Advances in Path Homology Theory of Digraphs

by Alexander Grigor'yan*

Contents

Introduction61
1 Spaces of ∂-Invariant Paths 62
1.1 Paths and the Boundary Operator 62
1.2 Chain Complex Ω 62
1.3 Path Homology 63
1.4 Digraph Morphisms 63
1.5 Examples of ∂-Invariant Paths 64
1.6 Examples of Spaces Ω_{p} and H_{p} 65
1.7 An Example of Computation of Ω_{p} and H_{p} 66
1.8 Structure of Ω_{2} 67
1.9 Path Complex 68
1.10 Triangulation as a Closed Path 69
1.11 Homological Dimension 71
2 Trapezohedra and Structure of Ω_{3} 72
2.1 Spaces Ω_{p} and H_{p} for Trapezohedron 72
2.2 A Cluster Basis in Ω_{p} 73
2.3 Structure of Ω_{3} 74
3 Künneth Formulas 78
3.1 Cross Product of Paths 78
3.2 Cartesian Product of Digraphs 78
3.3 Künneth Formula for Product 79
3.4 An Example: n-Cube 80
3.5 Augmented Chain Complex 81
3.6 A Join of Two Digraphs 82
3.7 Künneth Formula for Join 82
3.8 Linear Join 83
3.9 Subgraphs and Mayer-Vietoris Exact Sequence 84
4 Fixed Point Theorems for Digraph Maps 89
4.1 Lefschetz Number and a Fixed Point Theorem 89
4.2 Rank-Nullity Formulas for Trace 90
4.3 A Fixed Point Theorem in Terms of Homology 91

[^0]4.4 Examples 91
5 Combinatorial Curvature of Digraphs 94
5.1 Motivation 94
5.2 Curvature Operator 94
5.3 The Gauss-Bonnet Formula 95
5.4 Examples of Computation of Curvature 96
5.5 Computation of $\left[x, \Omega_{2}\right]$ 101
5.6 Curvature of n-Cube 104
5.7 Curvature of a Join 106
5.8 Strongly Regular Digraphs 108
5.9 Digraphs of Constant Curvature 108
5.10 Cartesian Product and Curvature 109
5.11 Some Problems 111
6 Hodge Laplacian on Digraphs 111
6.1 Definition and Spectral Properties of Δ_{p} 111
6.2 Harmonic Paths 112
6.3 Matrix of Δ_{p} 112
6.4 Examples of Computation of the Matrix of Δ_{1} 113
6.5 Trace of Δ_{1} 116
6.6 An Upper Bound on $\lambda_{\max }\left(\Delta_{1}\right)$ 117
6.7 Examples of Computations of $\operatorname{spec} \Delta_{1}$ 117
6.8 Eigenvalues of Δ_{1} on Trapezohedron 120
6.9 Spectrum of Δ_{p} on Join 121
6.10 Spectrum of Δ_{1} on Digraph Spheres 122
Acknowledgement 123
Copyright 123
References 123

Introduction

The purpose of this paper is to introduce a new emerging area of research - the theory of path homology on digraphs, that is also known as GLMY-homology.

There exists a number of ways to define the notion of homology for graphs and digraphs, for example, clique homology ([6], [33]) or singular homology ([3], [33], [37]). However, the path
homology has certain advantages as it enjoys adequate functorial properties with respect to graph-theoretical operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc. The notion of path homology has a rich mathematical content, and I hope that it will become a useful tool in various areas of pure and applied mathematics.

Sections 1 and 3 contain a survey of the results obtained in [18], [20], [22], [26], [29], [30], while the results of Sections $2,4,5$ and 6 are entirely new.

For further reading on this subject and related topics I recommend [1], [2], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [19], [21], [23], [24], [25], [27], [28], [31], [32], [35], [36].

1. Spaces of ∂-Invariant Paths

The material of this section is based on [20] and [22].

1.1 Paths and the Boundary Operator

Let V be a finite set whose elements will be called vertices. For any $p \geq 0$, an elementary p-path is any sequence i_{0}, \ldots, i_{p} of $p+1$ vertices of V (allowing repetitions). Fix a field \mathbb{K} and denote by $\Lambda_{p}=\Lambda_{p}(V, \mathbb{K})$ the \mathbb{K}-linear space that consists of all formal \mathbb{K}-linear combinations of elementary p-paths in V. Any element of Λ_{p} is called a p-path.

An elementary p-path i_{0}, \ldots, i_{p} as an element of Λ_{p} will be denoted by $e_{i_{0} \ldots i_{p}}$. For example, we have
$\Lambda_{0}=\left\langle e_{i}: i \in V\right\rangle, \quad \Lambda_{1}=\left\langle e_{i j}: i, j \in V\right\rangle, \quad \Lambda_{2}=\left\langle e_{i j k}: i, j, k \in V\right\rangle$
Any p-path u can be written in a form $u=$ $\sum_{i_{0}, i_{1}, \ldots, i_{p} \in V} u^{i_{0} i_{1} \ldots i_{p}} e_{i_{0} i_{1} \ldots i_{p}}$, where $u^{i_{0} i_{1} \ldots i_{p}} \in \mathbb{K}$.
Definition. Define for any $p \geq 1$ a linear boundary operator $\partial: \Lambda_{p} \rightarrow \Lambda_{p-1}$ by

$$
\begin{equation*}
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \hat{i_{q} \ldots i_{p}}}, \tag{1.1}
\end{equation*}
$$

where ${ }^{\wedge}$ means omission of the index. Set $\Lambda_{-1}=\{0\}$ and define $\partial: \Lambda_{0} \rightarrow \Delta_{-1}$ by $\partial=0$.

For example, $\partial e_{i}=0, \partial e_{i j}=e_{j}-e_{i}$ and $\partial e_{i j k}=e_{j k}-e_{i k}+$ $e_{i j}$.
Lemma 1.1 ([20], [22, Lemma 2.1]). We have $\partial^{2}=0$.
Proof. Indeed, for any $p \geq 2$ we have

$$
\begin{aligned}
\partial^{2} e_{i_{0} \ldots i_{p}}= & \sum_{q=0}^{p}(-1)^{q} \partial e_{i_{0} \ldots \widehat{i_{q} \ldots i_{p}}} \\
= & \sum_{q=0}^{p}(-1)^{q}\left(\sum_{r=0}^{q-1}(-1)^{r} e_{i_{0} \ldots \widehat{i_{r} \ldots \widehat{i_{q}} \ldots i_{p}}}\right. \\
& \left.+\sum_{r=q+1}^{p}(-1)^{r-1} e_{i_{0} \ldots \widehat{i_{q}} \ldots \widehat{i_{r} \ldots i_{p}}}\right) \\
= & \sum_{0 \leq r<q \leq p}(-1)^{q+r} e_{i_{0} \ldots \widehat{i_{r} \ldots} \hat{i_{q} \ldots i_{p}}}
\end{aligned}
$$

$$
-\sum_{0 \leq q<r \leq p}(-1)^{q+r} e_{i_{0} \ldots i_{q} \ldots \hat{i}_{r} \ldots i_{p}}
$$

After switching q and r in the last sum we see that the two sums cancel out, whence $\partial^{2} e_{i_{0} \ldots i_{p}}=0$. This implies $\partial^{2} u=0$ for all $u \in \Lambda_{p}$.

Hence, we obtain a chain complex $\Lambda_{*}(V)$:

$$
0 \leftarrow \Lambda_{0} \stackrel{\partial}{\leftarrow} \Lambda_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

Definition. An elementary p-path $e_{i_{0} \ldots i_{p}}$ is called regular if $i_{k} \neq$ i_{k+1} for all $k=0, \ldots, p-1$, and irregular otherwise.

Let \mathcal{I}_{p} be the subspace of Λ_{p} spanned by irregular p-paths $e_{i_{0} \ldots i_{p}}$. We claim that $\partial \mathcal{I}_{p} \subset \mathcal{I}_{p-1}$. Indeed, if $e_{i_{0} \ldots i_{p}}$ is irregular then $i_{k}=i_{k+1}$ for some k. We have

$$
\begin{align*}
\partial e_{i_{0} \ldots i_{p}} & =e_{i_{1} \ldots i_{p}}-e_{i_{0} i_{2} \ldots i_{p}}+\ldots \\
& +(-1)^{k} e_{i_{0} \ldots i_{k-1} i_{k+1} i_{k+2} \ldots i_{p}}+(-1)^{k+1} e_{i_{0} \ldots i_{k-1} i_{k} i_{k+2} \ldots i_{p}} \tag{1.2}\\
& +\ldots+(-1)^{p} e_{i_{0} \ldots i_{p-1}} .
\end{align*}
$$

By $i_{k}=i_{k+1}$ the two terms in the middle line of (1.2) cancel out, whereas all other terms are non-regular, whence $\partial e_{i_{0} \ldots i_{p}} \in \mathcal{I}_{p-1}$.

Hence, ∂ is well-defined on the quotient spaces $\mathcal{R}_{p}:=$ $\Lambda_{p} / \mathcal{I}_{p}$, and we obtain the chain complex $\mathcal{R}_{*}(V)$:

$$
0 \leftarrow \mathcal{R}_{0} \stackrel{\partial}{\leftarrow} \mathcal{R}_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

By setting all irregular p-paths to be equal to 0 , we can identify \mathcal{R}_{p} with the subspace of Λ_{p} spanned by all regular paths. For example, if $i \neq j$ then $e_{i j i} \in \mathcal{R}_{2}$ and

$$
\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}=e_{j i}+e_{i j}
$$

because $e_{i i}=0$ in \mathcal{R}_{2}.

1.2 Chain Complex Ω_{*}

Definition. A digraph (directed graph) is a pair $G=(V, E)$ of a set V of vertices and $E \subset\{V \times V \backslash \operatorname{diag}\}$ is a set of arrows (directed edges). If $(i, j) \in E$ then we write $i \rightarrow j$.

Definition. Let $G=(V, E)$ be a digraph. An elementary p-path $i_{0} \ldots i_{p}$ on V is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \ldots, p-1$, and non-allowed otherwise.

Let $\mathcal{A}_{p}=\mathcal{A}_{p}(G)$ be \mathbb{K}-linear subspace of Λ_{p} spanned by allowed elementary p-paths:

$$
\mathcal{A}_{p}=\left\langle e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is allowed }\right\rangle
$$

The elements of \mathcal{A}_{p} are called allowed p-paths. Since any allowed path is regular, we have $\mathcal{A}_{p} \subset \mathcal{R}_{p}$.

We would like to build a chain complex based on subspaces \mathcal{A}_{p} of \mathcal{R}_{p}. However, the spaces \mathcal{A}_{p} are in general not invariant for ∂. For example, in the digraph

$$
\stackrel{a}{\bullet} \longrightarrow \stackrel{b}{\bullet} \longrightarrow \stackrel{c}{\bullet}
$$

we have $e_{a b c} \in \mathcal{A}_{2}$ but $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \notin \mathcal{A}_{1}$ because $e_{a c}$ is non-allowed.

Consider the following subspace of \mathcal{A}_{p}

$$
\Omega_{p} \equiv \Omega_{p}(G):=\left\{u \in \mathcal{A}_{p}: \partial u \in \mathcal{A}_{p-1}\right\}
$$

We claim that $\partial \Omega_{p} \subset \Omega_{p-1}$. Indeed, $u \in \Omega_{p}$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u)=0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.

Definition. The elements of Ω_{p} are called ∂-invariant p-paths.
Thus, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G)$:
(1.3) $0 \leftarrow \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots$

By construction we have $\Omega_{0}=\mathcal{A}_{0}$ and $\Omega_{1}=\mathcal{A}_{1}$, while in general $\Omega_{p} \subset \mathcal{A}_{p}$.

Proposition 1.2 ([20]). If $\operatorname{dim} \Omega_{n} \leq 1$ then $\Omega_{p}=\{0\}$ for all $p \geq n+1$.

We say that a pair a, b forms a double arrow if $a \rightarrow b$ and $b \rightarrow a$.

Proposition 1.3 ([20]). If G contains no double arrow and $\operatorname{dim} \Omega_{n} \leq 2$ then $\Omega_{n}=\{0\}$ for all $p \geq n+2$.

1.3 Path Homology

Definition. Path homologies of G are defined as the homologies of the chain complex $\Omega_{*}(G)$:

$$
H_{p}=H_{p}(G)=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}}
$$

For a vector space U over \mathbb{K} we write

$$
|U|=\operatorname{dim}_{\mathbb{K}} U
$$

Define the Betti numbers of G by

$$
\beta_{p}=\beta_{p}(G)=\left|H_{p}\right|
$$

For any $N \in \mathbb{N}$ define the Euler characteristic of G of the order N by

$$
\chi^{(N)}=\chi^{(N)}(G)=\sum_{p=0}^{N}(-1)^{p}\left|\Omega_{p}\right|
$$

If the sequence $\left\{\Omega_{p}\right\}$ is finite in the sense that $\Omega_{p}=\{0\}$ for large enough p, then, for large enough N,

$$
\chi^{(N)}=\chi:=\sum_{p=0}^{\infty}(-1)^{p}\left|\Omega_{p}\right|=\sum_{p=0}^{\infty}(-1)^{p} \beta_{p}
$$

Proposition 1.4. If X and Y are two disjoint digraphs then

$$
\begin{equation*}
\beta_{p}(X \sqcup Y)=\beta_{p}(X)+\beta_{p}(Y) . \tag{1.4}
\end{equation*}
$$

Proof. Clearly, any allowed elementary p-path on $X \sqcup Y$ is contained in X or Y. It follows that the same property is true for ∂-invariant paths, so that

$$
\Omega_{p}(X \sqcup Y)=\Omega_{p}(X) \oplus \Omega_{p}(Y)
$$

Hence, the same identity holds for homology groups, whence (1.4) follows.

Proposition 1.5. We have $\beta_{0}(G)=$ \#of connected components of G.

Proof. It suffices to prove that if G is connected then $\beta_{0}=1$. We have $\beta_{0}=\left|\Omega_{0}\right|-\left|\partial \Omega_{1}\right|$. Let the set of vertices of G be $\{1, \ldots, n\}$ so that $\left|\Omega_{0}\right|=n$. Since Ω_{1} is spanned by all arrows $e_{i j}, i \rightarrow j$, the space $\partial \Omega_{1}$ is spanned by all differences $e_{j}-e_{i}$ where $i \rightarrow j$. Since there is an edge path between the vertex 1 and any other vertex i, it follows that $\partial \Omega_{1}$ contains $e_{i}-e_{1}$ for any vertex $i>1$. These $n-1$ elements of $\partial \Omega_{1}$ are linearly independent while any other difference $e_{j}-e_{i}$ is expressed as $\left(e_{j}-e_{1}\right)-\left(e_{i}-e_{1}\right)$. Hence, $\left|\partial \Omega_{1}\right|=n-1$ and $\beta_{0}=1$.

1.4 Digraph Morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the sets of vertices of X and Y by the same letters X resp. Y.

Definition. A mapping $f: X \rightarrow Y$ between the sets of vertices of X and Y called a digraph map (or morphism) if

$$
a \rightarrow b \text { on } X \Rightarrow f(a) \rightarrow f(b) \text { or } f(a)=f(b) \text { on } Y
$$

In other words, any arrow of X under the mapping f either goes to an arrow of Y or collapses to a vertex of Y.

We say that a digraph Y is a subgraph of a digraph X if the sets of vertices and arrows of Y are subset of the sets of vertices and arrows of X, respectively. In this case we have a natural inclusion $i: Y \rightarrow X$ that is clearly a digraph morphism. A subgraph Y of X is called induced if, for any two vertices a, b of Y such that there is an arrow $a \rightarrow b$ in X, there is also an arrow $a \rightarrow b$ in Y.

To give another example of a morphism, assume that a vertex set of a digraph X splits into a disjoint union of n subsets A_{1}, \ldots, A_{n}, and construct a digraph Y of n vertices a_{1}, \ldots, a_{n} that is obtained from X by merging all the vertices from A_{i} into a single vertex a_{i} of Y. More precisely, we have an arrow $a_{i} \rightarrow a_{j}$ in Y if and only if there are $x \in A_{i}$ and $y \in A_{j}$ such that $x \rightarrow y$ in X.

An example of a merging map μ
We have a natural merging map $\mu: X \rightarrow Y$ such that $\mu(x)=$ a_{i} for any $x \in A_{i}$. Clearly, a merging map is a digraph morphism that keeps any arrow $x \rightarrow y$ if x and y belong to different sets A_{i} and collapses an arrow $x \rightarrow y$ into a vertex if x, y belong to the same A_{i}.

Any digraph morphism $f: X \rightarrow Y$ induces a mapping f_{*} : $\Lambda_{n}(X) \rightarrow \Lambda_{n}(Y)$ as follows: first set

$$
f_{*}\left(e_{i_{0} \ldots i_{n}}\right)=e_{f\left(i_{0}\right) \ldots f\left(i_{n}\right)}
$$

and then extend f_{*} by linearity to all of $\Lambda_{n}(X)$.
Proposition 1.6. Let $f: X \rightarrow Y$ be a digraph morphism. Then the induced mapping $f_{*}: \Lambda_{n}(X) \rightarrow \Lambda_{n}(Y)$ extends to a chain mapping $f_{*}: \Omega_{n}(X) \rightarrow \Omega_{n}(Y)$ and, hence, to homomorphism $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$.

Proof. If $e_{i_{0} \ldots i_{n}}$ is irregular then $f_{*}\left(e_{i_{0} \ldots i_{n}}\right)$ is also irregular. Therefore, f_{*} maps the space $\mathcal{I}_{n}(X)$ of irregular paths on X into $\mathcal{I}_{n}(Y)$. It follows that f_{*} maps $\mathcal{R}_{n}(X)=\Lambda_{n}(X) / \mathcal{I}_{n}(X)$ into $\mathcal{R}_{n}(Y)$.

Next, f_{*} maps the space $\mathcal{A}_{n}(X)$ of allowed paths into $\mathcal{A}_{n}(Y)$: if $e_{i_{0} \ldots i_{n}}$ is allowed then $i_{k} \rightarrow i_{k+1}$ for all k, which implies that either $f\left(i_{k}\right) \rightarrow f\left(i_{k+1}\right)$ for all k and, hence, $f_{*}\left(e_{i_{0} \ldots i_{n}}\right)$ is also allowed, or $f\left(i_{k}\right)=f\left(i_{k+1}\right)$ for some k so that $f_{*}\left(e_{i_{0} \ldots i_{n}}\right)$ is irregular, thus $f_{*}\left(e_{i_{0} \ldots i_{n}}\right)=0$.

Clearly, f_{*} commutes with ∂, which implies that f_{*} maps $\Omega_{n}(X)$ into $\Omega_{n}(Y)$ and f_{*} is a chain mapping. Consequently, we obtain a homomorphism of homology groups $f_{*}: H_{n}(X) \rightarrow$ $H_{n}(Y)$.

Further examples of digraph morphisms will be given in Sections 1.8 and 2.3.

1.5 Examples of ∂-Invariant Paths

A triangle is a sequence of three distinct vertices a, b, c such that $a \rightarrow b \rightarrow c, a \rightarrow c$.

It determines a 2-path $e_{a b c} \in \Omega_{2}$ because $e_{a b c} \in \mathcal{A}_{2}$ and $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \in \mathcal{A}_{1}$.

A square is a sequence of four distinct vertices a, b, b^{\prime}, c such that $a \rightarrow b \rightarrow c, a \rightarrow b^{\prime} \rightarrow c$ while $a \nrightarrow c$.

It determines a 2-path $u=e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}$ because $u \in \mathcal{A}_{2}$ and

$$
\begin{aligned}
\partial u & =\left(e_{b c}-\underline{e_{a c}}+e_{a b}\right)-\left(e_{b^{\prime} c}-\underline{e_{a c}}+e_{a b^{\prime}}\right) \\
& =e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c} \in \mathcal{A}_{1}
\end{aligned}
$$

An m-square is a sequence of $m+3$ distinct vertices

$$
a, b_{0}, b_{1}, \ldots, b_{m}, c
$$

such that $a \rightarrow b_{k} \rightarrow c \forall k=0, \ldots, m$, while $a \nrightarrow c$.
An m-square determines ∂-invariant 2-paths

$$
u_{i j}=e_{a b_{i} c}-e_{a b_{j} c} \in \Omega_{2} \quad \text { for all } i, j=0, \ldots, m
$$

and among them the following m paths are linearly independent:

$$
u_{0 j}=e_{a b_{0} c}-e_{a b_{j} c}, \quad j=1, \ldots, m
$$

Clearly, an 1 -square is a square in the above sense. Any m-square with $m \geq 2$ is called a multisquare.

A p-simplex (or p-clique) is a configuration of $p+1$ distinct vertices, say, $0,1, \ldots, p$, such that $i \rightarrow j \forall i<j$. It determines a p-path $e_{01 \ldots p} \in \Omega_{p}$. Here is a 3-simplex:

A p-snake is a configuration of $p+1$ distinct vertices, say $0,1, \ldots, p$, with the following arrows:
$i \rightarrow i+1$ for all $i=0, \ldots, p-1$,
$i \rightarrow i+2$ for all $i=0, \ldots, p-2$.
In particular, any triple $i(i+1)(i+2)$ forms a triangle for $i=0, \ldots, p-2$.

A p-snake determines a ∂-invariant p-path $e_{01 \ldots p}$. Indeed, this path is obviously allowed, and its boundary

$$
\partial e_{01 \ldots p}=\sum_{q=0}^{p}(-1)^{q} e_{0 \ldots(q-1)(q+1) \ldots p}
$$

is also allowed because $q-1 \rightarrow q+1$. Hence, $e_{i_{0} \ldots i_{p}} \in \Omega_{p}$.

A toy snake
Clearly, a p-simplex contains a p-snake.

A 3-cube is a sequence of 8 vertices $0,1,2,3,4,5,6,7$, connected by arrows as shown here: A 3-cube determines a д-invariant 3-path

$$
u=e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267} \in \Omega_{3}
$$

because $u \in \mathcal{A}_{3}$ and

$$
\begin{aligned}
\partial u= & \left(e_{013}-e_{023}\right)+\left(e_{157}-e_{137}\right)+\left(e_{237}-e_{267}\right) \\
& -\left(e_{046}-e_{026}\right)-\left(e_{457}-e_{467}\right)-\left(e_{015}-e_{045}\right) \in \mathcal{A}_{2} .
\end{aligned}
$$

A trapezohedron of order $m \geq 2$ is a configuration of $2 m+2$ distinct vertices

$$
a, b, i_{0}, \ldots, i_{m-1}, j_{0}, \ldots, j_{m-1}
$$

with $4 m$ arrows:

$$
a \rightarrow i_{k}, \quad j_{k} \rightarrow b
$$

and

$$
i_{k} \rightarrow j_{k}, \quad i_{k} \rightarrow j_{k+1}
$$

for all $k=0, \ldots, m-1$, where k is understood $\bmod m$.
The trapezohedron gives rise to the following ∂-invariant 3-path:

$$
\begin{equation*}
\tau_{m}=\sum_{k=0}^{m-1}\left(e_{a i_{k} j_{k} b}-e_{a i_{k} j_{k+1}} b\right) \tag{1.5}
\end{equation*}
$$

Indeed, τ_{m} is clearly allowed, and its boundary is also allowed because

$$
\begin{align*}
\partial \tau_{m}= & \sum_{k=0}^{m-1} \partial\left(e_{a i_{k} j_{k} b}-e_{a i_{k} j_{k+1}} b\right) \\
= & \sum_{k=0}^{m-1}\left(e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1} b}\right)-\sum_{k=0}^{m-1}\left(e_{a i_{k} j_{k}}-e_{a i_{k} j_{k+1}}\right) \tag{1.6}\\
& -\sum_{k=0}^{m-1}\left(e_{a j_{k} b}-e_{a j_{k+1} b}\right)+\sum_{k=0}^{m-1}\left(e_{a i_{k} b}-e_{a i_{k} b}\right), \tag{1.7}
\end{align*}
$$

where the both sums in (1.6) are allowed, while both sums in (1.7) vanish.

A trapezohedron of order $m=2$ is shown here:

In this case we have

$$
\tau_{2}=e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{0} b}
$$

A trapezohedron of order $m \geq 3$ can be realized as a convex polyhedron in \mathbb{R}^{3} with flat faces. For example, a trapezohedron of order $m=3$ coincides with a 3-cube:

In this case we have

$$
\tau_{3}=e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+e_{a i_{2} j_{2} b}-e_{a i_{2} j_{0} b}
$$

and τ_{3} coincides (up to a sign) with the aforementioned 3-path determined by a 3 -cube.

A trapezohedron of order $m=4$ is a tetragonal trapezohedron:

In this case we have

$$
\begin{aligned}
\tau_{4}= & e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b} \\
& +e_{a i_{2} j_{2} b}-e_{a i_{2} j_{3} b}+e_{a i_{3} j_{3} b}-e_{a i_{3} j_{0} b} .
\end{aligned}
$$

1.6 Examples of Spaces Ω_{p} and H_{p}

Here is a triangle as a digraph:

We have $\Omega_{1}=\left\langle e_{01}, e_{02}, e_{12}\right\rangle, \Omega_{2}=\left\langle e_{012}\right\rangle$. Since $\left.\operatorname{ker} \partial\right|_{\Omega_{1}}=$ $\left\langle e_{01}-e_{02}+e_{12}\right\rangle$ and $e_{01}-e_{02}+e_{12}=\partial e_{012}$, it follows that $H_{1}=$ $\{0\}, \Omega_{p}=\{0\}$ for $p \geq 3$ and $H_{p}=\{0\}$ for $p \geq 2$.

Here is a square as a digraph:

We have $\Omega_{1}=\left\langle e_{01}, e_{02}, e_{13}, e_{23}\right\rangle, \Omega_{2}=\left\langle e_{013}-e_{023}\right\rangle$. Since $\left.\operatorname{ker} \partial\right|_{\Omega_{1}}=\left\langle e_{01}-e_{02}+e_{13}-e_{23}\right\rangle$ and $e_{01}-e_{02}+e_{13}-e_{23}=$ $\partial\left(e_{013}-e_{023}\right)$ it follows that $H_{1}=\{0\}, \Omega_{p}=\{0\}$ for $p \geq 3$ and $H_{p}=\{0\}$ for $p \geq 2$.

