then Gs can be realized on the set of vertices Bs consisting of
barycenters of the simplexes of S as on the picture. The relation
between simplicial homology H*"?! with the path homology H
is given by the following theorem.

Theorem 1.10 ([26, Corollary 5.4]). We have

H"P(S) = H, (Gs).

1.10 Triangulation as a Closed Path

Given a closed oriented n-dimensional manifold M, let T be
its triangulation, that is, a partition into n-dimensional simplexes.
Denote by V = {0, 1,...} the set of all vertices of the simplexes
from T and by E — the set of all edges, so that (V,E) is a graph
embedded on M.

Let us introduce make each edge (i, ) € E into an arrow
i— jifi < jandinto j —iif i > j. Then each simplex from T
becomes a digraph-simplex. Denote by ? the set of all digraph
simplexes constructed in this way. That is, ig...i, € T if ig...i, is
a monotone increasing sequence that determines a simplex from
T. Clearly, any such path iy...i, is allowed.

For any simplex from 7T with the vertices iy...i, define the
quantity 6’0 to be equal to 1 if the orientation of the simplex
io...i, matches the orientation of the manifold M, and —1 other-
wise. Then consider the following allowed n-path on the digraph
G=(V,E):

(1.11) o= Y o .
ioin€T

Lemma 1.11 ([20]). The path o is closed, that is, d6 = 0, which,
in particular, implies that © is d-invariant.

Proof. Observe that do is a linear combination with coefficients
*1ofthetermsej,. ;,_, where the sequence jo, ..., j,—1 is mono-
tone increasing and forms an (n — 1)-dimensional face of one of
the n-simplexes from 7.

In fact, every (n — 1)-face arises from two n-simplexes, say,
from

A= jooJk—1ajk-Jn—1 and B = jo...ji-1bji...ju—1.

That is, the n-simplexes A and B have a common
(n—1)-dimensional face jo...j,—1.
We have

aej()wjk—l“jkwjn—l =..+ (71) € okt Jhordnt T e

Since interchanging the order of two neighboring vertices in an
n-simplex changes its orientation, we have

070 Jk=1akJn1 — (_1)" G0 Jk—1Jk+dn1 |
Multiplying the above lines, we obtain
8(0‘AeA) =..+ 6“j0-~-./;z—lej0".j'17] + ..,
and in the same way
8(0363) =..+ ijomjnilejomjnfl + ...

However, the vertices a and b are located on the opposite sides
of the face jg...j,—1, which implies that the simplexes a jg... j,—1
and bjj...j,—1 have the opposite orientations relative to that of
M. Hence,

GH0-in-1 4 gblo-Jn-1 = 0,

which means that the term ej,. ;, , cancels out in the sum
d(o%es +0oPep) and, hence, in do. This proves that do = 0. [

The closed path o defined by (1.11) is called a surface path
onM.

There is a number of examples when a surface path ¢ hap-
pens to be exact, that is, c = dv for some (n+ 1)-path v. In this
case v is called a solid path on M because v represents a “solid”
shape whose boundary is given by a surface path. If o is not exact
then o determines a non-trivial homology class from H, (G) and,
hence, represents a “cavity” in triangulation 7.

Example 1.12. M = S'. A triangulation of S! is a polygon, and
the corresponding digraph G is called cyclic.

% ..................... 1

On each edge (i, j) of a polygon we choose an arrow i — j
arbitrary (not necessarily if i < j). We have

O = 2 G’Je,-j
i—j

where we have ¢’/ = 1 if the arrow i — j goes counterclockwise,
and 6%/ = —1 otherwise.
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For the digraph on the picture we have
O =eg] — €21 + €23 +e34 —esq4+esp.

If a polygon G is a triangle or a square then Q, = {0} for p >3
and H, = {0} for all p > 1. Otherwise we have the following
statement.

Proposition 1.13 ([20]). If a polygon G is neither a triangle
nor a square then Q, = {0} and H, = {0} for all p > 2 while
H = <0'>

Proof. We have Q,, = {0} for all p > 2 by Theorem 1.8. Hence,
dimH, = 0 for p > 2. For the Euler characteristic, we have

x =dimQy —dimQ; =0.

Since also
X = dimH() — dimH1

and dimHy = 1, we obtain dimH; = 1.

It remains to see that ¢ is a non-zero element of H;. The path
o is closed by Lemma 1.11. In this case this can also be seen
directly because by construction we have ¢'(t!) — glit1)i = |
whence, for any vertex i,

(do) = Y (o7 —0c")
jev
_ gl Di 4 g+ _ Gili=1) _ gili+1) _ 1 _ 1 — .

Finally, o # 0 in H; because Imd|q, = {0}. O

Example 1.14. Let M =S" and let a triangulation of the n-sphere
S” be given by the surface of an (n+ 1)-simplex.

3

0

Then G is a (n+ 1)-simplex digraph. On this picture n = 2
and

O =e123 —ep3 +ep13 —€ep12 = a60123

so that ep23 is a solid path representing a tetrahedron.
For an arbitrary n we also have 6 = dey._,,+1 so that ey, 1
is a solid path representing an (n + 1)-simplex.

Example 1.15. Let M = S? and let a triangulation of S? be given

by an octahedron (see also Subsection 1.6). Consider two cases

of numbering of vertices and, respectively, orientation of arrows.
An octahedron based on a square:

5
We have H, = {0}; it is easy to see that
O = eg24 — €025 — €014 + €015 — €234 + €235 +- €134 — €135
= J (€134 — €0234 + €0135 — €0235)

Hence, v = eg134 — €0234 + €0135 — eoz3s is a solid path and the
octahedron represents a solid shape.

An octahedron based on a diamond:
4

We have H, = (o) where

O = e024 — €034 — €025 + €035 — €124 + €134 + €125 — €135
so that this octahedron represents a cavity.

Example 1.16. Let M = S? and let a triangulation of S? be given
by an icosahedron:

Chose a numbering of vertices as shown here and arrows
i—jifi~jandi<j.
Wehave [V| =12, |E| =30, H; = {0}, and H, = (o) where
O = —ep19+epi2—ei211+€p26 €059 — €056 +-€5610
—e139te1311 —e267 T €710 —€2711 — €349 1+ €348

—eq810 +€3811 —€459+€4510 +€7810 —€7811-

Hence, the icosahedron represents a cavity.

70 Norickes oF THE ICCM

VOLUME 10, NUMBER 2



Conjecture 1.17. For icosahedron dim H, (G) = 1 for any num-
bering of the vertices.

Conjecture 1.18. For a general triangulation of S", the homol-
ogy group H, (G) is either trivial or is generated by o. All other
homology groups H, (G) are trivial.

1.11 Homological Dimension
In this section K = F5,.

Definition. Define the homological dimension of a digraph G by
dim;, G = sup{k: |H,(G)| > 0}.

Let G be a polygon (a cyclic digraph).

If G is neither triangle nor square, then |H;| = 1 and |Hp | =0
for p > 2 whence dim;, G = 1.
Let G be either a triangle or a square:

Then |H,| = 0 for p > 1 and dim; G = 0.
Let G be an octahedron based on a diamond:

AN
\ 4

Then |Hy| =1, Hp| =0 for p > 3, whence dim; G = 2.

Let us give an example of a digraph with e homological
dimension that is due to Gabor Lippner and Paul Horn [34]. Fix
some n > 5. We construct a digraph LH (n) of 2n vertices that
are denoted by

1,2,....n and —1,-2,...,—n,

and the arrows between vertices x,y in LH (n) are defined as
follows:

(L.12) x—y if [yj]=|x|+1 or if |x]=n—1and |y|=2,

so that LH (n) has 4n edges. In fact, LH (n) is obtained from the
complete multipartite digraph 2,2,..,2 by adding the last 4
——

n

arrows.

Example 1.19. Here is the digraph LH (5).

It is obtained from ?2,27272,2 by adding four arrows.
For this digraph 8, > 0 provided

p = 1mod3.

Proposition 1.20 ([34]). Ifp=1mod (n—2) and p > n— 1 then
the homology group Hy, (LH (n)) is non-trivial.

Hence, for the digraph LH (n), non-trivial homology groups
H), occur for arbitrarily large p. Consequently, we have

There are digraphs with non-trivial homology group H,, for all
value of p — see below Example 3.27.

Proof. Let p=(n—2)k+ 1 for some k > 1. Let us construct a
family of allowed paths in LH (n) as follows. First, consider a
numerical sequence of p+ 1 = (n—2)k+ 2 numbers:

(113 1,2,3,..n—1,2,3,on—1,..,2,3,...n— L,n,

where the group 2,3,...,n— 1 is repeated k times, and then give
arbitrarily the signs 4+ and — to each number in this sequence.
Clearly, we obtain in this way an allowed elementary p-path in
LH (n). For any such a path u, denote by & () the number of ‘—’
in u, and consider the path

(1.14) 0=Y(-1)"y,
u
where the summation is taken over all paths u obtained in this
way from the sequence (1.13).
Let us verify that d = 0 (and, hence, ® € Q p). Indeed, let
u = up...u, be one of the elementary paths in the sum (1.14). The
boundary du is the sum of the terms

(1.15) (—1) ug.tti 1ty 1.1

that are obtained from u by omitting ;. Fix some i and consider
a path

U= ug...ui—1 (—ui) Uit1...up

where only the sign of u; is changed. Then du contains also the
term (1.15). However, u and u enter @ with opposite signs so that
the term (1.15) cancels out in the sum (1.14). Hence, we obtain
do =0.

Let us verify that @ # dv for any allowed path v, which will
imply that @ determines a non-trivial element in H,. Assume
from the contrary that @ = dv for some v € A4 1. For that, v has
to contain an allowed elementary p + 1-path that contains both a
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vertex 1 and a vertex n (otherwise, 1 and n cannot appear in the
same path (1.13)). Let

U=ug....up+1
be such an allowed elementary p + 1-path, where
lup| =1 and |up+1| =n.

We have u; — ;11 and, hence, as it follows from the definition
of arrows in (1.12),

|titr1] = |ui] + 1mod (n—2).
Therefore,
|upt1| = |uol + p+ 1mod (n—2),
from which it follows that
n=p+2mod (n—2)
and
p=0mod (n—2),

which contradicts the hypotheses. O

2. Trapezohedra and Structure of 3
2.1 Spaces Q, and H), for Trapezohedron

For any integer m > 2, define a trapezohedron T, of order
m as follows:
T,y is a digraph of 2m +- 2 vertices

a, b7 i07'~~7im717 j07j17'“7jm71
and 4m arrows
a—ig = jk—>b, ik — jir

forallk=0,...,m— I modm.
A fragment of T, is shown here:

a

lk-2 (738

b

It is clear that all allowed paths in 7;, have the length < 3,
whence Q, (T;,) = {0} for all p > 3.

Proposition 2.1. For the trapezohedron T,, we have
Q| =2m, |Q3]=1,

and H, = {0} forall p > 1.

Proof. 1t is easy to detect all squares in 7,:

(2.16) €aip_yj, — Caipjp  and € jp— Cirjxp1bs

where k =0,...,m — 1. Hence, T,, contains 2m squares, and they
are linearly independent. Since there are no triangles in 7;,, we
conclude by Theorem 1.8 that || = 2m.

All allowed 3-paths in T, are as follows:

€aipjyp  and Caiy jx1b>

also for all k =0,...,m — 1. Let us find all linear combinations of
these paths that are d-invariant. Consider such a linear combina-
tion

m—1

0= 2 (akeaikjkb + ﬁkeaikjk+lb)
k=0

with coefficients oy, B, and assume that @ is d-invariant. We
have

m—1

Jo = Z 9 (Okeaiyjyb + ﬁkeaikjkﬂb)
k=0
2.17)
m—1 m—1
= Z (akeikjkb +ﬁkeikjk+1b) - 2 (akeaikjk +Bkeaikjk+l)
k=0 k=0
(2.18)
m—1 m—1
- 2 (akedjkb +Bkeajk+1”) + 2 (akeﬂikh +ﬁkeﬂikb) :
k=0 k=0

Both sums in (2.17) consist of allowed paths. In the rightmost
sum in (2.18) the path e;,;, is not allowed and, hence, must cancel
out, which yields

o = — k.

The leftmost sum in (2.18) is then equal to

m—1 m—1
. (oweajup — eaj ) = 3 (0 — 1) eajp,
k=0 k=0

and it must vanish as ¢, is not allowed, whence
O = Olj—1.-

Setting o, = « and, hence, B; = —o, we obtain that

m—1

0=0o z (eaikjkb - eaikjk+1b) = 0T
k=0

so that Q3 = (1,,) and |Q3| = 1.
It follows from (2.17)—(2.18) that

m—1 m—1
T = kZ(,) (eikjkb - eikjk+lb) - kz(,) (eaikjk - ellikjk+1) #0.

This implies ker d|q, = 0, whence H3 = {0}.
Let us show that H, = {0}. Since dimImd|q, = 1, it suffices
to show that

(2.19) dimkerd|g, = 1.
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Consider the following general element of €;:

m—1

u= kz; O (e“ik—ljk - ellikjk) + Br (eikjkb - eikjk+lb)
)

with arbitrary coefficients oy, ;. We have

m—1

du= z Ot (eaik—l + ey — €aip — eikjk)
~0

+ Br (ejkb t Ciji — b ~ Cigjrsn )

=~

m—1

m—1
— 2 (01 — O ) €qi, + Z (Be = Br-1) ejp
+ 2 — o) e, + z i1 = Pr) €ije s -
=0

The condition du = 0 is equivalent to
O] = O = ﬁk = ﬁk,1 forallk=0,.....m—1

which implies (2.19).
Finally, we determine |H; | by means of the Euler character-
istic

x=1Qo| — Q1]+ Q] —1Q3| = 2m+2) —4m+2m—1=1.
Hence, we obtain
|Ho| — [Hi| + |Hz| — [H3| = 1,

which yields |H;| = 0. O

2.2 A Cluster Basis in Q,
We start with the following definition.

Definition. A p-path v =Y v €iy...i, is called an (a, b)-cluster
if all the elementary paths €ig...ip with non-zero values of v'0'»
have iy = a and i, = b. A path v is called a cluster if it is an
(a,b)-cluster for some a,b.

Lemma 2.2. Any d-invariant p-path is a sum of d-invariant
clusters.

Proof. Let v € Q,. For any points a,b € V, denote by v, the
sum of all terms viO“‘iPeiO,,,ip with ip = a and i), = b.

Then v, is a cluster and v = 3, ey Vap, that is, v is a
sum of clusters. Let us prove that each non-zero cluster v, is
d-invariant.

Since v is allowed, also all non-zero terms v0--'re;, ; are
allowed, whence v, is also allowed. Let us prove that dv, is
allowed, which will yield the d-invariance of v, ;. The path v,

is a linear combination of allowed paths of the form €aiy ..iy,_1b-
We have

0¢aiy..iy b= Ciy..ip_ b+ (=) €aiy i, + D, (=
|

eail ..l'Ak...l'p,lb'
Thetermse;, . iy 1b andeg;, .. i, , are clearly allowed, while among

the terms e there may be non-allowed. In the full ex-

ail..l{]:...ip,lb
pansion of

2 aV(/z,b

a,beV

all non-allowed terms must cancel out. Since all the terms
Cair iy b form a (a,b)-cluster, they cannot cancel with terms
containing different values of a or b. Therefore, they have to can-
cel already within dv, 5, which implies that dv,, is allowed. [

Definition. For any p-path v = ¥ v iy...i, define its widih [|v|
as the number of non-zero coefficients v,

Definition. A J-invariant path @ is called minimal if @ cannot
be represented as a sum of other d-invariant paths with smaller
widths.

Example 2.3. A square ® = egp — €, has width 2 and is
minimal because e, and e, having width 1 are not d-invariant.
Let a,{bo,b1,b2},c be a 2-square. The following path

@ = €upyc + €abic — 2eabzc

is d-invariant, has width 3 but is not minimal because it can be
represented as a sum of two squares:

W= (eaboc - eabzc) + (eablc - eabzc):
where each square has width 2.

Lemma 2.4. Every d-invariant cluster is a sum of minimal
d-invariant clusters.

Proof. Let o be a d-invariant cluster that is not minimal. Then
we have

(2.20) 0= ol

where each @) is a d-invariant path with ||| < ||@||. By
Lemma 2.2, each ®® is a sum of clusters a)t(fg, and it is clear

from the definition of a)( ) that
oo} b O < llo®].

Hence, we can replace in (2.20) each *) by 2ab O b and hence,

assume without loss of generality that all terms o™ in (2.20) are
d-invariant clusters.

If some @®) in this sum is not minimal then we replace it
further with a sum of d-invariant clusters with smaller widths.
Continuing this procedure we obtain in the end a representation
 as a sum of minimal d-invariant clusters. O
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Proposition 2.5. The space ., has a basis that consists of min-
imal d-invariant clusters.

Proof. Indeed, let M denote the set of all minimal J-invariant
clusters in €2,. By Lemma 2.4, every element of ), is a sum of
elements of M. Choosing in M a maximal linearly independent
subset, we obtain a basis in €2,. O

2.3 Structure of Q3

We use here the trapezohedra 7;, and associated trapezo-
hedral paths 7, defined in Sections 1.5 and 2.1 (see (1.5)), that
are d-invariant 3-paths for all m > 2. We prove here in Theo-
rem 2.10 that if G contains no multisquare (see Subsection 1.5)
then Q3 (G) has a basis that consists of trapezohedral paths and
their morphism images.

We start with some examples.

Example 2.6. Here is a merging map from 75 onto a 3-snake:

0

The trapezohedral path 7, is given by
Ty = €0123 — €0153 T €0453 — €0423,
and its merging image is the 3-path
V = €0123 — €0133 1+ €0233 — €0223 = €0123,

that is, the 3-path eg23 associated with a 3-snake.

Example 2.7. Here is a merging morphism of 73 (= a 3-cube)
onto a pyramid:

6

0 1
The cubical 3-path is given by
T3 = €0237 — €0137 T €0157 — €0457 + €0467 — €0267

and its merging image of 73 is the following d-invariant 3-path
in a pyramid:

V = e0234 — €0134 + €0144 — €0444 + €0444 — €0244 = €(234 — €0134-

Example 2.8. Consider another merging morphism of 73 onto a
prism:

)

0 1

The merging image of 73 is the following d-invariant 3-path in
the prism:

U = en233 — €0133 T €0153 — €0453 + €0423 — €0223

= €0153 — €0453 + €0423-

Example 2.9. Here is a merging morphism p : 7y — G where
the digraph G is a broken cube that is shown in the right panel:

N 0

9
The path 74 in the present notation is given by

T4 = €0159 — €0169 + €0269 — €0279 + €0379 — €0389 1 €0489 — €0459,

and the merging image of 74 is the following d-invariant 3-path
on the broken cube:

(2.21)
V = €058 — €0168 1 €0268 — €0278 1 €0378 — €0388 + €0488 — €0458

= €0158 — €0168 + €0268 — €0278 + €0378 — €0458-

One can show that Q3 (G) = (v).
The next theorem describes the structure of Q3 (G) for a
general digraph G but under the following hypothesis:

(2.22) G contains neither multisquares nor double arrows.

Under the hypothesis (2.22), €, (G) has a basis that consists
of triangles and squares. The condition (2.22) implies that if
a— b — c and a /4 c then there is at most one b’ # b such that
a—b —c.

Theorem 2.10. Under the hypothesis (2.22), there is a basis in
Q3 (G) that consists of trapezohedral paths T, with m > 2 and
their merging images.

Hence, trapezohedra are basic shapes for Q3.

Proof. By Proposition 2.5, 3 has a basis that consists of minimal
d-invariant clusters. Let a path @ € Q3 be a minimal d-invariant
(a,b)-cluster. It suffices to prove that @ is a merging image of
one of the trapezohedral paths 7, up to a constant factor.

Denote by P the set of all elementary terms e, of @.
Clearly, the number |P| of elements in P is equal to ||®]. We
claim that, for any e, ), € P,

either a—j or a j
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where the notation a ' j means that a and j form a diagonal of
a square.

Indeed, if a /4 j then the term e,j;, appearing in dey;jp is
non-allowed and should be cancelled in d® by the boundary of
another elementary 3-path from P that can only be of the form
g jp With

a—i —j

Hence, a and j form diagonal of a square a,i,i, j.

a

b

By hypothesis (2.22), the vertex i’ with these properties is
unique. Hence, in this case we have

(2.23) O = Ceyijp— eyt jp + -
for some scalar ¢ # 0. In the same way, we have
either i—b or i b
and, for some e, € P and ¢ # 0,
(2.24) O = cegijp — Cegijip+ - -
If for some path e, j;, € P we have both conditions
a—j and i—b
then e, is J-invariant and, by the minimality of @,
® = constey;jp.

Since ey jp, is in this case a 3-snake, the path @ is a merging image
of T.

b

Next, we can assume that, for any path e, € P, we have

a/j or iAb

which is equivalent to

(2.25) aj or i b

Define a graph structure on P with edges of two types (i) and (ii)
as follows: for two distinct elements eg;j, and e,y 1, of P we write

(i) . . .
eaijp ~ eqpjip ifa /* jand j= j.
and
(ii) e g
Caijb ™~ €qil j'b ifi /‘ bandi =1i.
Clearly, both relations O and @) are symmetric. We refer to the

relations @ and ) as the edges in P of the first and, respectively,
second type.

(ii)

Cases €aijb Q €ail j'b and €aijb <lf\1/> €ail j'b
By the hypothesis (2.22), for any e,;;;, € P there is at most
one edge of the first type and at most one edge of the second type.
In particular, the degree of any vertex of the graph (P,~) is at
most 2.
Fix a path e, € P. By the above argument, if a /* j then

there exists e, j;, € P such that e, Y eqi jp and o satisfies (2.23).
Similarly, if i /b then there exists e;j, € P such that ey jp ()
e,ijp and o satisfies (2.24). In particular, the degree of any vertex
of the graph P is at least 1.

Let us prove that the graph (P,~) is connected. If P not
connected then P is a disjoint union of its connected components
{P.}{_, where n > 1. Denote by @¥) the sum of all elementary
terms of w lying in P, with the same coefficients as in @, so that

(2.26) w=Y o®.
k=1

Let us verify that each ®® is 9-invariant. Clearly, o® is allowed,
and let us prove that dw® is allowed. Indeed, let d ®*) contain
a non-allowed term. The latter comes from the boundary de;
of some elementary term e,; j, of o®) and, hence, is either €gip O
eqjb, let it be ey, which means i /4 b. The term e,;;, cancels out
in d®, which can only happen when ® contains another term of
the form e,; ;. However, then

€aijb ™~ €aij'b

so that e, belongs to the same connected component P, and,
hence, must be an elementary term of ©™® . This proves that do®
is allowed and, hence, o® is J-invariant.