Here is a 4-cycle that is called a diamond:

We have $\Omega_{1}=\left\langle e_{02}, e_{03}, e_{12}, e_{13}\right\rangle, H_{1}=\left.\operatorname{ker} \partial\right|_{\Omega_{1}}=\left\langle e_{02}-\right.$ $\left.e_{03}-e_{12}+e_{13}\right\rangle, \Omega_{p}=\{0\}$ and $H_{p}=\{0\}$ for all $p \geq 2$.

Consider a hexagon with two diagonals:

Here $\Omega_{2}=\left\langle e_{013}-e_{023}, e_{014}-e_{024}\right\rangle, H_{1}=\left\langle e_{13}-e_{53}+e_{54}-\right.$ $\left.e_{14}\right\rangle, \Omega_{p}=\{0\}$ for $p \geq 3$ and $H_{p}=\{0\}$ for $p \geq 2$.

Consider an octahedron based on a diamond:

Space Ω_{2} is spanned by 8 triangles:

$$
\begin{aligned}
& \Omega_{2}=\left\langle e_{024}, e_{034}, e_{025}, e_{035}, e_{124}, e_{134}, e_{125}, e_{135}\right\rangle \\
& H_{2}=\left\langle e_{024}-e_{034}-e_{025}+e_{035}-e_{124}+e_{134}+e_{125}-e_{135}\right\rangle \\
& \Omega_{p}=\{0\} \text { for } p \geq 3 \text { and } H_{p}=\{0\} \text { for } p=1 \text { and } p \geq 3
\end{aligned}
$$

Consider an octahedron based on a square:
$\Omega_{2}=\left\langle e_{024}, e_{025}, e_{014}, e_{015}, e_{234}, e_{235}, e_{134}, e_{135}, e_{013}-e_{023}\right\rangle$,
$\Omega_{3}=\left\langle e_{0234}-e_{0134}, e_{0235}-e_{0135}\right\rangle, \Omega_{p}=\{0\} \forall p \geq 4$.

We have $\left.\operatorname{ker} \partial\right|_{\Omega_{2}}=\langle u, v\rangle$ where

$$
\begin{aligned}
& u=e_{024}+e_{234}-e_{014}-e_{134}+\left(e_{013}-e_{023}\right) \\
& v=e_{025}+e_{235}-e_{015}-e_{135}+\left(e_{013}-e_{023}\right)
\end{aligned}
$$

but $H_{2}=\{0\}$ because

$$
u=\partial\left(e_{0234}-e_{0134}\right) \text { and } v=\partial\left(e_{0235}-e_{0135}\right)
$$

In fact, $H_{p}=\{0\}$ for all $p \geq 1$.
Consider a 3-cube:

Space Ω_{2} is spanned by 6 squares:

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{013}-e_{023}, e_{015}-e_{045}, e_{026}-e_{046}, e_{137}-e_{157}\right. \\
& \left.e_{237}-e_{267}, e_{457}-e_{467}\right\rangle
\end{aligned}
$$

Space Ω_{3} is spanned by one 3-cube:

$$
\begin{aligned}
& \Omega_{3}=\left\langle e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267}\right\rangle \\
& \Omega_{p}=\{0\} \text { for all } p \geq 4 \text { and } H_{p}=\{0\} \text { for all } p \geq 1
\end{aligned}
$$

1.7 An Example of Computation of Ω_{p} and H_{p}

Consider a square with a diagonal:

We have $\Omega_{0}=\mathcal{A}_{0}=\left\langle e_{0}, e_{1}, e_{2}, e_{3}\right\rangle, \quad\left|\Omega_{0}\right|=$ 4, $\quad \Omega_{1}=\mathcal{A}_{1}=\left\langle e_{01}, e_{02}, e_{13}, e_{23}, e_{30}\right\rangle, \quad\left|\Omega_{1}\right|=5, \quad$ and $\mathcal{A}_{2}=\left\langle e_{013}, e_{023}, e_{130}, e_{230}, e_{301}, e_{302}\right\rangle,\left|\mathcal{A}_{2}\right|=6$. To determine Ω_{2}, let us first compute $\left.\partial\right|_{\mathcal{A}_{2}} \bmod \mathcal{A}_{1}$:

$$
\begin{aligned}
& \partial e_{013}=e_{13}-e_{03}+e_{01}=-e_{03} \bmod \mathcal{A}_{1} \\
& \partial e_{023}=e_{23}-e_{03}+e_{02}=-e_{03} \bmod \mathcal{A}_{1} \\
& \partial e_{130}=e_{30}-e_{10}+e_{13}=-e_{10} \bmod \mathcal{A}_{1} \\
& \partial e_{230}=e_{30}-e_{20}+e_{23}=-e_{20} \bmod \mathcal{A}_{1} \\
& \partial e_{301}=e_{01}-e_{31}+e_{30}=-e_{31} \bmod \mathcal{A}_{1}
\end{aligned}
$$

$$
\partial e_{302}=e_{02}-e_{32}+e_{30}=-e_{32} \bmod \mathcal{A}_{1}
$$

We have
$D:=$ matrix of $\left.\partial\right|_{\mathcal{A}_{2}} \bmod \mathcal{A}_{1}$

$$
=\left(\begin{array}{ccccccc}
& e_{013} & e_{023} & e_{130} & e_{230} & e_{301} & e_{302} \\
e_{03} & -1 & -1 & & & & 0 \\
e_{10} & & & -1 & & & \\
e_{20} & & & & -1 & & \\
e_{31} & & & & & -1 & \\
e_{32} & 0 & & & & & -1
\end{array}\right)
$$

and

$$
\Omega_{2}=\left.\operatorname{ker} \partial\right|_{\mathcal{A}_{2}} \bmod \mathcal{A}_{1}=\text { nullspace } D=\left\langle e_{013}-e_{023}\right\rangle
$$

One can show that $\left\{\Omega_{p}\right\}=0$ for all $p \geq 3$ (which also follows from Proposition 1.2) and, hence, $\left\{H_{p}\right\}=0$ for all $p \geq 3$.

Let us compute H_{1} and H_{2}. We have for the basis in Ω_{1} :

$$
\begin{aligned}
\partial e_{01} & =-e_{0}+e_{1} \\
\partial e_{02} & =-e_{0}+e_{2} \\
\partial e_{13} & =-e_{1}+e_{3} \\
\partial e_{23} & =-e_{2}+e_{3} \\
\partial e_{30} & =e_{0}-e_{3}
\end{aligned}
$$

Therefore,

$$
D:=\text { matrix of }\left.\partial\right|_{\Omega_{1}}=\left(\begin{array}{cccccc}
& e_{01} & e_{02} & e_{13} & e_{23} & e_{30} \\
e_{0} & -1 & -1 & 0 & 0 & 1 \\
e_{1} & 1 & 0 & -1 & 0 & 0 \\
e_{2} & 0 & 1 & 0 & -1 & 0 \\
e_{3} & 0 & 0 & 1 & 1 & -1
\end{array}\right)
$$

and
$\left.\operatorname{ker} \partial\right|_{\Omega_{1}}=$ nullspace $D=\left\langle e_{01}+e_{13}-e_{02}-e_{23}, e_{01}+e_{13}+e_{30}\right\rangle$.
Similarly, for the basis in Ω_{2} we have

$$
\begin{aligned}
\partial\left(e_{013}-e_{023}\right) & =\left(e_{13}-e_{03}+e_{01}\right)-\left(e_{23}-e_{03}+e_{02}\right) \\
& =e_{01}+e_{13}-e_{02}-e_{23}
\end{aligned}
$$

whence

$$
\left.\operatorname{Im} \partial\right|_{\Omega_{2}}=\left\langle e_{01}+e_{13}-e_{02}-e_{23}\right\rangle \quad \text { and }\left.\quad \operatorname{ker} \partial\right|_{\Omega_{2}}=\{0\}
$$

It follows that $H_{2}=\{0\}$ and

$$
H_{1}=\left.\operatorname{ker} \partial\right|_{\Omega_{1}} /\left.\operatorname{Im} \partial\right|_{\Omega_{2}}=\left\langle e_{01}+e_{13}+e_{30}\right\rangle .
$$

As we have seen, computation of the spaces $\Omega_{p}(G)$ and $H_{p}(G)$ amounts to computing ranks and null-spaces of matrices. We currently use for numerical computation of $H_{p}\left(G, \mathbb{F}_{2}\right)$ a $\mathrm{C}++$ program written by Chao Chen in 2012.
Problem 1.7. Devise an efficient algorithm/software for computation of the spaces Ω_{p} for arbitrary digraphs, possibly avoiding null-spaces of large matrices. Such algorithms exist for Ω_{2} and Ω_{3}. Are there simpler ways of computing directly $\operatorname{dim} \Omega_{p}$ without computing the bases of Ω_{p} ?

1.8 Structure of Ω_{2}

As we know, $\Omega_{0}=\left\langle e_{i}\right\rangle$ consists of all vertices and $\Omega_{1}=$ $\left\langle e_{i j}: i \rightarrow j\right\rangle$ consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x, y) of distinct vertices x, y such that $x \nrightarrow y$ but $x \rightarrow z \rightarrow y$ for some vertex z. We write in this case $x \rightharpoonup y$

Theorem 1.8 ([21, Proposition 2.9], [20]).
(a) We have $\left|\Omega_{2}\right|=\left|\mathcal{A}_{2}\right|-s$ where s is the number of semiarrows.
(b) The space Ω_{2} is spanned by all triangles $e_{a b c}$, squares $e_{a b c}-$ $e_{a b^{\prime} c}$ and double arrows $e_{a b a}$.

Proof. (a) Recall that

$$
\mathcal{A}_{2}=\operatorname{span}\left\{e_{a b c}: a b c \text { is allowed }\right\}
$$

and

$$
\Omega_{2}=\left\{v \in \mathcal{A}_{2}: \partial v \in \mathcal{A}_{1}\right\}=\left\{v \in \mathcal{A}_{2}: \partial v=0 \bmod \mathcal{A}_{1}\right\}
$$

If $a b c$ is allowed then $a b$ and $b c$ are arrows, whence

$$
\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b}=-e_{a c} \bmod \mathcal{A}_{1}
$$

If $a=c$ or $a \rightarrow c$ then $e_{a c}=0 \bmod \mathcal{A}_{1}$. Otherwise $a c$ is a semiarrow, and in this case

$$
e_{a c} \neq 0 \bmod \mathcal{A}_{1}
$$

For any $v \in \mathcal{A}_{2}$, we have

$$
v=\sum_{\{a \rightarrow b \rightarrow c\}} v^{a b c} e_{a b c}
$$

from which it follows that

$$
\partial v=-\sum_{\{a \rightarrow b \rightarrow c, a \rightarrow c\}} v^{a b c} e_{a c} \bmod \mathcal{A}_{1}
$$

The condition $\partial v=0 \bmod \mathcal{A}_{1}$ is equivalent to

$$
\sum_{\{a \rightarrow b \rightarrow c, a \rightarrow c\}} v^{a b c} e_{a c}=0 \bmod \mathcal{A}_{1}
$$

which in turn is equivalent to

$$
\begin{equation*}
\sum_{b \in V} v^{a b c}=0 \quad \text { for any semi }- \text { arrow } a c . \tag{1.8}
\end{equation*}
$$

The number of the equations in (1.8) is exactly s, and they all are linearly independent for different semi-arrows, because a triple $a b c$ determines at most one semi-arrow. Hence, Ω_{2} is obtained from \mathcal{A}_{2} by imposing s linearly independent conditions, which implies $\left|\Omega_{2}\right|=\left|\mathcal{A}_{2}\right|-s$.
(b) Any allowed 2-path ω can be represented as a sum of elementary 2-paths $e_{i j k}$ with $i \rightarrow j \rightarrow k$ multiplied with a scalar $c \neq 0$. If $k=i$ then $e_{i j k}$ is a double arrow. If $i \neq k$ and $i \rightarrow k$ then $e_{i j k}$ is a triangle. Subtracting from ω all double arrows and triangles, we can assume that ω has no such terms any more.

Then, for any term $e_{i j k}$ in ω we have $i \neq k$ and $i \nrightarrow k$. Fix such a pair i, k and consider any vertex j with $i \rightarrow j \rightarrow k$. Assume that $e_{i j k}$ enters ω with a coefficient $c_{j} \neq 0$. Set

$$
\begin{equation*}
\omega_{i k}=\sum_{j} c_{j} e_{i j k} \tag{1.9}
\end{equation*}
$$

so that $\omega=\sum_{i k} \omega_{i k}$. It suffices to verify that each $\omega_{i k}$ is a linear combination of squares. The 1-path $\partial \omega$ is the sum of 1-paths of the form

$$
\partial\left(c_{j} e_{i j k}\right)=c_{j} e_{i j}-c_{j} e_{i k}+c_{j} e_{j k} .
$$

Since $\partial \omega$ is allowed but $e_{i k}$ is not allowed, the term $c_{j} e_{i k}$ should cancel out after we sum up all such terms over all possible j, that is,

$$
\begin{equation*}
\sum_{j} c_{j}=0 \tag{1.10}
\end{equation*}
$$

Denote by $\left\{j_{0}, j_{1}, \ldots, j_{m}\right\}$ the sequence of all possible vertices j with $i \rightarrow j \rightarrow k$ so that we obtain an m-square:

An m-square $\left\{i,\left\{j_{l}\right\}_{l=0}^{m}, k\right\}$
Then we obtain from (1.9)

$$
\omega_{i k}=\sum_{l=0}^{m} c_{j_{l}} e_{i j_{l} k}=\sum_{l=1}^{m} c_{j_{l}}\left(e_{i j_{l} k}-e_{i j_{0} k}\right)
$$

because by (1.10)

$$
c_{j_{0}}=-\sum_{l=1}^{l} c_{j_{l}}
$$

We conclude that $\omega_{i k}$ is a linear combination of squares.
Example 1.9. Let the digraph G be an m-square shown on the above picture. It has one semi-arrow $i \rightharpoonup k$ so that $s=1$. Since $\left|\mathcal{A}_{2}\right|=m+1$, we conclude that $\left|\Omega_{2}\right|=m$. Indeed, the basis in Ω_{2} is given by the sequence of m squares $\left\{e_{i j_{0} k}-e_{i j_{l} k}\right\}_{l=1}^{m}$.

Observe that a triangle $e_{a b c}$ and a double arrow $e_{a b a}$ are images of a square $e_{013}-e_{023}$ under merging maps (cf. Subsection 1.4) as shown on these pictures:

a merging map from a square onto a triangle

$$
e_{013}-e_{023} \mapsto e_{a b c}-e_{a c c}=e_{a b c}
$$

a merging map from a square onto a double arrow

$$
e_{013}-e_{023} \mapsto e_{a b a}-e_{a a a}=e_{a b a}
$$

Hence, we can rephrase Theorem 1.8 as follows: Ω_{2} is spanned by squares and their morphism images. Or: squares are basic shapes of Ω_{2}.

1.9 Path Complex

The material of this section is based on [20], [22] and [26]. We discuss here the notion of path complex that unifies digraphs and simplicial complexes.

Definition. A path complex on a finite set V is a collection \mathcal{P} of elementary paths on V such that if $i_{0} i_{1} \ldots i_{p-1} i_{p} \in \mathcal{P}$ then also $i_{1} \ldots i_{p}$ and $i_{0} \ldots i_{p-1}$ belong to \mathcal{P}.

For example, each digraph $G=(V, E)$ gives rise to a path complex \mathcal{P} that consists of all allowed elementary paths, that is, of the paths $i_{0} \rightarrow i_{1} \rightarrow \ldots \rightarrow i_{p}$. In general, all paths in a path complex \mathcal{P} are also called allowed.

The above definitions of ∂-invariant paths, spaces Ω_{p} and H_{p} go through without any change to general path complexes in place of digraphs because they are based on the notion of allowed paths only. In fact, most of the results that are proved for path homology theory for digraphs remain true also for a more general setting of path complexes.

Let us recall the definition of an abstract simplicial complex.
Definition. A simplicial complex with the set of vertices V is a collection \mathcal{S} of subsets of V such that if $\sigma \in \mathcal{S}$ then any subset of σ is also an element of \mathcal{S}.

Let us enumerate all elements of V so that any subset σ of V can be regarded as a path $i_{0} \ldots i_{p}$ with $i_{0}<i_{1}<\ldots<i_{p}$. The above definition means that if $i_{0} \ldots i_{p} \in \mathcal{S}$ then also any sub-path $i_{k_{0}} \ldots i_{k_{q}}$ with $0 \leq k_{0}<k_{1}<\ldots<k_{q} \leq p$ belongs to \mathcal{S}. Hence, a simplicial complex \mathcal{S} is a path complex, and the theory of path homologies applies for \mathcal{S}.

In this case, \mathcal{A}_{p} consists of linear combinations of all p-dimensional simplexes in \mathcal{S} and $\Omega_{p}=\mathcal{A}_{p}$ because $\partial e_{i_{0} \ldots i_{p}}$ is always allowed if $e_{i_{0} \ldots i_{p}}$ is allowed. Hence, the path homology theory of a path complex \mathcal{S} coincides with the simplicial homology theory of \mathcal{S}.

Schematic relation between path complexes, digraphs and simplicial complexes

Let \mathcal{S} be a simplicial complex with the vertex set V as above. Define a digraph $G_{\mathcal{S}}$ as follows: the vertex set of $G_{\mathcal{S}}$ is \mathcal{S}, and for two simplexes $a, b \in \mathcal{S}$ we have an arrow $a \rightarrow b$ provided $a \supset b$ and $|a|=|b|+1$, that is, when b is a face of a of codim $=1$. The digraph $G_{\mathcal{S}}$ is called the Hasse diagram of \mathcal{S}.

If \mathcal{S} is realized geometrically as a collection of simplexes in \mathbb{R}^{n} then $G_{\mathcal{S}}$ can be realized on the set of vertices $B_{\mathcal{S}}$ consisting of barycenters of the simplexes of \mathcal{S} as on the picture. The relation between simplicial homology $H^{\text {simpl }}$ with the path homology H is given by the following theorem.

Theorem 1.10 ([26, Corollary 5.4]). We have

$$
H_{*}^{s i m p l}(\mathcal{S}) \cong H_{*}\left(G_{\mathcal{S}}\right)
$$

1.10 Triangulation as a Closed Path

Given a closed oriented n-dimensional manifold M, let T be its triangulation, that is, a partition into n-dimensional simplexes. Denote by $V=\{0,1, \ldots\}$ the set of all vertices of the simplexes from T and by E - the set of all edges, so that (V, E) is a graph embedded on M.

Let us introduce make each edge $(i, j) \in E$ into an arrow $i \rightarrow j$ if $i<j$ and into $j \rightarrow i$ if $i>j$. Then each simplex from T becomes a digraph-simplex. Denote by \vec{T} the set of all digraph simplexes constructed in this way. That is, $i_{0} \ldots i_{n} \in \vec{T}$ if $i_{0} \ldots i_{n}$ is a monotone increasing sequence that determines a simplex from T. Clearly, any such path $i_{0} \ldots i_{p}$ is allowed.

For any simplex from T with the vertices $i_{0} \ldots i_{n}$ define the quantity $\sigma^{i_{0} \ldots i_{n}}$ to be equal to 1 if the orientation of the simplex $i_{0} \ldots i_{n}$ matches the orientation of the manifold M, and -1 otherwise. Then consider the following allowed n-path on the digraph $G=(V, E)$:

$$
\begin{equation*}
\sigma=\sum_{i_{0} \ldots i_{n} \in \vec{T}} \sigma^{i_{0} \ldots i_{n}} e_{i_{0} \ldots i_{n}} \tag{1.11}
\end{equation*}
$$

Lemma 1.11 ([20]). The path σ is closed, that is, $\partial \sigma=0$, which, in particular, implies that σ is ∂-invariant.

Proof. Observe that $\partial \sigma$ is a linear combination with coefficients ± 1 of the terms $e_{j_{0} \ldots j_{n-1}}$ where the sequence j_{0}, \ldots, j_{n-1} is monotone increasing and forms an $(n-1)$-dimensional face of one of the n-simplexes from T.

In fact, every $(n-1)$-face arises from two n-simplexes, say, from

$$
A=j_{0} \ldots j_{k-1} a j_{k} \ldots j_{n-1} \quad \text { and } \quad B=j_{0} \ldots j_{l-1} b j_{l} \ldots j_{n-1}
$$

That is, the n-simplexes A and B have a common ($n-1$)-dimensional face $j_{0} \ldots j_{n-1}$.

We have

$$
\partial e_{j_{0} \ldots j_{k-1} a j_{k} \cdots j_{n-1}}=\ldots+(-1)^{k} e_{j_{0} \ldots j_{k-1} j_{k} \cdots j_{n-1}}+\ldots
$$

Since interchanging the order of two neighboring vertices in an n-simplex changes its orientation, we have

$$
\sigma^{j_{0} \cdots j_{k-1} a j_{k} \ldots j_{n-1}}=(-1)^{k} \sigma^{a j_{0} \ldots j_{k-1} j_{k} \cdots j_{n-1}}
$$

Multiplying the above lines, we obtain

$$
\partial\left(\sigma^{A} e_{A}\right)=\ldots+\sigma^{a j_{0} \ldots j_{n-1}} e_{j_{0} \ldots j_{n-1}}+\ldots
$$

and in the same way

$$
\partial\left(\sigma^{B} e_{B}\right)=\ldots+\sigma^{b j_{0} \ldots j_{n-1}} e_{j_{0} \ldots j_{n-1}}+\ldots
$$

However, the vertices a and b are located on the opposite sides of the face $j_{0} \ldots j_{n-1}$, which implies that the simplexes $a j_{0} \ldots j_{n-1}$ and $b j_{0} \ldots j_{n-1}$ have the opposite orientations relative to that of M. Hence,

$$
\sigma^{a j_{0} \ldots j_{n-1}}+\sigma^{b j_{0} \ldots j_{n-1}}=0
$$

which means that the term $e_{j_{0} \ldots j_{n-1}}$ cancels out in the sum $\partial\left(\sigma^{A} e_{A}+\sigma^{B} e_{B}\right)$ and, hence, in $\partial \sigma$. This proves that $\partial \sigma=0$.

The closed path σ defined by (1.11) is called a surface path on M.

There is a number of examples when a surface path σ happens to be exact, that is, $\sigma=\partial v$ for some $(n+1)$-path v. In this case v is called a solid path on M because v represents a "solid" shape whose boundary is given by a surface path. If σ is not exact then σ determines a non-trivial homology class from $H_{n}(G)$ and, hence, represents a "cavity" in triangulation T.

Example 1.12. $M=\mathbb{S}^{1}$. A triangulation of \mathbb{S}^{1} is a polygon, and the corresponding digraph G is called cyclic.

On each edge (i, j) of a polygon we choose an arrow $i \rightarrow j$ arbitrary (not necessarily if $i<j$). We have

$$
\sigma=\sum_{i \rightarrow j} \sigma^{i j} e_{i j}
$$

where we have $\sigma^{i j}=1$ if the arrow $i \rightarrow j$ goes counterclockwise, and $\sigma^{i j}=-1$ otherwise.

For the digraph on the picture we have

$$
\sigma=e_{01}-e_{21}+e_{23}+e_{34}-e_{54}+e_{50}
$$

If a polygon G is a triangle or a square then $\Omega_{p}=\{0\}$ for $p \geq 3$ and $H_{p}=\{0\}$ for all $p \geq 1$. Otherwise we have the following statement.

Proposition 1.13 ([20]). If a polygon G is neither a triangle nor a square then $\Omega_{p}=\{0\}$ and $H_{p}=\{0\}$ for all $p \geq 2$ while $H_{1}=\langle\sigma\rangle$.

Proof. We have $\Omega_{p}=\{0\}$ for all $p \geq 2$ by Theorem 1.8. Hence, $\operatorname{dim} H_{p}=0$ for $p \geq 2$. For the Euler characteristic, we have

$$
\chi=\operatorname{dim} \Omega_{0}-\operatorname{dim} \Omega_{1}=0 .
$$

Since also

$$
\chi=\operatorname{dim} H_{0}-\operatorname{dim} H_{1}
$$

and $\operatorname{dim} H_{0}=1$, we obtain $\operatorname{dim} H_{1}=1$.
It remains to see that σ is a non-zero element of H_{1}. The path σ is closed by Lemma 1.11. In this case this can also be seen directly because by construction we have $\sigma^{i(i+1)}-\sigma^{(i+1) i} \equiv 1$ whence, for any vertex i,

$$
\begin{aligned}
(\partial \sigma)^{i} & =\sum_{j \in V}\left(\sigma^{j i}-\sigma^{i j}\right) \\
& =\sigma^{(i-1) i}+\sigma^{(i+1) i}-\sigma^{i(i-1)}-\sigma^{i(i+1)}=1-1=0
\end{aligned}
$$

Finally, $\sigma \neq 0$ in H_{1} because $\left.\operatorname{Im} \partial\right|_{\Omega_{2}}=\{0\}$.

Example 1.14. Let $M=\mathbb{S}^{n}$ and let a triangulation of the n-sphere \mathbb{S}^{n} be given by the surface of an $(n+1)$-simplex.

Then G is a $(n+1)$-simplex digraph. On this picture $n=2$ and

$$
\sigma=e_{123}-e_{023}+e_{013}-e_{012}=\partial e_{0123}
$$

so that e_{0123} is a solid path representing a tetrahedron.
For an arbitrary n we also have $\sigma=\partial e_{0 \ldots n+1}$ so that $e_{0 \ldots n+1}$ is a solid path representing an $(n+1)$-simplex.

Example 1.15. Let $M=\mathbb{S}^{2}$ and let a triangulation of \mathbb{S}^{2} be given by an octahedron (see also Subsection 1.6). Consider two cases of numbering of vertices and, respectively, orientation of arrows.

An octahedron based on a square:

We have $H_{2}=\{0\}$; it is easy to see that

$$
\begin{aligned}
\sigma & =e_{024}-e_{025}-e_{014}+e_{015}-e_{234}+e_{235}+e_{134}-e_{135} \\
& =\partial\left(e_{0134}-e_{0234}+e_{0135}-e_{0235}\right)
\end{aligned}
$$

Hence, $v=e_{0134}-e_{0234}+e_{0135}-e_{0235}$ is a solid path and the octahedron represents a solid shape.

An octahedron based on a diamond:

We have $H_{2}=\langle\sigma\rangle$ where

$$
\sigma=e_{024}-e_{034}-e_{025}+e_{035}-e_{124}+e_{134}+e_{125}-e_{135}
$$

so that this octahedron represents a cavity.
Example 1.16. Let $M=\mathbb{S}^{2}$ and let a triangulation of \mathbb{S}^{2} be given by an icosahedron:

Chose a numbering of vertices as shown here and arrows $i \rightarrow j$ if $i \sim j$ and $i<j$.

We have $|V|=12,|E|=30, H_{1}=\{0\}$, and $H_{2}=\langle\sigma\rangle$ where

$$
\begin{aligned}
\sigma= & -e_{019}+e_{012}-e_{1211}+e_{026}+e_{059}-e_{056}+e_{5610} \\
& -e_{139}+e_{1311}-e_{267}+e_{6710}-e_{2711}-e_{349}+e_{348} \\
& -e_{4810}+e_{3811}-e_{459}+e_{4510}+e_{7810}-e_{7811}
\end{aligned}
$$

Hence, the icosahedron represents a cavity.

Conjecture 1.17. For icosahedron $\operatorname{dim} H_{2}(G)=1$ for any numbering of the vertices.

Conjecture 1.18. For a general triangulation of \mathbb{S}^{n}, the homology group $H_{n}(G)$ is either trivial or is generated by σ. All other homology groups $H_{p}(G)$ are trivial.

1.11 Homological Dimension

In this section $\mathbb{K}=\mathbb{F}_{2}$.
Definition. Define the homological dimension of a digraph G by

$$
\operatorname{dim}_{h} G=\sup \left\{k:\left|H_{k}(G)\right|>0\right\} .
$$

Let G be a polygon (a cyclic digraph).

If G is neither triangle nor square, then $\left|H_{1}\right|=1$ and $\left|H_{p}\right|=0$ for $p \geq 2$ whence $\operatorname{dim}_{h} G=1$.

Let G be either a triangle or a square:

Then $\left|H_{p}\right|=0$ for $p \geq 1$ and $\operatorname{dim}_{h} G=0$.
Let G be an octahedron based on a diamond:

Then $\left|H_{2}\right|=1,\left|H_{p}\right|=0$ for $p \geq 3$, whence $\operatorname{dim}_{h} G=2$.
Let us give an example of a digraph with ∞ homological dimension that is due to Gabor Lippner and Paul Horn [34]. Fix some $n \geq 5$. We construct a digraph $L H(n)$ of $2 n$ vertices that are denoted by

$$
1,2, \ldots, n \quad \text { and } \quad-1,-2, \ldots,-n
$$

and the arrows between vertices x, y in $L H(n)$ are defined as follows:

$$
\text { (1.12) } x \rightarrow y \quad \text { if }|y|=|x|+1 \quad \text { or } \quad \text { if }|x|=n-1 \text { and }|y|=2
$$

so that $L H(n)$ has $4 n$ edges. In fact, $L H(n)$ is obtained from the complete multipartite digraph $\vec{K}_{\underbrace{}_{n}, 2, \ldots, 2}$ by adding the last 4 arrows.

Example 1.19. Here is the digraph $L H(5)$.

It is obtained from $\vec{K}_{2,2,2,2,2}$ by adding four arrows. For this digraph $\beta_{p}>0$ provided

$$
p=1 \bmod 3 .
$$

Proposition 1.20 ([34]). If $p=1 \bmod (n-2)$ and $p \geq n-1$ then the homology group $H_{p}(L H(n))$ is non-trivial.

Hence, for the digraph $L H(n)$, non-trivial homology groups H_{p} occur for arbitrarily large p. Consequently, we have

$$
\operatorname{dim}_{h} L H(n)=\infty .
$$

There are digraphs with non-trivial homology group H_{p} for all value of p - see below Example 3.27.
Proof. Let $p=(n-2) k+1$ for some $k \geq 1$. Let us construct a family of allowed paths in $L H(n)$ as follows. First, consider a numerical sequence of $p+1=(n-2) k+2$ numbers:

$$
\begin{equation*}
1, \underbrace{2,3, \ldots, n-1}, \underbrace{2,3, \ldots, n-1}, \ldots, \underbrace{2,3, \ldots, n-1}, n \tag{1.13}
\end{equation*}
$$

where the group $2,3, \ldots, n-1$ is repeated k times, and then give arbitrarily the signs + and - to each number in this sequence. Clearly, we obtain in this way an allowed elementary p-path in $L H(n)$. For any such a path u, denote by $\sigma(u)$ the number of ' - , in u, and consider the path

$$
\begin{equation*}
\omega=\sum_{u}(-1)^{\sigma(u)} u \tag{1.14}
\end{equation*}
$$

where the summation is taken over all paths u obtained in this way from the sequence (1.13).

Let us verify that $\partial \omega=0$ (and, hence, $\omega \in \Omega_{p}$). Indeed, let $u=u_{0} \ldots u_{p}$ be one of the elementary paths in the sum (1.14). The boundary ∂u is the sum of the terms

$$
\begin{equation*}
(-1)^{i} u_{0} \ldots u_{i-1} u_{i+1} \ldots u_{p} \tag{1.15}
\end{equation*}
$$

that are obtained from u by omitting u_{i}. Fix some i and consider a path

$$
\widetilde{u}=u_{0} \ldots u_{i-1}\left(-u_{i}\right) u_{i+1} \ldots u_{p}
$$

where only the sign of u_{i} is changed. Then $\partial \widetilde{u}$ contains also the term (1.15). However, u and \widetilde{u} enter ω with opposite signs so that the term (1.15) cancels out in the sum (1.14). Hence, we obtain $\partial \omega=0$.

Let us verify that $\omega \neq \partial v$ for any allowed path v, which will imply that ω determines a non-trivial element in H_{p}. Assume from the contrary that $\omega=\partial v$ for some $v \in \mathcal{A}_{p+1}$. For that, v has to contain an allowed elementary $p+1$-path that contains both a
vertex 1 and a vertex n (otherwise, 1 and n cannot appear in the same path (1.13)). Let

$$
u=u_{0} \ldots u_{p+1}
$$

be such an allowed elementary $p+1$-path, where

$$
\left|u_{0}\right|=1 \quad \text { and } \quad\left|u_{p+1}\right|=n
$$

We have $u_{i} \rightarrow u_{i+1}$ and, hence, as it follows from the definition of arrows in (1.12),

$$
\left|u_{i+1}\right|=\left|u_{i}\right|+1 \bmod (n-2)
$$

Therefore,

$$
\left|u_{p+1}\right|=\left|u_{0}\right|+p+1 \bmod (n-2),
$$

from which it follows that

$$
n=p+2 \bmod (n-2)
$$

and

$$
p=0 \bmod (n-2),
$$

which contradicts the hypotheses.

2. Trapezohedra and Structure of Ω_{3}

2.1 Spaces Ω_{p} and H_{p} for Trapezohedron

For any integer $m \geq 2$, define a trapezohedron T_{m} of order m as follows:
T_{m} is a digraph of $2 m+2$ vertices

$$
a, b, i_{0}, \ldots, i_{m-1}, j_{0}, j_{1}, \ldots, j_{m-1}
$$

and $4 m$ arrows

$$
a \rightarrow i_{k} \rightarrow j_{k} \rightarrow b, \quad i_{k} \rightarrow j_{k+1}
$$

for all $k=0, \ldots, m-1 \bmod m$.
A fragment of T_{m} is shown here:

It is clear that all allowed paths in T_{m} have the length ≤ 3, whence $\Omega_{p}\left(T_{m}\right)=\{0\}$ for all $p>3$.

Proposition 2.1. For the trapezohedron T_{m} we have

$$
\left|\Omega_{2}\right|=2 m, \quad\left|\Omega_{3}\right|=1,
$$

and $H_{p}=\{0\}$ for all $p \geq 1$.

Proof. It is easy to detect all squares in T_{m} :

$$
\begin{equation*}
e_{a i_{k-1} j_{k}}-e_{a i_{k} j_{k}} \quad \text { and } \quad e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1} b} \tag{2.16}
\end{equation*}
$$

where $k=0, \ldots, m-1$. Hence, T_{m} contains $2 m$ squares, and they are linearly independent. Since there are no triangles in T_{m}, we conclude by Theorem 1.8 that $\left|\Omega_{2}\right|=2 m$.

All allowed 3-paths in T_{m} are as follows:

$$
e_{a i_{k} j_{k} b} \quad \text { and } \quad e_{a i_{k} j_{k+1} b} b
$$

also for all $k=0, \ldots, m-1$. Let us find all linear combinations of these paths that are ∂-invariant. Consider such a linear combination

$$
\omega=\sum_{k=0}^{m-1}\left(\alpha_{k} e_{a i_{k} j_{k} b}+\beta_{k} e_{a i_{k} j_{k+1} b}\right)
$$

with coefficients α_{k}, β_{k}, and assume that ω is ∂-invariant. We have

$$
\partial \omega=\sum_{k=0}^{m-1} \partial\left(\alpha_{k} e_{a i_{k} j_{k} b}+\beta_{k} e_{a i_{k} j_{k+1} b}\right)
$$

$$
\begin{equation*}
=\sum_{k=0}^{m-1}\left(\alpha_{k} e_{i_{k} j_{k} b}+\beta_{k} e_{i_{k} j_{k+1}} b\right)-\sum_{k=0}^{m-1}\left(\alpha_{k} e_{a i_{k} j_{k}}+\beta_{k} e_{a i_{k} j_{k+1}}\right) \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
-\sum_{k=0}^{m-1}\left(\alpha_{k} e_{a j_{k} b}+\beta_{k} e_{a j_{k+1} b}\right)+\sum_{k=0}^{m-1}\left(\alpha_{k} e_{a i_{k} b}+\beta_{k} e_{a i_{k} b}\right) . \tag{2.18}
\end{equation*}
$$

Both sums in (2.17) consist of allowed paths. In the rightmost sum in (2.18) the path $e_{a i_{k} b}$ is not allowed and, hence, must cancel out, which yields

$$
\alpha_{k}=-\beta_{k}
$$

The leftmost sum in (2.18) is then equal to

$$
\sum_{k=0}^{m-1}\left(\alpha_{k} e_{a j_{k} b}-\alpha_{k} e_{a j_{k+1} b}\right)=\sum_{k=0}^{m-1}\left(\alpha_{k}-\alpha_{k-1}\right) e_{a j_{k} b},
$$

and it must vanish as $e_{a j_{k} b}$ is not allowed, whence

$$
\alpha_{k}=\alpha_{k-1}
$$

Setting $\alpha_{k} \equiv \alpha$ and, hence, $\beta_{k}=-\alpha$, we obtain that

$$
\omega=\alpha \sum_{k=0}^{m-1}\left(e_{a i_{k} j_{k} b}-e_{a i_{k} j_{k+1} b}\right)=\alpha \tau_{m}
$$

so that $\Omega_{3}=\left\langle\tau_{m}\right\rangle$ and $\left|\Omega_{3}\right|=1$.
It follows from (2.17)-(2.18) that

$$
\partial \tau_{m}=\sum_{k=0}^{m-1}\left(e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1} b}\right)-\sum_{k=0}^{m-1}\left(e_{a i_{k} j_{k}}-e_{a i_{k} j_{k+1}}\right) \neq 0
$$

This implies $\left.\operatorname{ker} \partial\right|_{\Omega_{3}}=0$, whence $H_{3}=\{0\}$.
Let us show that $H_{2}=\{0\}$. Since dim $\left.\operatorname{Im} \partial\right|_{\Omega_{3}}=1$, it suffices to show that

Consider the following general element of Ω_{2} :

$$
u=\sum_{k=0}^{m-1} \alpha_{k}\left(e_{a i_{k-1} j_{k}}-e_{a i_{k} j_{k}}\right)+\beta_{k}\left(e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1} b}\right)
$$

with arbitrary coefficients α_{k}, β_{k}. We have

$$
\begin{aligned}
\partial u= & \sum_{k=0}^{m-1} \alpha_{k}\left(e_{a i_{k-1}}+e_{i_{k-1} j_{k}}-e_{a i_{k}}-e_{i_{k} j_{k}}\right) \\
& +\beta_{k}\left(e_{j_{k} b}+e_{i_{k} j_{k}}-e_{j_{k+1} b}-e_{i_{k} j_{k+1}}\right) \\
= & \sum_{k=0}^{m-1}\left(\alpha_{k+1}-\alpha_{k}\right) e_{a i_{k}}+\sum_{k=0}^{m-1}\left(\beta_{k}-\beta_{k-1}\right) e_{j_{k} b} \\
& +\sum_{k=0}^{m-1}\left(\beta_{k}-\alpha_{k}\right) e_{i_{k} j_{k}}+\sum_{k=0}^{m-1}\left(\alpha_{k+1}-\beta_{k}\right) e_{i_{k} j_{k+1}} .
\end{aligned}
$$

The condition $\partial u=0$ is equivalent to

$$
\alpha_{k+1}=\alpha_{k}=\beta_{k}=\beta_{k-1} \text { for all } k=0, \ldots, m-1
$$

which implies (2.19).
Finally, we determine $\left|H_{1}\right|$ by means of the Euler characteristic

$$
\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|=(2 m+2)-4 m+2 m-1=1 .
$$

Hence, we obtain

$$
\left|H_{0}\right|-\left|H_{1}\right|+\left|H_{2}\right|-\left|H_{3}\right|=1,
$$

which yields $\left|H_{1}\right|=0$.

2.2 A Cluster Basis in Ω_{p}

We start with the following definition.
Definition. A p-path $v=\sum v^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ is called an (a, b)-cluster if all the elementary paths $e_{i_{0} \ldots i_{p}}$ with non-zero values of $v^{i_{0} \ldots i_{p}}$ have $i_{0}=a$ and $i_{p}=b$. A path v is called a cluster if it is an (a, b)-cluster for some a, b.

Lemma 2.2. Any ∂-invariant p-path is a sum of ∂-invariant clusters.

Proof. Let $v \in \Omega_{p}$. For any points $a, b \in V$, denote by $v_{a, b}$ the sum of all terms $v^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ with $i_{0}=a$ and $i_{p}=b$.

Then $v_{a, b}$ is a cluster and $v=\sum_{a, b \in V} v_{a, b}$, that is, v is a sum of clusters. Let us prove that each non-zero cluster $v_{a, b}$ is ∂-invariant.

Since v is allowed, also all non-zero terms $v^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ are allowed, whence $v_{a, b}$ is also allowed. Let us prove that $\partial v_{a . b}$ is allowed, which will yield the ∂-invariance of $v_{a . b}$. The path $v_{a, b}$
is a linear combination of allowed paths of the form $e_{a i_{1} \ldots i_{p-1} b}$. We have
$\partial e_{a i_{1} \ldots i_{p-1} b}=e_{i_{1} \ldots i_{p-1} b}+(-1)^{p} e_{a i_{1} \ldots i_{p-1}}+\sum_{k=1}^{p-1}(-1)^{k} e_{a i_{1} . . \hat{i_{k}} \ldots i_{p-1}}$.
The terms $e_{i_{1} \ldots i_{p-1} b}$ and $e_{a i_{1} \ldots i_{p-1}}$ are clearly allowed, while among the terms $e_{a i_{1} . . \hat{i}_{k} \ldots i_{p-1} b}$ there may be non-allowed. In the full expansion of

$$
\partial v=\sum_{a, b \in V} \partial v_{a, b}
$$

all non-allowed terms must cancel out. Since all the terms $e_{a i_{1} . \hat{i}_{k} \ldots i_{p-1} b}$ form a (a, b)-cluster, they cannot cancel with terms containing different values of a or b. Therefore, they have to cancel already within $\partial v_{a, b}$, which implies that $\partial v_{a, b}$ is allowed.

Definition. For any p-path $v=\sum v^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ define its width $\|v\|$ as the number of non-zero coefficients $v^{i_{0} \ldots i_{p}}$.

Definition. A ∂-invariant path ω is called minimal if ω cannot be represented as a sum of other ∂-invariant paths with smaller widths.

Example 2.3. A square $\omega=e_{a b c}-e_{a b^{\prime} c}$ has width 2 and is minimal because $e_{a b c}$ and $e_{a b^{\prime} c}$ having width 1 are not ∂-invariant.

Let $a,\left\{b_{0}, b_{1}, b_{2}\right\}, c$ be a 2 -square. The following path

$$
\omega=e_{a b_{0} c}+e_{a b_{1} c}-2 e_{a b_{2} c}
$$

is ∂-invariant, has width 3 but is not minimal because it can be represented as a sum of two squares:

$$
\omega=\left(e_{a b_{0} c}-e_{a b_{2} c}\right)+\left(e_{a b_{1} c}-e_{a b_{2} c}\right),
$$

where each square has width 2 .
Lemma 2.4. Every ∂-invariant cluster is a sum of minimal ∂-invariant clusters.

Proof. Let ω be a ∂-invariant cluster that is not minimal. Then we have

$$
\begin{equation*}
\omega=\sum_{k=1}^{n} \omega^{(k)} \tag{2.20}
\end{equation*}
$$

where each $\omega^{(k)}$ is a ∂-invariant path with $\left\|\omega^{(k)}\right\|<\|\omega\|$. By Lemma 2.2, each $\omega^{(k)}$ is a sum of clusters $\omega_{a, b}^{(k)}$, and it is clear from the definition of $\omega_{a, b}^{(k)}$ that

$$
\left\|\omega_{a, b}^{(k)}\right\| \leq\left\|\omega^{(k)}\right\|
$$

Hence, we can replace in (2.20) each $\omega^{(k)}$ by $\sum_{a, b} \omega_{a, b}^{(k)}$ and, hence, assume without loss of generality that all terms $\omega^{(k)}$ in (2.20) are ∂-invariant clusters.

If some $\omega^{(k)}$ in this sum is not minimal then we replace it further with a sum of ∂-invariant clusters with smaller widths. Continuing this procedure we obtain in the end a representation ω as a sum of minimal ∂-invariant clusters.

Proposition 2.5. The space Ω_{p} has a basis that consists of minimal ∂-invariant clusters.

Proof. Indeed, let \mathcal{M} denote the set of all minimal ∂-invariant clusters in Ω_{p}. By Lemma 2.4, every element of Ω_{p} is a sum of elements of \mathcal{M}. Choosing in \mathcal{M} a maximal linearly independent subset, we obtain a basis in Ω_{p}.

2.3 Structure of Ω_{3}

We use here the trapezohedra T_{m} and associated trapezohedral paths τ_{m} defined in Sections 1.5 and 2.1 (see (1.5)), that are ∂-invariant 3 -paths for all $m \geq 2$. We prove here in Theorem 2.10 that if G contains no multisquare (see Subsection 1.5) then $\Omega_{3}(G)$ has a basis that consists of trapezohedral paths and their morphism images.

We start with some examples.
Example 2.6. Here is a merging map from T_{2} onto a 3-snake:

The trapezohedral path τ_{2} is given by

$$
\tau_{2}=e_{0123}-e_{0153}+e_{0453}-e_{0423}
$$

and its merging image is the 3-path

$$
v=e_{0123}-e_{0133}+e_{0233}-e_{0223}=e_{0123}
$$

that is, the 3-path e_{0123} associated with a 3-snake.
Example 2.7. Here is a merging morphism of T_{3} ($=$ a 3-cube) onto a pyramid:

The cubical 3-path is given by

$$
\tau_{3}=e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267}
$$

and its merging image of τ_{3} is the following ∂-invariant 3-path in a pyramid:

$$
v=e_{0234}-e_{0134}+e_{0144}-e_{0444}+e_{0444}-e_{0244}=e_{0234}-e_{0134}
$$

Example 2.8. Consider another merging morphism of T_{3} onto a prism:

The merging image of τ_{3} is the following ∂-invariant 3-path in the prism:

$$
\begin{aligned}
u & =e_{0233}-e_{0133}+e_{0153}-e_{0453}+e_{0423}-e_{0223} \\
& =e_{0153}-e_{0453}+e_{0423}
\end{aligned}
$$

Example 2.9. Here is a merging morphism $\mu: T_{4} \rightarrow G$ where the digraph G is a broken cube that is shown in the right panel:

The path τ_{4} in the present notation is given by
$\tau_{4}=e_{0159}-e_{0169}+e_{0269}-e_{0279}+e_{0379}-e_{0389}+e_{0489}-e_{0459}$,
and the merging image of τ_{4} is the following ∂-invariant 3-path on the broken cube:

$$
\begin{align*}
v & =e_{0158}-e_{0168}+e_{0268}-e_{0278}+e_{0378}-e_{0388}+e_{0488}-e_{0458} \tag{2.21}\\
& =e_{0158}-e_{0168}+e_{0268}-e_{0278}+e_{0378}-e_{0458}
\end{align*}
$$

One can show that $\Omega_{3}(G)=\langle v\rangle$.
The next theorem describes the structure of $\Omega_{3}(G)$ for a general digraph G but under the following hypothesis:

(2.22) G contains neither multisquares nor double arrows.

Under the hypothesis (2.22), $\Omega_{2}(G)$ has a basis that consists of triangles and squares. The condition (2.22) implies that if $a \rightarrow b \rightarrow c$ and $a \nrightarrow c$ then there is at most one $b^{\prime} \neq b$ such that $a \rightarrow b^{\prime} \rightarrow c$.
Theorem 2.10. Under the hypothesis (2.22), there is a basis in $\Omega_{3}(G)$ that consists of trapezohedral paths τ_{m} with $m \geq 2$ and their merging images.

Hence, trapezohedra are basic shapes for Ω_{3}.
Proof. By Proposition 2.5, Ω_{3} has a basis that consists of minimal ∂-invariant clusters. Let a path $\omega \in \Omega_{3}$ be a minimal ∂-invariant (a, b)-cluster. It suffices to prove that ω is a merging image of one of the trapezohedral paths τ_{m} up to a constant factor.

Denote by P the set of all elementary terms $e_{a i j b}$ of ω. Clearly, the number $|P|$ of elements in P is equal to $\|\omega\|$. We claim that, for any $e_{a i j b} \in P$,

$$
\text { either } a \rightarrow j \text { or } a \nearrow j
$$

where the notation $a \nearrow j$ means that a and j form a diagonal of a square.

Indeed, if $a \nrightarrow j$ then the term $e_{a j b}$ appearing in $\partial e_{a i j b}$ is non-allowed and should be cancelled in $\partial \omega$ by the boundary of another elementary 3-path from P that can only be of the form $e_{a i^{\prime} j b}$ with

$$
a \rightarrow i^{\prime} \rightarrow j
$$

Hence, a and j form diagonal of a square a, i, i^{\prime}, j.

By hypothesis (2.22), the vertex i^{\prime} with these properties is unique. Hence, in this case we have

$$
\begin{equation*}
\omega=c e_{a i j b}-c e_{a i^{\prime} j b}+\ldots \tag{2.23}
\end{equation*}
$$

for some scalar $c \neq 0$. In the same way, we have

$$
\text { either } i \rightarrow b \text { or } i \nearrow b
$$

and, for some $e_{a i j^{\prime} b} \in P$ and $c \neq 0$,

$$
\begin{equation*}
\omega=c e_{a i j b}-c e_{a i j^{\prime} b}+\ldots \tag{2.24}
\end{equation*}
$$

If for some path $e_{a i j b} \in P$ we have both conditions

$$
a \rightarrow j \quad \text { and } \quad i \rightarrow b
$$

then $e_{a i j b}$ is ∂-invariant and, by the minimality of ω,

$$
\omega=\operatorname{const} e_{a i j b} .
$$

Since $e_{a i j b}$ is in this case a 3-snake, the path ω is a merging image of τ_{2}.

Next, we can assume that, for any path $e_{a i j b} \in P$, we have

$$
a \nrightarrow j \quad \text { or } \quad i \nrightarrow b
$$

which is equivalent to

$$
\begin{equation*}
a \nearrow j \text { or } i \nearrow b . \tag{2.25}
\end{equation*}
$$

Define a graph structure on P with edges of two types (i) and (ii) as follows: for two distinct elements $e_{a i j b}$ and $e_{a i^{\prime} j^{\prime} b}$ of P we write

$$
e_{a i j b} \stackrel{(\mathrm{i})}{\sim} e_{a i^{\prime} j^{\prime} b} \text { if } a \nearrow j \text { and } j=j^{\prime}
$$

and

$$
e_{a i j b} \stackrel{(\mathrm{ii})}{\sim} e_{a i^{\prime} j^{\prime} b} \text { if } i \nearrow b \text { and } i^{\prime}=i
$$

Clearly, both relations $\stackrel{(\mathrm{i})}{\sim}$ and $\stackrel{(\text { ii) }}{\sim}$ are symmetric. We refer to the relations $\stackrel{(\mathrm{i})}{\sim}$ and $\stackrel{(\mathrm{ii)}}{\sim}$ as the edges in P of the first and, respectively, second type.

By the hypothesis (2.22), for any $e_{a i j b} \in P$ there is at most one edge of the first type and at most one edge of the second type. In particular, the degree of any vertex of the graph (P, \sim) is at most 2.

Fix a path $e_{a i j b} \in P$. By the above argument, if $a \nearrow j$ then there exists $e_{a i^{\prime} j b} \in P$ such that $e_{a i j b} \stackrel{(\mathrm{i})}{\sim} e_{a i^{\prime} j b}$ and ω satisfies (2.23). Similarly, if $i \nearrow b$ then there exists $e_{a i j^{\prime} b} \in P$ such that $e_{a i j b} \stackrel{(i i)}{\sim}$ $e_{a i j^{\prime} b}$ and ω satisfies (2.24). In particular, the degree of any vertex of the graph P is at least 1 .

Let us prove that the graph (P, \sim) is connected. If P not connected then P is a disjoint union of its connected components $\left\{P_{k}\right\}_{k=1}^{n}$ where $n>1$. Denote by $\omega^{(k)}$ the sum of all elementary terms of ω lying in P_{k}, with the same coefficients as in ω, so that

$$
\begin{equation*}
\omega=\sum_{k=1}^{n} \omega^{(k)} \tag{2.26}
\end{equation*}
$$

Let us verify that each $\omega^{(k)}$ is ∂-invariant. Clearly, $\omega^{(k)}$ is allowed, and let us prove that $\partial \omega^{(k)}$ is allowed. Indeed, let $\partial \omega^{(k)}$ contain a non-allowed term. The latter comes from the boundary $\partial e_{a i j b}$ of some elementary term $e_{a i j b}$ of $\omega^{(k)}$ and, hence, is either $e_{a i b}$ or $e_{a j b}$, let it be $e_{a i b}$, which means $i \nrightarrow b$. The term $e_{a i b}$ cancels out in $\partial \omega$, which can only happen when ω contains another term of the form $e_{a i j^{\prime} b}$. However, then

$$
e_{a i j b} \sim e_{a i j^{\prime} b}
$$

so that $e_{a i j^{\prime} b}$ belongs to the same connected component P_{k} and, hence, must be an elementary term of $\omega^{(k)}$. This proves that $\partial \omega^{(k)}$ is allowed and, hence, $\omega^{(k)}$ is ∂-invariant.