If the number # of the terms in (2.26) is greater than 1 then
the number of vertices in each P, is strictly less that in P, which
implies ||ak|| < ||o||. However, in this case the representation
(2.26) is not possible because @ is minimal. Hence, n = 1 and P
is connected.
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Since each vertex of P has at most two adjacent edges, there
are only two possibilities:

(A) Pis asimple closed polygon;
(B) Pis alinear graph.

Consider first the case (A). In this case every vertex of P has
two edges: exactly one edge of each type (i), (ii).

Thus, the number of edges is even, let 2m, and P has neces-
sarily the following form:
(2.27)

(ii) (i) (i) () (ii) (i)
Caigjob ™ Caigji1b ~ Caipjib ™ -+~ Caiy_yju_1b ™ Cai, | job ™ Caigjob
for some vertices {i; };—, and { ji }}"-, of G. Note that necessarily
m > 2 because if m = 1 then (2.27) becomes
(ii) (i)
Caigjob ™ €aigj1b ™ Caig job>

which is impossible because edges of different types between the
same vertices of P do not exist.

Since all the terms in (2.27) enter @ with the same coeffi-
cients £c (cf. (2.23) and (2.24)), we see that

@ = ¢(€aiyjob — €aigjrb + €aiy jyb — €ai job + ---

(2.28) + iy 1 jo1b — Cai, ., job)-

If all vertices a, {ix}—y , {Jjk}i—y , b are distinct then they
form a trapezohedron 7,,:

Im-1

j m-1

In this case we have by (1.5) and (2.28)
W= CTy.

If some of these vertices coincide then the configuration (2.27)
is a merging image of 7,,, and @ is a merging image of c¢7,,.

Consider now the case (B). In this case the linear graph P
has two end vertices of degree 1, while all other vertices have
degree 2. Depending on the type of edges at the end vertices of
P, we have two essentially different subcases:

case (Bjp): the end vertices of P have edges of different
types.
. (i) o () o (i) o () o (i) o 0] ®

case (B;): the end vertices of P both have edges of type (ii)
(the case of type (i) is similar).

(i) () (i) () (i)
Consider first the case (B;) when the graph P must have the

form

(2.29)
(i) (i) (i) (@ () (i)

Caigjob ™ Caigjib ~ Caiyjib ™ Caiyjab ™ oo ™ Caiyy_yjmb 7 Caiy jmb-

Consequently, we have

0= C(eaiojob — €aigj bt €aiy j1b — €aiy job T -

(2.30) — Caiyy 1 jmb T Caimjmb) -
Since
(2.31) 90 = c(—eqjop + €qipp) mod Ar

and dw € A, we must have either e, = €qi,» Or both e, and
€qi,» are allowed, that is,

(2.32) a— jo and i, —b.

In the former case we have jo = i,, whence (2.32) follows again
so that (2.32) is satisfied in both cases.

We claim that in the case (B;) the configuration (2.29) is a
merging image of T;,12.

Indeed, denote the vertices of 7,4, also by
a,{ik}kmiol A jk}z"iol b, and map all the vertices of T,
except for i1 1, jm+1, to the vertices of G with the same names;
then merge

imp1 > jo and  jui1 b

The arrows a — imt1,im —> Jjm+1;0mt1 = Jjm1 in Tyip are
mapped to the arrows

a— jo, im— b, jo—b

in G (cf. (2.32)), while the arrows i,,11 — jo and j,,+1 — b goto
vertices. It follows that this mapping of T, into G is a digraph
morphism. Since by (1.5)

Tnt2 = (€aigjob — €aigjib) T (€aiy jib — €aiy job) + -
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+ (Cainy jimb = €ainjm16)  (€ainy 1 jons1b — Cainys 1 job)

the image of 7,4, is the following path, where we replace i+
by jo and ji1 by b:

u= (elliojob - eaiojlb) + (eﬂiljlb - efliljzb) +o.

+ (€aiy jmb — €ainbb) + (€ajobb = €ajojob)

= €aigjob — Caigj1b T €aiy j1b ~ Caiyjob t -+ T €aiyy_ jmb T Caiy jumb-

Comparison with (2.30) shows that @ = cu, that is, @ is a merging
image of ¢Ty42.

For example, in the case m = 1, this merging morphism of
T5 is shown here:

Clearly, it coincides with the merging morphism of Example 2.8
mapping a 3-cube onto a prism.
Consider now the case (B;) when the graph P has the form
(ii) (i) (ii) (OO
Caigjob ™ Caigj1b ™ Caiyj1b ™ Caiyjab ™ - e ™ Caiyy_y jy1b

(ii)
(2.33) ~ €ai | jub>

so that

o= C(eaioj()b - eaiojlb + eailjlb - eailjzb + e
(2.34) + €aiyy 116~ Caiyyjub)-
Since

90 = ¢ (—eqjyp + €aj,p) Mod Ay,
it follows that either jy = j,, or
(2.35) a—jo and a— ju.

However, jo = j,, is not possible because it would imply that
(i)
Caigjob ™ €ai, | job
and the line graph P would close into a polygon, which gives the
case (A). Hence, (2.35) is satisfied. We claim that the configura-
tion (2.33) is then a merging image of 7, .

Indeed, we denote the vertices of T7,,; also by
a,{ix}ito, {k}io,b, and then map all the vertices of Ty,
except for i,,,, to the vertices of G with the same names; then map
iy to a.

Clearly, the following arrows

im — .jO and im — ]m
in T+ are mapped to the arrows
a—jo and a— ju

in G as in (2.35), and the arrow a — i,, goes to a vertex. Hence,
we obtain a merging morphism of 7, into G. Since by (1.5)

Tmn+1 = (eaiojob - eaiojlb) + (eailjlb - eailjgb) +.
F (Caiytj-1b = Caiy1 jmb) T (€aipy jinb = Cai job):
the image of 7, is the following path, where we replace i,, by a:

V= (eaiojob - eaiojlb) + (eailjlb - eailjzb) +..

+ (€aipy 1 jon_1b = €ainy 1 jub) F (€aajuub — €aajob)

= Caigjob — €aigj bt €aiy j1b — €aij job T ---

+ Caiyy_1jm—1b ~ Caipy_1 jmb-

Comparison with (2.34) shows that @ = cv so that @ is a merging
image of ¢Ty41. O

For example, in the case m = 3, the above morphism is
equivalent to the merging morphism of Example 2.9 mapping 74
onto a broken cube. In the case m = 2 we obtain the following
merging image of a 3-cube:

b

Problem 2.11. Prove Theorem 2.10 in the general case without
the hypothesis (2.22).

Problem 2.12. Devise an algorithm for computing a basis in €3
based on Theorem 2.10.

Problem 2.13. State and prove similar results for Q4. Are the
basic shapes in Qq given by polyhedra in R*? Devise an algo-
rithm for computing a basis in Q4. The same questions for Q,
with p > 4.
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3. Kiinneth Formulas

The material in this section is based on [22] and [29].

3.1 Cross Product of Paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):acXandbe¥}.

Let z = z9z1...z- be a regular elementary r-path on Z, where
7k = (ag, by) with a; € X and by € Y. We say that z is stair-like
if, for any k = 1,...,r, either a;_; = ay or by_| = by, is satisfied.
That s, any couple z;_ 7x of consecutive vertices is either vertical
(when a;_1 = ay) or horizontal (when by_ = by).

Given a stair-like path z on Z, define its projection onto
X as an elementary path x on X obtained from z by removing
Y-components in all the vertices of z and then by collapsing in
the resulting sequence any subsequence of repeated vertices to
one vertex.

¥ (59,

(300 X; Xp

In the same way define projection of z onto Y and denote it
by y.

The projections x = x¢...x, and y = yy...y, are regular ele-
mentary paths, and p+¢g =r.

T
S(z)

0

Every vertex (x;,y;) of the path z can be represented as a
point (i, j) of Z? so that the path z is represented by a staircase
S(z) in Z?* connecting (0,0) and (p,q).

Define the elevation L(z) of z as the number of cells in Z2
below the staircase S(z).

For given elementary regular paths x on X and y on Y, denote
by ., the set of all stair-like paths z on Z whose projections on
X and Y are respectively x and y.

Definition. Define the cross product of the paths e, and e, as a
path e, X e, on Z as follows:

(3.36) exxey= Y (~1)He,

Z@:x,y

and extend it by linearity to all u € R, (X) and v € R, (Y) so that
UXve Rerq (Z)

Example 3.1. Let us denote the vertices on X by letters a, b, ¢ etc
and the vertices on Y by integers 1,2,3, etc so that the vertices

on Z can be denoted as al, b2 etc as the fields on a chessboard.
Then we have

€q X €12 =€qla2, Cab X €1 = €qlbl
Cab X €12 = €q1b1bh2 — Cal a2 b2
€ab X €123 = €q1h1b2b3 — €al a2b2b3 + €al a2a3 b3
€abc X €123 = €qlplelc2c3 — €alblb2c2e3 T €al b1 b2b3c3

+€ala2b2c2¢3 — €ala2b2b3¢3 t €ala2a3b3c3

a3 b3 c3
a2 b2 2
al b1 cl

Lemma 3.2 ([29, Proposition4.4]). Ifu € R, (X)andv € Ry (Y)
where p,q > 0, then

(3.37) 2 (uxv)=(du) xv+(—1)Pux(dv).

3.2 Cartesian Product of Digraphs

Denote a digraph and its set of vertices by the same letters
to simplify notation. Given two digraphs X and Y, define their
Cartesian product as a digraph Z = XY as follows:

o the set of vertices of Z is X x Y, that is, the vertices of Z are
the couples (a,b) wherea € X and b €Y

o the edges in Z are of two types: (a,b) — (a’,b) wherea — d’
(a horizontal edge) and (a,b) — (a,b’) where b — b’ (a
vertical edge):

be . — °
) ) )

be (aib) — (u‘b)
Y ° — °
a a

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if
and only if it is stair-like and its projections onto X and Y are
allowed.

It follows from definition (3.36) of the cross product that

(338) wucA,(X)andve 4,(Y) = uxveAy,(Z).

Furthermore, the following is true.

Lemma 3.3 ([29, Proposition 4.6]). Ifu € Q, (X)andve Q,(Y)
then

MXVer+q(Z).

Proof. ux v is allowed by (3.38). Since du and dv are allowed,
by (3.38) also du x v and u x dv are allowed. By (3.37), d (u x v)
is also allowed. Hence, u x v € Q4 ,(Z). O
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Theorem 3.4 ([29, Theorem 5.1]). Any d-invariant path w on
Z = XUOY admits a representation of the form

m
w= Zu,-xv,-
i=1

for some finite m, where u; and v; are d-invariant paths on X and
Y, respectively.

3.3 Kiinneth Formula for Product
Here is the main result of this section.

Theorem 3.5 (Kiinneth formula for product [29, Theorem 4.7]).
Let X, Y be two finite digraphs. Then, for any r > 0,

(3.39) Q,(X0Oy) = @
{P.q>0:p+q=r}

Q,(X)©Q,(Y),

where the isomorphism is given by
UKV UXY

forueQ,(X)andveQ,(Y).
Consequently, we have

(3.40) H,(XOy) = D
{p.q>0:p+q=r}

H, (X) @ Hy (Y)

and

B (x0Y) = 2

{P.q>0:p+q=r}

By (X) By (Y).

Example 3.6. Let X be an interval and Y be a square:

3

X =% e’ andY =

Then Z = XY is a 3-cube:

b2=6 h3=7

a2=2 a3=3

b0=4 bi=5

al= al

We have:

Q (X) = <eab>a Qp (X) =0forp >2,
Q (Y) = (eo1, 13, €23, €n2),
Q, (Y) = (eo13 — e023), 4 (Y) =0forg > 3.

By (3.39) we obtain

Q3 (Z)=Q(X) R (Y) = (ea X (€013 —€023))-

al b1 1 5

a 50 0 4

Let us compute the cross-products:

€ab X €013 = €a0b0b1b3 — €a0al b1b3 + €a0al a3 b3

= €0457 — €0157 1 €0137

and
€ab X €023 = €0467 — €0267 + €0237-
Hence, we obtain

Q3 (Z) = (epas7 — €0157 + €0137 — €067 + €0267 — €0237) -

That is, Q3 is generated by a single d-invariant 3-path that is
associated with the 3-cube.

Example 3.7. Denote by T the following 3-cycle (= 1-torus):

b 1
" A B A
a c 0 2

Consider the 2-torus G = TOT that is shown here:
bl=4

Let us compute Q, (G) and H, (G). We have

Qo (T) = (eq,e1,e2),
Qi (T) = {eo1,e12,€20),
Q, (T)={0} for p > 2.

By (3.39) we obtain Q, = {0} for r > 3 and

Q (G)=Q(T)®Q(T)
= (eap X €01, €ap X €12, €qy X €20, €pc X €01, €pe X €12,

€he X €20, €ca X €01, €ca X €12, €cq X €20).

J @ bj
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Using
€ab X €jj = €qibibj — Caiajbj

we obtain that

Q5 (G) = (€a0b0b1 = €adalbls €alblb2 — €ala2b2,
€a2b2b0 — €a2a0b0; €b0cOcl — €b0blcls
€hlclc2 = €blb2e2, €b2c2c0 — €b2b0c0;
€c0a0al — €c0clals €clala2 — €clc2a2,

€c2a2a0 — echOaO) .

That is,

Q) (G) = (e03s — eo14, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536
(3.41) €601 — €671, €712 — €782, €820 — €860)
so that ©, (G) is generated by 9 squares.

This can be visualized using the following embedding of G
onto a topological torus:

Let us compute the homology groups of G. We know that

Hy(T)=(eo), Hi(T)=(eo1+ei2+en),
H,(T)={0} forp>2.

By (3.40) we obtain

H; (G) = H) (T)@Hl (T)+H1 (T)@Ho (T) = <V1,V2>

where
Vi = eq X (eo1 + €12+ €20) = €a0al +€ataz + €a2a0
=eo1 +e12+ e
V2 = (eap + €pe +€ca) X €0 = €40p0 + €p0c0 + €c0a0
= eo3 + €36+ €60-
Again by (3.40) we get
H, (G) =H (T)®H, (T) = (u),
where
U= (€qp +epc+eca) X (e01 + €12+ €20),
Hence,

U= €q0p0b1 — €a0al bl 1 €alb1b2 — €ala2b2 T €a2b2b0 — €a2a050
+€b0c0cl — €pobicl t€plclc2 — €p162c2 T €h2c2c0 — €b2b0c0

+€c0a0al — €c0clal + €clala2 — €clc2a2 t €c2a2a0 — €c2c0a05

that is,

u = (eg3s — eo14) + (e145 — e125) + (€253 — €203)
+ (€367 — €347) + (478 — e4s8) + (es36 — €536)
(3.42) + (es01 — e671) + (€712 — e782) + (€820 — €360 -

Finally, H, (G) = 0 for all r > 3.

3.4 An Example: n-Cube

Define the n-cube as follows:

n-cube = 17" = JO10)...001,
N ——

n

where I = {0 — 1} and n € N. Hence, each vertex a of the n-cube
can be identified with a binary sequence (a1, ..., a, ). For example,
0=(0,...,0) and 1 = (1,...,1) are the corners of the n-cube.

For two vertices a, b of the n-cube, there is an arrow a — b
if by = a; + 1 for exactly one value of k and b; = a;, for all other
values of k. Denote

la|=ai+...+an.
We write a < b if there is an allowed path from a to b, that is
a=xb & g <b forallk=1,...,n.

For any pair a < b consider an induced subgraph D, of the
n-cube as follows: the vertices of D, are all vertices ¢ of =
such that

a=<c=b

and an arrow ¢; — ¢; exists in D, ;, exactly when this arrow exists
in /7", Here is a 4-cube and its subgraph D, (the arrows go from
top to bottom):

The mapping ¢ — ¢ — a provides an isomorphism of D,
onto a p-cube with

p=[b|—lal.

Assuming that a < b, denote by P, the set of all elementary
allowed paths going from a to b. All paths of P, , lie in D, ;,, each
path in P, j, has the length p = |b| — |a|, and the total number of
the paths in P, 5, is p!.
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Lemma 3.8. There is a function © : P, — {0, 1} such that the
following p-path

(3.43) o= Y (~1)We,

XEPa‘h
is d-invariant.

For example, in a 3-cube as shown here, we have

o1 = €01,

Wp 3 = €013 — €023,
and
Wp,7 = €0137 — €0237 — €0157 T €0457 + €0267 — €0467

(cf. Example 3.6).

0 1

Proof. Without loss of generality, we can assume that a = 0,
b =1, and prove the claim by induction in n = p. The induction
basis for n = 1 is obvious. For the induction step from n to n+ 1
we use Lemma 3.3 that says that the cross product of d-invariant
paths is d-invariant. Denote by 0 = (0,0) and 1’ = (1,1) the
corners of the (n+ 1)-cube.

if i >

]

Apathx€Fjandz € Xy,

Taking the cross product of the n-path wg 1 on / O and the
1-path y = ¢p; on I, and using (3.36), we obtain the following
d-invariant (n + 1)-path on /2¢+1);

W1 X €1 = 2 (—1)6(") ex X ey

x€Py1

=2 ¥ 0ENTe,

XEP(.)] ZGZXO-

where z is any stair-like path on (n + 1)-cube that projects onto x
and y, respectively.
Clearly, z runs over all paths Py 1. Setting

0(z) =0 (x)+L(z) mod2
and

@y 17 = Wo,1 X €o1,

we obtain
oyy= Y (1),
Z GPOIVII

which concludes the proof. ]

Proposition 3.9. For any p > 0, we have
Q) (n-cube) = (@, : a < b and|b| —|a| = p).

Moreover, {®ay,} is a basis of Qp (n-cube).

Proof. The proof is again by induction in n. The induction basis
for n = 1 is obvious. For the induction step from n to n+ 1 we use
the Kiinneth formula (3.39). By this formula and by the induction
hypothesis, we obtain that the basis in Q,, ((n+ 1)-cube) consists
of the following p-paths:

{wa_,b Xegr: Wgp € Qp_] (n-cube)}
U {(Da,b X et Wyp € Qy(n-cube),i=0, 1}

As above, the products @, X eg; give us all the p-paths
0(4,0),(b,1)> While @, , X e; give us all the p-paths @, o) 5,0y and
O(4,1),(b,1)- Clearly, we obtain in this way all p-paths @y ;» with

d,b' € (n+1)-cube, which concludes the proof. O

s\

3.5 Augmented Chain Complex

In this section we use the augmented chain complexes

Gad) 0 « K & Ag & ... & Ay &7, &
(3450 « K &£ Re & ... & Ryt £ R, & ...

and

9 J

(346) 0 « K & Q & ... d

2 )
— Q1 & Q) — ..,

with the added space A_; = R_; = Q_; = K. The operator
d: Ao — A_ is define by

de; = e = the unity of K

which matches the definition (1.1) for p = 0.
The homology groups of (3.46) are called the reduced ho-
mology groups of G and are denoted by H,(G). We have

H,(G)=H,(G)forp>1 and Hy(G)=Hy(G)/K.
Define the reduced Betti numbers: BP(G) =dimH »(G). We have
By(G) =B,(G) for p=>1 and Bo(G) = Bo(G) — 1.

For a disjoint union X LI'Y of two digraphs we have by (1.4)
(3.47) Br (X UY) =B, (X)+ B, (¥) + 1y

The augmented chain complex (3.46) as opposed to (1.3) will
also be used in Subsection 6.9. In all other places we continue
using the chain complex (1.3).
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3.6 A Join of Two Digraphs
Let X,Y be two digraphs.

Definition. The join X Y of the digraphs X,Y is a digraph
whose set of vertices is a disjoint union of the sets of vertices of
X and Y, and the set of arrows consists of all arrows of X and Y
as well as from all arrows x — y wherex € X and y € Y.

Example 3.10. For example, for the digraphs {-,-} of two ver-
tices and no arrows, we have

{0,1}x{2,3} =

0 2
a diamond

and

*{475}: 1

3
an octahedron

Definition. Let p,g > —1. For a p-path # on X and a g-path v
onY, define the join uv as a (p+ ¢+ 1)-path on X Y as follows:
first define it for elementary paths by

€ig..ip€o...jg = Cig.ipjojg>

and then extend this definition by linearity to all # and v.

A join path €ig...ip€jo...jq ON X %Y

If u and v are allowed on X, resp. Y, then uv is clearly allowed
onZ=XxY.

Lemma 3.11 (Product rule for join [20], [29, Lemma 2.4]). For
all p,q > —landu € Ap, v € Ay we have

(3.48) 9 () = (Qu) v+ (=1)" uov.

If u e Qp(X) and v € Q,(Y) then du and Jv are allowed,
which implies by (3.48) that d (uv) is also allowed, that is, uv €
Qp1g+1(Z). The product rule implies also that the join uv is
well defined for the reduced homology classes: if u € H » (X) and
ve ﬁq (Y) then uv € ﬁerqH (2).

3.7 Kiinneth Formula for Join
Let X,Y be two digraphs.
Theorem 3.12 (Kiinneth formula for join [29, Theorem 3.3]).

We have the following isomorphism: for any r > —1,

(3.49) Q. (XxY)= P

{p.g>—1:p+q=r—1}

(Qp (X) ©Q (Y))

that is given by the map u®v — uv with u € Q,(X) and v €
Q, (Y), and, for any r > 0,

(3.50) H, (X +Y) = D H,(X)®H,(Y)

{P,q>0:p+q=r—1}

Y BX)B().

{P,q>0:p+q=r—1}

(3.51) B, (X*Y)

11

The identity (3.49) means that any path in Q,(Z) can be
obtained as linear combination of joins uv where u € Q,, (X) and
veQ,(Y) with p+g+1=r, and (3.50) means the same for
homology classes.

Example 3.13. Let Y consist of a single vertex. In this case the
join X =Y is called a cone over X. Since all homology groups
H, (Y) are trivial, the cone X =Y is also homologically trivial by
(3.50). For example, the following digraphs are cones and, hence,
they are homologically trivial.

Example 3.14. LetY consist of m vertices without arrows. Then
the join X *Y is called the m-suspension of X and is denoted by
sus; X.

Here is an example of sus;,X with m = 3:

Since BO (Y)=m—1and Bp (Y) =0 for p > 1, we obtain
from (3.51) that

By (susnX) = (m—1) B, 1 (X).

For example, on this picture X = sus {-,-} whence El X)=
land B, (X)=0for p # 1.
For G = sus3X we have , (G) =2 and B3, (G) = 0 for r # 2.

Observe that the operation * of digraphs is associative. For
a sequence Xi,...,X; of [ digraphs we obtain by induction from
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(3.49), (3.50) and (3.51) that

(3.52)
Q (X # Xy x...x X))

-

{pi=—1: p1+pr+..+p=r—1+1}

Qp] (X1)®®Qpl (X[)

(3.53)
Ho (X, %X % ... * X))
= P Hpy, (X1)®...0 Hp, (X))
{Pi>0: pr+pat..Ap=r—1+1}
(3.54)

Br (X1 xXpx...x X))

- %

{pi>0: pr+por+..+p=r—I+1}

By, (X1)...Bp, (X0).

Example 3.15. Consider an octahedron Z = X * X, * X3 where
X, ={0,1}, X» ={2,3}, X3=1{4,5}.
(see Example 3.10). Then we have
X (Z)= @ Qp, (X1) @Qp, (X2) @ Qp, (X3)
{pi=—1: p1+py+p3=2-3+1}
=Q (X]) ® Q (Xz) ®Qp (X3)
= (e, e1) ® (e2,€3) @ (e4,e5)

= (€024, €025, €034, €035, €124, €125, €134, €135)
and

Hy(Z)=H,(Z)

- D Hy, (X1) © Hp, (X2) © Hp (X3)
{pi>0: p1+pr+p3=2-3+1}

= ﬁO (X1) ®ﬁ0 (X2) ®ﬁo (X3)
= (eo—e1) ® (e2 —e3) @ (es —es)

= (eoo4 — €ns5 — €034 + €035 — €124 + €125 + €134 — €135).

3.8 Linear Join

The material in this section is based on [30]. Given a digraph
G of [ vertices {1,2,...,/} and a sequence X1, ..., X; of [ digraphs,
define their generalized join (X)...X;); = X¢ as follows: X¢ is
obtained from the disjoint union |_|; X; of digraphs X; by keeping
all the arrows in each X; and by adding arrows x — y whenever
x€X,y€Xjandi— jinG.

The digraph X is also referred to as a G-join of Xi,...,X],
and G is called the base of X.

The main problem to be discussed here is
how to compute the homology groups and Betti numbers of Xg.

Denote by K; a complete digraph with vertices {1,...,/} and
arrows

i jei<],
that is, K; is an (/ — 1)-simplex. For example, K, = {1 — 2} and
K3 ={1—2—3,1— 3} isatriangle.

The digraph Xk, is called a complete join of X,...,X;. It is
easy to see that

Xg, =X1xXo*...xX]

It follows from (3.54) that, for any r > 0,

(3.55) B, (Xx,) = Y By, (X1)...By, (X)) .

{pi>0: p1+pa+...tpj=r—I1+1}

Denote by I; the monotone linear digraph with the vertices
{1,...,1} and arrows i — i+ 1:

(3.56) L[={l=2—..>1}
If G = I; then we use the following simplified notation:
(X1 X2.. X)), = X1 Xp... X

and refer to this digraph as a monotone linear join of X, ..., X].
Clearly, X1 X>...X,, can be constructed as follows: first take a
disjoint union |_|f:1 X; and then add arrows from any vertex of X;
to any vertex of X (see Example 4.13).
In the case / = 2 we obviously have XX, = X; * X, but in
general X| X»...X; is a subgraph of X * X5 * ... * X;. For example,
we have

{03{1,2} {3} =

%)

while {0} % {1,2}* {3} =

Theorem 3.16 ([30]). We have

(3.57)
H (X1 X..X)) = b Hpy, (X1)®...9H,, (X))
{pi>0: pr+pyt..tp=r—I+1}
and
(3.58) - -
Br (X1 X>..X;) = > Bpy (X1) . Bp, (X2) -

{pi>0: p1+pr+..4+pj=r—I+1}

Moreover, if dim, X; < oo for all i, then also dim, (X;...X;) < ee.

It follows from comparison of (3.53) and (3.57), that the
linear join X1X5...X; and the complete join Xj % X, x ... ¥ X; are
homologically equivalent.
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Example 3.17. Assume that one of the digraphs X; is homolog-
ically trivial, that is, 8, (X;) = 0 for all p and some i. Then by
(3.58) the digraph X X5...X; is also homologically trivial.

Example 3.18. Assume that all digraphs X; have no arrows.
In this case the only non-trivial Betti numbers are fy (X;), and
we obtain from (3.58) that the only non-trivial Betti number of
X 1 Xz...Xl is

(3.59) B (X1X2..X;) = Bo (X)) ...Bo (X))

This particular case of Theorem 3.16 was proved in [7].
Here is an example of a monotone linear join:

X = X, X>X;
where each X; = {-,-}.

1 5

0 ) ®4

Since BO (X;) = 1, it follows from (3.59) that the only non-
trivial Betti number of X is 3, (X) = 1.

Example 3.19. Let the base G be a square:

3 L

A A

We have
G={1}{2,3} {4}

which implies that
X6 =X (X2 L|X3)X4.

By Theorem 3.16 and (3.47) we obtain that

ﬁr (XG) = z

{pi=0: p1+py+p3=r-2}

= Z BPI (Xl) (Epz (XZ) +EP2 (X3)

{pi=0: p1+pr+p3=r—2}

By, (X1) By, (X2UX3) By (Xa)

+1{P2:0})EP3 (Xa)
(3.60) =B, (XiXaXa) + By (X1 XaXs) + Br1 (X1 Xa) -

For a general base G, if ij...ix is an arbitrary sequence of
vertices in G then denote

Xil--~ik :XiIXiZ"'Xik'

Note that by (3.58)
Br (Xil...ik) - z

p1+...+pr=r—(k—1)
PlysPk >0

EPI (Xil)"'ﬁpk (X’k) :

Using this notation, we can rewrite (3.60) as follows: if G is a
square then

Br (X6) = Br (X124) + By (X134) + Br—1 (X14).

Example 3.20. Let G be an octahedron based on the diamond:

5

We have
G={1,2}x{3,4}x{5,6}
whence
X = (Xl |_|X2) * (X3 |_|X4) * (X5 L|X6) .

By (3.55) we obtain

B: (Xo) >

{Pi>0: p1+prt+p3=r—2}

BI’I (X1 uXZ)BPz (X3UX4)

X Ep3 (XS |—|X6)
(Bpy (X1) + Bpy (X2) + 11, —0y)

= >

{pi=0: pr+pa+p3=r—2}
X (Bpa (X5) + B (X4) +155-0))
X (Bps (X5) U By (X6) + 15 -0})
= B, (Xi35) + Br(X145) + Br (Xa3s) + Br (Xaas) + B (Xi36)
+ By (X116) + Br (Xo36) + Br(Xoa6) + Br—1 (X13) + Br—1 (Xo3)
+Bro1 (X1a) + Bro1 (Xa4) + Br—1 (Xi5) + Br—1 (Xas)
+ Bro1(Xas) + Bt (Xas) + Br—1 (Xi6) + Br—1 (Xas)
+Bro1(X36) + Br1 (Xa6) + Br2(X1) + Br2(X2) + B2 (X3)
+ Br—2(Xa) + Br—a(Xs) + Br—2(X6) +1jy—ay.

3.9 Subgraphs and Mayer-Vietoris Exact Sequence

The material of this section is based on [18].

A digraph Y is called a subgraph of a digraph X if both sets
of vertices and arrows of Y are subsets of those sets of X. Any
allowed path in Y is therefore also allowed in X. Since the natural
inclusion map i : ¥ — X commutes with d, we obtain that every
d-invariant path in Y is also d-invariant in X.

A converse is not always true: even if €ay...a, 18 AN allowed
path in X and all the vertices ay, .. .,a, lie in ¥, this path is not
necessarily allowed in Y because some of its arrows may not be
inY.

A subgraph Y is called induced if together with two vertices
a,b €Y it contains also the arrow a — b if this arrow is present in
X. For an induced subgraph Y, if e4,. 4, is an allowed path in X
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and all the vertices ay, ...,a, liein Y then €qy...ap 1 also allowed
in Y. Consequently, if @ is a d-invariant path in X and if all the
vertices of @ are contained in Y then  is also d-invariantin Y.

If Y1 and Y, are two subgraphs of X then their union Y; UY,
is a subgraph of X whose sets of vertices and arrows are unions
of those of ¥} and Y;, respectively. In the same way one defines
the intersection Y; NY>. If Y7 and Y5 are induced then Y; NY; is
also induced.

Assume that a digraph X is a union of two subgraphs Y; and
Y,, that is,

X =Y1UY,.

In particular, every arrow of X lies in ¥} or Y>. Denote
Z=Y NYr.

Then we have the following commutative diagram of the natural
inclusions of the digraphs:
-1
zZ vy
(3.61) ) W
2

» 5 X

1

For any p > —1 the commutative diagram (3.61) induces a com-
mutative diagram

il
Ly
Rp(Z) — RpyN)
(3.62) i V
2
J
RP (YZ) — RP (X ) )
where all homomorphisms are injective. Observe that all homo-
morphisms i, and j. commute with the boundary operator d and

map allowed paths to the allowed ones.
Consider the following homomorphisms:

(3.63) 0— RH(Z) -5 R,(1) B Ry (¥2) -5 Rp(X) — 0,

where
(3.64)
§(2)= (il (2),5(x)) and  y(y1,y2) = ji(v1) = j2 ()

for all z € Z and y; € Y;. The map 6 is evidently injective.

Lemma 3.21 ([18, Lemma 3.23]). In the sequence (3.63) we
have Im6 = kery.

Proof. For any z € Z we have
7(8(2) = jioii(s) = j2o il (2) =0,

so that yo 6 = 0 and, hence, Im & C kery. To prove the opposite
inclusion, observe that

kery={(v1,2) € Rp(Y1) ®R,(Y2) : jL(v1) = j2(32) },

that is, y; and y, coincide as paths in X. Since y; is a path
in Y7 and y, is a path in Y», it follows that y; and y, can be
identified with the same path z in Z = Y| NY;. It follows that
0 (z) = (y1,y2) and, hence, (y1,y2) € Im§, which finishes the
proof of Im§ = kery. O

For all (y1,y2) € Rp(Y1) ® Rp(Y2) set
d(y1,y2) == (9y1,9y2) € Rp—1 (Y1) B Rp—1 (Y2).

Also, we say that (y1,y2) is allowed if both y;,y, are allowed.

Since i, and j, commute with the boundary operator 0, it
follows that 6 and y also commute with 0, that is, the following
diagram is commutative:

0 0
4 {

0 ... « Ru_1(2) 2 Ru(2) 2
10 18

0 ... + Rui(N)OR1(12) a Ra(Y1) & Ru(Y2) &
¢7 J,Y

0 « Ry (X) 2 Ru(X) Y
1 {
0 0

Indeed, for z € R, (Z) we have
§00(2) = (i£(92),2(92)) = (91! (2), 02 (2)) = 90 8(2)
and for (y1,y2) € Ry(Y1) ® R, (Y2) we have

700 (y1,2) = ji (9y1) — js (9y2) = dji (v1) — 9.z (32)
=doy(y1,y2).

Observe also that 6 and y map allowed paths to allowed ones,
which follows from the same properties of i, and j,. Since 0 and
Y commute with d, it follows that § and y map d-invariant paths
to d-invariant ones. Hence, we obtain the following sequence of
homomorphisms

(3.65) 0— Q,(Z) -5 Q,(1) B Q, (1) - Q,(X) — 0,

where 9 is injective as above.

Lemma 3.22 ([18, Lemma 3.24]). In(3.65) we have Im § =kery.
If in addition

Vx € Q,(X) we have x =y +y>
(3.66) for some y, € Q, (Y1) and y, € Qp (Y2),

then yin (3.65) is surjective and (3.65) is a short exact sequence.

Proof. Since Y06 =0, we have Imd C kery. Let us prove the
opposite inclusion. Let y; € ,(Y1) and y; € Q,(Y2) be such that
(v1,y2) € kery, that is, j(y;) = j2(y2). By Lemma 3.21, y; and
y2 can be identified with a path z € A, (Z). Then dz = dy; €
Ap—1(Y1) and dz = dy, € Ap_1(Y2), that is dz € A,_((Z) and,
hence, z € Q,(Z). Therefore, (y1,y2) = 0 (z), which was to be
proved.

Let us prove that the map vy in (3.65) is surjective. For any
x € Q, (X) we have by hypothesis that x = y; + y, where y; €
Q, (Y1) and y, € Q,, (Y2). Then we have y(y;,—y2) = x so that y
is surjective. O

The condition (3.66) can be equivalently stated as follows:
there is a basis in €, (X) such that any element of this basis is a
sum of elements of Q, (¥}) and Q, (Y>).
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Theorem 3.23 (Mayer-Vietoris exact sequence [18, Theorem
3.25]). Let

X=Y1uh, Z=Y1NN

and assume that the hypothesis (3.60) is satisfied for any p > 2.
Then we have a long exact sequence of homology groups:

S H(2) S B @B, S B0 L H(2)
®

G671 S H, () @H, (1) — -

where § = (i1, 3), Y(v1,y2) = ji(v1) = j(y2), and B is a con-
necting homomorphism.

Proof. Note that (3.66) is trivially satisfied for p < 1. Hence, this
condition is satisfied for all p. By the above construction, we have
the following commutative diagram

(3.68)
0 0
1 i

0 .. « Q._1(2) 2 Q.(2) £
1° 18

0 .. « Q (maeQ. . < ommeem <
7 kg

0 — Q1 (X) <3_ Q, (X) <a_
1 1
0 0

where each column is a short exact sequence by Lemma 3.22.
The claim follows from the zig-zag lemma and from

Any p-path u € R, (X) has the form

_ iy
u= Yy uore

ig--ip

with the coefficients 07 € K. We say that e ;, (or
u’O""I’e,-Omip) is an elementary term of u if u'0-'r #£ 0.

The next lemma provides sufficient conditions for the hy-
pothesis (3.66).

Lemma 3.24. Assume that the following two conditions are sat-
isfied:

(i) Forany p > 2 and for any x € Qp, (X), any elementary term
of x lies in one of the subgraphs Y1, Y, and is allowed in this
subgraph.

(ii) For any square egp. — eqy. in X, if a,b,c € Yy for some
k=1,2thenalso b’ €Y.

Then the condition (3.60) is satisfied.

Proof. Fix x € Q, for some p > 2. Denote by y; the sum of all
elementary terms of x that lie in ¥; and are allowed in Y;. Set
y2 =x—y1. By (i), y2 is a sum of some elementary terms of x
that lie in Y, and are allowed in Y. Since x = y; + y, it suffices
to verify that both y; and y; are d-invariant, that is, dy; and dy,
are allowed. Assume that dy; is not allowed. Then dy; contains

a non-allowed elementary term, say
(3.69) conste, -

(where 1 < ¢ < p—1) that comes from the boundary of a term
€ip..ip of y;. This term must cancel out in dx, which means that x
must contain another elementary term e, J» with

i0-wig 1 Igigi1oeip = j0orfg—1 Jg Jgi1--dp-

Consequently, i = ji for all k # g. Hence, we obtain the following
square in X:
(3.70) Ciy tigigr1 — Cig_1igigr1-

Since i1, iy and iz belong to Yy then by (ii) also Jg EN.
Hence, e Jooip lies in Y; and the non-allowed term (3.69) cancels
also in dyj. Therefore, dy; is allowed and y, is d-invariant. In
the same way also y; is d-invariant. O

In this picture we show a situation when each of the paths
i9---ip, Jo...jp belongs to one of the digraphs Y, Y>, while the
condition (ii) is not satisfied: the square (3.70) has the vertices
iqfl,iq,icﬁ,l in Y1 while jq §Z Yl.

Corollary 3.25. Assume that the hypothesis (3.66) is satisfied.
(a) If, for some n, the homology groups H,(Z) and H,_(Z) are
trivial, then

(3.71) H,(X) 2 Hy(Y1) @ Hy (Ya).

(b) If, for some n, the homology groups H,(Y1), H,(Y2),

H,—1("1), H,—1(Y2) are trivial, then
(372) I—NIH(X) = I’:Infl (Z)

(¢) If, for some n, the homology groups H, 1 (Yy), H,_1(Y2) and
H,(Z) are trivial, then
3.73)
dimH, (X) =dimH, (Y1) +dimH, (Y2) + dimH,_; (Z).
Proof. (a) We have the following fragment of (3.67):

0=H,(Z) — H,(Y1) ® Hy(Y2) — Hy(X) = H,_1(Z) =0,

whence (3.71) follows.
(b) We have the following fragment of (3.67):

0= H, (Y1) ® Hy(Y2) = Hy(X) = Hy1(Z)
—H, (Y1)®H, 1(Y2) =0,

whence (3.72) follows.
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(¢) We have the following fragment of (3.67):

Hence, vis injective and f3 is surjective, and Im y = ker 8. By the
rank-nullity theorem we have

dimH, (X) = dimker  + dimIm 8
=dimImy+ dimImf3
= dimH, (Y,) +dimH, (Ys) + dimH,_; (Z),

which was to be proved. O

Example 3.26. Assume that Z consists of a single vertex v. In this
case Y and Y, are necessarily induced subgraphs. Alternatively,
one can say that X is obtained by merging digraphs Y; and Y>
at one vertex v. Let us verify that the hypotheses (i) and (ii) of
Lemma 3.24 are satisfied. For any x € Q,, (X) with p > 2 consider
an elementary term Ceig...i, of x and show that €ig...ip lies in Y7 or
in Y>. Assume that this is not the case, that is, one of the vertices
i1,...,ip—1 18 v, say v = iy, while i;_; and i, belong to different
1, Y.

The path Be,'onjp contains the term

Ciy.ig_tigs1-ip

that is not allowed because iy—1 # iy+1. This term must be can-
celled in dx using another elementary term of x.

However if another elementary term €jo-.jp of x contains
€igeig 1igs1omip in its boundary then

00 1ig 1 iy = JOore g1 g r1-Jp

which implies j, = v because this is the only choice of j, to make
Jo---Jjp allowed. Hence, €ig.ip = €jo...jp and the above cancellation
is not possible, which proves (i).

The condition (ii) is obvious: if egp. — €4y 1S @ square in
X and a,b,c € Y, while b’ ¢ Y; then both a and ¢ must coincide
with v, which is not possible.

Since H, (Z) = {0}, Corollary 3.25 (a) applies in this case
and yields (3.71) for all n. Consequently, we have

(3.74) Bu(X) = Bu(Y1) + Bu(Y2).

Example 3.27. Denote by Y; the digraph LH (5) from Exam-
ple 1.19. For this digraph

By (Y1) >0 forall p=1mod3.

More precisely, B (Y1) = 1 and B, (Y1) =4 if p = 1mod3 and
p>1.Set

Y, = susyY) and Y3 =suspY>.

Using the formula B, (sus2G) = 5,,1 (G) from Example 3.14, we
obtain that

By (Y2) > 0 for all p =2mod3
and
Bp (Y3) > 0 for all p=0mod3.

Let X be a digraph that is obtained from disjoint digraphs Y1, >
and Y3 by merging them at one vertex. By (3.74) we obtain for all
p=1

:Bp(X) = ﬁp(Yl) +Bp(Y2) +ﬂp(Y3)'
Since B, (¥;) > 0 for p = imod3, it follows that

By (X) > 0forall p.

Hence, we obtain an example of a digraph with non-trivial ho-
mology groups H,, for all p.

Example 3.28. Let X be an octahedron as here:

Let Y; and Y, be induced subgraphs consisting of the upper
and lower pyramids. Then Z is the diamond in the middle section
of X.

The space Q; (X) is spanned by 8 triangles:

€024, €034, €025, €035, €124, €134, €125, €135,

each of them lying in ¥; or ¥», and Q,(X) = {0} for all p > 3.
Hence, the hypothesis of Theorem 3.23 is satisfied.
Note that all H, (Y;) and H, (Y3) are trivial, while the only
nontrivial group FI,, (Z)is

Hi (Z) = (eox —e12+e13 —ep3) .

By Corollary 3.25 (b) we conclude that H>(X) = H;(Z). Indeed,
we have seen in Example 3.15 that H, (X) is one-dimensional.

Example 3.29. Let ¥, be an induced connected subgraph of X
such that X \ ¥, has a single vertex b and two arrows a — b and
b — ¢ where a,c are distinct vertices of Y,. We assume further
that a - ¢ in Y, (while in X we have either a — ¢ or a — ¢). Let
us related H, (X) to H, (12).

Denote by Y an induced subgraph of X with the vertices
a,b,c,andset Z=Y NY,.

Then Z is an induced subgraph with two vertices a and c.
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Here is an example of this configuration:

Let us verify that the conditions (i), (ii) of Lemma 3.24 are
satisfied.

Let aej, i, be an elementary term of x € €, (X) where
p 2> 2. Let us show that the path iy...i,, lies in Y7 or ¥>. If ip...i,
does not contain b then it lies in Y>. Let b be one of the vertices
io...1ip, say b = iy.

If

(3.75) p=2 and k=1,

then €iy...i, = €abc and the path abc is contained in Y;.

Assume that (3.75) is not satisfied, so that either k > 2 or
k<p-2.

If k > 2 then e;, i, = e _i_,ap.. and 86,-0‘..,'” contains the
term e_; ,p.. that is non-allowed and cannot be cancelled by
other terms of x.

Similarly, if k < p —2 then e;, i, = €_pciy,.. and de;y i,
contains a non-allowed term e_p;,_,... that cannot be cancelled
by other terms of x. Hence, the condition (i) is satisfied.

The condition (ii) is obvious: if s is a square in X that does
not lie in ¥, then s must contain the vertex b and, hence,

§ = €abc — €ap/'c

where b’ € Y». However, since ac is not a semi-arrow in Y>, the
path ab’c cannot be allowed.
Since

H,(Z)={0}Vn>1 and H,(Y;)={0} Vn>2,
we obtain by Corollary 3.25 (a) that
H,(X) =2 Hy(Y>) forall n > 2.

In order to determine H; (X), observe that Hy(Y;), Ho(Y2) and
H\(Z) are trivial, and we conclude by Corollary 3.25 (c) that

dimHj (X) = dimH; (Y1) +dimH, (Y2) +dimHo (Z) .