If the number n of the terms in (2.26) is greater than 1 then the number of vertices in each P_{k} is strictly less that in P, which implies $\left\|\omega_{k}\right\|<\|\omega\|$. However, in this case the representation (2.26) is not possible because ω is minimal. Hence, $n=1$ and P is connected.

Since each vertex of P has at most two adjacent edges, there are only two possibilities:
(A) P is a simple closed polygon;
(B) P is a linear graph.

Consider first the case (A). In this case every vertex of P has two edges: exactly one edge of each type (i), (ii).

Thus, the number of edges is even, let $2 m$, and P has necessarily the following form:
$e_{a i_{0} j_{0} b} \stackrel{(\mathrm{ii})}{\sim} e_{a i_{0} j_{1}} \stackrel{(\mathrm{i})}{\sim} e_{a i_{1} j_{1} b} \stackrel{(\mathrm{ii})}{\sim} \ldots \stackrel{(\mathrm{i})}{\sim} e_{a i_{m-1} j_{m-1}} b \stackrel{(\mathrm{ii})}{\sim} e_{a i_{m-1}} j_{0} b \stackrel{(\mathrm{i})}{\sim} e_{a i_{0} j_{0} b}$
for some vertices $\left\{i_{k}\right\}_{k=0}^{m-1}$ and $\left\{j_{k}\right\}_{k=0}^{m-1}$ of G. Note that necessarily $m \geq 2$ because if $m=1$ then (2.27) becomes

$$
e_{a i_{0} j_{0} b} \stackrel{(\mathrm{ii})}{\sim} e_{a i_{0} j_{1} b} \stackrel{(\mathrm{i})}{\sim} e_{a i_{0} j_{0} b}
$$

which is impossible because edges of different types between the same vertices of P do not exist.

Since all the terms in (2.27) enter ω with the same coefficients $\pm c$ (cf. (2.23) and (2.24)), we see that

$$
\begin{align*}
\omega=c & \left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+\ldots\right. \\
& \left.+e_{a i_{m-1} j_{m-1} b}-e_{a i_{m-1} j_{0} b}\right) . \tag{2.28}
\end{align*}
$$

If all vertices $a,\left\{i_{k}\right\}_{k=0}^{m-1},\left\{j_{k}\right\}_{k=0}^{m-1}, b$ are distinct then they form a trapezohedron T_{m} :

In this case we have by (1.5) and (2.28)

$$
\omega=c \tau_{m}
$$

If some of these vertices coincide then the configuration (2.27) is a merging image of T_{m}, and ω is a merging image of $c \tau_{m}$.

Consider now the case (B). In this case the linear graph P has two end vertices of degree 1 , while all other vertices have degree 2. Depending on the type of edges at the end vertices of P, we have two essentially different subcases:
case $\left(B_{1}\right)$: the end vertices of P have edges of different types.

case $\left(\mathrm{B}_{2}\right)$: the end vertices of P both have edges of type (ii) (the case of type (i) is similar).

Consider first the case $\left(\mathrm{B}_{1}\right)$ when the graph P must have the form
$e_{a i_{0} j_{0} b} \stackrel{(\mathrm{ii})}{\sim} e_{a i_{0} j_{1} b} \stackrel{(\mathrm{i})}{\sim} e_{a i_{1} j_{1} b} \stackrel{(\mathrm{ii})}{\sim} e_{a i_{1} j_{2} b} \stackrel{(\mathrm{i})}{\sim} \ldots \stackrel{(\mathrm{ii)}}{\sim} e_{a i_{m-1} j_{m} b} \stackrel{(\mathrm{i})}{\sim} e_{a i_{m} j_{m} b}$.
Consequently, we have

$$
\begin{align*}
\omega=c & \left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+\ldots\right. \\
& \left.-e_{a i_{m-1} j_{m} b}+e_{a i_{m} j_{m} b}\right) \tag{2.30}
\end{align*}
$$

Since

$$
\begin{equation*}
\partial \omega=c\left(-e_{a j_{0} b}+e_{a i_{m} b}\right) \bmod \mathcal{A}_{2} \tag{2.31}
\end{equation*}
$$

and $\partial \omega \in \mathcal{A}_{2}$, we must have either $e_{a j_{0} b}=e_{a i_{m} b}$ or both $e_{a j_{0} b}$ and $e_{a i_{m} b}$ are allowed, that is,

$$
\begin{equation*}
a \rightarrow j_{0} \quad \text { and } \quad i_{m} \rightarrow b \tag{2.32}
\end{equation*}
$$

In the former case we have $j_{0}=i_{m}$ whence (2.32) follows again so that (2.32) is satisfied in both cases.

We claim that in the case $\left(B_{1}\right)$ the configuration (2.29) is a merging image of T_{m+2}.

Indeed, denote the vertices of T_{m+2} also by $a,\left\{i_{k}\right\}_{k=0}^{m+1},\left\{j_{k}\right\}_{k=0}^{m+1}, b$, and map all the vertices of T_{m+2}, except for i_{m+1}, j_{m+1}, to the vertices of G with the same names; then merge

$$
i_{m+1} \mapsto j_{0} \quad \text { and } \quad j_{m+1} \mapsto b
$$

The arrows $a \rightarrow i_{m+1}, i_{m} \rightarrow j_{m+1}, i_{m+1} \rightarrow j_{m+1}$ in T_{m+2} are mapped to the arrows

$$
a \rightarrow j_{0}, i_{m} \rightarrow b, j_{0} \rightarrow b
$$

in G (cf. (2.32)), while the arrows $i_{m+1} \rightarrow j_{0}$ and $j_{m+1} \rightarrow b$ go to vertices. It follows that this mapping of T_{m+2} into G is a digraph morphism. Since by (1.5)

$$
\tau_{m+2}=\left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}\right)+\left(e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}\right)+\ldots
$$

$$
+\left(e_{a i_{m} j_{m} b}-e_{a i_{m} j_{m+1} b}\right)+\left(e_{a i_{m+1} j_{m+1} b}-e_{a i_{m+1} j_{0} b}\right)
$$

the image of τ_{m+2} is the following path, where we replace i_{m+1} by j_{0} and j_{m+1} by b :

$$
\begin{aligned}
u= & \left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}\right)+\left(e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}\right)+\ldots \\
& +\left(e_{a i_{m} j_{m} b}-\underline{e_{a i_{m} b b}}\right)+\left(\underline{e_{a j_{0} b b}}-\underline{e_{a j_{0} j_{0} b}}\right) \\
= & e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+\ldots-e_{a i_{m-1} j_{m} b}+e_{a i_{m} j_{m} b}
\end{aligned}
$$

Comparison with (2.30) shows that $\omega=c u$, that is, ω is a merging image of $c \tau_{m+2}$.

For example, in the case $m=1$, this merging morphism of T_{3} is shown here:

Clearly, it coincides with the merging morphism of Example 2.8 mapping a 3 -cube onto a prism.

Consider now the case $\left(B_{2}\right)$ when the graph P has the form

$$
\begin{aligned}
& e_{a i_{0} j_{0} b} \stackrel{(\mathrm{ii)}}{\sim} e_{a i_{0} j_{1} b} \stackrel{(\mathrm{i})}{\sim} e_{a i_{1} j_{1} b} \stackrel{(\mathrm{ii})}{\sim} e_{a i_{1} j_{2} b} \stackrel{(\mathrm{i})}{\sim} \ldots \stackrel{(\mathrm{i})}{\sim} e_{a i_{m-1} j_{m-1} b} \\
& 3) \quad \stackrel{(\mathrm{ii)}}{\sim} e_{a i_{m-1}} j_{m} b
\end{aligned}
$$

so that

$$
\begin{gather*}
\omega=c\left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+\ldots\right. \\
\left.+e_{a i_{m-1} j_{m-1} b}-e_{a i_{m-1} j_{m} b}\right) \tag{2.34}
\end{gather*}
$$

Since

$$
\partial \omega=c\left(-e_{a j_{0} b}+e_{a j_{m} b}\right) \bmod \mathcal{A}_{2}
$$

it follows that either $j_{0}=j_{m}$ or

$$
\begin{equation*}
a \rightarrow j_{0} \quad \text { and } \quad a \rightarrow j_{m} \tag{2.35}
\end{equation*}
$$

However, $j_{0}=j_{m}$ is not possible because it would imply that

$$
e_{a i_{0} j_{0} b} \stackrel{(\mathrm{i})}{\sim} e_{a i_{m-1} j_{0} b}
$$

and the line graph P would close into a polygon, which gives the case (A). Hence, (2.35) is satisfied. We claim that the configuration (2.33) is then a merging image of T_{m+1}.

Indeed, we denote the vertices of T_{m+1} also by $a,\left\{i_{k}\right\}_{k=0}^{m},\left\{j_{k}\right\}_{k=0}^{m}, b$, and then map all the vertices of T_{m+1}, except for i_{m}, to the vertices of G with the same names; then map i_{m} to a.

Clearly, the following arrows

$$
i_{m} \rightarrow j_{0} \quad \text { and } \quad i_{m} \rightarrow j_{m}
$$

in T_{m+1} are mapped to the arrows

$$
a \rightarrow j_{0} \quad \text { and } \quad a \rightarrow j_{m}
$$

in G as in (2.35), and the arrow $a \rightarrow i_{m}$ goes to a vertex. Hence, we obtain a merging morphism of T_{m+1} into G. Since by (1.5)

$$
\begin{aligned}
\tau_{m+1}= & \left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}\right)+\left(e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}\right)+\ldots \\
& +\left(e_{a i_{m-1} j_{m-1} b}-e_{a i_{m-1} j_{m} b}\right)+\left(e_{a i_{m} j_{m} b}-e_{a i_{m} j_{0} b}\right)
\end{aligned}
$$

the image of τ_{m+1} is the following path, where we replace i_{m} by a :

$$
\begin{aligned}
v= & \left(e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}\right)+\left(e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}\right)+\ldots \\
& +\left(e_{a i_{m-1} j_{m-1} b}-e_{a i_{m-1} j_{m} b}\right)+\left(\underline{e_{a a j_{m} b}}-\underline{e_{a a j_{0} b}}\right) \\
= & e_{a i_{0} j_{0} b}-e_{a i_{0} j_{1} b}+e_{a i_{1} j_{1} b}-e_{a i_{1} j_{2} b}+\ldots \\
& +e_{a i_{m-1} j_{m-1} b}-e_{a i_{m-1} j_{m} b} .
\end{aligned}
$$

Comparison with (2.34) shows that $\omega=c v$ so that ω is a merging image of $c \tau_{m+1}$.

For example, in the case $m=3$, the above morphism is equivalent to the merging morphism of Example 2.9 mapping T_{4} onto a broken cube. In the case $m=2$ we obtain the following merging image of a 3-cube:

Problem 2.11. Prove Theorem 2.10 in the general case without the hypothesis (2.22).

Problem 2.12. Devise an algorithm for computing a basis in Ω_{3} based on Theorem 2.10.

Problem 2.13. State and prove similar results for Ω_{4}. Are the basic shapes in Ω_{4} given by polyhedra in \mathbb{R}^{4} ? Devise an algorithm for computing a basis in Ω_{4}. The same questions for Ω_{p} with $p>4$.

3. Künneth Formulas

The material in this section is based on [22] and [29].

3.1 Cross Product of Paths

Given two finite sets X, Y, consider their product

$$
Z=X \times Y=\{(a, b): a \in X \text { and } b \in Y\} .
$$

Let $z=z_{0} z_{1} \ldots z_{r}$ be a regular elementary r-path on Z, where $z_{k}=\left(a_{k}, b_{k}\right)$ with $a_{k} \in X$ and $b_{k} \in Y$. We say that z is stair-like if, for any $k=1, \ldots, r$, either $a_{k-1}=a_{k}$ or $b_{k-1}=b_{k}$ is satisfied. That is, any couple $z_{k-1} z_{k}$ of consecutive vertices is either vertical (when $a_{k-1}=a_{k}$) or horizontal (when $b_{k-1}=b_{k}$).

Given a stair-like path z on Z, define its projection onto X as an elementary path x on X obtained from z by removing Y-components in all the vertices of z and then by collapsing in the resulting sequence any subsequence of repeated vertices to one vertex.

In the same way define projection of z onto Y and denote it by y.

The projections $x=x_{0} \ldots x_{p}$ and $y=y_{0} \ldots y_{q}$ are regular elementary paths, and $p+q=r$.

Every vertex $\left(x_{i}, y_{j}\right)$ of the path z can be represented as a point (i, j) of \mathbb{Z}^{2} so that the path z is represented by a staircase $S(z)$ in \mathbb{Z}^{2} connecting $(0,0)$ and (p, q).

Define the elevation $L(z)$ of z as the number of cells in \mathbb{Z}_{+}^{2} below the staircase $S(z)$.

For given elementary regular paths x on X and y on Y, denote by $\Sigma_{x, y}$ the set of all stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths e_{x} and e_{y} as a path $e_{x} \times e_{y}$ on Z as follows:

$$
\begin{equation*}
e_{x} \times e_{y}=\sum_{z \in \Sigma_{x, y}}(-1)^{L(z)} e_{z} \tag{3.36}
\end{equation*}
$$

and extend it by linearity to all $u \in \mathcal{R}_{p}(X)$ and $v \in \mathcal{R}_{q}(Y)$ so that $u \times v \in \mathcal{R}_{p+q}(Z)$.

Example 3.1. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers $1,2,3$, etc so that the vertices
on Z can be denoted as $a 1, b 2$ etc as the fields on a chessboard. Then we have

$$
\begin{aligned}
e_{a} \times e_{12}= & e_{a 1 a 2}, \quad e_{a b} \times e_{1}=e_{a 1 b 1} \\
e_{a b} \times e_{12}= & e_{a 1 b 1 b 2}-e_{a 1 a 2 b 2} \\
e_{a b} \times e_{123}= & e_{a 1 b 1 b 2 b 3}-e_{a 1 a 2 b 2 b 3}+e_{a 1 a 2 a 3 b 3} \\
e_{a b c} \times e_{123}= & e_{a 1 b 1 c 1 c 2 c 3}-e_{a 1 b 1 b 2 c 2 c 3}+e_{a 1 b 1 b 2 b 3 c 3} \\
& +e_{a 1 a 2 b 2 c 2 c 3}-e_{a 1 a 2 b 2 b 3 c 3}+e_{a 1 a 2 a 3 b 3 c 3}
\end{aligned}
$$

Lemma 3.2 ([29, Proposition 4.4]). If $u \in \mathcal{R}_{p}(X)$ and $v \in \mathcal{R}_{q}(Y)$ where $p, q \geq 0$, then

$$
\begin{equation*}
\partial(u \times v)=(\partial u) \times v+(-1)^{p} u \times(\partial v) . \tag{3.37}
\end{equation*}
$$

3.2 Cartesian Product of Digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs X and Y, define their Cartesian product as a digraph $Z=X \square Y$ as follows:

- the set of vertices of Z is $X \times Y$, that is, the vertices of Z are the couples (a, b) where $a \in X$ and $b \in Y$;
- the edges in Z are of two types: $(a, b) \rightarrow\left(a^{\prime}, b\right)$ where $a \rightarrow a^{\prime}$ (a horizontal edge) and $(a, b) \rightarrow\left(a, b^{\prime}\right)$ where $b \rightarrow b^{\prime}$ (a vertical edge):

It follows that any allowed elementary path in Z is stair-like.
Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections onto X and Y are allowed.

It follows from definition (3.36) of the cross product that

$$
\begin{equation*}
u \in \mathcal{A}_{p}(X) \text { and } v \in \mathcal{A}_{q}(Y) \Rightarrow u \times v \in \mathcal{A}_{p+q}(Z) \tag{3.38}
\end{equation*}
$$

Furthermore, the following is true.
Lemma 3.3 ([29, Proposition 4.6]). If $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ then

$$
u \times v \in \Omega_{p+q}(Z)
$$

Proof. $u \times v$ is allowed by (3.38). Since ∂u and ∂v are allowed, by (3.38) also $\partial u \times v$ and $u \times \partial v$ are allowed. By (3.37), $\partial(u \times v)$ is also allowed. Hence, $u \times v \in \Omega_{p+q}(Z)$.

Theorem 3.4 ([29, Theorem 5.1]). Any ∂-invariant path w on $Z=X \square Y$ admits a representation of the form

$$
w=\sum_{i=1}^{m} u_{i} \times v_{i}
$$

for some finite m, where u_{i} and v_{i} are ∂-invariant paths on X and Y, respectively.

3.3 Künneth Formula for Product

Here is the main result of this section.
Theorem 3.5 (Künneth formula for product [29, Theorem 4.7]). Let X, Y be two finite digraphs. Then, for any $r \geq 0$,

$$
\begin{equation*}
\Omega_{r}(X \square Y) \cong \bigoplus_{\{p, q \geq 0: p+q=r\}} \Omega_{p}(X) \otimes \Omega_{q}(Y) \tag{3.39}
\end{equation*}
$$

where the isomorphism is given by

$$
u \otimes v \mapsto u \times v
$$

for $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$.
Consequently, we have

$$
\begin{equation*}
H_{r}(X \square Y) \cong \bigoplus_{\{p, q \geq 0 ; p+q=r\}} H_{p}(X) \otimes H_{q}(Y) \tag{3.40}
\end{equation*}
$$

and

$$
\beta_{r}(X \square Y)=\sum_{\{p, q \geq 0: p+q=r\}} \beta_{p}(X) \beta_{q}(Y)
$$

Example 3.6. Let X be an interval and Y be a square:

$$
X={ }^{a} \bullet \rightarrow \bullet^{b} \text { and } Y=\square_{0}^{2}
$$

Then $Z=X \square Y$ is a 3-cube:

We have:

$$
\begin{aligned}
& \Omega_{1}(X)=\left\langle e_{a b}\right\rangle, \Omega_{p}(X)=0 \text { for } p \geq 2, \\
& \Omega_{1}(Y)=\left\langle e_{01}, e_{13}, e_{23}, e_{02}\right\rangle, \\
& \Omega_{2}(Y)=\left\langle e_{013}-e_{023}\right\rangle, \Omega_{q}(Y)=0 \text { for } q \geq 3 .
\end{aligned}
$$

By (3.39) we obtain

$$
\Omega_{3}(Z) \cong \Omega_{1}(X) \otimes \Omega_{2}(Y)=\left\langle e_{a b} \times\left(e_{013}-e_{023}\right)\right\rangle
$$

Let us compute the cross-products:

$$
\begin{aligned}
e_{a b} \times e_{013} & =e_{a 0 b 0 b 1 b 3}-e_{a 0 a 1 b 1 b 3}+e_{a 0 a 1 a 3 b 3} \\
& =e_{0457}-e_{0157}+e_{0137}
\end{aligned}
$$

and

$$
e_{a b} \times e_{023}=e_{0467}-e_{0267}+e_{0237}
$$

Hence, we obtain

$$
\Omega_{3}(Z)=\left\langle e_{0457}-e_{0157}+e_{0137}-e_{0467}+e_{0267}-e_{0237}\right\rangle
$$

That is, Ω_{3} is generated by a single ∂-invariant 3-path that is associated with the 3-cube.

Example 3.7. Denote by T the following 3-cycle (=1-torus):

Consider the 2-torus $G=T \square T$ that is shown here:

Let us compute $\Omega_{r}(G)$ and $H_{r}(G)$. We have

$$
\begin{aligned}
& \Omega_{0}(T)=\left\langle e_{0}, e_{1}, e_{2}\right\rangle, \\
& \Omega_{1}(T)=\left\langle e_{01}, e_{12}, e_{20}\right\rangle \\
& \Omega_{p}(T)=\{0\} \text { for } p \geq 2
\end{aligned}
$$

By (3.39) we obtain $\Omega_{r}=\{0\}$ for $r \geq 3$ and

$$
\begin{aligned}
\Omega_{2}(G)= & \Omega_{1}(T) \otimes \Omega_{1}(T) \\
= & \left\langle e_{a b} \times e_{01}, e_{a b} \times e_{12}, e_{a b} \times e_{20}, e_{b c} \times e_{01}, e_{b c} \times e_{12},\right. \\
& \left.e_{b c} \times e_{20}, e_{c a} \times e_{01}, e_{c a} \times e_{12}, e_{c a} \times e_{20}\right\rangle .
\end{aligned}
$$

Using

$$
e_{a b} \times e_{i j}=e_{a i b i b j}-e_{a i a j b j}
$$

we obtain that

$$
\begin{aligned}
\Omega_{2}(G)= & \left\langle e_{a 0 b 0 b 1}-e_{a 0 a 1 b 1}, e_{a 1 b 1 b 2}-e_{a 1 a 2 b 2},\right. \\
& e_{a 2 b 2 b 0}-e_{a 2 a 0 b 0}, e_{b 0 c 0 c 1}-e_{b 0 b 1 c 1} \\
& e_{b 1 c 1 c 2}-e_{b 1 b 2 c 2}, e_{b 2 c 2 c 0}-e_{b 2 b 0 c 0} \\
& e_{c 0 a 0 a 1}-e_{c 0 c 1 a 1}, e_{c 1 a 1 a 2}-e_{c 1 c 2 a 2} \\
& \left.e_{c 2 a 2 a 0}-e_{c 2 c 0 a 0}\right\rangle
\end{aligned}
$$

That is,

$$
\begin{align*}
\Omega_{2}(G)= & \left\langle e_{034}-e_{014}, e_{145}-e_{125}, e_{253}-e_{203}\right. \\
& e_{367}-e_{347}, e_{478}-e_{458}, e_{586}-e_{536} \\
& \left.e_{601}-e_{671}, e_{712}-e_{782}, e_{820}-e_{860}\right\rangle \tag{3.41}
\end{align*}
$$

so that $\Omega_{2}(G)$ is generated by 9 squares.
This can be visualized using the following embedding of G onto a topological torus:

Let us compute the homology groups of G. We know that

$$
\begin{aligned}
& H_{0}(T)=\left\langle e_{0}\right\rangle, \quad H_{1}(T)=\left\langle e_{01}+e_{12}+e_{20}\right\rangle \\
& H_{p}(T)=\{0\} \text { for } p \geq 2
\end{aligned}
$$

By (3.40) we obtain

$$
H_{1}(G)=H_{0}(T) \otimes H_{1}(T)+H_{1}(T) \otimes H_{0}(T)=\left\langle v_{1}, v_{2}\right\rangle
$$

where

$$
\begin{aligned}
v_{1} & =e_{a} \times\left(e_{01}+e_{12}+e_{20}\right)=e_{a 0 a 1}+e_{a 1 a 2}+e_{a 2 a 0} \\
& =e_{01}+e_{12}+e_{20} \\
v_{2} & =\left(e_{a b}+e_{b c}+e_{c a}\right) \times e_{0}=e_{a 0 b 0}+e_{b 0 c 0}+e_{c 0 a 0} \\
& =e_{03}+e_{36}+e_{60} .
\end{aligned}
$$

Again by (3.40) we get

$$
H_{2}(G)=H_{1}(T) \otimes H_{1}(T)=\langle u\rangle,
$$

where

$$
u=\left(e_{a b}+e_{b c}+e_{c a}\right) \times\left(e_{01}+e_{12}+e_{20}\right)
$$

Hence,

$$
\begin{aligned}
u= & e_{a 0 b 0 b 1}-e_{a 0 a 1 b 1}+e_{a 1 b 1 b 2}-e_{a 1 a 2 b 2}+e_{a 2 b 2 b 0}-e_{a 2 a 0 b 0} \\
& +e_{b 0 c 0 c 1}-e_{b 0 b 1 c 1}+e_{b 1 c 1 c 2}-e_{b 1 b 2 c 2}+e_{b 2 c 2 c 0}-e_{b 2 b 0 c 0} \\
& +e_{c 0 a 0 a 1}-e_{c 0 c 1 a 1}+e_{c 1 a 1 a 2}-e_{c 1 c 2 a 2}+e_{c 2 a 2 a 0}-e_{c 2 c 0 a 0}
\end{aligned}
$$

that is,

$$
\begin{align*}
u= & \left(e_{034}-e_{014}\right)+\left(e_{145}-e_{125}\right)+\left(e_{253}-e_{203}\right) \\
& +\left(e_{367}-e_{347}\right)+\left(e_{478}-e_{458}\right)+\left(e_{586}-e_{536}\right) \\
& +\left(e_{601}-e_{671}\right)+\left(e_{712}-e_{782}\right)+\left(e_{820}-e_{860}\right) . \tag{3.42}
\end{align*}
$$

Finally, $H_{r}(G)=0$ for all $r \geq 3$.

3.4 An Example: n-Cube

Define the n-cube as follows:

$$
n \text {-cube }=I^{\square n}=\underbrace{I \square I \square \ldots \square I}_{n},
$$

where $I=\{0 \rightarrow 1\}$ and $n \in \mathbb{N}$. Hence, each vertex a of the n-cube can be identified with a binary sequence $\left(a_{1}, \ldots, a_{n}\right)$. For example, $\mathbf{0}=(0, \ldots, 0)$ and $\mathbf{1}=(1, \ldots, 1)$ are the corners of the n-cube.

For two vertices a, b of the n-cube, there is an arrow $a \rightarrow b$ if $b_{k}=a_{k}+1$ for exactly one value of k and $b_{k}=a_{k}$ for all other values of k. Denote

$$
|a|=a_{1}+\ldots+a_{n} .
$$

We write $a \preceq b$ if there is an allowed path from a to b, that is

$$
a \preceq b \Leftrightarrow a_{k} \leq b_{k} \text { for all } k=1, \ldots, n .
$$

For any pair $a \preceq b$ consider an induced subgraph $D_{a, b}$ of the n-cube as follows: the vertices of $D_{a, b}$ are all vertices c of $I^{\square n}$ such that

$$
a \preceq c \preceq b
$$

and an arrow $c_{1} \rightarrow c_{2}$ exists in $D_{a, b}$ exactly when this arrow exists in $I^{\square n}$. Here is a 4-cube and its subgraph $D_{a, b}$ (the arrows go from top to bottom):

The mapping $c \mapsto c-a$ provides an isomorphism of $D_{a, b}$ onto a p-cube with

$$
p=|b|-|a| .
$$

Assuming that $a \preceq b$, denote by $P_{a, b}$ the set of all elementary allowed paths going from a to b. All paths of $P_{a, b}$ lie in $D_{a, b}$, each path in $P_{a, b}$ has the length $p=|b|-|a|$, and the total number of the paths in $P_{a, b}$ is $p!$.