Next, consider three cases.
Case 1. Let a — c. Then H; (Y;) = {0} and Hy (Z) = {0}
whence

dimH, (X) =dimH, (¥2).
Case 2. Let a /> ¢ and ¢ — a. Then Hy (Z) = {0} and
Hy (Y1) = (eab + €pe +eca)
whence
(3.76) dimH, (X) = dimH, (¥2) + 1.

Case 3. Let a /4 ¢ and ¢ 4 a. Then H;(Y;) = {0},
dimHy (Z) = 1, and we obtain again (3.76).

Example 3.30. Let Y7, Y> be induced subgraphs of X as shown
here:

The digraph X contains a d-invariant snake egz..10 that does
not lie in any of the subgraphs Y, Y>. Hence, the hypothesis
(3.66) of Theorem 3.23 is not satisfied, and the condition (i) of
Lemma 3.24 fails as well.

Example 3.31. Consider the following digraph X of 10 vertices
and induced subgraphs Y} and Y, as follows:

— Y contains the vertices {1,2,4,6,8,9},
— Y, contains all the vertices except for 6.

Hence, Z contains the vertices {1,2,4,8,9}. Digraphs Y;,Y2,Z
are homologically trivial, while dimH; (X) = 1.

Y, 6

0 3 7

In fact, we have

H, (X) = (eo12 — (€014 — €034) + (025 — e03s) — (€126 — €146)
— (€250 — e269) — (€348 — €378) + (€350 — €379)

(3.77) — (e469 — €439) — €789).

Therefore, (3.71) fails for n = 2. The condition (3.66) fails as
well because the square

(3.78) €259 — €269

is d-invariant on X but it not a sum of d-invariant paths on Y;
and Y.

For the same reason also the hypothesis (ii) of Lemma 3.24
fails: in the square (3.78) the vertices 2,6,9 belong to ¥; while 5
does not. Note that the hypothesis (i) of Lemma 3.24 is satisfied
in this case. Indeed, one can show that

Q) = (e012,€789 , €014 — €034 , €025 — €035, €126 — €146 5
(3.79) €259 — €260, €348 — €378 , €350 — €379 , €469 — €489 ),

and Q,, = {0} for p > 2 so that (i) follows from the observation
that every elementary term in (3.79) lies in ¥; or Y.

Example 3.32. Consider the following modification of the pre-
vious example with an added vertex 10 and arrows 2 — 10 — 9.
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0 3 7

The digraphs Y1, Y; are still homologically trivial, while Z
is a polygon so that dimH; (Z) = 1, H, (Z) = {0} for p > 2.

Condition (3.66) is satisfied, in particular, because the square
(3.78) is a sum of two squares

(€2109 — €260) + (€259 — €2109)

lying in Y] and Y, respectively,
By Corollary 3.25 (b) we conclude that dimH, (X) =
dimH, (Z) = 1.Indeed, in this case H, (X) is also given by (3.77).
Note that the condition (ii) of Lemma 3.24 fails in this case
for the same reason as in the previous example.

4. Fixed Point Theorems for Digraph Maps

4.1 Lefschetz Number and a Fixed Point Theorem
Everywhere here K =R (or K= Q). Let f,, : Q, - Q, bea

sequence of linear mappings that commutes with 2, that is,

(4.80) 90 fur1 = fnuod

for any n > 0. In other words, the following diagram is commu-
tative:

d d
an 1 — Qn — Qn+ 1
(4.81) \Lfn—l \Lfn if”“

d 0
an 1 — Qn — QnJrl
Denote

Zy =kerd|q,, B,=Imd|qg

n+17
so that
H,=2Z,/B,.
It follows from (4.80) that f;, acts on Z,, B,, and H,,.

Definition. Denote shortly by f the sequence {f,} of the map-
pings as above. For any non-negative integer N, define the Lef-
schetz number of f of order N by

N

(4.82) LM (f) =3 (—1)"trace ful,-

n=0
For example, if each f,, =id then
N
LY ()= 3 (~1)"dim@, = x ™.
n=0
Proposition 4.1. The following identity holds:
N

@.83) LW (f):= Y (—1)"trace fu|m, + (—1)" trace fi|s, -
n=0

Proof. Using the following identity (that will be proved in Sub-
section 4.2)

(4.84) trace f|n, = trace f,|q, —trace f,—1|p, , —trace fu|g, ,

we obtain
N
z (_1)” tracefl’l‘Hn
n=0
N N
= 2 (—1)"trace fu|q, — 2 (—1)"trace f,—1|s, ,
n=0 n=1
N
=3 (—1)"trace f|s,
n=0
N N—1
=Y (—1)"trace fula, + D, (fl)ktracefk\gk
n=0 k=0
N
=Y (1) e i,
n=0
N
=Y (—1)"trace fy|q, — (—1)" trace fi|s
n=0
=LW - (—I)NtracefN\BN,
whence (4.82) follows. O

Let now f : G — G be a digraph map, that is,
i=j= )= f()or fi)=r0)-

In Subsection 1.4 we have defined an induced mapping f. : A, —
A, as follows: first set

S (eio..jn)

and then extend f to A, by linearity. By Proposition 1.6, fi
extends to linear mappings €, — €, and H,, — H,,.

In this section we denote f. for simplicity also by f. Hence,
we obtain the diagram (4.81) where all f, = f. In particular,
L™) (f) is defined.

= €f(io)-.f lin)>

Theorem 4.2. Let f: G — G be a digraph map. If, for some
N >0, we have L™) (f) # 0 then f has a fixed point, that is, a
vertex a such that f (a) = a.

We use the definition of a cluster from Subsection 2.2. For
example, e.pe — €4/ 1S an (a, ¢)-cluster whereas e e + €4¢p 1S NOt
a cluster.

Lemma 4.3. In each Q, there is an orthogonal basis (with
respect to the natural inner product {-,-)) that consists of clusters.

Proof. Let C be the set of all d-invariant clusters in Q,. By
Lemma2.2,Q, is spanned by C. Choosing in C a maximal linearly
independent subset, we obtain a basis 3 in €2, that consists of
clusters. Let us show how to make an orthogonal basis of clusters.
Let u,v be two elements from B.

u b v b’

a a’'
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Let u be an (a,b)-cluster and v be an (d',b')-cluster. If
(a,b) # (d',b') then clearly u_Lv.

If B has more than one (a,b)-cluster, then among all
(a,b)-clusters in B, we run a Gram-Schmidt orthogonalization
process and obtain an orthogonal set of (a, b)-clusters in /3. Note
that during this process all newly arising elements are again
(a,b)-clusters. Doing that for all pairs (a,b), we obtain an or-
thogonal basis in €2, that consists of clusters. O

Proof of Theorem 4.2. Assume that f has no fixed point. We will
prove that

(4.85) trace f|g, =0 forany n >0,

which gives by (4.82) that LY) (f) = 0 thus contradicting the
hypothesis that L) () # 0.

By Lemma 4.3, there is an orthogonal basis uj,...,u,, in
Q,, where all u; are clusters. Denote by (c;;) the matrix of the
operator f : Q, — €, in this basis, that is,

<f(uj) :ui> .

m
fluj)= Zc,-ju,-, whence ¢;; = P ”2
i=1 i

Consequently, we have

i (f () »“k>.

m
trace fgq, = 2 Cik = 5
k=1 =t [l

It remains to show that f (uy) Luy, which will imply (4.85). In-
deed, let u; be an (a,b)-cluster, that is, uy is a linear combination
of elementary n-paths of the form

(4.86) €aiy...i,_1b>

where a, b are fixed while i, ...,i,_; are variable. Then f (uy) is
a linear combination of the n-paths
(4.87) €F(@)f(i)-f Un 1) (D)

where ji,..., j,—1 are variable. Since a # f(a), we see that the
paths (4.86) and (4.87) are orthogonal, which implies that f (i)
and u; are orthogonal, too, which was to be proved. O

4.2 Rank-Nullity Formulas for Trace

The purpose of this section is to prove the identity (4.84)
— see Lemma 4.6 below. Recall that we have a commutative

diagram
d J
Qn— 1 Qn — Qn+ 1
\Lfn— 1 \Lﬁz if’” 1
d J
Qn— 1 — Qn — Qn+ 1
and

Z,=kerd|q,, Bn= Im8|Qn+I7 H,=7Z,/B,.

Lemma 4.4. We have

(4.88) trace fy |, = trace f,|z, —trace fy|s, -

Proof. Let uy,...,u; be a basis of B,. Choose in Z, elements
V1,..., V¢ so that the sequence uy,...,u;,vy,..., v is a basis of Z,.
Then

1
o) =Y aiju;
=

and

k
Jo(vi) =Y, bjjvj -+ terms with u;.
=1

For the homology classes we have

M=

Fu (i) = 2, bij[vjl.

1

~.
Il

It follows that

! k
trace fy|z, = 2 aji + 2 bj; = trace fi|p, + trace f|H, ,

i=1 i=1
which is equivalent to (4.88). O

Lemma 4.5. We have the identity

trace fy|z, + trace f,—1|p, , = trace f,|q, -

For example, if f, and f,,_; are the identity operators then
this becomes the rank-nullity theorem for the operator 9:

(4.89) dimZ, +dimB,_; = dimQ,,.

Proof. Let vi,...v; be a basis in Z, and u},...,u; be a basis in
B,—1. Choose any vector u; € 9~ (u}), that is, du; = u’. Let us
show that the sequence vy, ..., Vg, uy,...,u; is linearly independent
in Q,.

J»

T T~ <uya...u>

/ Bua=<u'y,...u'> p N/ Ze<on.. 0>

Indeed, if there is a vanishing linear combination

1 k
Y i+ Y, Bv; =0,
p i

then it follows that

1 k l
0z820¢,~u,~+9 Zﬁj\)j = Z(X,‘M§+O,
i=1 j=1 i=1

i=

whence it follows that all o; = 0. Consequently, 2’;:1 Bjvi=0
and, hence, also all ; = 0.

Since by (4.89) k+ [ = dim{2,, it follows that the sequence
Vi eees Viy U, ..., Uy 1S @ basis in Q.
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Hence, for some coeflicients a;; and b;,
l
(4.90) fu(ui) =Y, ajjuj+ terms with v;
j=1

and
k
fn (V,‘) = z b,‘jVj.
j=1

The latter expansion contains no u; because f;, (Z,) C Z,. Hence,

! k
trace f|q, = Zaii + 2 bi;.
i=1 i=1
On the other hand, we have

k
trace f|z, = 2 bi;.
i=1

It remains to prove that

1
trace fu_1|g, | = D dii-
=1

Since f,—1 maps B,_ into itself, there are coefficients af j such
that

1
4.91) Jaor () = Y ajju.
=1

J

It follows from (4.90) that

1 ]
4.92) afn (l/tl) = Za,-jBMj—i-O: Zaiju'j.
J=1

J=1

On the other hand, using (4.80) and (4.91), we obtain that

1
0 fu (ui) = fu1 (Qui) = fu1 (u) = Y, aju.

j=1

Comparison with (4.92) shows that a; ;= aij and, hence,

! !
trace fu_1|p, | = D, a; = Y, i,
i=1 i=1

which finishes the proof. O
Finally, we can prove (4.84).
Lemma 4.6. The following identity holds

(4.93) trace fy|n, = trace fu|q, —trace f,—1 |, , — trace f4|g, .
Proof. By Lemma 4.4 we have
trace il = trace fulz, — trace fuls,
and by Lemma 4.5
trace fy|z, = trace f,|q, — trace fu_1|s, ,,

which yields (4.93). O

4.3 A Fixed Point Theorem in Terms of Homology

Definition. Define the path dimension of a digraph G by
dim, G =sup{n: |Q,| > 0}.

Assume that dim;, G < . Then for any N > dim,, G we have
by (4.83)

N N

4.94) LW) (f)= 2 (—1)"trace f|q, = Z (—1)"trace f|g, -

n=0 n=0

Recall the definition of the homological dimension:
dim;, G = sup{n: |H,| > 0}.

Theorem 4.7. Let G be a connected digraph. Let dim, G < oo
and dim, G = 0. Then any digraph map f : G — G has a fixed
point.

Proof. The condition dim;, G = 0 means that H, = {0} for all
n > 1, and the connectedness means that |Hy| = 1. The space
Hy is spanned by a single homology class [e,] where a is one
of the vertices. Then f (e,) = es(q) ~ €, 50 that f([eq]) = [eq].
It follows that trace f|p, = 1 while trace f|g, =0 for all n > 1.
By (4.94) we obtain L) (f) = 1 # 0, and by Theorem 4.2 we
conclude that f has a fixed point. O

The condition that a mapping f : G — Gis adigraph map can
be reformulated as follows. Define a directed distance between
vertices a,b of G by

7(a,b) =inf{n:Japatha =i — .. > i,_; — b}.

n arrows

Then f is a digraph map if and only if

d (f(a), (b)) < d (a,b)

foralla,b e V.

Let us relax this condition.
Problem 4.8. Devise a fixed point theorem for maps f : G — G

with

7(f(a)7f(b))§C7(a,b) foralla,b eV,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f, assuming
that f is a digraph isomorphism, which is equivalent to

d (f(a), (b)) = d (a,b)

foralla,b e V.

Problem 4.9. Devise a fixed point theorem for a digraph iso-
morphism f : G — G.

4.4 Examples

Example 4.10. First consider some simple examples of digraphs
satisfying the hypotheses of Theorem 4.7.
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0f 1 0 1 )

triangle square pyramid octahedron based on square
3 p :
2 & 5
2 3
; ; § 3 $ 1
4, s 4
0 1 o f ) 1 ¢ 2
3-simplex 3-cube broken cube prism

The triviality of H, (that is, dim; G = 0) for each of these
digraphs was mentioned in the previous sections. The finiteness
of the path dimension follows from the fact that all arrows go in
the direction of increase of numbering of the vertices so that the
length of allowed paths is bounded.

Note that in all digraphs of Example 4.10, a fixed point theo-
rem can be obtained much simpler from the following elementary
result.

Proposition 4.11. Assume that a digraph G = (V, E) satisfies the
following two conditions:

(i) there is no closed elementary allowed p-path with p > 2,
that is, for any allowed p-path €iy...ipy WE have iy # i,;

(ii) there exists a vertex a such that there is an elementary
allowed path from a to any other vertex x.

Then any digraph map f : G — G has a fixed point.

Proof. Consider the sequence of sets V,, C V defined by
Vo=V, Vay1=f(V,) forn>0.

By induction we have V,; C V,,. Since all sets V, are finite, we
obtain that V| =V, for large enough n. Fix such n so that we
have V11 =V,,.

For each x € V set x; = f (x). Then there is an elementary
allowed path from a; to x; for any k > 0.

1

n ViV

In particular, there is an allowed path from a, to any other
vertex of V,,, and that from a, | to any other vertex of V.| =V,,.

Hence, if a, # a,+1 then there are allowed paths from a, to
ap+1 and from a4 to ay,.

Therefore, there is a closed allowed path starting and ending
at a,, which is not possible. Hence, a, = a,1, that is, a, is a
fixed point of f. O

Next, we give an example of a digraph that satisfies the
hypotheses of Theorem 4.7 but not those of Proposition 4.11.

Example 4.12. Consider the following digraph G with 7 vertices
and 16 arrows.

)

w

3
There are closed allowed paths
0-2—-1—-0,5—-0—-6—5

etc. Hence, there are arbitrarily long allowed paths. Nevertheless,
one can show that

dim, G < 6,

and that G is homologically trivial.
Hence, G satisfies the hypotheses of Theorem 4.7, and we
conclude that any digraph map f : G — G has a fixed point.

The next example provides a large family of digraphs satis-
fying the hypotheses of Theorem 4.7.

Example 4.13. Given n digraphs X1, ...,X,,, define their mono-
tone linear join X1X,...X, as follows: take first a disjoint union
LI, X; and then add arrows from any vertex x of X; to any vertex

A monotone linear join X1 X5...X,

Proposition 4.14. Assume that the following two conditions are
satisfied:

(i) forall i, dim,X; < eo;
(ii) there exists i such that X; is connected and dim;, X; = 0.

Then any digraph map f in X = X;...X,, has a fixed point.

Proof. It follows from Theorem 3.16 that the digraph X is homo-
logically trivial and dim, X < o (see also Example 3.17). Hence,
the claim follows from Theorem 4.7. O

Let us now consider some examples when the hypotheses of
Theorem 4.7 are not satisfied.

Example 4.15. Assume that G contains a double arrow {a = b}.
Then

dim, G = o

because each Q,, contains p-paths egpapap... and epapapa.... Define
amap f: G— Gby

fla)=band f(x) =a forallx#a.

92 Norices or THEICCM

VOLUME 10, NUMBER 2



Clearly, f is a digraph map without fixed points. Hence, the
hypotheses dim, G < <~ is essential for Theorem 4.7.

Example 4.16. Here are some examples of digraphs that admit
digraph maps f without fixed points. All they have dim, G < e

but dim;, G > 0.
1-torus diamond octahedron based on diamond
2 3 1 .
‘
‘
\1‘ r
0 1 0 2 ;
f =rotation f =central symmetry f =central symmetry
|Hi| =1 |Hi| =1 |Hay| =1
2-torus ?33

3 4 5
0 1 2
f:051—-2—0,3—4—5—3
|Hy| =2

f = rotation
|Hi| =2, |[Ha| =1

Problem 4.17. Suppose that H (G) contains a non-trivial class
eo1 + e12 + exo (like for 1-torus). Is it true that there exists a
digraph map f : G — G without a fixed point?

Example 4.18. Consider the following digraph G with 7 vertices
and 14 arrows:

()

w

5
G has the following arrows:
i—i+landi—i+2

where addition is considered mod 7.
Let us first show that

|Q,| =14 forallp>1

and
|H,| =0 forall p >2.

This digraph can also be shown as a periodic snake:

1 3 3 0 2 4 I 1

0 2 4 6 1 3 5 0

where the vertices with the same numbers are merged (like a
Mobius band).
Each elementary p-path

4.95) Wi = €j(i41)(i+2)...(i+p)

is snake-like and, hence, is d-invariant. Let us refer to any path
(4.95) as a p-snake. Hence, we obtain in Q, already 7 linearly
independent p-snakes {@;}°_,. Another group of 7 linearly in-
dependent p-paths in Q, is given by the boundaries Jd@; of
(p+ 1)-snakes

O; = (i 1)(i+2)...(i+p)(i+p+1)-
Hence, we obtain that
_ 6

Q) = (0,00;);_
and dimQ, = 14. Since d (d®@;) = 0, while d; are linearly in-
dependent for p > 2, we obtain that

dimkerd|q, =7.
By the rank-nullity theorem we have

dimIma\Qp+1 =14-7=17,

whence H, = {0} for all p > 2. For the case p = 1 we have, in
fact,

Hy = (eo1 +e12+ex3+e34 +ess +esg+ee0) -

Hence, we have dim, G = « and dim;, G = 0. The hypothesis
dim;, G <« of Theorem 4.7 is not satisfied, and the conclusion of
Theorem 4.7 fails as well because the digraph map f (i) =i+ 1
has no fixed point.

Problem 4.19. Devise a fixed point theorem that would work with
digraphs containing double arrows. For that we need to impose
additional restriction on f : G — G, for example, let us assume
that f is a digraph isomorphism, that is,

a—b= f(a)— f(b).

Problem 4.20. Assume that G is connected, dim;, G = 0 and that
G has no double arrow. Prove or disprove the claim that any
digraph map f: G — G has a fixed point. Of course, the main
interest here lies in the case when

dim, G = oo,

Example 4.21. Here is a candidate for a positive example with
dim, G = oo.

w

5
This is the above snake with an additional vertex 7 such that

7—iforallie€{0,...,6}.
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For this digraph
dim;G=0 and dim,G =<

Problem 4.22. Prove that any digraph map [ : G — G for the
above digraph has a fixed point.

Example 4.23. Here is a candidate for a counterexample.

2

\N/ 7

6

For this digraph we have
dim;G=0 and dim,G=

All spaces €, are non-trivial because G contains a periodic
snake

€01234560123456...

Problem 4.24. Construct for this digraph a digraph map f with-
out fixed points (or prove a fixed point theorem for this digraph).
Simple rotations f (i) = i+amod8 are not digraph maps here.
For example, for f (i) =i+ 4 the arrow 0 — 3 goes to 4 /57, for
f (i) =i+5 the arrow 5 — 0 goes t0 2 /5.

Problem 4.25. Devise convenient sufficient conditions for
dim, G < oe.

5. Combinatorial Curvature of Digraphs
5.1 Motivation

Let I" be a finite planar graph. There is the following old
notion of a combinatorial curvature K, at any vertex x of I":

deg (x) 1
5.96 K o=1— n ,
%) 2 Xm0

where the sum is taken over all faces f containing x and deg (f)
denotes the number of vertices of f. For example, if all faces are
triangles then we obtain

deg(x) , deg, (4

5.97 Ki=1-
(5.97) x > 3

where deg, (x) is the number of triangles having x as a vertex.
In general, denoting by V, E and F the number of vertices,
edges and faces of I and observing that

Y deg(x)=2E and Y Y ——

X fox

=22 4 (h

deg T et deg

we obtain

YK =V—-E+F=y.
X

We try to realize this idea on digraph: to “distribute” the Euler
characteristic over all vertices and, hence, to obtain an analog of
the Gauss curvature that satisfies the Gauss-Bonnet theorem.

5.2 Curvature Operator

Let G = (V,E) be a finite digraph and K = R. We would
like to generalize (5.96) to arbitrary digraphs, so that the faces
in (5.96) should be replaced by the elements of a basis in €2,,.
However, the result should be independent of the choice of a
basis.

Fix p > 0. Any function f : V — R on the vertices induces
an linear operator

Tf : 'R,p — Rp
by
(f (o) + -+ £ (ip)) €ig...ip-

For example, for a constant function f =1 on V, we have
(p+ 1)eio---ip and, hence,

Tyej..i, =

Tei..i, =
(5.98) o= (p+1)o forany w e R,.
If f =1, where x € V, then

(5.99) Ty.eiy...i, = meiy i,

where m is the number of occurrences of x in iy, ..., 7,

Fix in R, an inner product (-,-). For example, this can be
a natural inner product when all regular elementary paths e;, .,
form an orthonormal basis in R .

LetI1, : R, — Q,, be the orthogonal projection onto Q,,.
Considering T as an operator from ,, to R ,, we obtain the
following operator in €2,:

T; =11,0Tf: Q) — Q.
Definition. Define the incidence of f and £, by
[f,Q,] := traceTy.

Definition. For any o = Zwio"'iﬁeio___ip € Q, define the inci-
dence of f and w by

[f, 0] = (Tro,0)
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Lemma 5.1. For any orthogonal basis {wy} in Q, we have

[f7wk]
f,Q,] = .
7 % x|

Proof. 1t suffices to prove (5.100) for orthonormal basis when
||ax|| = 1 for all k. By the definition of the trace, we have

S (Tjox,o0).

k

(5.100) [

trace T/f =

Moreover, for every o € 2, we have

(Tro,0) = (M,Ti0,0) = (Tro,1,0) = (Tfo,0) = [f, o]
from which (5.100) follows. O

Definition. For any N € N define the curvature operator K™N) :
RY — R of order N by

N

If Q, = {0} for all p > N, then write K;N) =K;.

5.3 The Gauss-Bonnet Formula

For f =1, with x € V, we write
X, Qp) =[1:,Q,] and [x,0]:=[l, 0],

If {@} is an orthogonal basis of Q,, then by (5.100)

(5.101)

[x, €] = Z b wkz]-

© llooll

If the inner product is natural so that {eiomip} is orthonormal
then by (5.99)

[x7ei0.“ip} =m,

where m is the number of occurrences of x in i, ...,
ple,

ip. For exam-

[a7eabca] = 27 [b7eabca] = 1, [daeabca] =0.

In this case, for 0 = Zm’o""Peio,,,ip we have

o= 3 (00 ) ey ).

ig..ip€V

Definition. For any N € N define the curvature of order N at a

Recall that the Euler characteristic is given by

N
A=Y (-1)"dimQ,.
p=0

Proposition 5.2 (Gauss-Bonnet). For any choice of the inner
product in R, and for any N we have

N)

Kt(otal = %<N> :

Proof. Since Y,y 1, =1, we obtain that

kN =3 kN =¥ kM1, = kM1 = i (—1yr L2l

total —
xeVv xeV

On the other hand, by (5.98)
1,0] = (Tio,0) = (p+1) o]

If { @} is an orthogonal basis in ©, then by (5.100)

l,wk .
[1,9,,]:2[ Z]Z(p—i-l)dlmgp,
x Nl
which implies
™ _ % N
Ko = (=1)PdimQ, = ™.

p=0

Remark 5.3. If Q, = {0} for all p > N then

N N

x= (-1)PdimQ, =Y (-

p=0 p=0

1)”dimH,.

Remark 5.4. It can happen that 2, # {0} for all p. An example
of such a digraph is given in Example 1.19. A simpler example
is G = {a = b}. For this digraph we have

QO = <eaveb>7 Ql - (eabveba>7 Q3 -

Q4 = <eababa ebaba> ’ etc7

<eaba7ebab>7

so that }Qp| =2 for all p > 0. Indeed, e,p, € A> and
d€apa = €ba — €aa + €ap = €pa +eap € A1
so that e, € Q. Similarly, eqpq, € A3 and
d€abab = €pab — €aab + €abb — €aba = €bab — €aba € A2

so that e pqp € Q3, etc.

vertex x by

If Q, # {0} for all p, then one can always truncate the chain

kM . g 1, = i (=1)? Q) complex to make it finite by setting Qu4; = {0} for some N:
pmo P 9 ) ) 9

0« Qp « Q) <« ... Qy 1 < Qy «0

Set also
_ ( and work with homology groups of this complex. This corre-
total — xg‘; ke sponds to declaring all paths of length > N non-allowed.
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5.4 Examples of Computation of Curvature

Let us fix in R, the natural inner product. Using the or-
thonormal basis {e;} in Qy we obtain

[x,Q0] = Z[x,ei] =1

L

and, using the orthonormal basis {e;;} with i — j in Q, we
obtain

[x, Q] = z [x,eij] = deg(x).

i—j

Therefore,

and, forany N > 1,

deg) 1

™) _
(5.102) KN =15 1

[x,Q,].
p=2
By Theorem 1.8, in the absence of double arrows the space Q,
has always a basis of triangles and squares (but this basis is not
necessarily orthogonal).
For a triangle e, € €, we have

[ 1, xeda,b,c}
(5.103) bxs eanc] _{ 0, otherwise

and for a square e p. — ey € Qo

2, x€da,c}
, xe€{bb'}

0, otherwise

(5.104) [x, €abe — eaprc] =

—

In particular, if G has no square then Q, has a basis {wy} that
consists of all triangles in G. This basis is orthonormal and

[x, Q] = Z [x, ] = degy (x) := #triangles containing x.
k

It follows that

deg (x) , dega (x)

2)
K =1- :
2 3

which matches with (5.97).
Example 5.5. Let G be a linear digraph, for example,
e ei—e—e. ..

Then by (5.102) we have K, = % for the endpoints, and K, = 0
for the interior points.

Then we have Q, = {0} for p > 1.
Hence by (5.102), for any vertex x,

and K;,,; = 0. Note also that y = |Qp| — |Q;|=6—-6=0.

Example 5.7. Consider a dodecahedron (with any orientation of
edges):

We have |Qy| = 20, |Q| =30, |Q,| =0, and |H;| = 11,
|Hp| =0forp>1.
Then, for any vertex x,

Ke=1-— =

and K; ;s = —10.
For comparison, note that y =1—11 =20—-30= —10.

Example 5.8. Let G be a triangle. We have Q; = (eg12) and
Q, = {0} for p > 2.

0 1
Hence, for each vertex x,

dog(x) degy(x) 1
Ko=1— .

) 2 T3 3
and K,y = 1. For comparison, y = |Qqo| — |Q1] + || =3 —

3+1=1.

Example 5.9. Let G be a square. Then €, = (eg13 — egp3) and
Q, = {0} for p > 2.

2 >—e3
Example 5.6. Let G be a cyclic digraph (polygon) different from \ \
triangle or square:
2 1
0 |
3 0 ’
Since ||eg13 — eo23||” = 2, we obtain
1
4 5 [0,Q] = 3 [0,e013 —e23] = 1, 3, =1
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1 1 1
1,Q,] = =11 — =— 2.0,] = =.
[1,9Q] 2[,6013 e023] X [2,] 3
It follows that
deg(0) 1 1
K=Ky=1—-—2~4_ =_
300 2 37w
deg(l) 1 1
K=K =1— _ 2
2T 2 6@
and Ky = 1=%.
Example 5.10. Let G be a 3-simplex:
3
2
0 1

‘We have

Q) = (e12,€013, €023, €123), Q3 = (e0123)
Q, = {0} for p > 3.

It follows that, for any vertex x,

[x,Q] =degy (x) =3 and [x,3]=1

whence
koo degl) [ [xQ] 1
* 2 3 4 4

and Ky =1=%.

Example 5.12. Let G be a bipyramid:

We have |Q| =5, |Qi]| =09,

Q) = (€013, €123, €023, €014, €124, €024, €012)

Q3 = (0123, €0124)

and !Qp] =0for p > 4.
Hence,

2 =1 — Q|+ || —|Q|=5-9+7-2=1.

Let us compute the curvature:

x| Q] | Qs | 1- —j%‘i + —[f’?ﬂ — Bl | = 3
3,4 3 1 - Z + g — g = ?
0, 1,2 5 2 — 37 + 31 = 6

Consequently, Kioat = § +5 = 1.

Example 5.13. Let G be a 3-cube.

Example 5.11. Let G be an n-simplex, that is, a digraph with a
set of vertices {0, 1,...,n} and edges i — j whenever i < j. Then,

forany p=0,1,...,n

Qp = .Ap = <ei0,__,~p g <ip<...< ip>

so that dimQ,, = ("H). It follows that, for any vertex x,

p+1

We have

[x,Q,] :#{ei0~"i11 such that x € {io,...,ip}} = (Z),

and

Ke=Y (-1)F

Change j = p+1 gives

6,

Q= <9013 — €023, €015 — €045, €026 — €046,

(note that this basis in Q; is orthogonal),

€137 — €157, €237 — €267, €457 — e467>

Q3 = (e0237 — €0137 + €0157 — €0457 + €0467 — €0267) s
x = Q0| — Q1| +|Q2] — Q3] =8—12+6—-1=1.

Let us compute the curvature:

n+1 i (n+1) (jfl) n+1 1 et
(7’!+ 1)Kx = z (_1) f = 2 (—1) ( j ) = 17 X [X,Qz} [LQS] 1 degz(x) + [)hg)z] — [x7?3] —K,
j=1 Jj=1 0,7 §=3]¢=1[1-3+3-1 =T
whence 123456 5=2[2=1|1-5+3-5=4 =L
Kx = nr and I(t()tal =1. COnsequently, Ktozal _ %+ % — 1= X
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Example 5.14. Consider on octahedron based on a diamond:

4

5
We have
Q) = (€024, €034, €025, €035, €124, €134, €125, €135)

and Q, = {0} for all p > 3.
For any vertex x we obtain

[x, Q] =deg, (x) =4

whence

and Kiprq = % =2=7.

Example 5.15. Here is yet another octahedron, based on a square,
but with the opposite orientation of the edges 2 ~ 5 and 3 ~ 5.

4

w

In this case we have to orthogonalize the bases:

Q= <60147 €015, €024, €052, €134, €153, €234, €523,

€013 — €023, €013 — €053, €524 — €534)

Here is computation of the curvature:

a o D
x [x.9) (0] [y [1-ds) Rl Tl AT g
2 6 _ 2 10 _ 4 6 4 1 _ 1
04+%+8=6 243+ 00=a | 1 1-4+9-441 =1
fedd=¥ [ideh=t] o0 [ 4P % -3
bk d=Blerdeh=3 | 1 (o83 -3+]
2,6, 1_13 2,6 _23 4,132 235 1 _ 13 _13
3rststa=F5B3+stww=5| ! |l-3+5 - +5=w =&
2 _ 2 10 _ 4 5 3 1 _ 1
44t+5=5 It5+w=3 | 1 [l-5+35-3+5 =%
ferie3-F [eg-2 [ 1 [ aF BFg -5
We have

x=1Q0] — Q1| +]Q2| — ||+ Q| =6—-12+11-5+1=1
and
Ko =3+&+i+tot+tamtn=1=1x

Example 5.16. Consider the following digraph G that is given
by an m-square:

bo bm

S

c

The space 2, consists of squares e, — €abjc and their linear

combinations, while Q, = {0} for all p > 2. It is easy to see that
€, has the following basis:

(5105) QZ - <eaboc - eahjc>;ﬂ:1
so that |Q,| = m and

Kiotat = X = |Q0] — |Q1|+ || = (m+3)—2(m+1)+m=1.

Orthogonalization of (5.105) gives the following orthogonal
basis for ,:

W1 = €abyc — €ab|c

W = €ahyc + €abic — 2eabgc
W; = €ghyc .- T €ab;_1c — ieub,‘c

Wy = Cabye +...+ €ab,,_jc — Meap,,c

We have
= (€014, €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 + €023 — 2€053, €524 — €534) la, 0] = [e.on] = [|or|* = i (i+1)
Q3 = (e0153, €0523, €5234, €0134 — €0234, while
€0534 — €0134 — €0524) 0, Jj>i
= (e0153, €0523, €5234, €0134 — €0234; [bj ] = 15 Jfl '
0134 + €0234 — 2€0534 + 2€0524) o P
Qu = (eosaa), Q, = {0} for p > 5. which implies
2 la, oy
In fact, Qq is generated by a 4-snake 05234. (5.106) [, o] = Z{ [| c;),|12] -
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and
m . m
[b), ax] 7 1
bj, ] =) = + -
bl = X i) T TG 2,
1 m
5.107 =]l-—=—.
( ) m+ m—+1
It follows that
o, deg(@) [a,Q] o m+l m 1 m
Ke=K.=1 2 T3 =1 2 3 2 6
and
deg(b;) | [0, ] m
K, =1-— = .
I 2 3 3(m+1)

Example 5.17. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges, and 26 faces, among them 8
triangular and 18 rectangular.

Let us make it into a digraph G by choosing direction i — j
on an edge (i, j) if i < j. Then each face becomes a triangle or
square.

For this digraph |H| = 1 and H, = {0} for p=1and p > 2.

We have |Q,| =26 and Q, = {0} for p > 3. Q, is generated
by 8 triangles and 18 squares:

Qy = (€023, €178, €456, €910115 €121415, €1319205 €161718, €212223
€018 — €038, €0113 — €01213; €0214 — €01214, €1719 — €11319;
€236 — €246, €2416 — €21416, €3611 — €3811, €4517 — €41617;
€51011 —€5611, €51022 — €51722, €7811 — €7911, €7921 — €71921,
€91022 —€92122, €121320 — €121520; €141518 — €141618,
€151823 — €152023, €172223 — €171823, €192023 — €192123)>

while the generator of H; is a signed sum of all these 2-paths.

This basis in £, is orthogonal. Hence, we compute the cur-
vature:

For comparison

x=1Qo| — Q| +|Q| =24—-48+26=2
= |Ho| — |Hi| + |Ha|.-

Example 5.18. Consider the following pyramid:
7

Let us make it into a digraph G by choosing direction i — j
on an edge i ~ j if i < j. We have |Q| =8, |Q;| =18,

Q) = (€017, €027, €037, €047, €057, €067, €012, €023 ;
€034, €045, €056, €127, €237, €347, €457, €567 )

Q3 = (e0127,€0237,€0347, €0457, €0567)
Q, = {0} for p > 4.

Let us compute the curvature:

x v, Qo] | [, 3] |1 —jeg;")l + —[";?2] [yt K
1,6 3 1 1-— Z + g - g = ?
2,3,4,5| 5 2 1-5+3—7 =¢

It follows that K, = —% + % + % = 1. For comparison y =

8—18+16—-5=1.

Example 5.19. Let us compute the curvature of icosahedron (cf.
Example 1.16):

Here we choose arrow i — j if i ~ jand i < j. We have

x= 0,11,23 [1,3,4,6,8,9,12,13, [2,5,7,14, (10 |Hi|=0, |H]=1, {Hp| =0 forp>2
[x, Q] = 1+5=4{1+3=3 1+3=1 |1+3=3
e S [ T [ N Ku[=1 and Q,={0} forp=5.
K, =1 =0 =1 =1
. 6 8 Hence,
It follows that X = |Ho| — |Hi| + |Ha|
K =3+1-1=2 = |Qo[ — ||+ [Q2] — Q3] + Q4| =2.
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Here are the orthogonal bases in 2,03, Qy:

Qy = (€019, €012, €1211, €026, €059, €056, €56105 €139, €1311,
€267, €6710, €27115 €349, €348, €4810, €38115 €459, €4510,
€7810, €78115 €0111 —€02115 €0510 — €06 105
€2610 — €27105 €3410 — €3810, €027 — €067)

Q3 = (e01211, €05610, €348105 €0267,
267105 —€06710 +€02710 — €02610)

Q4 = (e026710)

2 7

VAVAN

0 6 10

since the path ep26710 is “snake like” and, hence, is d-invariant.
Computation of the curvature:

x= 0 1 2 3,11
[x, Q] = 6+4=8 5+4=4 5+4=7 5+2-6
x,Q3] = 3+3=4 1 3+3=14 1
[, Q4] = 1 0 1 0
4 [xQp] 5,8 4,1 5 1/2 5.7 1/3 1 5,6 _1
D R s o R AR R a0 | LA St S R SR e AP | Ll Sl B |
I T T _ 7 1
x =3 =1 =& =1
4,58 6 7 9 10
1 11 3 13 3_13 6 _
5+3=7% St3=7% St3=7% 5 5+5=8
2 _ 1 2_38
1 3+3=73 2+3=3 0 3+3=
0 1 1 0 1
512 5132 113 5132 853 1 5.5 5.8 4,1
Iost 5 —g|l-st5 - +s|l-3+3" - +51-3+3[1-5+5-3+5
_ 1 —_1 1 1 _ 1
=0 = w =5 =5 =%

Note that Kg = —21—0 < 0.
The total curvature:

Koaw=1%2+1 4+ +52-m+5+5=2

Example 5.20. Let us compute the curvature of the 2-torus G =
TOT, where T = {0 — 1 — 2 — 0}.
Here is the 2-torus G embedded onto a topological torus:

In Example 3.7 we have computed the basis in Q; (G) as
follows (see (3.41)):

Q (G) = <3034 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — €860)-

This basis in Q (G) is orthogonal and ||@||* = 2 for any element
o of the basis. Besides, for any vertex x, we have [x, ®] = 2 for

two of @, [x, w] = 1 for two of @, and [x, w] = O for the rest of ®.
Hence,
[x,o] 2-2+2-1
3 = =13
o] 2

[X,Qz] = z

o |
and, for any x € G,
deg(x) | [x, €]

4 3
2 + 3 71—54—570.

K,=1-

Example 5.21. Consider the digraph G from Example 4.18.

2

w

5

This digraph has 7 vertices {0,...,6} and 14 arrows as fol-
lows:
i—i+landi—i+2

where addition is considered mod 7.
Fix p > 1 and consider for any i = 0,...,6 the following
d-invariant p-path

Wi = €j(i+1)(i+2)...(i+p)

and (p + 1)-path

Wi = €(i1+1)(i+2)...(i+p) (i+p+1)-

It was shown in Example 4.18 that dim 2, = 14 and that the
space Q,, has a basis (@;,0@;)%_.
(V)

Let us now compute the curvature K. The sequence { ®; }
is orthonormal, but {Jd®;} is not, which is clear from

P
— +1
IW; = W1 + Zl (=D i35 (pry (D o
q:
Let us replace each d®; with

P
vi=0m — ()" oy — o =Y, (1), 7,

(i+p+1)°
q=1

Then we obtain that €, has an orthogonal basis {a;,v;}o_.
By symmetry, [x, @;] is the same for all vertices x and i. Since

dYal=7(p+1),

X,i

and ||@;]| = 1, we obtain

z [x,(i),‘] p+1

2 =
o]l
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For v; we have

vl =T(p+1)p

x,1

and ||v;||* = p whence

vl _(pt1
T il p

Hence,
[xvg.l’] = 2(p+ ]):

which implies that

Hence, {K v )} is a periodic sequence in N.

Problem 5.22. Describe classes of strongly regular digraphs
having a non-trivial periodic sequence {K(N) };:].

5.5 Computation of [x, Q]

Recall that €2, has always a basis that consists of triangles,
double arrows and squares. All different triangles and double
arrows in G are always linearly independent and mutually or-
thogonal. Moreover, they are orthogonal to all squares. However,
squares may be not mutually orthogonal in general.

In a special case when G contains no multisquares, are all
squares orthogonal (and, hence, linearly independent). Indeed,
if two squares are not orthogonal then they must have the same
elementary term, say, €,pc — €qp/c and eqpe — €4, Which yields
a 2-square a, {b,b’,b"} ¢ (cf. Subsection 1.5).

Let us introduce the following notation:

degy(x) = #{double arrows a = b : x € {a,b}},
deg, (x) = #{triangles eyp. : x € {a,b,c},
degy, (x) = #{squares €abe — €aplc * X € {b,b/}} ,
degp, (x) = #{squares ezp. — e : x € {a,c}}.

Lemma 5.23. Assume that G contains no multisquares. Then,
Jor any vertex x € G,
(5.108)

1
[x, Q2] =3 degy (%) 4+ degp(x) + 3 degry, (x) +degp, (x).

Proof. Let {w,} be the sequence of all double arrows, triangles
and squares in €. By hypothesis, the sequence {®,} forms an
orthogonal basis in ;.

Any double arrow a = b induces two independent elements
eapa and epyp of Q5. Clearly, we have

3, x€{a,b}

[x, €apal + [X; €pan] :{ 0, otherwise.

For a triangle e, € 2, we have

[ 1, xe{a,b,c}
b eane] = { 0, otherwise

and, hence,

(5.110) D b “”’2] = deg, ().
), is a triangle ||(JJ||

For a square ey — e, € 2 we have

2, xef{a,c}
, xe{bb'}
0, otherwise

[u—

[)C, €abc — eah’c] =

Hence,

[x, @]

2
, is a square HwH

1
=3 degpy, (x) +degp, (x).

Since {w,} is an orthogonal basis that consists of all double
arrows, triangles and squares, we obtain

[x, Q] = Z bx, @]

2
w @]l

1
= 3deg(x) +degy (x) + 3 degry, (x) +degp, (x).

Example 5.24. For the prism as shown here we have:

degy (x) = 1 for all x;
dego, (0) = 0, degs, (1) =2
degr, (1) =1, deg, (1) =1
degr, (2) =2, degr, (2) =0
degp,, (3) =2, degc, (3) = 0
degr, 4) =1, degr, 4)=1
degr, (5) =0, degry, (5) =2.

3 >—95

A A
1

0 %

Consequently, we obtain by (5.108)

3, x=0,5
Q=14 3, x=14 .
2, x=2,3

Since Q3 = (ep125 — €145 + €0345), 4 = {0} and

Hence,
1 3, x=0,5
(5]09) [.X, 0)}12] :3degi(x) [X7Q3] = g 2, X = 174 5
wy is a double arrow HwH I, x=2,3
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it follows that

1
1 -0,5
d Q Q g A=
K —1_ et | Q] [rO] RN
2 3 4 )
129 X:2,3

The arrows along the edges point in direction of the higher
vertex number. The faces give rise to 12 squares forming a basis
in space , and Q, = {0} for all p > 3.

For x € {0, 13} we have deg(x) = 3,

degp (x) =0, degp, (x) =3,

whence [x,] = 3 and

K=1-iri=)
For x € {3,5,6,7,9,10} we have deg(x) = 3, degn, (x) = 2,
degr, (x) = 1, whence [x,Q,] =2 and

S
Finally, forx € {1,2,4,8, 11,12} we have deg (x) = 4, degry, (x) =
2, degy, (x) = 2, whence [x, Q] = 3 and

Ki=1-3+2=0.
Example 5.26. Consider a trapezohedron 7,, as in Subsec-

tion 2.1.
a

iO i»

Ji

b
By Proposition 2.1, the space €5 is spanned by 2m squares
as follows:

m—1
Q) = <eaik—ljk — Caipjiks Cigjxb — eikjk+1b>m:() ’

also, Q3 = (1,,), where
m—1

Tm = 2 (eaikjkb - eaikjk+1b) )
k=0

and Q, = {0} for all p > 4.