Lemma 3.8. There is a function $\sigma: P_{a, b} \rightarrow\{0,1\}$ such that the following p-path

$$
\begin{equation*}
\omega_{a, b}=\sum_{x \in P_{a, b}}(-1)^{\sigma(x)} e_{x} \tag{3.43}
\end{equation*}
$$

is ∂-invariant.
For example, in a 3-cube as shown here, we have

$$
\begin{aligned}
& \omega_{0,1}=e_{01} \\
& \omega_{0,3}=e_{013}-e_{023}
\end{aligned}
$$

and

$$
\omega_{0,7}=e_{0137}-e_{0237}-e_{0157}+e_{0457}+e_{0267}-e_{0467}
$$

(cf. Example 3.6).

Proof. Without loss of generality, we can assume that $a=\mathbf{0}$, $b=\mathbf{1}$, and prove the claim by induction in $n=p$. The induction basis for $n=1$ is obvious. For the induction step from n to $n+1$ we use Lemma 3.3 that says that the cross product of ∂-invariant paths is ∂-invariant. Denote by $\mathbf{0}^{\prime}=(\mathbf{0}, 0)$ and $\mathbf{1}^{\prime}=(\mathbf{1}, 1)$ the corners of the $(n+1)$-cube.

$$
\text { A path } x \in P_{\mathbf{0}, \mathbf{1}} \text { and } z \in \Sigma_{x, y}
$$

Taking the cross product of the n-path $\omega_{0,1}$ on $I^{\square n}$ and the 1-path $y=e_{01}$ on I, and using (3.36), we obtain the following ∂-invariant $(n+1)$-path on $I^{\square(n+1)}$:

$$
\begin{aligned}
\omega_{\mathbf{0}, \mathbf{1}} \times e_{01} & =\sum_{x \in P_{\mathbf{0}, \mathbf{1}}}(-1)^{\sigma(x)} e_{x} \times e_{y} \\
& =\sum_{x \in P_{\mathbf{0}, \mathbf{1}}} \sum_{z \in \Sigma_{x, y}}(-1)^{\sigma(x)}(-1)^{L(z)} e_{z},
\end{aligned}
$$

where z is any stair-like path on $(n+1)$-cube that projects onto x and y, respectively.

Clearly, z runs over all paths $P_{0^{\prime}, \mathbf{1}^{\prime}}$. Setting

$$
\sigma(z)=\sigma(x)+L(z) \bmod 2
$$

and

$$
\omega_{0^{\prime}, \mathbf{1}^{\prime}}=\omega_{0, \mathbf{1}} \times e_{01}
$$

we obtain

$$
\omega_{\mathbf{0}^{\prime}, \mathbf{1}^{\prime}}=\sum_{z \in P_{\mathbf{0}^{\prime}, \mathbf{1}^{\prime}}}(-1)^{\sigma(z)} e_{z},
$$

which concludes the proof.
Proposition 3.9. For any $p \geq 0$, we have

$$
\Omega_{p}(n \text {-cube })=\left\langle\omega_{a, b}: a \preceq b \text { and }\right| b|-|a|=p\rangle .
$$

Moreover, $\left\{\omega_{a, b}\right\}$ is a basis of Ω_{p} (n-cube).
Proof. The proof is again by induction in n. The induction basis for $n=1$ is obvious. For the induction step from n to $n+1$ we use the Künneth formula (3.39). By this formula and by the induction hypothesis, we obtain that the basis in $\Omega_{p}((n+1)$-cube $)$ consists of the following p-paths:

$$
\begin{aligned}
& \left\{\omega_{a, b} \times e_{01}: \omega_{a, b} \in \Omega_{p-1}(n \text {-cube })\right\} \\
& \quad \cup\left\{\omega_{a, b} \times e_{i}: \omega_{a, b} \in \Omega_{p}(n \text {-cube }), i=0,1\right\}
\end{aligned}
$$

As above, the products $\omega_{a, b} \times e_{01}$ give us all the p-paths $\omega_{(a, 0),(b, 1)}$, while $\omega_{a, b} \times e_{i}$ give us all the p-paths $\omega_{(a, 0),(b, 0)}$ and $\omega_{(a, 1),(b, 1)}$. Clearly, we obtain in this way all p-paths $\omega_{a^{\prime}, b^{\prime}}$ with $a^{\prime}, b^{\prime} \in(n+1)$-cube, which concludes the proof.

3.5 Augmented Chain Complex

In this section we use the augmented chain complexes
(3.44) $0 \leftarrow \mathbb{K} \stackrel{\partial}{\leftarrow} \Lambda_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_{p} \stackrel{\partial}{\leftarrow} \ldots$
(3.45) $0 \leftarrow \mathbb{K} \stackrel{\partial}{\leftarrow} \mathcal{R}_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_{p} \stackrel{\partial}{\leftarrow} \ldots$
and
(3.46) $0 \leftarrow \mathbb{K} \stackrel{\partial}{\leftarrow} \Omega_{0} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots$,
with the added space $\Lambda_{-1}=\mathcal{R}_{-1}=\Omega_{-1}=\mathbb{K}$. The operator $\partial: \Lambda_{0} \rightarrow \Lambda_{-1}$ is define by

$$
\partial e_{i}=e=\text { the unity of } \mathbb{K}
$$

which matches the definition (1.1) for $p=0$.
The homology groups of (3.46) are called the reduced homology groups of G and are denoted by $\widetilde{H}_{p}(G)$. We have

$$
\widetilde{H}_{p}(G)=H_{p}(G) \text { for } p \geq 1 \quad \text { and } \quad \widetilde{H}_{0}(G)=H_{0}(G) / \mathbb{K}
$$

Define the reduced Betti numbers: $\widetilde{\beta}_{p}(G)=\operatorname{dim} \widetilde{H}_{p}(G)$. We have

$$
\widetilde{\beta}_{p}(G)=\beta_{p}(G) \text { for } p \geq 1 \quad \text { and } \quad \widetilde{\beta}_{0}(G)=\beta_{0}(G)-1
$$

For a disjoint union $X \sqcup Y$ of two digraphs we have by (1.4)

$$
\begin{equation*}
\widetilde{\beta}_{r}(X \sqcup Y)=\widetilde{\beta}_{r}(X)+\widetilde{\beta}_{r}(Y)+\mathbf{1}_{\{r=0\}} . \tag{3.47}
\end{equation*}
$$

The augmented chain complex (3.46) as opposed to (1.3) will also be used in Subsection 6.9. In all other places we continue using the chain complex (1.3).

3.6 A Join of Two Digraphs

Let X, Y be two digraphs.
Definition. The join $X * Y$ of the digraphs X, Y is a digraph whose set of vertices is a disjoint union of the sets of vertices of X and Y, and the set of arrows consists of all arrows of X and Y as well as from all arrows $x \rightarrow y$ where $x \in X$ and $y \in Y$.

Example 3.10. For example, for the digraphs $\{\cdot, \cdot\}$ of two vertices and no arrows, we have

and

Definition. Let $p, q \geq-1$. For a p-path u on X and a q-path v on Y, define the join $u v$ as a $(p+q+1)$-path on $X * Y$ as follows: first define it for elementary paths by

$$
e_{i_{0} \ldots i_{p}} e_{j_{0} \ldots j_{q}}=e_{i_{0} \ldots i_{p} j_{0} \ldots j_{q}}
$$

and then extend this definition by linearity to all u and v.

If u and v are allowed on X, resp. Y, then $u v$ is clearly allowed on $Z=X * Y$.

Lemma 3.11 (Product rule for join [20], [29, Lemma 2.4]). For all $p, q \geq-1$ and $u \in \Lambda_{p}, v \in \Lambda_{q}$ we have

$$
\begin{equation*}
\partial(u v)=(\partial u) v+(-1)^{p+1} u \partial v \tag{3.48}
\end{equation*}
$$

If $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ then ∂u and ∂v are allowed, which implies by (3.48) that $\partial(u v)$ is also allowed, that is, $u v \in$ $\Omega_{p+q+1}(Z)$. The product rule implies also that the join $u v$ is well defined for the reduced homology classes: if $u \in \widetilde{H}_{p}(X)$ and $v \in \widetilde{H}_{q}(Y)$ then $u v \in \widetilde{H}_{p+q+1}(Z)$.

3.7 Künneth Formula for Join

Let X, Y be two digraphs.
Theorem 3.12 (Künneth formula for join [29, Theorem 3.3]). We have the following isomorphism: for any $r \geq-1$,

$$
\begin{equation*}
\Omega_{r}(X * Y) \cong \bigoplus_{\{p, q \geq-1: p+q=r-1\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right) \tag{3.49}
\end{equation*}
$$

that is given by the map $u \otimes v \mapsto u v$ with $u \in \Omega_{p}(X)$ and $v \in$ $\Omega_{q}(Y)$, and, for any $r \geq 0$,

$$
\begin{align*}
& \text { (3.50) } \widetilde{H}_{r}(X * Y) \cong \bigoplus_{\{p, q \geq 0: p+q=r-1\}} \widetilde{H}_{p}(X) \otimes \widetilde{H}_{q}(Y) \\
& \text { (3.51) } \widetilde{\beta}_{r}(X * Y) \cong \sum_{\{p, q \geq 0: p+q=r-1\}} \widetilde{\beta}_{p}(X) \widetilde{\beta}_{q}(Y) . \tag{3.51}
\end{align*}
$$

The identity (3.49) means that any path in $\Omega_{r}(Z)$ can be obtained as linear combination of joins $u v$ where $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ with $p+q+1=r$, and (3.50) means the same for homology classes.

Example 3.13. Let Y consist of a single vertex. In this case the join $X * Y$ is called a cone over X. Since all homology groups $\widetilde{H}_{*}(Y)$ are trivial, the cone $X * Y$ is also homologically trivial by (3.50). For example, the following digraphs are cones and, hence, they are homologically trivial.

Example 3.14. Let Y consist of m vertices without arrows. Then the join $X * Y$ is called the m-suspension of X and is denoted by sus $_{m} X$.

Here is an example of $\operatorname{sus}_{m} X$ with $m=3$:

Since $\widetilde{\beta}_{0}(Y)=m-1$ and $\widetilde{\beta}_{p}(Y)=0$ for $p \geq 1$, we obtain from (3.51) that

$$
\widetilde{\beta}_{r}\left(\operatorname{sus}_{m} X\right)=(m-1) \widetilde{\beta}_{r-1}(X) .
$$

For example, on this picture $X=\operatorname{sus}_{2}\{\cdot, \cdot\}$ whence $\widetilde{\beta}_{1}(X)=$ 1 and $\widetilde{\beta}_{p}(X)=0$ for $p \neq 1$.

For $G=\operatorname{sus}_{3} X$ we have $\widetilde{\beta}_{2}(G)=2$ and $\widetilde{\beta}_{r}(G)=0$ for $r \neq 2$.
Observe that the operation $*$ of digraphs is associative. For a sequence X_{1}, \ldots, X_{l} of l digraphs we obtain by induction from
(3.49), (3.50) and (3.51) that
(3.52)

$$
\begin{aligned}
& \Omega_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) \\
& \quad \cong \bigoplus_{\left\{p_{i} \geq-1: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \Omega_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \Omega_{p_{l}}\left(X_{l}\right)
\end{aligned}
$$

(3.53)

$$
\begin{aligned}
& \widetilde{H}_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) \\
& \left.\quad \cong \bigoplus_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \widetilde{H}_{p_{l}}\left(X_{l}\right)\right)
\end{aligned}
$$

(3.54)

$$
\begin{aligned}
& \widetilde{\boldsymbol{\beta}}_{r}\left(X_{1} * X_{2} * \ldots * X_{l}\right) \\
& \quad=\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\boldsymbol{\beta}}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\boldsymbol{\beta}}_{p_{l}}\left(X_{l}\right) .
\end{aligned}
$$

Example 3.15. Consider an octahedron $Z=X_{1} * X_{2} * X_{3}$ where

$$
X_{1}=\{0,1\}, \quad X_{2}=\{2,3\}, \quad X_{3}=\{4,5\}
$$

(see Example 3.10). Then we have

$$
\begin{aligned}
\Omega_{2}(Z) & =\bigoplus_{\left\{p_{i} \geq-1: p_{1}+p_{2}+p_{3}=2-3+1\right\}} \Omega_{p_{1}}\left(X_{1}\right) \otimes \Omega_{p_{2}}\left(X_{2}\right) \otimes \Omega_{p_{3}}\left(X_{3}\right) \\
& =\Omega_{0}\left(X_{1}\right) \otimes \Omega_{0}\left(X_{2}\right) \otimes \Omega_{0}\left(X_{3}\right) \\
& =\left\langle e_{0}, e_{1}\right\rangle \otimes\left\langle e_{2}, e_{3}\right\rangle \otimes\left\langle e_{4}, e_{5}\right\rangle \\
& =\left\langle e_{024}, e_{025}, e_{034}, e_{035}, e_{124}, e_{125}, e_{134}, e_{135}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
H_{2}(Z) & =\widetilde{H}_{2}(Z) \\
& =\bigoplus_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=2-3+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \widetilde{H}_{p_{2}}\left(X_{2}\right) \otimes \widetilde{H}_{p_{3}}\left(X_{3}\right) \\
& =\widetilde{H}_{0}\left(X_{1}\right) \otimes \widetilde{H}_{0}\left(X_{2}\right) \otimes \widetilde{H}_{0}\left(X_{3}\right) \\
& =\left\langle e_{0}-e_{1}\right\rangle \otimes\left\langle e_{2}-e_{3}\right\rangle \otimes\left\langle e_{4}-e_{5}\right\rangle \\
& =\left\langle e_{024}-e_{025}-e_{034}+e_{035}-e_{124}+e_{125}+e_{134}-e_{135}\right\rangle .
\end{aligned}
$$

3.8 Linear Join

The material in this section is based on [30]. Given a digraph G of l vertices $\{1,2, \ldots, l\}$ and a sequence X_{1}, \ldots, X_{l} of l digraphs, define their generalized join $\left(X_{1} \ldots X_{l}\right)_{G}=X_{G}$ as follows: X_{G} is obtained from the disjoint union $\bigsqcup_{i} X_{i}$ of digraphs X_{i} by keeping all the arrows in each X_{i} and by adding arrows $x \rightarrow y$ whenever $x \in X_{i}, y \in X_{j}$ and $i \rightarrow j$ in G.

The digraph X_{G} is also referred to as a G-join of X_{1}, \ldots, X_{l}, and G is called the base of X_{G}.

The main problem to be discussed here is
how to compute the homology groups and Betti numbers of X_{G}.
Denote by K_{l} a complete digraph with vertices $\{1, \ldots, l\}$ and arrows

$$
i \rightarrow j \Leftrightarrow i<j
$$

that is, K_{l} is an $(l-1)$-simplex. For example, $K_{2}=\{1 \rightarrow 2\}$ and $K_{3}=\{1 \rightarrow 2 \rightarrow 3,1 \rightarrow 3\}$ is a triangle.

The digraph $X_{K_{l}}$ is called a complete join of X_{1}, \ldots, X_{l}. It is easy to see that

$$
X_{K_{l}}=X_{1} * X_{2} * \ldots * X_{l}
$$

It follows from (3.54) that, for any $r \geq 0$,
(3.55) $\widetilde{\beta}_{r}\left(X_{K_{l}}\right)=\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\beta}_{p_{l}}\left(X_{l}\right)$.

Denote by I_{l} the monotone linear digraph with the vertices $\{1, \ldots, l\}$ and arrows $i \rightarrow i+1$:

$$
\begin{equation*}
I_{l}=\{1 \rightarrow 2 \rightarrow \ldots \rightarrow l\} \tag{3.56}
\end{equation*}
$$

If $G=I_{l}$ then we use the following simplified notation:

$$
\left(X_{1} X_{2} \ldots X_{l}\right)_{I_{l}}=X_{1} X_{2} \ldots X_{l}
$$

and refer to this digraph as a monotone linear join of X_{1}, \ldots, X_{l}.
Clearly, $X_{1} X_{2} \ldots X_{n}$ can be constructed as follows: first take a disjoint union $\bigsqcup_{i=1}^{l} X_{i}$ and then add arrows from any vertex of X_{i} to any vertex of X_{i+1} (see Example 4.13).

In the case $l=2$ we obviously have $X_{1} X_{2}=X_{1} * X_{2}$ but in general $X_{1} X_{2} \ldots X_{l}$ is a subgraph of $X_{1} * X_{2} * \ldots * X_{l}$. For example, we have

while $\{0\} *\{1,2\} *\{3\}=$
Theorem 3.16 ([30]). We have
(3.57)
$\widetilde{H}_{r}\left(X_{1} X_{2} \ldots X_{l}\right) \cong \bigoplus_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes \ldots \otimes \widetilde{H}_{p_{l}}\left(X_{l}\right)$
and
$\stackrel{(3.58)}{\widetilde{\boldsymbol{\beta}}_{r}\left(X_{1} X_{2} \ldots X_{l}\right)}=\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+\ldots+p_{l}=r-l+1\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \ldots \widetilde{\beta}_{p_{l}}\left(X_{l}\right)$.
Moreover, if $\operatorname{dim}_{p} X_{i}<\infty$ for all i, then also $\operatorname{dim}_{p}\left(X_{1} \ldots X_{l}\right)<\infty$.
It follows from comparison of (3.53) and (3.57), that the linear join $X_{1} X_{2} \ldots X_{l}$ and the complete join $X_{1} * X_{2} * \ldots * X_{l}$ are homologically equivalent.

Example 3.17. Assume that one of the digraphs X_{i} is homologically trivial, that is, $\widetilde{\beta}_{p}\left(X_{i}\right)=0$ for all p and some i. Then by (3.58) the digraph $X_{1} X_{2} \ldots X_{l}$ is also homologically trivial.

Example 3.18. Assume that all digraphs X_{i} have no arrows. In this case the only non-trivial Betti numbers are $\widetilde{\beta}_{0}\left(X_{i}\right)$, and we obtain from (3.58) that the only non-trivial Betti number of $X_{1} X_{2} \ldots X_{l}$ is

$$
\begin{equation*}
\widetilde{\beta}_{l-1}\left(X_{1} X_{2} \ldots X_{l}\right)=\widetilde{\beta}_{0}\left(X_{1}\right) \ldots \widetilde{\beta}_{0}\left(X_{l}\right) . \tag{3.59}
\end{equation*}
$$

This particular case of Theorem 3.16 was proved in [7].
Here is an example of a monotone linear join:

$$
X=X_{1} X_{2} X_{3}
$$

where each $X_{i}=\{\cdot, \cdot\}$.

Since $\widetilde{\beta}_{0}\left(X_{i}\right)=1$, it follows from (3.59) that the only nontrivial Betti number of X is $\beta_{2}(X)=1$.

Example 3.19. Let the base G be a square:

We have

$$
G=\{1\}\{2,3\}\{4\}
$$

which implies that

$$
X_{G}=X_{1}\left(X_{2} \sqcup X_{3}\right) X_{4} .
$$

By Theorem 3.16 and (3.47) we obtain that

$$
\begin{align*}
\widetilde{\beta}_{r}\left(X_{G}\right)= & \sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}} \widetilde{\beta}_{p_{1}}\left(X_{1}\right) \widetilde{\beta}_{p_{2}}\left(X_{2} \sqcup X_{3}\right) \widetilde{\beta}_{p_{3}}\left(X_{4}\right) \\
= & \widetilde{\beta}_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}}\left(X_{1}\right)\left(\widetilde{\beta}_{p_{2}}\left(X_{2}\right)+\widetilde{\beta}_{p_{2}}\left(X_{3}\right)\right. \\
& \left.+\mathbf{1}_{\left\{p_{2}=0\right\}}\right) \widetilde{\beta}_{p_{3}}\left(X_{4}\right) \\
3.60)= & \widetilde{\beta}_{r}\left(X_{1} X_{2} X_{4}\right)+\widetilde{\beta}_{r}\left(X_{1} X_{3} X_{4}\right)+\widetilde{\beta}_{r-1}\left(X_{1} X_{4}\right) . \tag{3.60}
\end{align*}
$$

For a general base G, if $i_{1} \ldots i_{k}$ is an arbitrary sequence of vertices in G then denote

$$
X_{i_{1} \ldots i_{k}}=X_{i_{1}} X_{i_{2}} \ldots X_{i_{k}} .
$$

Note that by (3.58)

$$
\widetilde{\boldsymbol{\beta}}_{r}\left(X_{i_{1} \ldots i_{k}}\right)=\sum_{\substack{p_{1}+\ldots+p_{k}=r-(k-1) \\ p_{1}, \ldots, p_{k} \geq 0}} \widetilde{\boldsymbol{\beta}}_{p_{1}}\left(X_{i_{1}}\right) \ldots \widetilde{\boldsymbol{\beta}}_{p_{k}}\left(X_{i_{k}}\right) .
$$

Using this notation, we can rewrite (3.60) as follows: if G is a square then

$$
\widetilde{\beta}_{r}\left(X_{G}\right)=\widetilde{\beta}_{r}\left(X_{124}\right)+\widetilde{\beta}_{r}\left(X_{134}\right)+\widetilde{\beta}_{r-1}\left(X_{14}\right) .
$$

Example 3.20. Let G be an octahedron based on the diamond:

We have

$$
G=\{1,2\} *\{3,4\} *\{5,6\}
$$

whence

$$
X_{G}=\left(X_{1} \sqcup X_{2}\right) *\left(X_{3} \sqcup X_{4}\right) *\left(X_{5} \sqcup X_{6}\right) .
$$

By (3.55) we obtain

$$
\begin{aligned}
& \widetilde{\beta}_{r}\left(X_{G}\right) \sum_{\left\{p_{i} \geq 0:\right.} \widetilde{p}_{\left.p_{1}+p_{2}+p_{3}=r-2\right\}}\left(X_{p_{1}} \sqcup X_{2}\right) \widetilde{\beta}_{p_{2}}\left(X_{3} \sqcup X_{4}\right) \\
& \times \widetilde{\beta}_{p_{3}}\left(X_{5} \sqcup X_{6}\right) \\
& =\sum_{\left\{p_{i} \geq 0: p_{1}+p_{2}+p_{3}=r-2\right\}}\left(\widetilde{\beta}_{p_{1}}\left(X_{1}\right)+\widetilde{\beta}_{p_{1}}\left(X_{2}\right)+\mathbf{1}_{\left\{p_{1}=0\right\}}\right) \\
& \times\left(\widetilde{\beta}_{p_{2}}\left(X_{3}\right)+\widetilde{\beta}_{p_{2}}\left(X_{4}\right)+\mathbf{1}_{\left\{p_{2}=0\right\}}\right) \\
& \times\left(\widetilde{\boldsymbol{\beta}}_{p_{3}}\left(X_{5}\right) \sqcup \widetilde{\beta}_{p_{3}}\left(X_{6}\right)+\mathbf{1}_{\left\{p_{3}=0\right\}}\right) \\
& =\widetilde{\beta}_{r}\left(X_{135}\right)+\widetilde{\beta}_{r}\left(X_{145}\right)+\widetilde{\beta}_{r}\left(X_{235}\right)+\widetilde{\beta}_{r}\left(X_{245}\right)+\widetilde{\beta}_{r}\left(X_{136}\right) \\
& +\widetilde{\beta}_{r}\left(X_{146}\right)+\widetilde{\beta}_{r}\left(X_{236}\right)+\widetilde{\beta}_{r}\left(X_{246}\right)+\widetilde{\beta}_{r-1}\left(X_{13}\right)+\widetilde{\beta}_{r-1}\left(X_{23}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{14}\right)+\widetilde{\beta}_{r-1}\left(X_{24}\right)+\widetilde{\beta}_{r-1}\left(X_{15}\right)+\widetilde{\beta}_{r-1}\left(X_{25}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{35}\right)+\widetilde{\beta}_{r-1}\left(X_{45}\right)+\widetilde{\beta}_{r-1}\left(X_{16}\right)+\widetilde{\beta}_{r-1}\left(X_{26}\right) \\
& +\widetilde{\beta}_{r-1}\left(X_{36}\right)+\widetilde{\beta}_{r-1}\left(X_{46}\right)+\widetilde{\beta}_{r-2}\left(X_{1}\right)+\widetilde{\beta}_{r-2}\left(X_{2}\right)+\widetilde{\beta}_{r-2}\left(X_{3}\right) \\
& +\widetilde{\beta}_{r-2}\left(X_{4}\right)+\widetilde{\beta}_{r-2}\left(X_{5}\right)+\widetilde{\beta}_{r-2}\left(X_{6}\right)+\mathbf{1}_{\{r=2\}} .
\end{aligned}
$$

3.9 Subgraphs and Mayer-Vietoris Exact Sequence

The material of this section is based on [18].
A digraph Y is called a subgraph of a digraph X if both sets of vertices and arrows of Y are subsets of those sets of X. Any allowed path in Y is therefore also allowed in X. Since the natural inclusion map $i: Y \rightarrow X$ commutes with ∂, we obtain that every ∂-invariant path in Y is also ∂-invariant in X.

A converse is not always true: even if $e_{a_{0} \ldots a_{p}}$ is an allowed path in X and all the vertices a_{0}, \ldots, a_{p} lie in Y, this path is not necessarily allowed in Y because some of its arrows may not be in Y.

A subgraph Y is called induced if together with two vertices $a, b \in Y$ it contains also the arrow $a \rightarrow b$ if this arrow is present in X. For an induced subgraph Y, if $e_{a_{0} \ldots a_{p}}$ is an allowed path in X
and all the vertices a_{0}, \ldots, a_{p} lie in Y then $e_{a_{0} \ldots a_{p}}$ is also allowed in Y. Consequently, if ω is a ∂-invariant path in X and if all the vertices of ω are contained in Y then ω is also ∂-invariant in Y.

If Y_{1} and Y_{2} are two subgraphs of X then their union $Y_{1} \cup Y_{2}$ is a subgraph of X whose sets of vertices and arrows are unions of those of Y_{1} and Y_{2}, respectively. In the same way one defines the intersection $Y_{1} \cap Y_{2}$. If Y_{1} and Y_{2} are induced then $Y_{1} \cap Y_{2}$ is also induced.

Assume that a digraph X is a union of two subgraphs Y_{1} and Y_{2}, that is,

$$
X=Y_{1} \cup Y_{2} .
$$

In particular, every arrow of X lies in Y_{1} or Y_{2}. Denote

$$
Z=Y_{1} \cap Y_{2}
$$

Then we have the following commutative diagram of the natural inclusions of the digraphs:

For any $p \geq-1$ the commutative diagram (3.61) induces a commutative diagram

$$
\begin{array}{ccc}
\mathcal{R}_{p}(Z) & \xrightarrow{i_{*}^{l}} & \mathcal{R}_{p}\left(Y_{1}\right) \tag{3.62}\\
\downarrow_{*}^{2} \\
\downarrow_{1} \\
\mathcal{J}_{p}\left(Y_{2}\right) & \xrightarrow{j_{*}^{2}} & \mathcal{R}_{p}(X),
\end{array}
$$

where all homomorphisms are injective. Observe that all homomorphisms i_{*} and j_{*} commute with the boundary operator ∂ and map allowed paths to the allowed ones.

Consider the following homomorphisms:
(3.63) $0 \longrightarrow \mathcal{R}_{p}(Z) \xrightarrow{\delta} \mathcal{R}_{p}\left(Y_{1}\right) \oplus \mathcal{R}_{p}\left(Y_{2}\right) \xrightarrow{\gamma} \mathcal{R}_{p}(X) \longrightarrow 0$,
where
(3.64)

$$
\delta(z)=\left(i_{*}^{1}(z), i_{*}^{2}(z)\right) \quad \text { and } \quad \gamma\left(y_{1}, y_{2}\right)=j_{*}^{1}\left(y_{1}\right)-j_{*}^{2}\left(y_{2}\right)
$$

for all $z \in Z$ and $y_{i} \in Y_{i}$. The map δ is evidently injective.
Lemma 3.21 ([18, Lemma 3.23]). In the sequence (3.63) we have $\operatorname{Im} \delta=\operatorname{ker} \gamma$.

Proof. For any $z \in Z$ we have

$$
\gamma(\delta(z))=j_{*}^{1} \circ i_{*}^{1}(z)-j_{*}^{2} \circ i_{*}^{2}(z)=0
$$

so that $\gamma \circ \delta=0$ and, hence, $\operatorname{Im} \delta \subset \operatorname{ker} \gamma$. To prove the opposite inclusion, observe that

$$
\operatorname{ker} \gamma=\left\{\left(y_{1}, y_{2}\right) \in \mathcal{R}_{p}\left(Y_{1}\right) \oplus \mathcal{R}_{p}\left(Y_{2}\right): j_{*}^{1}\left(y_{1}\right)=j_{*}^{2}\left(y_{2}\right)\right\}
$$

that is, y_{1} and y_{2} coincide as paths in X. Since y_{1} is a path in Y_{1} and y_{2} is a path in Y_{2}, it follows that y_{1} and y_{2} can be identified with the same path z in $Z=Y_{1} \cap Y_{2}$. It follows that $\delta(z)=\left(y_{1}, y_{2}\right)$ and, hence, $\left(y_{1}, y_{2}\right) \in \operatorname{Im} \delta$, which finishes the proof of $\operatorname{Im} \delta=\operatorname{ker} \gamma$.

For all $\left(y_{1}, y_{2}\right) \in \mathcal{R}_{p}\left(Y_{1}\right) \oplus \mathcal{R}_{p}\left(Y_{2}\right)$ set

$$
\partial\left(y_{1}, y_{2}\right):=\left(\partial y_{1}, \partial y_{2}\right) \in \mathcal{R}_{p-1}\left(Y_{1}\right) \oplus \mathcal{R}_{p-1}\left(Y_{2}\right)
$$

Also, we say that $\left(y_{1}, y_{2}\right)$ is allowed if both y_{1}, y_{2} are allowed.
Since i_{*} and j_{*} commute with the boundary operator ∂, it follows that δ and γ also commute with ∂, that is, the following diagram is commutative:

Indeed, for $z \in \mathcal{R}_{n}(Z)$ we have

$$
\delta \circ \partial(z)=\left(i_{*}^{1}(\partial z), i_{*}^{2}(\partial z)\right)=\left(\partial i_{*}^{1}(z), \partial i_{*}^{2}(z)\right)=\partial \circ \delta(z)
$$

and for $\left(y_{1}, y_{2}\right) \in \mathcal{R}_{n}\left(Y_{1}\right) \oplus \mathcal{R}_{n}\left(Y_{2}\right)$ we have

$$
\begin{aligned}
\gamma \circ \partial\left(y_{1}, y_{2}\right) & =j_{*}^{1}\left(\partial y_{1}\right)-j_{2}^{*}\left(\partial y_{2}\right)=\partial j_{*}^{1}\left(y_{1}\right)-\partial j_{2}^{*}\left(y_{2}\right) \\
& =\partial \circ \gamma\left(y_{1}, y_{2}\right)
\end{aligned}
$$

Observe also that δ and γ map allowed paths to allowed ones, which follows from the same properties of i_{*} and j_{*}. Since δ and γ commute with ∂, it follows that δ and γ map ∂-invariant paths to ∂-invariant ones. Hence, we obtain the following sequence of homomorphisms

$$
\begin{equation*}
0 \longrightarrow \Omega_{p}(Z) \xrightarrow{\delta} \Omega_{p}\left(Y_{1}\right) \oplus \Omega_{p}\left(Y_{2}\right) \xrightarrow{\gamma} \Omega_{p}(X) \longrightarrow 0, \tag{3.65}
\end{equation*}
$$

where δ is injective as above.
Lemma 3.22 ([18, Lemma 3.24]). In (3.65) we have $\operatorname{Im} \delta=\operatorname{ker} \gamma$. If in addition

$$
\begin{align*}
& \forall x \in \Omega_{p}(X) \text { we have } x=y_{1}+y_{2} \\
& \quad \text { for some } y_{1} \in \Omega_{p}\left(Y_{1}\right) \text { and } y_{2} \in \Omega_{p}\left(Y_{2}\right) \tag{3.66}
\end{align*}
$$

then γ in (3.65) is surjective and (3.65) is a short exact sequence.
Proof. Since $\gamma \circ \delta=0$, we have $\operatorname{Im} \delta \subset \operatorname{ker} \gamma$. Let us prove the opposite inclusion. Let $y_{1} \in \Omega_{p}\left(Y_{1}\right)$ and $y_{2} \in \Omega_{p}\left(Y_{2}\right)$ be such that $\left(y_{1}, y_{2}\right) \in \operatorname{ker} \gamma$, that is, $j_{*}^{1}\left(y_{1}\right)=j_{*}^{2}\left(y_{2}\right)$. By Lemma 3.21, y_{1} and y_{2} can be identified with a path $z \in \mathcal{A}_{p}(Z)$. Then $\partial z=\partial y_{1} \in$ $\mathcal{A}_{p-1}\left(Y_{1}\right)$ and $\partial z=\partial y_{2} \in \mathcal{A}_{p-1}\left(Y_{2}\right)$, that is $\partial z \in \mathcal{A}_{p-1}(Z)$ and, hence, $z \in \Omega_{p}(Z)$. Therefore, $\left(y_{1}, y_{2}\right)=\delta(z)$, which was to be proved.

Let us prove that the map γ in (3.65) is surjective. For any $x \in \Omega_{p}(X)$ we have by hypothesis that $x=y_{1}+y_{2}$ where $y_{1} \in$ $\Omega_{p}\left(Y_{1}\right)$ and $y_{2} \in \Omega_{p}\left(Y_{2}\right)$. Then we have $\gamma\left(y_{1},-y_{2}\right)=x$ so that γ is surjective.

The condition (3.66) can be equivalently stated as follows: there is a basis in $\Omega_{p}(X)$ such that any element of this basis is a sum of elements of $\Omega_{p}\left(Y_{1}\right)$ and $\Omega_{p}\left(Y_{2}\right)$.

Theorem 3.23 (Mayer-Vietoris exact sequence [18, Theorem 3.25]). Let

$$
X=Y_{1} \cup Y_{2}, Z=Y_{1} \cap Y_{2}
$$

and assume that the hypothesis (3.66) is satisfied for any $p \geq 2$. Then we have a long exact sequence of homology groups:

$$
\cdots \rightarrow \widetilde{H}_{n}(Z) \xrightarrow{\delta} \widetilde{H}_{n}\left(Y_{1}\right) \oplus \widetilde{H}_{n}\left(Y_{2}\right) \xrightarrow{\gamma} \widetilde{H}_{n}(X) \xrightarrow{\beta} \widetilde{H}_{n-1}(Z)
$$

$$
\begin{equation*}
\stackrel{\delta}{\rightarrow} \widetilde{H}_{n-1}\left(Y_{1}\right) \oplus \widetilde{H}_{n-1}\left(Y_{2}\right) \rightarrow \cdots \tag{3.67}
\end{equation*}
$$

where $\delta=\left(i_{*}^{1}, i_{*}^{2}\right), \gamma\left(y_{1}, y_{2}\right)=j_{*}^{1}\left(y_{1}\right)-j_{*}^{2}\left(y_{2}\right)$, and β is a connecting homomorphism.

Proof. Note that (3.66) is trivially satisfied for $p \leq 1$. Hence, this condition is satisfied for all p. By the above construction, we have the following commutative diagram
(3.68)

where each column is a short exact sequence by Lemma 3.22. The claim follows from the zig-zag lemma and from

$$
\widetilde{H}_{*}\left(\Omega_{*}\left(Y_{1}\right) \oplus \Omega_{*}\left(Y_{2}\right)\right) \cong \widetilde{H}_{*}\left(Y_{1}\right) \oplus \widetilde{H}_{*}\left(Y_{2}\right)
$$

Any p-path $u \in \mathcal{R}_{p}(X)$ has the form

$$
u=\sum_{i_{0} \ldots i_{p}} u^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}
$$

with the coefficients $u^{i_{0} \ldots i_{p}} \in \mathbb{K}$. We say that $e_{i_{0} \ldots i_{p}}$ (or $u^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$) is an elementary term of u if $u^{i_{0} \ldots i_{p}} \neq 0$.

The next lemma provides sufficient conditions for the hypothesis (3.66).

Lemma 3.24. Assume that the following two conditions are satisfied:
(i) For any $p \geq 2$ and for any $x \in \Omega_{p}(X)$, any elementary term of x lies in one of the subgraphs Y_{1}, Y_{2} and is allowed in this subgraph.
(ii) For any square $e_{a b c}-e_{a b^{\prime} c}$ in X, if $a, b, c \in Y_{k}$ for some $k=1,2$ then also $b^{\prime} \in Y_{k}$.

Then the condition (3.66) is satisfied.
Proof. Fix $x \in \Omega_{p}$ for some $p \geq 2$. Denote by y_{1} the sum of all elementary terms of x that lie in Y_{1} and are allowed in Y_{1}. Set $y_{2}=x-y_{1}$. By (i), y_{2} is a sum of some elementary terms of x that lie in Y_{2} and are allowed in Y_{2}. Since $x=y_{1}+y_{2}$, it suffices to verify that both y_{1} and y_{2} are ∂-invariant, that is, ∂y_{1} and ∂y_{2} are allowed. Assume that ∂y_{1} is not allowed. Then ∂y_{1} contains
a non-allowed elementary term, say

$$
\begin{equation*}
\text { conste } e_{i_{0} \ldots \hat{q}_{q} \ldots i_{p}} \tag{3.69}
\end{equation*}
$$

(where $1 \leq q \leq p-1$) that comes from the boundary of a term $e_{i_{0} . . i_{p}}$ of y_{1}. This term must cancel out in ∂x, which means that x must contain another elementary term $e_{j_{0} \ldots j_{p}}$ with

$$
i_{0} \ldots i_{q-1} \widehat{i_{q}} i_{q+1} \ldots i_{p}=j_{0} \ldots j_{q-1} \widehat{\hat{j}_{q}} j_{q+1} \ldots j_{p}
$$

Consequently, $i_{k}=j_{k}$ for all $k \neq q$. Hence, we obtain the following square in X :

$$
\begin{equation*}
e_{i_{q-1}} i_{q} i_{q+1}-e_{i_{q-1}} j_{q} i_{q+1} . \tag{3.70}
\end{equation*}
$$

Since i_{q-1}, i_{q} and i_{q+1} belong to Y_{1} then by (ii) also $j_{q} \in Y_{1}$. Hence, $e_{j_{0} \ldots j_{p}}$ lies in Y_{1} and the non-allowed term (3.69) cancels also in ∂y_{1}. Therefore, ∂y_{1} is allowed and y_{1} is ∂-invariant. In the same way also y_{2} is ∂-invariant.

In this picture we show a situation when each of the paths $i_{0} \ldots i_{p}, j_{0} \ldots j_{p}$ belongs to one of the digraphs Y_{1}, Y_{2}, while the condition (ii) is not satisfied: the square (3.70) has the vertices i_{q-1}, i_{q}, i_{q+1} in Y_{1} while $j_{q} \notin Y_{1}$.

Corollary 3.25. Assume that the hypothesis (3.66) is satisfied.
(a) If, for some n, the homology groups $\widetilde{H}_{n}(Z)$ and $\widetilde{H}_{n-1}(Z)$ are trivial, then

$$
\begin{equation*}
\widetilde{H}_{n}(X) \cong \widetilde{H}_{n}\left(Y_{1}\right) \oplus \widetilde{H}_{n}\left(Y_{2}\right) \tag{3.71}
\end{equation*}
$$

(b) If, for some n, the homology groups $\widetilde{H}_{n}\left(Y_{1}\right), \widetilde{H}_{n}\left(Y_{2}\right)$, $\widetilde{H}_{n-1}\left(Y_{1}\right), \widetilde{H}_{n-1}\left(Y_{2}\right)$ are trivial, then

$$
\begin{equation*}
\widetilde{H}_{n}(X) \cong \widetilde{H}_{n-1}(Z) \tag{3.72}
\end{equation*}
$$

(c) If, for some n, the homology groups $\widetilde{H}_{n-1}\left(Y_{1}\right), \widetilde{H}_{n-1}\left(Y_{2}\right)$ and $\widetilde{H}_{n}(Z)$ are trivial, then

$$
\begin{equation*}
\operatorname{dim} \widetilde{H}_{n}(X)=\operatorname{dim} \widetilde{H}_{n}\left(Y_{1}\right)+\operatorname{dim} \widetilde{H}_{n}\left(Y_{2}\right)+\operatorname{dim} \widetilde{H}_{n-1}(Z) \tag{3.73}
\end{equation*}
$$

Proof. (a) We have the following fragment of (3.67):

$$
0=\widetilde{H}_{n}(Z) \rightarrow \widetilde{H}_{n}\left(Y_{1}\right) \oplus \widetilde{H}_{n}\left(Y_{2}\right) \rightarrow \widetilde{H}_{n}(X) \rightarrow \widetilde{H}_{n-1}(Z)=0
$$

whence (3.71) follows.
(b) We have the following fragment of (3.67):

$$
\begin{aligned}
0=\widetilde{H}_{n}\left(Y_{1}\right) \oplus \widetilde{H}_{n}\left(Y_{2}\right) & \rightarrow \widetilde{H}_{n}(X) \rightarrow \widetilde{H}_{n-1}(Z) \\
& \rightarrow \widetilde{H}_{n-1}\left(Y_{1}\right) \oplus \widetilde{H}_{n-1}\left(Y_{2}\right)=0
\end{aligned}
$$

whence (3.72) follows.
(c) We have the following fragment of (3.67):

$$
\begin{aligned}
0=\widetilde{H}_{n}(Z) & \rightarrow \widetilde{H}_{n}\left(Y_{1}\right) \oplus \widetilde{H}_{n}\left(Y_{2}\right) \xrightarrow{\gamma} \widetilde{H}_{n}(X) \xrightarrow{\beta} \widetilde{H}_{n-1}(Z) \\
& \rightarrow \widetilde{H}_{n-1}\left(Y_{1}\right) \oplus \widetilde{H}_{n-1}\left(Y_{2}\right)=0 .
\end{aligned}
$$

Hence, γ is injective and β is surjective, and $\operatorname{Im} \gamma=\operatorname{ker} \beta$. By the rank-nullity theorem we have

$$
\begin{aligned}
\operatorname{dim} \widetilde{H}_{n}(X) & =\operatorname{dim} \operatorname{ker} \beta+\operatorname{dim} \operatorname{Im} \beta \\
& =\operatorname{dim} \operatorname{Im} \gamma+\operatorname{dim} \operatorname{Im} \beta \\
& =\operatorname{dim} \widetilde{H}_{n}\left(Y_{1}\right)+\operatorname{dim} \widetilde{H}_{n}\left(Y_{2}\right)+\operatorname{dim} \widetilde{H}_{n-1}(Z)
\end{aligned}
$$

which was to be proved.
Example 3.26. Assume that Z consists of a single vertex v. In this case Y_{1} and Y_{2} are necessarily induced subgraphs. Alternatively, one can say that X is obtained by merging digraphs Y_{1} and Y_{2} at one vertex v. Let us verify that the hypotheses (i) and (ii) of Lemma 3.24 are satisfied. For any $x \in \Omega_{p}(X)$ with $p \geq 2$ consider an elementary term $c e_{i_{0} \ldots i_{p}}$ of x and show that $e_{i_{0} \ldots i_{p}}$ lies in Y_{1} or in Y_{2}. Assume that this is not the case, that is, one of the vertices i_{1}, \ldots, i_{p-1} is v, say $v=i_{q}$, while i_{q-1} and i_{q+1} belong to different Y_{1}, Y_{2}.

The path $\partial e_{i_{0} \ldots i_{p}}$ contains the term

$$
e_{i_{0} \ldots i_{q-1} i_{q+1} . . i_{p}}
$$

that is not allowed because $i_{q-1} \nrightarrow i_{q+1}$. This term must be cancelled in ∂x using another elementary term of x.

However if another elementary term $e_{j_{0} \ldots j_{p}}$ of x contains $e_{i_{0} \ldots i_{q-1} i_{q+1} \ldots i_{p}}$ in its boundary then

$$
i_{0} \ldots i_{q-1} i_{q+1} \ldots i_{p}=j_{0} \ldots j_{q-1} j_{q+1} \ldots j_{p}
$$

which implies $j_{q}=v$ because this is the only choice of j_{q} to make $j_{0} \ldots j_{p}$ allowed. Hence, $e_{i_{0} \ldots i_{p}}=e_{j_{0} \ldots j_{p}}$ and the above cancellation is not possible, which proves (i).

The condition (ii) is obvious: if $e_{a b c}-e_{a b^{\prime} c}$ is a square in X and $a, b, c \in Y_{1}$ while $b^{\prime} \notin Y_{1}$ then both a and c must coincide with v, which is not possible.

Since $\widetilde{H}_{*}(Z)=\{0\}$, Corollary $3.25(a)$ applies in this case and yields (3.71) for all n. Consequently, we have

$$
\begin{equation*}
\widetilde{\beta}_{n}(X)=\widetilde{\beta}_{n}\left(Y_{1}\right)+\widetilde{\beta}_{n}\left(Y_{2}\right) . \tag{3.74}
\end{equation*}
$$

Example 3.27. Denote by Y_{1} the digraph $L H(5)$ from Example 1.19. For this digraph

$$
\beta_{p}\left(Y_{1}\right)>0 \quad \text { for all } p=1 \bmod 3
$$

More precisely, $\beta_{1}\left(Y_{1}\right)=1$ and $\beta_{p}\left(Y_{1}\right)=4$ if $p=1 \bmod 3$ and $p>1$. Set

$$
Y_{2}=\operatorname{sus}_{2} Y_{1} \quad \text { and } \quad Y_{3}=\operatorname{sus}_{2} Y_{2}
$$

Using the formula $\widetilde{\beta}_{r}\left(\operatorname{sus}_{2} G\right)=\widetilde{\beta}_{r-1}(G)$ from Example 3.14, we obtain that

$$
\beta_{p}\left(Y_{2}\right)>0 \text { for all } p=2 \bmod 3
$$

and

$$
\beta_{p}\left(Y_{3}\right)>0 \text { for all } p=0 \bmod 3
$$

Let X be a digraph that is obtained from disjoint digraphs Y_{1}, Y_{2} and Y_{3} by merging them at one vertex. By (3.74) we obtain for all $p \geq 1$

$$
\beta_{p}(X)=\beta_{p}\left(Y_{1}\right)+\beta_{p}\left(Y_{2}\right)+\beta_{p}\left(Y_{3}\right)
$$

Since $\beta_{p}\left(Y_{i}\right)>0$ for $p=i \bmod 3$, it follows that

$$
\beta_{p}(X)>0 \text { for all } p
$$

Hence, we obtain an example of a digraph with non-trivial homology groups H_{p} for all p.
Example 3.28. Let X be an octahedron as here:

Let Y_{1} and Y_{2} be induced subgraphs consisting of the upper and lower pyramids. Then Z is the diamond in the middle section of X.

The space $\Omega_{2}(X)$ is spanned by 8 triangles:

```
e}024,\mp@subsup{e}{034}{},\mp@subsup{e}{025}{},\mp@subsup{e}{035}{},\mp@subsup{e}{124}{},\mp@subsup{e}{134}{},\mp@subsup{e}{125}{},\mp@subsup{e}{135}{
```

each of them lying in Y_{1} or Y_{2}, and $\Omega_{p}(X)=\{0\}$ for all $p \geq 3$.
Hence, the hypothesis of Theorem 3.23 is satisfied.
Note that all $\widetilde{H}_{*}\left(Y_{1}\right)$ and $\widetilde{H}_{*}\left(Y_{2}\right)$ are trivial, while the only nontrivial group $\widetilde{H}_{p}(Z)$ is

$$
H_{1}(Z)=\left\langle e_{02}-e_{12}+e_{13}-e_{03}\right\rangle .
$$

By Corollary $3.25(b)$ we conclude that $H_{2}(X) \cong H_{1}(Z)$. Indeed, we have seen in Example 3.15 that $H_{2}(X)$ is one-dimensional.

Example 3.29. Let Y_{2} be an induced connected subgraph of X such that $X \backslash Y_{2}$ has a single vertex b and two arrows $a \rightarrow b$ and $b \rightarrow c$ where a, c are distinct vertices of Y_{2}. We assume further that $a \nrightarrow c$ in Y_{2} (while in X we have either $a \rightarrow c$ or $a \rightharpoonup c$). Let us related $H_{p}(X)$ to $H_{p}\left(Y_{2}\right)$.

Denote by Y_{1} an induced subgraph of X with the vertices a, b, c, and set $Z=Y_{1} \cap Y_{2}$.

Then Z is an induced subgraph with two vertices a and c.

Here is an example of this configuration:

Let us verify that the conditions (i), (ii) of Lemma 3.24 are satisfied.

Let $\alpha e_{i_{0} \ldots i_{p}}$ be an elementary term of $x \in \Omega_{p}(X)$ where $p \geq 2$. Let us show that the path $i_{0} \ldots i_{p}$ lies in Y_{1} or Y_{2}. If $i_{0} \ldots i_{p}$ does not contain b then it lies in Y_{2}. Let b be one of the vertices $i_{0} \ldots i_{p}$, say $b=i_{k}$.

If

$$
\begin{equation*}
p=2 \quad \text { and } \quad k=1 \tag{3.75}
\end{equation*}
$$

then $e_{i_{0} \ldots i_{p}}=e_{a b c}$ and the path $a b c$ is contained in Y_{1}.
Assume that (3.75) is not satisfied, so that either $k \geq 2$ or $k \leq p-2$.

If $k \geq 2$ then $e_{i_{0} \ldots i_{p}}=e_{\ldots i_{k-2} a b \ldots}$ and $\partial e_{i_{0} \ldots i_{p}}$ contains the term $e_{\ldots i_{k-2} b \ldots}$ that is non-allowed and cannot be cancelled by other terms of x.

Similarly, if $k \leq p-2$ then $e_{i_{0} \ldots i_{p}}=e_{\ldots b i_{k+2} \ldots}$ and $\partial e_{i_{0} \ldots i_{p}}$ contains a non-allowed term $e_{\ldots b i_{k+2} \ldots}$ that cannot be cancelled by other terms of x. Hence, the condition (i) is satisfied.

The condition (ii) is obvious: if s is a square in X that does not lie in Y_{2} then s must contain the vertex b and, hence,

$$
s=e_{a b c}-e_{a b^{\prime} c}
$$

where $b^{\prime} \in Y_{2}$. However, since $a c$ is not a semi-arrow in Y_{2}, the path $a b^{\prime} c$ cannot be allowed.

Since

$$
H_{n}(Z)=\{0\} \forall n \geq 1 \quad \text { and } \quad H_{n}\left(Y_{1}\right)=\{0\} \quad \forall n \geq 2
$$

we obtain by Corollary $3.25(a)$ that

$$
H_{n}(X) \cong H_{n}\left(Y_{2}\right) \text { for all } n \geq 2
$$

In order to determine $H_{1}(X)$, observe that $\widetilde{H}_{0}\left(Y_{1}\right), \widetilde{H}_{0}\left(Y_{2}\right)$ and $\widetilde{H}_{1}(Z)$ are trivial, and we conclude by Corollary $3.25(c)$ that

$$
\operatorname{dim} H_{1}(X)=\operatorname{dim} H_{1}\left(Y_{1}\right)+\operatorname{dim} H_{1}\left(Y_{2}\right)+\operatorname{dim} \widetilde{H}_{0}(Z)
$$

Next, consider three cases.
Case 1. Let $a \rightarrow c$. Then $H_{1}\left(Y_{1}\right)=\{0\}$ and $\widetilde{H}_{0}(Z)=\{0\}$ whence

$$
\operatorname{dim} H_{1}(X)=\operatorname{dim} H_{1}\left(Y_{2}\right)
$$

Case 2. Let $a \nrightarrow c$ and $c \rightarrow a$. Then $\widetilde{H}_{0}(Z)=\{0\}$ and

$$
H_{1}\left(Y_{1}\right)=\left\langle e_{a b}+e_{b c}+e_{c a}\right\rangle
$$

whence

$$
\begin{equation*}
\operatorname{dim} H_{1}(X)=\operatorname{dim} H_{1}\left(Y_{2}\right)+1 \tag{3.76}
\end{equation*}
$$

Case 3. Let $a \nrightarrow c$ and $c \nrightarrow a$. Then $H_{1}\left(Y_{1}\right)=\{0\}$, $\operatorname{dim} \widetilde{H}_{0}(Z)=1$, and we obtain again (3.76).