For all vertices we have deg, (x) = 0. For x € {a,b} we
have degp, (x) = 0, degp, (x) = m, whence [x,Q] = m. Since
deg (x) =m and

T
Q] = oy
[
we obtain
Ki=Ky=1-%5+%-3=3-%
For all other vertices x € {i, ji} we have
degr, (x) =2, degp, (x) =1,
whence [x,Qs] = 2. Since deg (x) = 3 and
[x, Q3] k) -2
1Tl m
we obtain
_ 3,2 UYm_1_ 1
Ke=l-3+5-4 =6

The total curvature
Ko =23 —")+2m(L - L) =1
total (4 6)+ m(6 4m)

matches the Euler characteristic y = 1.

Example 5.27. Consider a broken cube from Example 2.9. Then
we have:

0 1
), is spanned by 6 squares and 2 triangles,

Q3= <30158 —€0168 + €0268 — €0278 +€0378 — eO458>

and Q, = {0} for p > 4.

For x =0 we have degr, (0) =0, degr, (0) =4,deg, (0) =0
whence [0,£2;] = 4.

Since deg (0) = 4 and [0,Q3] = 1, it follows that

Ko=1-4+4-

L
12

ENE

For x € {1,2,6} we have degn (x) =2, degp, (0) =1,
degy (x) = 0 whence [x, Q5] = 2. Since deg (x) = 3 and [x,Q3] =
%, it follows that

Ko=1-342-18_1

[\SI[o8)
Wi

For x € {3,4} we have degr, (x) =2, degp, (x) =0, deg, (x) =1
whence [x, ;] = 2. Since deg (x) = 3 and [x,Q3] = £, it follows
that

Ke=1-342-16_1

3

[\S][o8)
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Forx € {5,7} we have degr, (x) =1, degr, (x) = 1,deg, (x) =1
whence [x,Q] =5/2. Since deg (x) =3 and [x, Q3] =
that

% , it follows

Kom1-3+32 121

Al

Finally, for x =8 we have degn (8) =0, degp, (8) = 3,
deg, (8) =2 whence [8,02;] = 5. Since deg (8) = 5 and [8,Q3] =
1, it follows that

Example 5.28. Consider again a rhombicuboctahedron (see Ex-
ample 5.17).

We have for all vertices
deg(x) =4 and deg,(x) = 1.

All squares are linearly independent and Q3 =
ple 5.17).
For x = 11: degp, (x) =0, degpy, (x) =3,

{0} (cf. Exam-

[X7Q2] :4, Kx =1-

For x = 19: degr, (x) = 1, degpy, (x) =2,

7 4 72 1
Q] =1, Ke=l--4 2"
o] =7, Ke=l-3+75 =%
For x = 13: degp, (x) =2, degy, (x) = 1,
4 3
Q)=3, Ki=1-—-+2-=0.
[x, Q2] =3, x 2+3 0

For x = 10 we have degp (x) = 3, degp, (x) = 0, whence
[x, Q] = 3 and

Ke=1-442%2 -1

Consider now a general case when G may contain mul-
tisquares. Fix a semi-arrow @ — ¢ and denote by {b;};" the
sequence of all vertices b; such thata — b; — ¢. Let m > 1. Then
we have an m-square

(5.111) o ={a,{bi}iLy,c}

that gives rise the following to the following family of squares

(5.112) {ea,,l.c—ea,,jczogi<jgm}

(cf. Subsection 1.5 and Example 5.16).

a

SN\
v

An m-square

The family (5.112) contains m linearly independent squares,
for example, they are

(5.113) {€aboc — €avic } 1, -

As in Example 5.16, let {e;};" | be an orthogonalization of the
sequence (5.113). Using the computations (5.106) and (5.107) of
Example 5.16 we obtain

m x € {a,c}
m [X, w] ) ’
(5.114) 2 - oy xe{bitin,
=l 0, otherwise.

For any m-square ¢ as in (5.111), denote

m, xe{a,c}

(5.115) ol=q . xe{bi}i
0, otherwise,
so that
o =3 1
(5.116)
=1 a)lH

Proposition 5.29. For any vertex x € G, we have

(5.117)  [x, Q] = 3deg; (x) +deg, (x) + Y [x,0].
O 1S an m—square
m>1
Proof. Indeed, each m-square contributes m linearly independent
elements to €, and different multiple squares give rise to mutu-
ally orthogonal elements. Hence, using in each multiple square
an orthogonal basis and adding to them all double arrows and tri-
angles, we obtain an orthogonal basis in €. Hence, combining
(5.101), (5.109), (5.110) and (5.116), we obtain (5.117). O

Let us prove the following identity for [x, o] that may be
useful for computer assisted computations.

Lemma5.30. Lets;; = eqp;c — €abjc be all squares in an m-square
o as in (5.112). Then we have, for all x,

Y, bosil

0<i<j<m

1

(5.118) o] = —

Proof. Indeed, if x € {a,c} then [x,s;;] =2 and the number of
terms in the above sum is W so that the right hand side of
(5.118) equals to m as well as the left hand side. If x = b; then

5] = 1, i=korj=k,
10, otherwise

and the number of 1’s in the sum (5.118) is m, so that the right

hand side of (5.118) equals to m as well as the left hand side.
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Finally, if x does not belong to {a,c,b;} then the both sides of
(5.118) vanish. O

For any vertex x denote

deg,,, (x) =#{m—squares {a,{b;} ,c}:xe{b;}}
and

deg,, (x) = #{m—squares {a,{b;} ,c}:x€{a,c}}.
Corollary 5.31. For any x € G we have

[x, Qo] = 3degy(x) + deg, (x)

m
(5.119) + 3 (1 deg,, (1) + mdeg, o, (4)).
me1 N+ 1
Proof. Indeed, this follows from (5.115) and (5.117). O

Clearly, the identity (5.108) is a particular case of (5.119) in
the case when all m-squares are 1-squares.

Example 5.32. Consider a randomly generated digraph:

7=

W

Iq )
Viy‘ -
" ‘
it

3
.
N
“?,’

N

=X

We have Q| = 15, Q]| =39, || =28, |Q3| =4, Q, =
{0} for p >4, |H| =2, |H2| =1, H, = {0} for p > 3.
In particular,

X = |Ho| — |Hi| + |H2|
= Qo[ — Q1]+ [Q2] — [Q3] = 0.

Here are the bases in Q,,Qj3:

Q) = (e13214 — €131214, €13214 — €13914, €02 14 — €09 14,
€143 — €163, €1413 — €1613, €506 — €516, €7214 — €7914,
€914 —€9124, €1014 — €10124, €1072 — €10112
€10113 — 10143, €1109 — €1179, €1151 — 1171,
€1243 —€12143, €1271 — €12141, €791, €91214, €9 141,
€1071, €10117, €10127, €1012 14> €101415 €1102, €1135,
1150, €11725 €13912)

Q3 = (101172, €1391214, €101271 — €1012141

€110214 —€110914 T €117914 _6117214>~

Note that the above basis in €2, is not orthogonal: it contains a
2-square

o ={13—{2,9,12} — 14}

that corresponds to two squares

ei32i4—ezizi4  and  ej3214 —e13914,

while all other squares in the above basis of 2, are 1-squares.
For the vertex x = 13 we have then

degy, (x) =0, degym, (x) =1

as well as

degy (x) =1, degp, (x) =0, degy, (x) =1,

whence by (5.119)

1 2
[13,Q;] = deg (x) + 5 degry, (x) +degr, (x) + 3 degyp, (%)
+2degpy, (x)
—1+1+2=4
Since also deg (13) = 6 and [13,Q3] = 1, we obtain

6 4 1 11
Ke=l-2%374="12

Since the vertex x = 2 we have

degyr, (x) =1, degyp, (x) =0

and
degy (x) =2, degp, (x) =2, degp, (x) =1,
whence
2 2 14
2. =24+-4+14+=-=—.

Since also deg (2) =5 and [2,Q3] = % we obtain

5 14/3 3/2 23
k=l—sr>5 =7

Computation of the curvature at all other vertices yields

14 _ 7 1 23 111 11
{KX}X:O_{_ﬂ’_ﬁ7_ﬁ7_676757_§76707

1321 1 11 13

7203767187 12°24J)°

5.6 Curvature of n-Cube

We use the notation of Subsection 3.4 where n-cube was
defined. The purpose of this section is to prove the following
statement.

Theorem 5.33. For any vertex x in n-cube we have
-
(n+1) ()

For example, in a 4-cube that is shown here, for the marked
vertex x we have |x| =2 and

K, (n-cube) =
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while the left hand side is equal to

S0

MHZ< )HM’

which proves the claim. O
Let us first prove some lemmas about binomial coeflicients. Lemma 5.36. We have
Lemma 5.34. We have forall M >12>0 o inim (m) <n—m) (— 1)k+l B 1
m = .
. k I k+1 nt1
M M—1 k=0 =0 (k+1+1)  (m+1)
(5.120) 2(_)(_1)12(_1)1( 1 ) ) (1)
=0 \J Proof. Set
Proof. Induction in M. For M = [ we have mo l)kH
i 2 k) k+ l
i -1 ko( (7 (k+1+1)
> () e=a-n=o=c (1), ; e
j=o \J :l'z <m>
) SH\k) (k+1)... k+l)(k+l+l)
Induction step from M to M + 1. We have
& (1) mm—1)...(m—k+1)
l ! M M : l'z k+1+1)!
7)) (1))
j=0 Jj=0 J -]_1 N 1!
7(71)1 M—1 +i M (71)j (m+l+1)(m+1)
- i =AVAS Xi(—l)k”(m—i-l—&-1)....(m+1)m(m—1)...(m—k+1)
-1 k=0 (k+1+1)!
[ (M—1 M ;
:(_1) I _A < ; (_1) o 1 i (m+l+1) (_1)k+l+1
= - +i+1
= (=1 M—1 -t M-1 l+1 ) (") S Nk
7(_) i _(_) I—1 _ 1 m-&f—l(m+l+1)( 1)]
T (Y i -
— (-1 (M> I+ D (") 2 J
1) 1
1 (m+l+1) ;
= 2 (") ey
O G+ (D SN
Lemma 5.35. We have for all N > 0and M > 1 By (5.120) with M = m+1+ 1 we obtain
N l
(5.121) Z() = mALLN i (M
S\ 1+M MV Jgo ; (/=" (7,
Proof. We start with the identity whence
N
N l
> (V) == S
— y m
=0 Gt
for all z € R, whence B (=D 1m! (m+1)!
N N C(mAl+1)! Im!
O A (LR o
=0 Tomt L
Integrating this identity from O to 1, we obtain Therefore, by (5.121) with N' = n— m and M = m+ 1,
N 1+ |1
N) (_Z) M—-1 n—m _ n—m _ -1 1
-y = (=DM 'B(N+1,M) K _ n—m _ n—m\ (-1
l_o(l I+M | " EO o )ome EO I )m+i+1
_(71)M71 L'(N+1)T(M) B 1
F(N+M+l) (m+1) (;:l-:ll)
7(_1)M,,1 N!(M—1)!
B (N+M)! O
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Proof of Theorem 5.33. Fix a vertex x of the n-cube and non-
negative integers k, [, p such that

k+1=p.
Let a and b be two vertices in the n-cube such

(5.122)  a=x=b, |x|-l|al=k, and |b|—|x|=1.

The cube D, 5, has dimension |b| — |a| = p, and for any d-invariant
p-path @, , between a and b (cf. (3.43)), we have

|@ap||” =p! and  [x,@,] = KU1.

Indeed, @, is an alternating sum of all the elementary allowed
paths from a to b, and the number of the elementary allowed
paths from a to b going through x is k!/!, because the number of
such paths from a to x is equal to k! and that from x to b is equal
to l!.
X
o P

!

a
Hence, we have for such w, 4

[x,0.) K1

o> 70 (5

Set m = |x| and observe that the number of vertices a < x with
x| — |a| = k is equal to (7). Indeed, in the binary representa-
tions a = (ay,...an,) and x = (x1,...x,, ), we have ¢; < x; and
>, (xi —a;) = k which is only possible if a; =0 at k out of m
positions where x; = 1.

Similarly, the number of the vertices b = x with |b] — |x| =1
is equal to (",™). Hence, the number of pairs a,b satisfying

(5.122) is equal to
m\ (n—m
k [ '

By Proposition 3.9, all p-paths @, j witha < b form an orthogonal
basis in Q, (n-cube). If x does not satisfy the conditiona <x < b
then we have

Hence, we obtain

B mon—m /.. n—m (_1)k+l
_gf)z_o(k)< ! )(kfl)(lﬂ‘l'i'l)
1

(m+1) (3
_ m!(n—m)!
 (n+1)!
_r
(n+1) ()

O

Note that the number of vertices x with |x| = m is equal to
() whence

L 1

S N A I

m=0 m

as expected because y = 1.

5.7 Curvature of a Join

The main result of this section is Proposition 5.39 below.
Recall that a join Z = X *Y of two digraphs was defined in
Subsection 3.6.

Let us first prove two lemmas. Everywhere (-, -) denotes the
natural inner product in all spaces A, (X), A« (Y) and A, (Z).

Lemma 5.37 ([29, Lemma 3.10]). If u,u’ € A, (X) and v,V €
A, (Y) then

(5.123) <uv7 u’v’>Z = <u,u'>X <v, v/>Y.

Proof. Indeed, due to bilinearity it suffices to prove (5.123) if
u,u’,v,V are elementary paths, say

/! /

U=¢€i..i, U :eié)...i;ﬂ V=2Cjojgr V = e](/)llq/
Then
A ]
il Joed )
I\ _ .0y
(uv,u'v >z = (6,0__1,,]0.“1,,,ei(),..i;,j()...j;,> = Oy ipjo-ia
g
lp-lyy Jo--dy
= 5i0...i,, 5_,'0“qu = <eio~~ipvei6--<i;,><ejo~~jq’ej6-~j;/>

= (u,u' )y (vv'), .
O

Lemma 5.38. Let Z = X %Y be the join of two digraphs X and
Y. Then, for all x € X and r > 0 we have
(5.124)

%,Q(2)] =xQX)]+ Y  [xQ(X)]dimQ,(Y).

|b|~lal=p Prg—r—1,
p4=20
[X, (Da,b] m\ (n—m\ 1
= . % [@as]| = ; 21‘: k ! W’ Proof. Let B, (X) be an orthonormal basis in Q,, (X) and B, ()
a;;*Z ‘ e k be an orthonormal basis in Q, (Y), for all p,g > 0. By Theo-
bel—lal=k, 1b1=xI=1 rem 3.12, we obtain the following basis in , (Z): it consists of
which implies by Lemma 5.36 that all elements of B, (X), B, (Y) as well as of the elements of the
form
-1° 5.125
k=¥ "o, G129
oo Pl {w:ueB,(X),veB,(Y),p+q=r—1, p,g>0}.
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Note that the set (5.125) is empty if » = 0, so it makes sense to
consider it only if » > 1. This basis in also orthonormal due to
the identity (5.123). Therefore, we obtain, for any x € X and any
r>0

Q@)= Y (Tww+ 3 (Twy)
ueBr(X) veB,(Y)

+ 2 2 (T (uv) ,uv).

pra=r—1,ueB,(X)
a0 veB,(y)

Since T,v = 0 and T (uv) = (T,u) v, we obtain

(T (wv) ,uv) = (L) vyuv) = (Ta,u) (v,v) = (Tou,u)

and
z (T (uv) ,uv) = [x,Q, (X)]dimQ, (Y),
ueBy(X)
veBy(Y)
whence (5.124) follows. O

Proposition 5.39. Let Z = X xY be the join of two digraphs X
and Y. Assume that Qy (X) and Qy (Y) vanish for large enough
N. Then, for any x € X, we have

Example 5.40. Consider on octahedron Z based on a square:

4

We have
Z=XxY

where X is the following square:
X={0—-1—-3,0—>2-3}

and Y = {4,5}.
Since Q, (Y) is non-trivial only for g = 0 and dim Q (¥) =2,
we obtain
2
C,(Y)=——.
(1) =2

As we have computed in Example 5.9,

(51260 K(2)=K:(X)—= ¥ (—1)"C, (V) (6.2, (X)), I
P ’ ' 0.2X)]=[3.2®]=1 1LLX)]=R2X)]=;
where and
c (Y):zidlmﬂ (¥). 1 |
r Sp+q+2 KkX)=KX) =3 KX =KX=
A similar formula holds for K, (Z) foryeY: Hence, we obtain by (5.126), for x =0 or 3,
K (2Z) =K, ¥)= Y (=1)7C, (X) [»,Q, (Y)], 1 2
.\( ) )( ) zg;)( ) q( ) q( ) Kx(Z):§*Z(*1) +2[XQ (X)]
p=0
where 1 2 2 1
——_14+Z2.92_Z.1=2=
(-1 )p 3 +3 4 6’
C,(X)= ———dimQ,
)= pg'op"‘ +2 ®). and forx =1 or 2,
Proof. 1t follows from (5.124) that 1 2
Kel2) == 3 (<1) = (1.0 (X)
Q,(Z =0 pt
R )
(Z2)=2 (-1 I 1 2 21 1
r>0 r+ _7_1—"* Z—ZEZZ
)p+q+1 6 3
X)+ x,Q,(X)]dimQ, (Y
p§>0 FEPE) [ p( )l q( ) Next, we have
p
=K. (X) =3 T Gimo,x)= 4 - 4 1
(—1)7 ssoPta+2 g+2 g+3 qg+4
~Y 1y (z = dim, <Y>) 6,2, (X)],
p=0 gzoPta+ Since [y, Qo (Y)] = 1,Q, (Y) = {0} forg > 1,and K, (Y) = 1, we
. obtain, fory =4 or 5,
which was to be proven. ]
4 4 1 1
K@ =1-GEbam)=1-(3-3+1) =13
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5.8 Strongly Regular Digraphs
Recall that a graph is called regular if deg (x) is constant.

Definition. We say that a digraph G is strongly regular if the
function x — [x,€,] is constant for any p (in particular, G is
regular because deg (x) = [x, Q] is constant).

For a strongly regular digraph G the function x — K is
constant, and we set

K(G):=K,=

Recall the definition of m-suspension sus,,G: it is obtained
by adding to G new m vertices {y1, ...,y } and all arrows x —
vi Vx € G.

In other words, sus,;G = G *Y where

Y= {)’17~--7ym}-

Theorem 5.41. Let G be a strongly regular digraph, such that
for some k,m € N and any p > 0

(binom (k,m)) dimQ,(G) = ( k l)ml’“.

p+

Then sus,, G is strongly regular, and for all p > 0

k+1
(binom (k+ 1,m)) dimQ,, (sus,,G) = ( * )m”“.

p+1

Proof. We have
. k
|X| =dimQp (X) = ) n=kn.

Since for any x € X

2 6 Qp (X)) = [1,Q, (X)] = (p+ 1) dimQ, (X),

xeX

it follows that

0.Q, (X)] = (p+1)dimQ, (X) p+1 ( k 1)””1

1X| kn \p+
_ (k— 1>n”‘
p
Since dimQ (Y) = n and Q, (Y') = {0} for all ¢ > 1, we obtain
from (5.124) that, for r > 1,

b6, Q2 (2)] = [, Q- (X)] + 1 [x, Q1 (X))

k—1 k—1 k
(el O
r r—1 r
In the same way, forany y € Y and r > 1,

Q@] =0 )]+ T 0 (V)] dim@, (X)
T

— dimQ, ; (X) = <k> "

r

It follows that, for all z € Z,

2,9, (2)] = (") .

Consequently, we have

dimQ, () = 2|z, (2)] _ X[+ (k)n,: kn+n <k>nr

r+1 r+1 \r r+1 \r

_ (k+1>nr+1.
r+1

Finally, for r = 0 we obtain

. k+1Y o4
dimQq (Z2) =k =(k+1)n= +h
imQy(Z)=kn+n=(k+1)n (0+1)n

5.9 Digraphs of Constant Curvature
For the digraph G as in Theorem 5.41 we have

x(G)—Z(l)”dime—ki(l)/’( k )m,,H

p>0 p=0 p+1
N (N = 11
=3 (5)m =1-a-m.

It follows that

26) _ 2(G) _1-(1-m

k)= V|~ dimQy  km

Of course, the same formula is true for K (sus,,G) with k replaced
by k+1:
1— (1 _ m)kJrl

(k+1)m
Example 5.42. We have seen that a triangle (= 2-simplex) is
strongly regular and

K(sus;,,G) =

dimQy =3, dimQ; =3, dimQ, =1, dimQ, =0 for p >3

that is, the sequence {dimQP}pzo is the sequence ( pi]) that
satisfies (binom(3,1)). The 1-suspension of an n-simplex is an
(n+ 1)-simplex. Hence, we obtain by induction that the n-simplex
is strongly regular and satisfies (binom (rn+ 1, 1)). In particular,

1
K (n—simplex) = PERE
n
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For any m € N denote by D,, a digraph with m vertices and
no arrows. Then

1
dimQo (D) =m = Pl forp=0
imQo (D) =m <p+1)m or p ,

1

dimQ, (D,,) =0=
1m p( m) (P+1

)mPH forp >1,

so that (binom(1,m)) is satisfied. Clearly, D,, is strongly regular.
For any k € N define digraph D;* as the k-th join power of

D,,, that is,

*1
D, =Dy,
and
*(k+1) *k *k
m =D, * Dy, = sus, D, .

Here are digraphs D!, D:2, D3, Di:

.m Where the index m repeats k times, that can also
be denoted by ?mmm
Using Theorem 5.41, by obtain by induction that D¥ is

strongly regular and satisfies (binom (k,m)).
Hence, D;¥ has a constant curvature

1—(1—m)*

(5.127) =

K(D)) =
One can show that the only non-trivial Betti number of D;¥ is
Bi_1 = (m—1)* (see [7]).

Example 5.43. For m = 1 we have by (5.127)

a1
KD = o

Clearly, D} is a (k— 1)-simplex:

Example 5.44. For m = 2 we have by (5.127)

0 2 0 2

(k+1)

We can regard D; as a digraph analogue of a k-sphere S

because D;(kﬂ) is obtained from Dzk by 2-suspension, similarly

to how S¥ is obtained from S¥~!. Besides, the only non-trivial
Betti number of D;(kﬂ) is Bx = 1 like the Betti numbers for S.
Here is D§3, that is an octahedron, based on a diamond:

4

5

It is an analogue of 2-sphere; it has constant curvature %

D3 is an analogue of 3-sphere; it has constant curvature 0.
Example 5.45. For m = 3 we have by (5.127)

1—(=2)% 1 — 0k
k(D) = (—2) {1 2k keven,

3k 3k )| 1425 kodd.

Here is Dg‘z that is a directed version of K3 3:

3 4 5

0 1 2

We have K(D3?) = —1 and K(D}*) = 1.

5.10 Cartesian Product and Curvature

Recall that a Cartesian product XY of two digraphs was
defined in Subsection 3.2.

Theorem 5.46. Let X be any digraph with a finite chain sequence
{Qp} and Y be a cyclic digraph {0 -1 —2— ... = 0} of at
least 3 vertices. Then, with respect to the natural inner product
(+,+), we have

K. (XOY)=0 foranyze XOWY.

In particular, we have K(T™") = 0. Recall that in Exam-
ple 5.20 we have computed directly that K(752) = 0.

Proof. LetY = (V,E). Then

Qo(Y)=(e,:acV), QY)={ew:abeE},

0, keven Q, (Y)={0} for p > 2.
K D*k — ) ) ‘D
(D) { L kodd.
‘We have
For example, D?? is a diamond: that is an analogue of 1-sphere. [x, Q]
p *22 B g P K(X) = z (—1)P pl
We have K(D3*) =0. =0 p+1
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Denote by 55, (X) an orthogonal basis in Q, (X) so that Note that

> [x,w] [x,€ip.i))s y=a

weB, (X Ha)H [(,) € (i0a) (i,a)...(iku>(ikb)....(ip,lb)] = [x’eik-~~ip—l]7. y=>b
0, otherwise.

[x7 QP] =

We have by Theorem 3.5
Considering all arrows ab € E, there is exactly one a =y and

B,(Z) = {u X eq, VX eqy 1U€B,(X), vEB,1(X), exactly one b =y. It follows that

acV,abeE;.
} 2 [(x,) 1€ (iga) (ila)...(ika)(ikb)..“(ip,lb)] =[x, €ig...ip] + [x: €y iy ]

beE
This basis is orthogonal due to the identity ¢ i 41
=% eiou.ip,] {x=ir}

(5.128)  (uxou xo'),= <p+q) () (0,0"),, and
p
p—1
where u € Q, (X), ' € Q,y (X), ® € Q;(Y), @' € Qy (Y) (see Y (2, €iy...i, 1 X €an] = S (%, €ig.oiy ]+ Lmiyy)
[29, Lemma 4.13]). abeE k=0
Hence, we have =(p+1)x, €i0...i,,,1]-
(2,Q,(2)] = M + 2 [Z’Le“bl_ We obtain that
w0 lexeall® s ) v < ea|
aeV abeE 2 2,0 X €] = 2 2 pio--ip-1) Z €iy.iy X €qp)
Let 2 oo that abeE ig...ip abeE
et u =Y u"0 e ; sotha o
0--Ip — (er 1) z (melpil)2[x7€i0“.ip,1}
uxe; = Z uiO---iPeiomip X €q. 0t
ig..ip = (p+ 1) [X, V] :
We have for z = (x,y) Since
2
[z €ig..ip X €al = [(%,) € (iga)(i1a)....(ipa) ) = X €io.ip ) 54, Cig..ip_1 X €ab|| =P
whence we have
Y [z€ig.iy X €a) = [, €iq..., ). v ew? = S (Vo) p=p IvlI%,
acV ig--ip
It follows that
whence
z X e = Z 2 o)z e iy X €d] [z,v X egp] _prtl [x, V]
v “Viodp e vxean|® PP
=3 Y () [z, €., X €d]
ig.ip acV o and
_ i0-+ip )2 x,ei, i, = [x,u]. [Z,VX e b] p+1
%p( )% €ig.ip ) = [xou] > at] _ 6.0y 1 ().
veB, 1y (x)abek |1V X €ap||
. | _ )
Since also ||u X e,4|| = ||u||, we obtain We obtain
[z,u X e4] [x,u] +1
DD M e A lD Wl S LA AL IR Q,(2)] =[x, Q, (X)) + = [, 9,1 (X
b dt luxeal ey lul €2 (2] = e, 2y (OI+72  Rpt (O]
Now let us handle the term [z,vXey). Let v = whence it follows that
Zlo iV dp— lejp.. iy SO that Q. (7
’ K—1= Y (-1 22 1(1 )
VXeg = 2 vl’0~~»l'p—le[.0mip71 X eup- p=1 p
Q, 1 (X
ig---ip _z Jrz 1)px p—1(X)]
We have p>1 p>1 p
= (Kx_l)_KX:_17
= 1—k
o — 1yl
€iy...ip_1 X €ab = sz)( 1) €(ipa) (i1a) ...(ixa) (ixh) ... (ip—1b) * that is, K, = 0. 0
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5.11 Some Problems

Problem 5.47. How to compute K (XY for general digraphs
X,r?

Problem 5.48. Is |Q;| = 25 true for an icosahedron (see Exam-
ple 5.19) with any numbering of the vertices?

Problem 5.49. Let a digraph G be determined by a triangulation
of S? (see Subsection 1.10). Assume that deg (x) < 4 forall x € G.
Is it true that K, > 0 for all x € G?

We have verified above that K, > 0 for the following tri-
angulations of S?: simplex, bipyramid, octahedron, but with
specific orientations of edges (the question remains open when
the numbering of vertices is arbitrary). All these digraphs have
deg (x) < 4. We have seen that K, < 0 can occur for icosahedron
with deg (x) = 5 and for a pyramid with deg (x) = 7.

Problem 5.50. Denote D = max,e deg (x). Is it true that |K,| <

Cp for some constant Cp depending only on D? What about upper
bounds for |K)£2)| and \K)@ |?

Note that K, can be take arbitrarily large positive and nega-
tive values. For example, for a strongly regular digraph satisfying
(binom (k,m)), we have

1—(1—m)

K=—
X km k)

while D = 2(51?& = (k—1)m. In this case one can verify that

‘Kx| < 03D

Problem 5.51. What can be said about the curvature of random
digraphs?

Problem 5.52. Let S be a simplicial complex and G s be its Hasse
diagram (see Subsection 1.9). Is there any relation of K, (Gs) to
properties of S? For example, we have

Kioral (GS) =X (GS) = Xsimp (S) :

Can one give an explicit formula for computing K (Gs) for any
simplex o0 € §?

6. Hodge Laplacian on Digraphs

In this section K = R. Let us fix an arbitrary inner product
(-,-) in each of the spaces R, so that we have an inner product
also in all Q,,. In all examples we use the natural inner product.

6.1 Definition and Spectral Properties of A,

For the operator d : Q, — Q,_1, consider the adjoint opera-
tor 9% : Q,_1 — Q,. By the definition of an adjoint operator, we
have

(Qu,v) = (u,0"v) foralluecQ,andveQ,_;.

Definition. Define the Hodge-Laplace operator Ap, : Q, — Q,
by

(6.129) Apu=09"du+dd*u.

The pairs d*, d and d, d* appearing in (6.129) are the
following operators:

d d
Qp_l :Qp and Qp :QP_H.
a* a*
Proposition 6.1. The operator A, is self-adjoint and non-

negative definite.

Proof. We have for all u,v € Q,

(Apu,v) = (9" 9u+ 99 u,v) = (du,0v) + (9*u,d"v) = (u,A,v)
so that A,, is self-adjoint, and

(6.130) (Apu,u) = || Qul* + |9 ul|* > 0,

so that A, > 0. O

Hence, the spectrum of A, is real, non-negative and consists
of a finite sequence of eigenvalues.

Proposition 6.2. Denote D = max;cy deg (i). If (-,-) is the natu-
ral inner product then specAg C [0,2D].

Proof. By the variational principle, it suffices to prove that for
all u € Qo
{Aou, u)
2 i
[Jul

Since du = 0, we have by (6.130)

(Aou,u) = [|0"ul|?
Since for any i — j
(9*u,eij) = (u,deij) = (u,ej—e;) = w —
it follows that

l9%ull® = ¥ (0 —u')* <23 ()* +2 3 (u')?

i—j i—j i—j
(6.131) =2Y deg(i)(u')* < 2D [lul*,
i
whence the claim follows. O

The bottom eigenvalue of A is always 0 because if all u* = 1
then by (6.131) d*u = 0 and, hence, Agu = dd*u=0.If G a
complete bipartite graph Kp p, then G is D-regular and 2D is the
top eigenvalue of Ay.

For a general p, the multiplicity of 0 as an eigenvalue of
A, is equal to the Betti number B, as we will see below in
Corollary 6.7.

Problem 6.3. Find reasonable upper bounds for specA,. The
question amounts to obtaining an upper bound for the Rayleigh
quotient for non-zero u € £,:

|9ull” + 9"

<?
] -

Problem 6.4. Find estimates of the eigenvalues of A, in terms of
geometric and combinatorial properties of G.
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6.2 Harmonic Paths
A path u € Q, is called harmonic if Ayu = 0.

Lemma 6.5 ([23, Lemma 3.2]). A path u € Q,, is harmonic if
and only if du =0 and d*u = 0.

Proof. Indeed, if du =0 and d*u = 0 then by (6.129) we have
Apu = 0. Conversely, if A,u = 0 then we obtain by (6.130) that

2 * 112
[Qull™+ 0" ul|” = (Apu,u) =0,

whence ||du|| = ||d*ul| = 0. O

Denote by #,, the set of all harmonic paths in Q,, so that
‘Hp is a subspace of €2,.

Theorem 6.6 (Hodge decomposition [23, Lemma 3.3]). The
space £, is an orthogonal sum.:

Q,=9Q,.1PIQ 1 PH,.

Proof. Ifu e dQ, 1 andv € 0*Q,_; thenu = du’ and v = 0"V,
and we have

(6.132)

(u,v) = {(Ju',0™V) = <82u’,\/> =0,

so that the subspaces d€2,,,1 and d*Q,_; are orthogonal.

’l)’.."' a Ao T i S .u/
ue )

Qp- 1 Qp Qp+ 1

Denote by K the orthogonal complement of dQ,1 @ 9d*Q,_; in
€2,,. Then we have

weK e (wu)=0Vue€dQ,r and (w,v) =0¥v€d*Q,_q,
that is,

weEK S (wod)=0Vu' €Qpiy and (w,0"V) =0 €Q,_,
S ('wu') =0V € Qppy and (dw,V) =0V € Q)
< d*'w=0 and dw=0
S weH,.
Hence, K = H, which finishes the proof. O
Corollary 6.7 ([23, Corollary 3.4]). There is a natural linear
isomorphism
(6.133) H,=H,.
In particular, dimH, = B,; that is, the multiplicity of 0 as an
eigenvalue of A, is equal to the Betti number 3.
Proof. Observe that Z), := ker8|gp is the orthogonal comple-
ment of 0*Q,,_; in Q,, because, for any u € Q,,,
UEZ, & du=0& (du,v) =0¥WweQ,
- (u78*v> =0We QP*1 = uJ_a*prl.

Since by (6.132)

Q,=0Q,  PH,P Qi

we obtain
(6.134) Z,=(0"Qp_1)" = 9Q,1 P H,
whence H), = Z,/0Q,1 = H). O

Remark 6.8. It follows from this argument that #, is an or-
thogonal complement of B), in Z,, and that any homology class
€ H), has aunique harmonic representative u € . In addition,
u minimizes the norm ||-|| among all representatives of @.

6.3 Matrix of A,

Let {o;} be an orthonormal basis in €p, {B,} be an or-
thonormal basis in Q,_; and {y,} be an orthonormal basis in

Qp+1 .
2" 2"
prl = QP = QP+1
a .
{Bm} {04} {wm}

The operator d : Q, — Q,,_| has in the bases {c;} and {3, } the
matrix representation

(6.135) B= (<ﬁM7aai>)m,i ’

where m is the row index and i is the column index.
Similarly, the operator 9* : €, — €, ;| has the matrix rep-
resentation

(6.136) C= ((%Iva*ai»n,i = (<ayﬂ’ai>)n,i ’

where n is the row index and i is the column index. Since A, =
0*d + (9*)" 9*, we obtain the matrix representation of A, in the
basis {0;}:

(6.137) matrix of A, = BTB+CTC.

More explicitly, the (i, j)-entry of the matrix of A, in the basis
{0} is given by
(6.138)
<Apaia 05/> = z <aOC,',ﬁm> <aajvﬁm> +z <ai7a')/n> <a_ivaYn> P
n

m
where i is the row index and j is the column index.

Example 6.9. RecallthatQ_; ={0},Qp={e;: i€ V}andQ, =
(exs : k — I). Assuming that (-, -) is the natural inner product, we
obtain by (6.138) that the matrix of Ag is

(Aoeisejy =Y (e, dex) (ej,de)
k—1

= (eier—ex) (ej e —ex)

k—1

= > (8u—8x) (81— i)
k—l

= 28+ X 8~ Ly — 1y
k—i i—l
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= deg(i)6;; — L — 15
If G has no double arrow then
the matrix of Ag = diag (deg (i)) — 14wy,

where 1(; ;y is the adjacency matrix of G. Hence, in this case Ag
is the usual unnormalized Laplacian (= Kirchhoff operator) on
functions on V. Consequently, we have

(6.139) traceAg = Y. deg (i) = 2|E|.
i€V

6.4 Examples of Computation of the Matrix of A;

In this section, we denote by V and E respectively the num-
bers of vertices and arrows of the digraph in question.

Let us compute A; for the natural inner product. We use the
orthonormal bases {e,,} in Qo and {e;; :i — j} in Q;. Let {1}
be an orthonormal basis in Q5.

The matrix of A; has dimensions £ X E and, by (6.138), its
entries are
(6.140)

(Areij,ery) = Y (0eij,em) ey em) + D leijs O) (eijr, I)

m n

for all arrows i — j and i — j'.
For the first sum in (6.140) we have

Z <8€l~j7em> <8e,~/j/7em> = Z<ej — ei,em> <ejr — ei/7em>
= 2(6]m - aim) (6j’m - 6i’m)
= 5}]’ _51' i Sj[/ +5ii/ = I:l_],l,j,} .

The values of [ij, i’ j'] are shown here:

Hence, in the case p = 1, we have
(6.141) B"B=(lij,ij]).

In particular, diagonal entries of BT B are equal to 2.

Example 6.10. Consider a 1-torus 7 ={0—1—2—0}. In
this case we have Q| = {eg1,e12,ex0) and

the matrix of Ay = B'B = ([ij, i'j'])

eo1 e €20
eor [01,01] [01,12] [01,20]
e [12,01] [12,12] [12,20]
e [20,01] [20,12] [20,20]

2 -1 -1
=1-1 2 -1
-1 -1 2

The eigenvalues of A; are (0,3,3).

Example 6.11. Consider a dodecahedron (as in Example 5.7):

We have V =20, E =30, Q;, = {0} and |H;| =11. In
particular, CTC =0 and, hence, A; = BTB.
The matrix of A; is shown here:

The eigenvalues of A; are:

(011, 25, 34, 54, (3£15).),

where the subscripts show multiplicity.

For a general digraph G with Q, # {0}, let us compute
the entry (e;;,0%,) of the matrix C assuming that %, = y is a
triangle or square (note that although Q, always has a basis of
triangles and squares, the squares in this basis do not have to be
orthogonal). If ¥ = e, is a triangle then we have

(eijsdY) = (eij,an + eoc — €ac) = [ij, 11,

where

1, ifije{ab,bc}
[ij,7]:=4 —1 ifij=ac
0, otherwise.

Ify= % is a (normalized) square then

1 1
<eijaay> = \ﬁ <eij: €ab + €bhc — Eqp/ 7eb’c> = ﬁ [ijaﬂ:
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where

1, ifije{ab,bc}
lij,y]=4¢ -1 ifije{ab bc}
0, otherwise.

Example 6.12. Let G be a triangle {0 — 1 — 2,0 — 2}. Then
Q; = (eo1,e12,€02) and

€01 €12 €02
T (T:: oot eo1 [01,01] [017 12} [01,20]
BB=([i7)=1,, [12,01] [12,12] [12,20]
eor [02,01] [02,12] [02,02]

2 -1 1
=|-1 2 1
1 1 2

The basis {7, } of Q, consists of a single triangle ¥ = e¢;2 so that

€01 el €02
C: :1 1 71,
(con o (2 o) = )

Hence,

matrix of Ay = BB+ CTC =

and the eigenvalues of A are (23, 4).

Example 6.14. Consider the following digraph:
0

4

Here V=5, E =6, |Q;| =2 and

Q) = (eo14 — €024, €014 — €034) -

. r 1 -1 However, this basis is not orthogonal.
cc=11 L =1y, Orthogonalization gives an orthonormal basis for €2;:
-1 -1 1
300 N = 1 (eo14 —€024) s
matrix of Ay =BTB+CTC=10 3 0 V2
1
003 »= % (€014 + €024 —2€034) .
Example 6.13. Let G be a square {0 —1—3,0 -2 — 3}. )
Then Q; = {eo1,€02,€13,€23) and Since
1
eol o e e on= 7 (eo1 +e14 —epx —e24),
eor [01,01] [01,02] [01,13] [01,23] |
B'B= ([ij,i'j'])= [ eox [02,01] [02,02] [02,13] [02,23] a7/2:%(601+604+€02+€24—2603—2634)7
ez [12,01] [13,02] [13,13] [13,23]
ex3 [23,01] [23,02] [23,13] [23,23] we obtain
2 1 -1 0
|2 0 C = ((eij»m))
o2l eo1 el e eu e e
0o -1 1 2 _1a 11 1 1 0 0
=" 2 v ~»2 v
PIVAR S N G - R
The basis {y,} of Q) consists of a single square y = Ve Ve Ve 6 Ve oo Ve
L (€013 — epp3) so that L L L L o0 0
V6 V6 V6 V6 V6 Ve
Co 1 < eol en e 623)
V2 \r 0Lyl (02,7 (13,9 [23.%] and
1
= (1 -1 1 _1), 2 2 _1 _1 _1 _1
V2 A R S B
-1 1 -l S 2 2 1
Y I R S b B T B B
L S S S B RSP
-1 1 -1 1 S S S B B
3 3 3 303 3
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Now we compute B” B:

matrix of A; = B"B+CTC

s .
2 -1 1 0 1 0 1 I -1 -1 0 0 0 0
-1 2 0 1 o0 1 - -7 1 00 0 o0
1 1 1 7
1 0 2 -1 1 0 |2 =2 2 2z 0 0 00
T -
B'B=([eijerj]) = 0 1 -1 2 o 1| 0O 0 0 0 4 0 0 1
1 0 L0 2 1 0 0 0 0 0 4 1 0
0 0 0 0 0O 1 4 0
0 1 0 -1 2 0 0 o0 0 1 0 0 4
whence
The eigenvalues of A; are (3s, 53).
. T T
matrix of Ay =B"B+C'C Example 6.16. Let G be an (n — 1)-simplex, that is, the vertices
8 12 12 1 _
8 1z 1z 1 are {0,1,...,n—1} and
_1 8 _1 2z _1 2
P T S TP S L= jei<].
—_| 3 33 303 3
I 2 _1 8 _1 2
23 3 il 23 50008 3 Let us show that
3 3 3 3 3 3
12 12 18 . )
3 3 73 3 73 3 A := matrix of A} = diag (n).
The eigenvalues of A; are (24,3,5). Let ij and i j/ be two arrows. Then the (ij,i’j')-entry of A is
Example 6.15. Consider the following pyramid: T T
Aijij = (B B) iji + (C C) ijil
4
(6.142) = [0, 0 7]+ 2 lid w) [ %)
n
o where {7, } is an orthonormal basis of Q,, which we may take to
R consist of all triangles in G.
, If ij = i'j then [ij,i’j'] = 2. Since the arrow ij belongs to
(n—2) triangles ,, we obtain
For this digraph V =5, E =8, || =5, and
Aijij=2+(1n=2)=n,
Qo = (€014, €004, €134, €234, €013 — €023) -
that is, all the diagonal entries of A are equal to n. It remains to
We have then show that if ij # i'j’ then
Tp_ P
B'B = ([ij.1]]) (6.143) Ajij=0.
€01 €02 €13 €23 €04 €4 €24 €34
e 2 1 -1 0 1 -1 0 0 If ij and i’ j/ have no common vertex then they cannot belong to
en 1 2 0o -1 1 0 -1 0 the same triangle ¥, and, hence, all the terms in (6.142) vanish.
ey -1 0 2 1 0 1 0 -l Suppose i =i and j' # j:
=les 0 -1 1 2 0o o 1 -—1],
eo4 1 1 0 0 2 1 1 1 /.j
ey —1 1 0 1 2 1 1 i_i® — .j’
e4 0O -1 0 1 1 1 2 1
ey, O 0 -1 -1 1 1 1 2 g o o .
Then [ij,i'j'] = 1 while [ij,%][/'j',7n] is nonzero only when
er e €13 €3 e el eu e Yn is the triangle formed by i, j,j’. In this case the arrows ij
co14 1 0 0 o -1 1 0 0 and i'j’ have opposite orientations with respect to 7,, whence
c= cozs 0 ! o 0l b0 [ij, ] [i'j, 1) = —1 and (6.143) follows.
€13 0 0 1 0 0 -1 0 1 S I iandi £ i
er 0 0 0 | 0 o -1 1 uppose j' =iandi # j:
75 (eo13 —e3) % -5 % *ﬁ o 0 o0 o0 /.j
% _3% % _% -1 1 0 0 j’:i' $— o‘ll
*1% g ;3 L0 10
1
22 T2 o -1 0 1 Then [ij,j'] = —1 while [ij, }] [{'j’, ] is nonzero only when 7,
c’'c= _? 7] T2 g (2) 01 _i (l) , is the triangle i'ij. In this case the arrows ij and i'j’ have the
L0 1 0 12 o0 same orientation with respect to ¥,, whence [ij, %[/, m] =1
0 1 0 -1 -1 o 2 —1 and again (6.143) follows.
0 0 1 1 0 —1 -1 2 The cases j =i’ and j = j’ are similar.
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Problem 6.17. Describe all the digraphs for which Ay has only
one eigenvalue.

Problem 6.18. Devise a program for computing the matrix and
spectrum of A1 for large digraphs.

6.5 Trace of A
Recall that by (6.139)

trace Ag = 2 deg (i)
2%
where E denotes the number of arrows. Here is a similar result
for the trace of A;.