Example 3.30. Let Y_{1}, Y_{2} be induced subgraphs of X as shown here:

The digraph X contains a ∂-invariant snake $e_{012 \ldots 10}$ that does not lie in any of the subgraphs Y_{1}, Y_{2}. Hence, the hypothesis (3.66) of Theorem 3.23 is not satisfied, and the condition (i) of Lemma 3.24 fails as well.

Example 3.31. Consider the following digraph X of 10 vertices and induced subgraphs Y_{1} and Y_{2} as follows:

- Y_{1} contains the vertices $\{1,2,4,6,8,9\}$,
- Y_{2} contains all the vertices except for 6 .

Hence, Z contains the vertices $\{1,2,4,8,9\}$. Digraphs Y_{1}, Y_{2}, Z are homologically trivial, while $\operatorname{dim} H_{2}(X)=1$.

In fact, we have

$$
\begin{aligned}
H_{2}(X)=\left\langle e_{012}\right. & -\left(e_{014}-e_{034}\right)+\left(e_{025}-e_{035}\right)-\left(e_{126}-e_{146}\right) \\
& -\left(e_{259}-e_{269}\right)-\left(e_{348}-e_{378}\right)+\left(e_{359}-e_{379}\right) \\
& \left.-\left(e_{469}-e_{489}\right)-e_{789}\right\rangle .
\end{aligned}
$$

Therefore, (3.71) fails for $n=2$. The condition (3.66) fails as well because the square

$$
\begin{equation*}
e_{259}-e_{269} \tag{3.78}
\end{equation*}
$$

is ∂-invariant on X but it not a sum of ∂-invariant paths on Y_{1} and Y_{2}.

For the same reason also the hypothesis (ii) of Lemma 3.24 fails: in the square (3.78) the vertices $2,6,9$ belong to Y_{1} while 5 does not. Note that the hypothesis (i) of Lemma 3.24 is satisfied in this case. Indeed, one can show that

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{012}, e_{789}, e_{014}-e_{034}, e_{025}-e_{035}, e_{126}-e_{146}\right. \\
& \left.e_{259}-e_{269}, e_{348}-e_{378}, e_{359}-e_{379}, e_{469}-e_{489}\right\rangle
\end{aligned}
$$

and $\Omega_{p}=\{0\}$ for $p>2$ so that (i) follows from the observation that every elementary term in (3.79) lies in Y_{1} or Y_{2}.

Example 3.32. Consider the following modification of the previous example with an added vertex 10 and arrows $2 \rightarrow 10 \rightarrow 9$.

The digraphs Y_{1}, Y_{2} are still homologically trivial, while Z is a polygon so that $\operatorname{dim} H_{1}(Z)=1, H_{p}(Z)=\{0\}$ for $p \geq 2$.

Condition (3.66) is satisfied, in particular, because the square (3.78) is a sum of two squares

$$
\left(e_{2109}-e_{269}\right)+\left(e_{259}-e_{2109}\right)
$$

lying in Y_{1} and Y_{2}, respectively,
By Corollary $3.25(b)$ we conclude that $\operatorname{dim} H_{2}(X)=$ $\operatorname{dim} H_{1}(Z)=1$. Indeed, in this case $H_{2}(X)$ is also given by (3.77).

Note that the condition (ii) of Lemma 3.24 fails in this case for the same reason as in the previous example.

4. Fixed Point Theorems for Digraph Maps

4.1 Lefschetz Number and a Fixed Point Theorem

Everywhere here $\mathbb{K}=\mathbb{R}($ or $\mathbb{K}=\mathbb{Q})$. Let $f_{n}: \Omega_{n} \rightarrow \Omega_{n}$ be a sequence of linear mappings that commutes with ∂, that is,

$$
\begin{equation*}
\partial \circ f_{n+1}=f_{n} \circ \partial \tag{4.80}
\end{equation*}
$$

for any $n \geq 0$. In other words, the following diagram is commutative:

$$
\begin{array}{lllll}
\Omega_{n-1} & \stackrel{\partial}{\longleftarrow} & \Omega_{n} & \stackrel{\partial}{\longleftarrow} & \Omega_{n+1} \tag{4.81}\\
\downarrow_{n-1} & & \downarrow_{n}^{f_{n}} & & \downarrow_{n+1}^{f_{n}} \\
\Omega_{n-1} & \stackrel{\partial}{\longleftarrow} & \Omega_{n} & \stackrel{\partial}{\longleftarrow} & \Omega_{n+1}
\end{array}
$$

Denote

$$
Z_{n}=\left.\operatorname{ker} \partial\right|_{\Omega_{n}}, \quad B_{n}=\left.\operatorname{Im} \partial\right|_{\Omega_{n+1}},
$$

so that

$$
H_{n}=Z_{n} / B_{n}
$$

It follows from (4.80) that f_{n} acts on Z_{n}, B_{n} and H_{n}.
Definition. Denote shortly by f the sequence $\left\{f_{n}\right\}$ of the mappings as above. For any non-negative integer N, define the Lefschetz number of f of order N by

$$
\begin{equation*}
L^{(N)}(f)=\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{\Omega_{n}} \tag{4.82}
\end{equation*}
$$

For example, if each $f_{n}=$ id then

$$
L^{(N)}(f)=\sum_{n=0}^{N}(-1)^{n} \operatorname{dim} \Omega_{n}=\chi^{(N)}
$$

Proposition 4.1. The following identity holds:

$$
\begin{equation*}
L^{(N)}(f):=\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{H_{n}}+\left.(-1)^{N} \operatorname{trace} f_{N}\right|_{B_{N}} \tag{4.83}
\end{equation*}
$$

Proof. Using the following identity (that will be proved in Subsection 4.2)
(4.84) trace $\left.f_{n}\right|_{H_{n}}=\operatorname{trace} f_{n}\left|\Omega_{n}-\operatorname{trace} f_{n-1}\right|_{B_{n-1}}-\left.\operatorname{trace} f_{n}\right|_{B_{n}}$,
we obtain

$$
\begin{aligned}
&\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{H_{n}} \\
&=\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{\Omega_{n}}-\left.\sum_{n=1}^{N}(-1)^{n} \operatorname{trace} f_{n-1}\right|_{B_{n-1}} \\
&-\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{B_{n}} \\
&=\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{\Omega_{n}}+\left.\sum_{k=0}^{N-1}(-1)^{k} \operatorname{trace} f_{k}\right|_{B_{k}} \\
&-\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\right|_{B_{n}} \\
&= \sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f_{n}\left|\Omega_{n}-(-1)^{N} \operatorname{trace} f_{N}\right|_{B_{N}} \\
&= L^{(N)}(f)-\left.(-1)^{N} \operatorname{trace} f_{N}\right|_{B_{N}},
\end{aligned}
$$

whence (4.82) follows.
Let now $f: G \rightarrow G$ be a digraph map, that is,

$$
i \rightarrow j \Rightarrow f(i) \rightarrow f(j) \text { or } f(i)=f(j)
$$

In Subsection 1.4 we have defined an induced mapping $f_{*}: \Lambda_{n} \rightarrow$ Λ_{n} as follows: first set

$$
f_{*}\left(e_{i_{0} \ldots i_{n}}\right)=e_{f\left(i_{0}\right) \ldots f\left(i_{n}\right)}
$$

and then extend f to Λ_{n} by linearity. By Proposition 1.6, f_{*} extends to linear mappings $\Omega_{n} \rightarrow \Omega_{n}$ and $H_{n} \rightarrow H_{n}$.

In this section we denote f_{*} for simplicity also by f. Hence, we obtain the diagram (4.81) where all $f_{n}=f$. In particular, $L^{(N)}(f)$ is defined.
Theorem 4.2. Let $f: G \rightarrow G$ be a digraph map. If, for some $N \geq 0$, we have $L^{(N)}(f) \neq 0$ then f has a fixed point, that is, a vertex a such that $f(a)=a$.

We use the definition of a cluster from Subsection 2.2. For example, $e_{a b c}-e_{a b^{\prime} c}$ is an (a, c)-cluster whereas $e_{a b c}+e_{a c b}$ is not a cluster.

Lemma 4.3. In each Ω_{p} there is an orthogonal basis (with respect to the natural inner product $\langle\cdot, \cdot\rangle$) that consists of clusters.
Proof. Let \mathcal{C} be the set of all ∂-invariant clusters in Ω_{p}. By Lemma $2.2, \Omega_{p}$ is spanned by \mathcal{C}. Choosing in \mathcal{C} a maximal linearly independent subset, we obtain a basis \mathcal{B} in Ω_{p} that consists of clusters. Let us show how to make an orthogonal basis of clusters. Let u, v be two elements from \mathcal{B}.

Let u be an (a, b)-cluster and v be an $\left(a^{\prime}, b^{\prime}\right)$-cluster. If $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$ then clearly $u \perp v$.

If \mathcal{B} has more than one (a, b)-cluster, then among all (a, b)-clusters in \mathcal{B}, we run a Gram-Schmidt orthogonalization process and obtain an orthogonal set of (a, b)-clusters in \mathcal{B}. Note that during this process all newly arising elements are again (a, b)-clusters. Doing that for all pairs (a, b), we obtain an orthogonal basis in Ω_{p} that consists of clusters.

Proof of Theorem 4.2. Assume that f has no fixed point. We will prove that

$$
\begin{equation*}
\text { trace }\left.f\right|_{\Omega_{n}}=0 \quad \text { for any } n \geq 0 \tag{4.85}
\end{equation*}
$$

which gives by (4.82) that $L^{(N)}(f)=0$ thus contradicting the hypothesis that $L^{(N)}(f) \neq 0$.

By Lemma 4.3, there is an orthogonal basis u_{1}, \ldots, u_{m} in Ω_{n}, where all u_{k} are clusters. Denote by $\left(c_{i j}\right)$ the matrix of the operator $f: \Omega_{n} \rightarrow \Omega_{n}$ in this basis, that is,

$$
f\left(u_{j}\right)=\sum_{i=1}^{m} c_{i j} u_{i}, \quad \text { whence } \quad c_{i j}=\frac{\left\langle f\left(u_{j}\right), u_{i}\right\rangle}{\left\|u_{i}\right\|^{2}}
$$

Consequently, we have

$$
\left.\operatorname{trace} f\right|_{\Omega_{n}}=\sum_{k=1}^{m} c_{k k}=\sum_{k=1}^{m} \frac{\left\langle f\left(u_{k}\right), u_{k}\right\rangle}{\left\|u_{k}\right\|^{2}}
$$

It remains to show that $f\left(u_{k}\right) \perp u_{k}$, which will imply (4.85). Indeed, let u_{k} be an (a, b)-cluster, that is, u_{k} is a linear combination of elementary n-paths of the form

$$
\begin{equation*}
e_{a i_{1} \ldots i_{n-1} b} \tag{4.86}
\end{equation*}
$$

where a, b are fixed while i_{1}, \ldots, i_{n-1} are variable. Then $f\left(u_{k}\right)$ is a linear combination of the n-paths

$$
\begin{equation*}
e_{f(a) f\left(j_{1}\right) \ldots f\left(j_{n-1}\right) f(b)} \tag{4.87}
\end{equation*}
$$

where j_{1}, \ldots, j_{n-1} are variable. Since $a \neq f(a)$, we see that the paths (4.86) and (4.87) are orthogonal, which implies that $f\left(u_{k}\right)$ and u_{k} are orthogonal, too, which was to be proved.

4.2 Rank-Nullity Formulas for Trace

The purpose of this section is to prove the identity (4.84) - see Lemma 4.6 below. Recall that we have a commutative diagram

$$
\begin{array}{lllll}
\Omega_{n-1} & \check{\partial} & \Omega_{n} & \check{\partial} & \Omega_{n+1} \\
\downarrow^{f_{n-1}} & & \downarrow_{n} & & \downarrow_{n+1} \\
\Omega_{n-1} & \stackrel{\partial}{f_{n}} & \Omega_{n} & \check{\partial} & \Omega_{n+1}
\end{array}
$$

and

$$
Z_{n}=\left.\operatorname{ker} \partial\right|_{\Omega_{n}}, \quad B_{n}=\left.\operatorname{Im} \partial\right|_{\Omega_{n+1}}, \quad H_{n}=Z_{n} / B_{n}
$$

Lemma 4.4. We have

Proof. Let u_{1}, \ldots, u_{l} be a basis of B_{n}. Choose in Z_{n} elements v_{1}, \ldots, v_{k} so that the sequence $u_{1}, \ldots, u_{l}, v_{1}, \ldots, v_{k}$ is a basis of Z_{n}. Then

$$
f_{n}\left(u_{i}\right)=\sum_{j=1}^{l} a_{i j} u_{j}
$$

and

$$
f_{n}\left(v_{i}\right)=\sum_{j=1}^{k} b_{i j} v_{j}+\text { terms with } u_{j} .
$$

For the homology classes we have

$$
f_{n}\left(\left[v_{i}\right]\right)=\sum_{j=1}^{k} b_{i j}\left[v_{j}\right]
$$

It follows that

$$
\left.\operatorname{trace} f_{n}\right|_{Z_{n}}=\sum_{i=1}^{l} a_{i i}+\sum_{i=1}^{k} b_{i i}=\left.\operatorname{trace} f_{k}\right|_{B_{n}}+\left.\operatorname{trace} f_{n}\right|_{H_{n}}
$$

which is equivalent to (4.88).
Lemma 4.5. We have the identity

$$
\left.\operatorname{trace} f_{n}\right|_{Z_{n}}+\left.\operatorname{trace} f_{n-1}\right|_{B_{n-1}}=\left.\operatorname{trace} f_{n}\right|_{\Omega_{n}}
$$

For example, if f_{n} and f_{n-1} are the identity operators then this becomes the rank-nullity theorem for the operator ∂ :

$$
\begin{equation*}
\operatorname{dim} Z_{n}+\operatorname{dim} B_{n-1}=\operatorname{dim} \Omega_{n} \tag{4.89}
\end{equation*}
$$

Proof. Let $v_{1}, \ldots v_{k}$ be a basis in Z_{n} and $u_{1}^{\prime}, \ldots, u_{l}^{\prime}$ be a basis in B_{n-1}. Choose any vector $u_{i} \in \partial^{-1}\left(u_{i}^{\prime}\right)$, that is, $\partial u_{i}=u_{i}^{\prime}$. Let us show that the sequence $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{l}$ is linearly independent in Ω_{n}.

Indeed, if there is a vanishing linear combination

$$
\sum_{i=1}^{l} \alpha_{i} u_{i}+\sum_{j=1}^{k} \beta_{j} v_{j}=0
$$

then it follows that

$$
0=\partial \sum_{i=1}^{l} \alpha_{i} u_{i}+\partial \sum_{j=1}^{k} \beta_{j} v_{j}=\sum_{i=1}^{l} \alpha_{i} u_{i}^{\prime}+0
$$

whence it follows that all $\alpha_{i}=0$. Consequently, $\sum_{j=1}^{k} \beta_{j} v_{j}=0$ and, hence, also all $\beta_{j}=0$.

Since by (4.89) $k+l=\operatorname{dim} \Omega_{n}$, it follows that the sequence $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{l}$ is a basis in Ω_{n}.

Hence, for some coefficients $a_{i j}$ and $b_{i j}$,

$$
\begin{equation*}
f_{n}\left(u_{i}\right)=\sum_{j=1}^{l} a_{i j} u_{j}+\text { terms with } v_{j} \tag{4.90}
\end{equation*}
$$

and

$$
f_{n}\left(v_{i}\right)=\sum_{j=1}^{k} b_{i j} v_{j}
$$

The latter expansion contains no u_{j} because $f_{n}\left(Z_{n}\right) \subset Z_{n}$. Hence,

$$
\operatorname{trace} f_{n} \mid \Omega_{n}=\sum_{i=1}^{l} a_{i i}+\sum_{i=1}^{k} b_{i i}
$$

On the other hand, we have

$$
\operatorname{trace} f_{n} \mid Z_{n}=\sum_{i=1}^{k} b_{i i}
$$

It remains to prove that

$$
\left.\operatorname{trace} f_{n-1}\right|_{B_{n-1}}=\sum_{i=1}^{l} a_{i i}
$$

Since f_{n-1} maps B_{n-1} into itself, there are coefficients $a_{i j}^{\prime}$ such that

$$
\begin{equation*}
f_{n-1}\left(u_{i}^{\prime}\right)=\sum_{j=1}^{l} a_{i j}^{\prime} u_{j}^{\prime} \tag{4.91}
\end{equation*}
$$

It follows from (4.90) that

$$
\begin{equation*}
\partial f_{n}\left(u_{i}\right)=\sum_{j=1}^{l} a_{i j} \partial u_{j}+0=\sum_{j=1}^{l} a_{i j} u_{j}^{\prime} . \tag{4.92}
\end{equation*}
$$

On the other hand, using (4.80) and (4.91), we obtain that

$$
\partial f_{n}\left(u_{i}\right)=f_{n-1}\left(\partial u_{i}\right)=f_{n-1}\left(u_{i}^{\prime}\right)=\sum_{j=1}^{l} a_{i j}^{\prime} u_{j}^{\prime} .
$$

Comparison with (4.92) shows that $a_{i j}^{\prime}=a_{i j}$ and, hence,

$$
\left.\operatorname{trace} f_{n-1}\right|_{B_{n-1}}=\sum_{i=1}^{l} a_{i i}^{\prime}=\sum_{i=1}^{l} a_{i i}
$$

which finishes the proof.
Finally, we can prove (4.84).
Lemma 4.6. The following identity holds
(4.93) trace $\left.f_{n}\right|_{H_{n}}=\left.\operatorname{trace} f_{n}\right|_{\Omega_{n}}-\left.\operatorname{trace} f_{n-1}\right|_{B_{n-1}}-\left.\operatorname{trace} f_{n}\right|_{B_{n}}$.

Proof. By Lemma 4.4 we have

$$
\left.\operatorname{trace} f_{n}\right|_{H_{n}}=\left.\operatorname{trace} f_{n}\right|_{Z_{n}}-\left.\operatorname{trace} f_{n}\right|_{B_{n}}
$$

and by Lemma 4.5

$$
\left.\operatorname{trace} f_{n}\right|_{Z_{n}}=\operatorname{trace} f_{n}\left|\Omega_{n}-\operatorname{trace} f_{n-1}\right|_{B_{n-1}}
$$

which yields (4.93).

4.3 A Fixed Point Theorem in Terms of Homology

Definition. Define the path dimension of a digraph G by

$$
\operatorname{dim}_{p} G=\sup \left\{n:\left|\Omega_{n}\right|>0\right\} .
$$

Assume that $\operatorname{dim}_{p} G<\infty$. Then for any $N>\operatorname{dim}_{p} G$ we have by (4.83)

$$
\begin{equation*}
L^{(N)}(f)=\left.\sum_{n=0}^{N}(-1)^{n} \operatorname{trace} f\right|_{\Omega_{n}}=\sum_{n=0}^{N}(-1)^{n} \text { trace }\left.f\right|_{H_{n}} \tag{4.94}
\end{equation*}
$$

Recall the definition of the homological dimension:

$$
\operatorname{dim}_{h} G=\sup \left\{n:\left|H_{n}\right|>0\right\} .
$$

Theorem 4.7. Let G be a connected digraph. Let $\operatorname{dim}_{p} G<\infty$ and $\operatorname{dim}_{h} G=0$. Then any digraph map $f: G \rightarrow G$ has a fixed point.

Proof. The condition $\operatorname{dim}_{h} G=0$ means that $H_{n}=\{0\}$ for all $n \geq 1$, and the connectedness means that $\left|H_{0}\right|=1$. The space H_{0} is spanned by a single homology class $\left[e_{a}\right]$ where a is one of the vertices. Then $f\left(e_{a}\right)=e_{f(a)} \sim e_{a}$ so that $f\left(\left[e_{a}\right]\right)=\left[e_{a}\right]$. It follows that trace $\left.f\right|_{H_{0}}=1$ while trace $\left.f\right|_{H_{n}}=0$ for all $n \geq 1$. By (4.94) we obtain $L^{(N)}(f)=1 \neq 0$, and by Theorem 4.2 we conclude that f has a fixed point.

The condition that a mapping $f: G \rightarrow G$ is a digraph map can be reformulated as follows. Define a directed distance between vertices a, b of G by

$$
\vec{d}(a, b)=\inf \{n: \exists \text { a path } \underbrace{a \rightarrow i_{1} \rightarrow \ldots \rightarrow i_{n-1} \rightarrow b}_{n \text { arrows }}\}
$$

Then f is a digraph map if and only if

$$
\vec{d}(f(a), f(b)) \leq \vec{d}(a, b) \quad \text { for all } a, b \in V
$$

Let us relax this condition.
Problem 4.8. Devise a fixed point theorem for maps $f: G \rightarrow G$ with

$$
\vec{d}(f(a), f(b)) \leq C \vec{d}(a, b) \quad \text { for all } a, b \in V
$$

where $C>1$ is a constant.
Alternatively, one can strengthen conditions on f, assuming that f is a digraph isomorphism, which is equivalent to

$$
\vec{d}(f(a), f(b))=\vec{d}(a, b) \quad \text { for all } a, b \in V
$$

Problem 4.9. Devise a fixed point theorem for a digraph isomorphism $f: G \rightarrow G$.

4.4 Examples

Example 4.10. First consider some simple examples of digraphs satisfying the hypotheses of Theorem 4.7.

The triviality of H_{*} (that is, $\operatorname{dim}_{h} G=0$) for each of these digraphs was mentioned in the previous sections. The finiteness of the path dimension follows from the fact that all arrows go in the direction of increase of numbering of the vertices so that the length of allowed paths is bounded.

Note that in all digraphs of Example 4.10, a fixed point theorem can be obtained much simpler from the following elementary result.

Proposition 4.11. Assume that a digraph $G=(V, E)$ satisfies the following two conditions:
(i) there is no closed elementary allowed p-path with $p \geq 2$, that is, for any allowed p-path $e_{i_{0} \ldots i_{p}}$, we have $i_{0} \neq i_{p}$;
(ii) there exists a vertex a such that there is an elementary allowed path from a to any other vertex x.

Then any digraph map $f: G \rightarrow G$ has a fixed point.
Proof. Consider the sequence of sets $V_{n} \subset V$ defined by

$$
V_{0}=V, \quad V_{n+1}=f\left(V_{n}\right) \text { for } n \geq 0
$$

By induction we have $V_{n+1} \subset V_{n}$. Since all sets V_{n} are finite, we obtain that $V_{n+1}=V_{n}$ for large enough n. Fix such n so that we have $V_{n+1}=V_{n}$.

For each $x \in V$ set $x_{k}=f^{k}(x)$. Then there is an elementary allowed path from a_{k} to x_{k} for any $k \geq 0$.

In particular, there is an allowed path from a_{n} to any other vertex of V_{n}, and that from a_{n+1} to any other vertex of $V_{n+1}=V_{n}$.

Hence, if $a_{n} \neq a_{n+1}$ then there are allowed paths from a_{n} to a_{n+1} and from a_{n+1} to a_{n}.

Therefore, there is a closed allowed path starting and ending at a_{n}, which is not possible. Hence, $a_{n}=a_{n+1}$, that is, a_{n} is a fixed point of f.

Next, we give an example of a digraph that satisfies the hypotheses of Theorem 4.7 but not those of Proposition 4.11.

Example 4.12. Consider the following digraph G with 7 vertices and 16 arrows.

There are closed allowed paths

$$
0 \rightarrow 2 \rightarrow 1 \rightarrow 0,5 \rightarrow 0 \rightarrow 6 \rightarrow 5
$$

etc. Hence, there are arbitrarily long allowed paths. Nevertheless, one can show that

$$
\operatorname{dim}_{p} G<6
$$

and that G is homologically trivial.
Hence, G satisfies the hypotheses of Theorem 4.7, and we conclude that any digraph map $f: G \rightarrow G$ has a fixed point.

The next example provides a large family of digraphs satisfying the hypotheses of Theorem 4.7.

Example 4.13. Given n digraphs X_{1}, \ldots, X_{n}, define their monotone linear join $X_{1} X_{2} \ldots X_{n}$ as follows: take first a disjoint union $\bigsqcup_{i=1}^{n} X_{i}$ and then add arrows from any vertex x of X_{i} to any vertex y of X_{i+1}.

A monotone linear join $X_{1} X_{2} \ldots X_{n}$
Proposition 4.14. Assume that the following two conditions are satisfied:
(i) for all $i, \operatorname{dim}_{p} X_{i}<\infty$;
(ii) there exists i such that X_{i} is connected and $\operatorname{dim}_{h} X_{i}=0$.

Then any digraph map f in $X=X_{1} \ldots X_{n}$ has a fixed point.
Proof. It follows from Theorem 3.16 that the digraph X is homologically trivial and $\operatorname{dim}_{p} X<\infty$ (see also Example 3.17). Hence, the claim follows from Theorem 4.7.

Let us now consider some examples when the hypotheses of Theorem 4.7 are not satisfied.

Example 4.15. Assume that G contains a double arrow $\{a \rightleftarrows b\}$. Then

$$
\operatorname{dim}_{p} G=\infty
$$

because each Ω_{p} contains p-paths $e_{\text {ababab... }}$ and $e_{\text {bababa... }}$. Define a map $f: G \rightarrow G$ by

$$
f(a)=b \text { and } f(x)=a \quad \text { for all } x \neq a .
$$

Clearly, f is a digraph map without fixed points. Hence, the hypotheses $\operatorname{dim}_{p} G<\infty$ is essential for Theorem 4.7.

Example 4.16. Here are some examples of digraphs that admit digraph maps f without fixed points. All they have $\operatorname{dim}_{p} G<\infty$ but $\operatorname{dim}_{h} G>0$.

Problem 4.17. Suppose that $H_{1}(G)$ contains a non-trivial class $e_{01}+e_{12}+e_{20}$ (like for 1-torus). Is it true that there exists a digraph map $f: G \rightarrow G$ without a fixed point?