Theorem 6.19. Let T be the number of triangles in €, S be
the number of linearly independent squares in £, and D be the
number of double arrows a = b. Then

(6.144) traceA; =2E +3T +2S+4D.

By a square here we mean an allowed 2-path e, — e
such that a # c and a /4 c.

For example, for the pyramid from Example 6.15 we have
E=8,T=4,5§=1and D =0, whence

traceA; =2-8+3-4+42-1 =130,
which matches the sum of the eigenvalues as well as the sum of
the diagonal values of the matrix of A; as determined there.

Proof. Let {y,} be an orthogonal basis for €2,. Let us first prove
that

||<9Yn||2
17117

(6.145) traceA; = 2E + Z

By (6.137), trace A; = trace B’ B + traceCT C. As we have seen
above (see (6.141)), all the diagonal entries of BTB are equal to
2 so that

trace BT B = 2E.

Let us compute trace C* C. Without loss of generality assume that
the basis {};} is orthonormal basis. Let {c;} be the sequence of
all arrows. Since {0;} is an orthonormal basis for Q;, we have
by (6.136)

= (<a}/ﬂ7 ai>)n,i
and, hence,

(€7C), =2 (0t 0n) (I, ).
n

It follows that

traceCTC = 22(8)/”,06,'>2 = zz s 0)°

i n n

leanll

whence (6.145) follows.
As we know, Q) has a basis {},} that consists of triangles,
squares and double arrows. The only non-orthogonal pairs in

this basis are pairs of squares containing the same elementary
2-path, like e pe — €4 and egpe — €47 Assume first that the
entire basis {7, } is orthogonal (which is equivalent to absence of
multisquares).

A double arrow a = b gives two elements of the basis {};, }:
eaba and epgp. If 1 = eqpq then

Iml? =1, 0% =epatew, llonml*=2

and

lowl? _
Inl?

The same is true for 7y, = epqp so that each double arrow con-
tributes 4 to the sum

o>
2,

(6.146)
FAl

If y, is a triangle e,p. then

Hyn”Z:lv a%t:ebcfeuc‘i"eabv \|3Yn\|2:37

whence

2
197l
5 =
17l
so that each triangle contributes 3 to the sum (6.146).

I

If v, is a square egp. — €4 then
2 _ _ 2 _
HYnH =2, a'}/n = €ab + €phc —€upy — €/, H(;}/nH =4,

so that

lonl® _
I1?
so that each square contributes 2 to the sum (6.146). Hence,
we obtain that the sum (6.146) is equal to 3T + 25 + 4D, which
proves (6.144) in this case.
In the general case G may contain multisquares. Assume
that G contains the following m-square

)

a, {bk}km:O » €

which gives rise to m linearly independent squares:

(6 14‘7) €abgc — €abycy €abc — €abycs -5 €abc — €abyc -

The sequence (6.147) is not orthogonal, and its orthogonalization
gives the following sequence:

W1 = €abyc — €abic

W = Capyc + €abc — zeabgc
Wy = €abyc +...+ €aby_1c — keabkc

WO = €apge - T €ab,,_1c —Meap,,c
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(cf. Example 5.16). We have

90 = (€any + epgc) + -+ (ea, + b 1c) =k (ean, + en,e)
|dwe|)* = 2k+ 2K, |lox|* = k+K?,

whence

Hence, each wy contributes 2 to the sum (6.146), which completes
the proof. O

Since the sum of all eigenvalues is trace A; and the eigen-
value 0 has the multiplicity §;, we obtain that the average of the
positive eigenvalues is

trace A;

laverage = m

6.6 An Upper Bound on A, (A;)

Denote by Amax (A) the maximal eigenvalue of a symmetric
operator A. Recall that, by Proposition 6.2,

Amax (A0) < 2maxdeg (i).

For any arrow i — j in G denote by deg, (ij) the number of
triangles containing the arrow i — j, and by deg (i) the number
of squares containing i — j.

Theorem 6.20. Assume that there is an orthogonal basis {y,}
for Qj that consists of triangles and squares. Then
(6.148)

Amax (A1) < 2maxdeg (i) +3 maxdeg, (ij)+ 2maxdegp, (ij).

Proof. Recall that

2 %112
)
we\{0} \ [ul] [Jul
Since the operators d : Q; — Qg and 9* : Qy — Q are dual,
they have the same norm. The norm of the latter was estimated in
the proof of Proposition 6.2 (cf. (6.131)), whence we obtain the
same estimate for the norm of the former, that is, for any non-zero
uc Q] S

2
19u]| < 2maxdeg (i).
] iev

Let us prove that

(6.149)

9 ul)?
I M‘J < 3maxdeg, (ij) +2maxdeg (ij).
Jul i ”"

Letu= ZHj uijeij and, hence,

lull> = ¥ (u)?

i—j

Using the basis {},} in Q,, we obtain

. (9%u, 1)? (u, 07>
|07l =Y, = :
T Il ; 7l

If 7, is a triangle ey then ||| = 1,

(u,0%) = (u,epc — €ac +eap) = uP® — u® + Mah,

<u787n>2 <3 ((ubc)2 + (uac)z + (uab)Z) .

Summing up over all triangles 7, and using that any arrow i — j
occurs in deg, (i) triangles, we obtain
(u,0%)* . y
i <37 (u)? degy (i)
n:y, is a triangle Hyn H i—j
(6.150) < 3Ju]* maxdeg, (i) -
i—j

Let now 7, be a square e,p — ey (such that a /4 ¢). Then
Il =2,

/ /
(U, 0%) = (U, eap + €pe — eary + eye) = u +u" —u™ —u”*,

(M,a')/n>2 <4 ((uab)Z + (ubC)Z + (uab’)2+ (Mb/0)2) )

Summing up over all squares 7, and using that any arrow i — j
occurs in deg (i) squares, we obtain

u, 0%, i ..
WO < 2 3 () degi 1)
ny, is a square (b i—j
(6.151) < 2|Ju||* maxdegn (ij)
i—j
Adding up (6.150) and (6.151), we obtain (6.149). O

Problem 6.21. How sharp is the upper bound on Ayax (A1) in
(6.148)? Is it attained on some digraphs? Extend (6.148) to the
general case when a basis of triangles and squares requires or-
thogonalization.

6.7 Examples of Computations of specA

Example 6.22. Consider an octahedron based on a diamond:

4

5

For this digraph V =6, E = 12, |Q,| = 8. The space Q; is
generated by 8 triangles:

Q) = (€024, €025 , €034 ,€035 , €124 , €125 , €134, €135) -
Hence, T = 8, S = 0, and we obtain

trace A} = 2E + 3T =48.
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Since B = 0, it follows that

traceA; 48

Aaverage = m =n = 4.

The eigenvalues of A; are
(23,46, 63),

where the subscript denotes the multiplicity.

Example 6.23. Consider a prism as in Example 5.24:

0 T2
Since E =9, T =2, § =3, we have
traceA; =2E + 3T 4+ 25 =30

and
traceA; 30

A«avemge: E_ﬁl 9

The eigenvalues of A; are

(2,(3)2,33,4,52).

Example 6.24. Consider a 3-cube:

6 7

0 1

We have V=8, E =12, || =6, H, = {0} for p > 1.

Space €, is generated by 6 squares, so that
S=6 and T =0.
Hence, we obtain by (6.144)
traceA; =2E+25=2-12+2-6=36.

Since f; = 0, we obtain

A _ traceAy
average E _ ﬁl

In fact, the eigenvalues of A; on a 3-cube are

(267 327 437 6)

Example 6.25. Let G be the n-cube, that is,

G=0r"=00..01
———

n times

where I = {0 — 1} (see Subsection 3.4). Then
V=2" E=m"1 S=|Q|=2"3n(n-1)
and T = 0. Hence,
traceA; = 2E +25 =2"2n(n+3)

and

A _traceA; 2" 2n(n+3) n+3
average — E _ ﬂl - n2n71 —_— 2 .

For example, for the 4-cube we obtain

traceA; =22-4.7 = 112.
The eigenvalues of A; on the 4-cube are
(210, 33, 49, 64, 8).
For the 5-cube we obtain
traceA; =27 -5-8 = 320.
The eigenvalues of A; on the 5-cube are
(215, 320, 425, 54, 610, 85, 10).

Problem 6.26. Determine the full spectrum of Ay on the n-cube.
In particular, prove that

)lfmax =2n and Amin = 2,1(,12“) .

Prove that specA; consists of all even integers from 2 to 2n and
of all odd integers from 3 to n.

The difficulty here is that the method of separation of vari-
ables does not work for A; on Cartesian products.

Example 6.27. Consider the 2-torus G = TUT where T =
{0>1—-2-0}

Here V=9, E =18, || =9, |H;| = 2. Space Q; is gen-
erated by 9 squares, whence

traceA; =2-18+2-9 =54,
The eigenvalues of A; on the 2-torus are

(02, (3)4, 33, 64).
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For the 3-torus G = T3 we have
E=81, S=|Q|=81, |H|=3,
whence
traceA; =2-81+42-81 =324.
The eigenvalues of A; on the 3-torus are
(03, (3)12, 330, (3)16, 612, 98).

For the n-torus G = T™" we have

nin—1)
2

E=n3" S=|Q|= 3% |Hi|=n,

whence
traceA; =2E+2S=n(n+1)3"

and

n
3n—1°
Problem 6.28. Compute the full spectrum of Ay for the n-torus.

)Laverage - (n + 1)

In particular, prove that
Amax = (31)n -

In fact, Amin = 0,, which is a consequence of B = n.

Example 6.29. Consider a trapezohedron 7,, (see Subsection 2.1
and Proposition 2.1).
For example, 7 is shown here:

0

We have V = 2m+ 2, E = 4m, while Q, is generated by
S = 2m squares. It follows that on T;,

trace A = 2E +2S5 = 12m.

Since f3; = 0, we obtain

A _ traceAy  12m
average — E—ﬁl = am =J.

In the case m = 2 the eigenvalues of A; are as follows:

(2,35, 7+ 1V17),

where
7 1
),minzifi 17=1.438... and
7 1

In the case m = 3 the trapezohedron 73 coincides with a 3-cube,
and as was already shown above, the eigenvalues of A; are:

(26, 32,43, 6).

In the case m = 4 the characteristic polynomial of A is
(z—2)(z=3)* (z—=5) (2 =924 16) (% — 4z + %)2(12 —62+7)%,
and the eigenvalues of A are

{2,34,5, 3£ V17, 2£1V2),, 3£ V2)0},
with

1
Amin =2 — E\fz: 1.292... and

9 1
Amax = =+ =V 17=6.561....
2 2
In the case m = 5 the characteristic polynomial of A; is

(z—2)(z—3)*(z—6) (2 — 10z +20)(z* — Tz + 11)?
x (2 =5245)% (2 —4z+ )2,

and the eigenvalues of A; are
{2,(3)4,6,5£V5, (3£ 5V5)2, 3 £3V5)2, 2£5V5)},
where
Aonin :2—%\@20.881... and  Amax =5+V5=7.236....
In the case m = 6 the characteristic polynomial of Ay is
(z—2)%(z—3)"(z—4)*(z—7)(z— 8)(* — 32+ 3)*( — 62+6)?,
and the eigenvalues of A are
(25,37,42,7,8, (3 £5V3)2, 3£V3)2),

where

Amin = %— %\@:0.633... and  Amax = 8.
In the case m = 7 the characteristic polynomial of A; is

(z—2)(z—8) (2 —12z+28)(z* — 627 + 4z — 2 )?
x (2 — 1022 +312-29)*(2? =72 + Sz - 3)?
x (22 — 822+ 197 13)*.

It has eigenvalues 2 and 8, and all other eigenvalues are irrational.

Problem 6.30. Determine the full spectrum of Ay on the trape-
zohedron T,, for any m. In particular, what are Ay and Amax?

Example 6.31. Consider a rhombic dodecahedron as in Exam-
ple 5.25. The arrows go along edges from smaller numbers to
larger ones.
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Example 6.33. Consider the icosahedron as in Exam-
ples 1.16, 5.19.

Here V=14, E =24, 5 =12, T = 0. It follows that

traceA; =2E +25 =172,
traceA; 72
A‘average = m = ﬁ =3.

The characteristic polynomial of A; is We have here V = 12, E = 30, [Q,| = 25. The space
is generated by 20 triangles and 5 squares (cf. Example 5.19).
(=1 (-2 @-3)° (-4 (z-7) (> -7z +8)*, Hence, T =20, S = 5 and
and the eigenvalues of A| are traceA; = 2E + 3T + 28 = 130.
(13,23, 30, 42, 7, (%:ﬁ:@b) Since B; = 0, we have
. . trace Ay 130
Example 6.32. Consider a rhombicuboctahedron (see also Ex- Aaverage = E—B =30 = 4.333...
— P

amples 5.17 and 5.28).
Computation shows that

Amin = 0.810... and Amax = (5+V5)s.

Other multiple eigenvalues are 65 and (5 — v/5)3. The full spec-
trum of A; is shown here:

6.8 Eigenvalues of A; on Trapezohedron

Here we give a partial answer to Problem 6.30. Recall that
the trapezohedra T, were defined in Subsection 2.1.

Proposition 6.34. For any m > 2, the operator A on the trape-

Here V = 24, E = 48, |Q,| = 26. Q, is generated by 8 zohedron Ty, has eigenvalues A =2 and A =m+1.

triangles and 18 squares so that T = 8, S = 18. Hence, we obtain Proof. The vertices of T, will be denoted as here:
trace Ay = 2E + 3T +2S = 156.

Since fB; = 0, we have

trace A 156
/Iavemge = E—iﬁll = R =3.25.

A computation of the eigenvalues of A gives

ﬂmin:O.Slg... and Z'max:72-

There are many multiple eigenvalues: 13, 23, 33, 44, 56, etc. The
full spectrum of A; is shown here: Consider the following 1-paths on 7,,:

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 y = eiojl —+ eiljz + ...+ eim—ljo — (eioj() +eilj1 +...+ eim—ljm—l)
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m—1

= 2 (eik—ljk - eikjk)7
k=0
where the index k is regarded modm, and
U= €qiy + €aiy + .-+ €ai, , — (ejob teppt +ejm—lb)
m—1
= z (€ai, —€jih)-
k=0
The 1-paths u and v are obviously allowed and, hence,
d-invariant. We will prove that
Aiv=2yv and Aju=(m+1)u,

which will settle the claim. We have clearly

m—1
dv = Z (ejk i T i Jreik) =0,
k=0

and, hence, 0*dv = 0.
In order to compute 9*v € €, we use the following orthog-
onal basis in Q; that consists of all 2m squares in Tj,,:

P = Caipyji — Caiji AN Wi = iy jyb — €igji by
where k =0,...,m— 1 (cf. Proposition 2.1). We have for any &

(v, ) = (v, d ) = <V7 Ciy_yji T Caip_y — Ciyji _e“ik> =2,
(v yi) = (v, dy) = <V7 bt Ciji b~ eik.7k+1> =-2

which together with ||y ||* = || yx||* = 2 implies that

m—1
v = Z (o — i)
k=0
Hence, we obtain
m—1
Ay =00% = 2 (8<pk - 8wk)
k=0

m—1
= 2 (€ip_yjx + €aix_, — €iji — €air)
k=0
—

- (ejkb t€igji — €jrarb ~ Cigjir )
k=

m
=2 (eik—ljk - eikjk) =2v.
k:

|
= o

Il
=}

Next, let us compute d*u. We have for any k,

(0" u, ) = (u,dy) = <u7eik—ljk t€aip_y — Cipjp — eaik> =0,
<8*u, Wk) = <M>BWI€> = <M7ejkb +ei1<jk — € b eikjk+1> = O’

whence 0*u = 0 and, hence, d9*u = 0. It remains to compute
0*du. We have

For any 0-path ¢; and any 1-path e,3 we have
<a*€,’,e‘aﬁ> = <€[,a€aﬁ> = <€,’,€B —€a> = 5iﬁ - 5,'a

whence

9*61‘ = 2 (5,[3 —5,@) eaﬁ = 2 Coi — 2 e,-ﬁ.

oa—p o—i i—B

It follows that

*
J iy = Caip — Cipjy — Cigjrsr>
J Cjx = Cix_yji T Cigji — b

m—1 m—1
* *
d €q = — zeaik7 dJ €p = zejkba
k=0

k=0
whence
m—1
Aju=0"du= z (eaik ~ Cipji ~ Cigjpgr T Ci_ g T iy — e.ikb)
k=0
m—1
+m Z (€aiy — €jub)
k=0
m—1
=(m+1) Z (€aiy —ejp) = (m+1)u,
k=0
which finishes the proof. O

6.9 Spectrum of A, on Join
In this section we use the augmented chain complex (3.46):

GIDK & 0 &0 & .. 8o, Lo, L.

Denote by A » the Hodge Laplacian associated with this complex.
Of course, Z,, coincides with A, for p > 1 but is different for
p=—land p=0.

For example, we have for the chain complex (6.152)

(0%e,ei) = (e,de;) = (e,e) =1

so that

8*e,-20':: Zek

kev

whence
A_je=09d"¢=0dc=|V]e.
In particular,
specA_; = {|V|}.

In the case p = 0 we have

Zoe,- =0%de; +dde; = 0" e+ Age; = Age; + O,

m—1 m—1 that is,
Ju = gb(eik —ea—epte;) = gb(% +ej) —mleatep). (Boe)! = (Agei)’ +1.
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Therefore, the matrix of Zo is obtained from the matrix of Ay by
adding 1 to each entry. For any u € Qo we have

Zou = Aogu+ <Z uk> o.

keVv

The advantage of using the chain complex (6.152) lies in the
following statements.

Lemma 6.35 ([23, Lemma 5.5]). Let X,Y be two digraphs. Then,
forueQ,(X),veQ,(Y)andr=p+q+1, we have

(6.153) A (usv) = (Apit) % v+ uxAgv.

Theorem 6.36. Let XY be two digraphs. We have for any r > 0
(6.154)

specA, (X xY) = |_|

(spec Zp (X) + spec Zq (Y)) .
{p.q=—1:p+q=r—1}

Here we denote by spec A a sequence of all the eigenvalues of
the operator A counted with multiplicities. The sum of two such
sequences consists of all pairwise sums of the elements of the
sequences, and the disjoint union of sequences means the union
of all sequences, summing up the multiplicities. In particular, if
one of the sequences is empty then its sum with another sequence
is also empty.

Proof of Theorem 6.36. Observe that if u € Q,(X) and v €
Q, (Y) are eigenvectors such that

Z,,u =Au and qu = Wy,

then we have by (6.153) for r = p+¢g+ 1:

A (uxv)= (Zpu)*eru*qu: A+p) (uxv),

that is, u v is an eigenvector of Zr on X xY with the eigenvalue
A+ u.

In each Q, (X) there is a basis that consists of eigenvectors
of Zp; denote by {u;} the union of all such bases of Q,(X)
across all p > —1, with the corresponding eigenvalues {A; }. Let
{v;} be a similar sequence on Y with the eigenvalues {u;}. By
Theorem 3.12, we have, for any r > —1,

Q (X *Y) = b

{pg=—1:p+q=r—1}

(€ (X)@Qy (Y)),

that is, Q, (X xY) has a basis
{ug vy < |+ vy =r—1}.

The elements of this basis are the eigenvectors of Zr on X xY
with eigenvalues A + 1;, whence (6.154) follows. O

In particular, for » = 0 we have
specAg (X #Y) = (specz_l (X) + specAg (Y))
L (speclo X)+ specA_; (Y))

= ({11} +specBo (1))

(6.155) U (specdo (X) +{Y1})

and forr =1
specAp (X #Y) = (specz_l (X) 4 specA; (Y))
L (specgl (X) +specA_; (Y))
L (spec&) (X) + specAg (Y)) .
Since Zl = A1, we conclude that
specAp (X #Y) = ({|X[} +specA; (V)
U (specAs (X) +{[Y[})

(6.156) L (spec&) (X) + specAg (Y)) .

6.10 Spectrum of A; on Digraph Spheres

Consider a family {S"}"_, of digraphs that is defined induc-
tively as follows: S = {-,-} and

S = sus, S™.

For example, S ' js a diamond and $? the octahedron (see also
Example 3.10):

%)

0 2

S1 is a diamond
S2 is an octahedron

The digraph S” can be regarded as an analogue of an n-sphere.
In the notation of Subsection 5.9, we have §" = D;("H).

Proposition 6.37. We have for alln > 0
(6.157)

specai (8") = {2(n= 1oy , (2agui)s 201+ 1o |-
Example 6.38. For example, we have
spec A (S') = {0,2,,4}
and
specA(S%) = {23,45, 63}
as we have seen above. For n = 3 we obtain from (6.157)
spec A1 (S?) = {4, 612, 86}
Proof of Proposition 6.37. Let us first prove by induction that

(6.158) specAo(S") = {(2n),,,,(2n+2),.}.
For n = 0 we have

specAg(S°) = {0,2}
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which verifies (6.158) for n = 0. For the induction step from n — 1
to n, let us observe that §” = §0 % $"~1, |SO| =2and |S”’1 | =2n,
so that we obtain by (6.155)

specBo(8") = ({]s°|} +specdo(s" 1))
u (specZO(SO) +{]s"']}
— ({2} + specBo(s"") ) U({0,2} + {2n})
= ({21 + specBo(s"") ) U ({20,214 2}).
By the induction hypothesis we have
(6.159) speco(S"") = {(2n-2),,(2n),},
whence

specAg(S") = {(2n),,(2n+2), } U {2n,2n+2}
= {(zn)n+l ’ (2n+2)n+l } ’

which was to be proved.
Let us prove (6.157). For n = 0 we have

specA;(80) =0,

which matches (6.157). For the induction step from n —1 to n,
we obtain by (6.156) and (6.159)

specA(8") = ({|S°|} +specAr (s"™1))
L (specAy(S%) +{|s" [ })
U (spec Ao(S°) + specAg (5" ))
= ({2} +specAi($" 1))
U ({0,2} +{(2n-2),,(2n),})
= ({2} +specA (s 1))
u{(2n-2),,(2n),,,(2n+2),}.

Using the induction hypothesis

specA(8"1) = {2(n*2)n<n2—1> » 201 = Dpurys> (21) won }
we obtain

specA;(S") = {Z(n— 1)@ s 2n)(a-1), 2(n+ 1)@}
I—I{Z(n_1)n7(2n)2n72(n+1)n7}

2
= {2(’1* 1)n<n2+1> s () n(nyr), 2(n+ 1)n<n2+1> }>

which finishes the proof. O
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