Example 4.18. Consider the following digraph G with 7 vertices and 14 arrows:

G has the following arrows:

$$
i \rightarrow i+1 \text { and } i \rightarrow i+2
$$

where addition is considered mod 7 .
Let us first show that

$$
\left|\Omega_{p}\right|=14 \quad \text { for all } p \geq 1
$$

and

$$
\left|H_{p}\right|=0 \text { for all } p \geq 2 .
$$

This digraph can also be shown as a periodic snake:

where the vertices with the same numbers are merged (like a Möbius band).

Each elementary p-path

$$
\begin{equation*}
\omega_{i}=e_{i(i+1)(i+2) \ldots(i+p)} \tag{4.95}
\end{equation*}
$$

is snake-like and, hence, is ∂-invariant. Let us refer to any path (4.95) as a p-snake. Hence, we obtain in Ω_{p} already 7 linearly independent p-snakes $\left\{\omega_{i}\right\}_{i=0}^{6}$. Another group of 7 linearly independent p-paths in Ω_{p} is given by the boundaries $\partial \varpi_{i}$ of ($p+1$)-snakes

$$
\widetilde{ळ}_{i}=e_{i(i+1)(i+2) \ldots(i+p)(i+p+1)} .
$$

Hence, we obtain that

$$
\Omega_{p}=\left\langle\omega_{i}, \partial \varpi_{i}\right\rangle_{i=0}^{6}
$$

and $\operatorname{dim} \Omega_{p}=14$. Since $\partial\left(\partial \varpi_{i}\right)=0$, while $\partial \omega_{i}$ are linearly independent for $p \geq 2$, we obtain that

$$
\left.\operatorname{dim} \operatorname{ker} \partial\right|_{\Omega_{p}}=7
$$

By the rank-nullity theorem we have

$$
\left.\operatorname{dim} \operatorname{Im} \partial\right|_{\Omega_{p+1}}=14-7=7
$$

whence $H_{p}=\{0\}$ for all $p \geq 2$. For the case $p=1$ we have, in fact,

$$
H_{1}=\left\langle e_{01}+e_{12}+e_{23}+e_{34}+e_{45}+e_{56}+e_{60}\right\rangle
$$

Hence, we have $\operatorname{dim}_{p} G=\infty$ and $\operatorname{dim}_{h} G=0$. The hypothesis $\operatorname{dim}_{p} G<\infty$ of Theorem 4.7 is not satisfied, and the conclusion of Theorem 4.7 fails as well because the digraph map $f(i)=i+1$ has no fixed point.

Problem 4.19. Devise a fixed point theorem that would work with digraphs containing double arrows. For that we need to impose additional restriction on $f: G \rightarrow G$, for example, let us assume that f is a digraph isomorphism, that is,

$$
a \rightarrow b \Rightarrow f(a) \rightarrow f(b)
$$

Problem 4.20. Assume that G is connected, $\operatorname{dim}_{h} G=0$ and that G has no double arrow. Prove or disprove the claim that any digraph map $f: G \rightarrow G$ has a fixed point. Of course, the main interest here lies in the case when

$$
\operatorname{dim}_{p} G=\infty .
$$

Example 4.21. Here is a candidate for a positive example with $\operatorname{dim}_{p} G=\infty$.

This is the above snake with an additional vertex 7 such that

$$
7 \rightarrow i \text { for all } i \in\{0, \ldots, 6\}
$$

For this digraph

$$
\operatorname{dim}_{h} G=0 \quad \text { and } \quad \operatorname{dim}_{p} G=\infty .
$$

Problem 4.22. Prove that any digraph map $f: G \rightarrow G$ for the above digraph has a fixed point.

Example 4.23. Here is a candidate for a counterexample.

For this digraph we have

$$
\operatorname{dim}_{h} G=0 \quad \text { and } \quad \operatorname{dim}_{p} G=\infty .
$$

All spaces Ω_{p} are non-trivial because G contains a periodic snake

$e_{\underline{01234560123456 \ldots}}$

Problem 4.24. Construct for this digraph a digraph map f without fixed points (or prove a fixed point theorem for this digraph). Simple rotations $f(i)=i+a \bmod 8$ are not digraph maps here. For example, for $f(i)=i+4$ the arrow $0 \rightarrow 3$ goes to $4 \nrightarrow 7$, for $f(i)=i+5$ the arrow $5 \rightarrow 0$ goes to $2 \nrightarrow 5$.

Problem 4.25. Devise convenient sufficient conditions for $\operatorname{dim}_{p} G<\infty$.

5. Combinatorial Curvature of Digraphs

5.1 Motivation

Let Γ be a finite planar graph. There is the following old notion of a combinatorial curvature K_{x} at any vertex x of Γ :

$$
\begin{equation*}
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\sum_{f \ni x} \frac{1}{\operatorname{deg}(f)} \tag{5.96}
\end{equation*}
$$

where the sum is taken over all faces f containing x and $\operatorname{deg}(f)$ denotes the number of vertices of f. For example, if all faces are triangles then we obtain

$$
\begin{equation*}
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\operatorname{deg}_{\Delta}(x)}{3} \tag{5.97}
\end{equation*}
$$

where $\operatorname{deg}_{\Delta}(x)$ is the number of triangles having x as a vertex.
In general, denoting by V, E and F the number of vertices, edges and faces of Γ and observing that

$$
\sum_{x} \operatorname{deg}(x)=2 E \quad \text { and } \quad \sum_{x} \sum_{f \ni x} \frac{1}{\operatorname{deg}(f)}=\sum_{f} \sum_{x \in f} \frac{1}{\operatorname{deg}(f)}=F
$$

we obtain

$$
\sum_{x} K_{x}=V-E+F=\chi
$$

We try to realize this idea on digraph: to "distribute" the Euler characteristic over all vertices and, hence, to obtain an analog of the Gauss curvature that satisfies the Gauss-Bonnet theorem.

5.2 Curvature Operator

Let $G=(V, E)$ be a finite digraph and $\mathbb{K}=\mathbb{R}$. We would like to generalize (5.96) to arbitrary digraphs, so that the faces in (5.96) should be replaced by the elements of a basis in Ω_{p}. However, the result should be independent of the choice of a basis.

Fix $p \geq 0$. Any function $f: V \rightarrow \mathbb{R}$ on the vertices induces an linear operator

$$
T_{f}: \mathcal{R}_{p} \rightarrow \mathcal{R}_{p}
$$

by

$$
T_{f} e_{i_{0} \ldots i_{p}}=\left(f\left(i_{0}\right)+\ldots+f\left(i_{p}\right)\right) e_{i_{0} \ldots i_{p}}
$$

For example, for a constant function $f=\mathbf{1}$ on V, we have $T_{1} e_{i_{0} \ldots i_{p}}=(p+1) e_{i_{0} \ldots i_{p}}$ and, hence,

$$
\begin{equation*}
T_{1} \omega=(p+1) \omega \quad \text { for any } \omega \in \mathcal{R}_{p} \tag{5.98}
\end{equation*}
$$

If $f=\mathbf{1}_{x}$ where $x \in V$, then

$$
\begin{equation*}
T_{\mathbf{1}_{x}} e_{i_{0} \ldots i_{p}}=m e_{i_{0} \ldots i_{p}} \tag{5.99}
\end{equation*}
$$

where m is the number of occurrences of x in i_{0}, \ldots, i_{p}.
Fix in \mathcal{R}_{p} an inner product $\langle\cdot, \cdot\rangle$. For example, this can be a natural inner product when all regular elementary paths $e_{i_{0} \ldots i_{p}}$ form an orthonormal basis in \mathcal{R}_{p}.

Let $\Pi_{p}: \mathcal{R}_{p} \rightarrow \Omega_{p}$ be the orthogonal projection onto Ω_{p}.
Considering T_{f} as an operator from Ω_{p} to \mathcal{R}_{p}, we obtain the following operator in Ω_{p} :

$$
T_{f}^{\prime}:=\Pi_{p} \circ T_{f}: \Omega_{p} \rightarrow \Omega_{p}
$$

Definition. Define the incidence of f and Ω_{p} by

$$
\left[f, \Omega_{p}\right]:=\operatorname{trace} T_{f}^{\prime}
$$

Definition. For any $\omega=\sum \omega^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}} \in \Omega_{p}$ define the incidence of f and ω by

$$
[f, \omega]:=\left\langle T_{f} \omega, \omega\right\rangle
$$

Lemma 5.1. For any orthogonal basis $\left\{\omega_{k}\right\}$ in Ω_{p} we have

$$
\begin{equation*}
\left[f, \Omega_{p}\right]=\sum_{k} \frac{\left[f, \omega_{k}\right]}{\left\|\omega_{k}\right\|^{2}} \tag{5.100}
\end{equation*}
$$

Proof. It suffices to prove (5.100) for orthonormal basis when $\left\|\omega_{k}\right\|=1$ for all k. By the definition of the trace, we have

$$
\operatorname{trace} T_{f}^{\prime}=\sum_{k}\left\langle T_{f}^{\prime} \omega_{k}, \omega_{k}\right\rangle
$$

Moreover, for every $\omega \in \Omega_{p}$ we have

$$
\left\langle T_{f}^{\prime} \omega, \omega\right\rangle=\left\langle\Pi_{p} T_{f} \omega, \omega\right\rangle=\left\langle T_{f} \omega, \Pi_{p} \omega\right\rangle=\left\langle T_{f} \omega, \omega\right\rangle=[f, \omega]
$$

from which (5.100) follows.
Definition. For any $N \in \mathbb{N}$ define the curvature operator $K^{(N)}$: $\mathbb{R}^{V} \rightarrow \mathbb{R}$ of order N by

$$
K^{(N)} f=\sum_{p=0}^{N} \frac{(-1)^{p}}{p+1}\left[f, \Omega_{p}\right]
$$

If $\Omega_{p}=\{0\}$ for all $p>N$, then write $K_{f}^{(N)}=K_{f}$.

5.3 The Gauss-Bonnet Formula

For $f=\mathbf{1}_{x}$ with $x \in V$, we write

$$
\left[x, \Omega_{p}\right]:=\left[\mathbf{1}_{x}, \Omega_{p}\right] \quad \text { and } \quad[x, \omega]:=\left[\mathbf{1}_{x}, \omega\right]
$$

If $\left\{\omega_{k}\right\}$ is an orthogonal basis of Ω_{p}, then by (5.100)

$$
\begin{equation*}
\left[x, \Omega_{p}\right]=\sum_{k} \frac{\left[x, \omega_{k}\right]}{\left\|\omega_{k}\right\|^{2}} . \tag{5.101}
\end{equation*}
$$

If the inner product is natural so that $\left\{e_{i_{0} \ldots i_{p}}\right\}$ is orthonormal then by (5.99)

$$
\left[x, e_{i_{0} \ldots i_{p}}\right]=m
$$

where m is the number of occurrences of x in i_{0}, \ldots, i_{p}. For example,

$$
\left[a, e_{a b c a}\right]=2, \quad\left[b, e_{a b c a}\right]=1, \quad\left[d, e_{a b c a}\right]=0
$$

In this case, for $\omega=\sum \omega^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ we have

$$
[x, \omega]=\sum_{i_{0} \ldots i_{p} \in V}\left(\omega^{i_{0} \ldots i_{p}}\right)^{2}\left[x, e_{i_{0} \ldots i_{p}}\right] .
$$

Definition. For any $N \in \mathbb{N}$ define the curvature of $\operatorname{order} N$ at a vertex x by

$$
K_{x}^{(N)}:=K^{(N)} \mathbf{1}_{x}=\sum_{p=0}^{N} \frac{(-1)^{p}}{p+1}\left[x, \Omega_{p}\right]
$$

Set also

$$
K_{\text {total }}^{(N)}=\sum_{x \in V} K_{x}^{(N)}
$$

Recall that the Euler characteristic is given by

$$
\chi^{(N)}:=\sum_{p=0}^{N}(-1)^{p} \operatorname{dim} \Omega_{p}
$$

Proposition 5.2 (Gauss-Bonnet). For any choice of the inner product in \mathcal{R}_{p} and for any N we have

$$
K_{\text {total }}^{(N)}=\chi^{(N)}
$$

Proof. Since $\sum_{x \in V} \mathbf{1}_{x}=\mathbf{1}$, we obtain that

$$
K_{\text {total }}^{(N)}=\sum_{x \in V} K_{x}^{(N)}=\sum_{x \in V} K^{(N)} \mathbf{1}_{x}=K^{(N)} \mathbf{1}=\sum_{p=0}^{N}(-1)^{p} \frac{\left[\mathbf{1}, \Omega_{p}\right]}{p+1} .
$$

On the other hand, by (5.98)

$$
[\mathbf{1}, \omega]=\left\langle T_{1} \omega, \omega\right\rangle=(p+1)\|\omega\|^{2}
$$

If $\left\{\omega_{k}\right\}$ is an orthogonal basis in Ω_{p} then by (5.100)

$$
\left[\mathbf{1}, \Omega_{p}\right]=\sum_{k} \frac{\left[\mathbf{1}, \omega_{k}\right]}{\left\|\omega_{k}\right\|^{2}}=(p+1) \operatorname{dim} \Omega_{p}
$$

which implies

$$
K_{\text {total }}^{(N)}=\sum_{p=0}^{N}(-1)^{p} \operatorname{dim} \Omega_{p}=\chi^{(N)} .
$$

Remark 5.3. If $\Omega_{p}=\{0\}$ for all $p>N$ then

$$
\chi:=\sum_{p=0}^{N}(-1)^{p} \operatorname{dim} \Omega_{p}=\sum_{p=0}^{N}(-1)^{p} \operatorname{dim} H_{p}
$$

Remark 5.4. It can happen that $\Omega_{p} \neq\{0\}$ for all p. An example of such a digraph is given in Example 1.19. A simpler example is $G=\{a \rightleftarrows b\}$. For this digraph we have

$$
\begin{aligned}
& \Omega_{0}=\left\langle e_{a}, e_{b}\right\rangle, \quad \Omega_{1}=\left\langle e_{a b}, e_{b a}\right\rangle, \quad \Omega_{3}=\left\langle e_{a b a}, e_{b a b}\right\rangle, \\
& \Omega_{4}=\left\langle e_{a b a b}, e_{b a b a}\right\rangle, \quad \text { etc },
\end{aligned}
$$

so that $\left|\Omega_{p}\right|=2$ for all $p \geq 0$. Indeed, $e_{a b a} \in \mathcal{A}_{2}$ and

$$
\partial e_{a b a}=e_{b a}-e_{a a}+e_{a b}=e_{b a}+e_{a b} \in \mathcal{A}_{1}
$$

so that $e_{a b a} \in \Omega_{2}$. Similarly, $e_{a b a b} \in \mathcal{A}_{3}$ and

$$
\partial e_{a b a b}=e_{b a b}-e_{a a b}+e_{a b b}-e_{a b a}=e_{b a b}-e_{a b a} \in \mathcal{A}_{2}
$$

so that $e_{a b a b} \in \Omega_{3}$, etc.
If $\Omega_{p} \neq\{0\}$ for all p, then one can always truncate the chain complex to make it finite by setting $\Omega_{N+1}=\{0\}$ for some N :

$$
0 \leftarrow \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{N-1} \stackrel{\partial}{\leftarrow} \Omega_{N} \leftarrow 0
$$

and work with homology groups of this complex. This corresponds to declaring all paths of length $>N$ non-allowed.

5.4 Examples of Computation of Curvature

Let us fix in \mathcal{R}_{p} the natural inner product. Using the orthonormal basis $\left\{e_{i}\right\}$ in Ω_{0} we obtain

$$
\left[x, \Omega_{0}\right]=\sum_{i}\left[x, e_{i}\right]=1
$$

and, using the orthonormal basis $\left\{e_{i j}\right\}$ with $i \rightarrow j$ in Ω_{1}, we obtain

$$
\left[x, \Omega_{1}\right]=\sum_{i \rightarrow j}\left[x, e_{i j}\right]=\operatorname{deg}(x)
$$

Therefore,

$$
K_{x}^{(1)}=1-\frac{\operatorname{deg}(x)}{2}
$$

and, for any $N \geq 1$,

$$
\begin{equation*}
K_{x}^{(N)}=1-\frac{\operatorname{deg}(x)}{2}+\sum_{p=2}^{N} \frac{(-1)^{p}}{p+1}\left[x, \Omega_{p}\right] . \tag{5.102}
\end{equation*}
$$

By Theorem 1.8, in the absence of double arrows the space Ω_{2} has always a basis of triangles and squares (but this basis is not necessarily orthogonal).

For a triangle $e_{a b c} \in \Omega_{2}$ we have

$$
\left[x, e_{a b c}\right]= \begin{cases}1, & x \in\{a, b, c\} \tag{5.103}\\ 0, & \text { otherwise }\end{cases}
$$

and for a square $e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}$

$$
\left[x, e_{a b c}-e_{a b^{\prime} c}\right]= \begin{cases}2, & x \in\{a, c\} \tag{5.104}\\ 1, & x \in\left\{b, b^{\prime}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

In particular, if G has no square then Ω_{2} has a basis $\left\{\omega_{k}\right\}$ that consists of all triangles in G. This basis is orthonormal and

$$
\left[x, \Omega_{2}\right]=\sum_{k}\left[x, \omega_{k}\right]=\operatorname{deg}_{\Delta}(x):=\text { \#triangles containing } x .
$$

It follows that

$$
K_{x}^{(2)}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\operatorname{deg}_{\Delta}(x)}{3},
$$

which matches with (5.97).
Example 5.5. Let G be a linear digraph, for example,

$$
\cdots \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \ldots
$$

Then by (5.102) we have $K_{x}=\frac{1}{2}$ for the endpoints, and $K_{x}=0$ for the interior points.

Example 5.6. Let G be a cyclic digraph (polygon) different from triangle or square:

Then we have $\Omega_{p}=\{0\}$ for $p>1$.
Hence by (5.102), for any vertex x,

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}=0
$$

and $K_{\text {total }}=0$. Note also that $\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|=6-6=0$.
Example 5.7. Consider a dodecahedron (with any orientation of edges):

We have $\left|\Omega_{0}\right|=20,\left|\Omega_{1}\right|=30,\left|\Omega_{2}\right|=0$, and $\left|H_{1}\right|=11$, $\left|H_{p}\right|=0$ for $p>1$.

Then, for any vertex x,

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}=-\frac{1}{2}
$$

and $K_{\text {total }}=-10$.
For comparison, note that $\chi=1-11=20-30=-10$.
Example 5.8. Let G be a triangle. We have $\Omega_{2}=\left\langle e_{012}\right\rangle$ and $\Omega_{p}=\{0\}$ for $p>2$.

Hence, for each vertex x,

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\operatorname{deg}_{\Delta}(x)}{3}=\frac{1}{3} .
$$

and $K_{\text {total }}=1$. For comparison, $\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=3-$ $3+1=1$.

Example 5.9. Let G be a square. Then $\Omega_{2}=\left\langle e_{013}-e_{023}\right\rangle$ and $\Omega_{p}=\{0\}$ for $p>2$.

Since $\left\|e_{013}-e_{023}\right\|^{2}=2$, we obtain

$$
\left[0, \Omega_{2}\right]=\frac{1}{2}\left[0, e_{013}-e_{023}\right]=1, \quad\left[3, \Omega_{2}\right]=1
$$

$$
\left[1, \Omega_{2}\right]=\frac{1}{2}\left[1, e_{013}-e_{023}\right]=\frac{1}{2}, \quad\left[2, \Omega_{2}\right]=\frac{1}{2}
$$

It follows that

$$
\begin{aligned}
& K_{3}=K_{0}=1-\frac{\operatorname{deg}(0)}{2}+\frac{1}{3}=\frac{1}{3}, \\
& K_{2}=K_{1}=1-\frac{\operatorname{deg}(1)}{2}+\frac{1}{6}=\frac{1}{6},
\end{aligned}
$$

and $K_{\text {total }}=1=\chi$.
Example 5.10. Let G be a 3 -simplex:

We have

$$
\begin{aligned}
& \Omega_{2}=\left\langle e_{012}, e_{013}, e_{023}, e_{123}\right\rangle, \Omega_{3}=\left\langle e_{0123}\right\rangle \\
& \Omega_{p}=\{0\} \text { for } p>3
\end{aligned}
$$

It follows that, for any vertex x,

$$
\left[x, \Omega_{2}\right]=\operatorname{deg}_{\Delta}(x)=3 \quad \text { and } \quad\left[x, \Omega_{3}\right]=1
$$

whence

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}=\frac{1}{4}
$$

and $K_{\text {total }}=1=\chi$.
Example 5.11. Let G be an n-simplex, that is, a digraph with a set of vertices $\{0,1, \ldots, n\}$ and edges $i \rightarrow j$ whenever $i<j$. Then, for any $p=0,1, \ldots, n$

$$
\Omega_{p}=\mathcal{A}_{p}=\left\langle e_{i_{0} \ldots i_{p}}: i_{0}<i_{1}<\ldots<i_{p}\right\rangle
$$

so that $\operatorname{dim} \Omega_{p}=\binom{n+1}{p+1}$. It follows that, for any vertex x,

$$
\left[x, \Omega_{p}\right]=\#\left\{e_{i_{0} \ldots i_{p}} \text { such that } x \in\left\{i_{0}, \ldots, i_{p}\right\}\right\}=\binom{n}{p}
$$

and

$$
K_{x}=\sum_{p=0}^{n}(-1)^{p} \frac{\binom{n}{p}}{p+1} .
$$

Change $j=p+1$ gives
$(n+1) K_{x}=\sum_{j=1}^{n+1}(-1)^{j-1} \frac{(n+1)\binom{n}{j-1}}{j}=\sum_{j=1}^{n+1}(-1)^{j-1}\binom{n+1}{j}=1$,
whence

$$
K_{x}=\frac{1}{n+1} \quad \text { and } \quad K_{\text {total }}=1
$$

Example 5.12. Let G be a bipyramid:

We have $\left|\Omega_{0}\right|=5,\left|\Omega_{1}\right|=9$,

$$
\begin{aligned}
& \Omega_{2}=\left\langle e_{013}, e_{123}, e_{023}, e_{014}, e_{124}, e_{024}, e_{012}\right\rangle \\
& \Omega_{3}=\left\langle e_{0123}, e_{0124}\right\rangle
\end{aligned}
$$

and $\left|\Omega_{p}\right|=0$ for $p \geq 4$.
Hence,

$$
\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|=5-9+7-2=1
$$

Let us compute the curvature:

x	$\left[x, \Omega_{2}\right]$	$\left[x, \Omega_{3}\right]$	$1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}$	$=K_{x}$
3,4	3	1	$1-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}$	$=\frac{1}{4}$
$0,1,2$	5	2	$1-\frac{4}{2}+\frac{5}{3}-\frac{2}{4}$	$=\frac{1}{6}$

Consequently, $K_{\text {total }}=\frac{2}{4}+\frac{3}{6}=1$.
Example 5.13. Let G be a 3 -cube.

We have

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{013}-e_{023}, e_{015}-e_{045}, e_{026}-e_{046}\right. \\
& \left.e_{137}-e_{157}, e_{237}-e_{267}, e_{457}-e_{467}\right\rangle
\end{aligned}
$$

(note that this basis in Ω_{2} is orthogonal),

$$
\begin{aligned}
\Omega_{3} & =\left\langle e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267}\right\rangle \\
\chi & =\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|=8-12+6-1=1
\end{aligned}
$$

Let us compute the curvature:

x	$\left[x, \Omega_{2}\right]$	$\left[x, \Omega_{3}\right]$	$1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}$	$=K_{x}$
0,7	$\frac{6}{2}=3$	$\frac{6}{6}=1$	$1-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}$	$=\frac{1}{4}$
$1,2,3,4,5,6$	$\frac{4}{2}=2$	$\frac{2}{6}=\frac{1}{3}$	$1-\frac{3}{2}+\frac{2}{3}-\frac{1}{12}=\frac{1}{12}$	$=\frac{1}{12}$

Example 5.14. Consider on octahedron based on a diamond:

We have

$$
\Omega_{2}=\left\langle e_{024}, e_{034}, e_{025}, e_{035}, e_{124}, e_{134}, e_{125}, e_{135}\right\rangle
$$

and $\Omega_{p}=\{0\}$ for all $p \geq 3$.
For any vertex x we obtain

$$
\left[x, \Omega_{2}\right]=\operatorname{deg}_{\Delta}(x)=4
$$

whence

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\operatorname{deg}_{\Delta}(x)}{3}=1-\frac{4}{2}+\frac{4}{3}=\frac{1}{3}
$$

and $K_{\text {total }}=\frac{6}{3}=2=\chi$.
Example 5.15. Here is yet another octahedron, based on a square, but with the opposite orientation of the edges $2 \sim 5$ and $3 \sim 5$.

In this case we have to orthogonalize the bases:

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{014}, e_{015}, e_{024}, e_{052}, e_{134}, e_{153}, e_{234}, e_{523}\right. \\
& \left.e_{013}-e_{023}, e_{013}-e_{053}, e_{524}-e_{534}\right\rangle \\
= & \left\langle e_{014}, e_{015}, e_{024}, e_{052}, e_{134}, e_{153}, e_{234}, e_{523}\right. \\
& \left.e_{013}-e_{023}, e_{013}+e_{023}-2 e_{053}, e_{524}-e_{534}\right\rangle \\
\Omega_{3}= & \left\langle e_{0153}, e_{0523}, e_{5234}, e_{0134}-e_{0234}\right. \\
& \left.e_{0534}-e_{0134}-e_{0524}\right\rangle \\
= & \left\langle e_{0153}, e_{0523}, e_{5234}, e_{0134}-e_{0234}\right. \\
& \left.e_{0134}+e_{0234}-2 e_{0534}+2 e_{0524}\right\rangle \\
\Omega_{4}= & \left\langle e_{05234}\right\rangle, \Omega_{p}=\{0\} \text { for } p \geq 5
\end{aligned}
$$

In fact, Ω_{4} is generated by a 4 -snake 05234 .

Here is computation of the curvature:

x	$\left[x, \Omega_{2}\right]$	$\left[x, \Omega_{3}\right]$	$\left[x, \Omega_{4}\right]$	$\left.1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}+\frac{\left[x, \Omega_{4}\right]}{5}\right]$	$=K_{x}$
0	$4+\frac{2}{2}+\frac{6}{6}=6$	$2+\frac{2}{2}+\frac{10}{10}=4$	1	$1-\frac{4}{2}+\frac{6}{3}-\frac{4}{4}+\frac{1}{5}$	$=\frac{1}{5}$
1	$4+\frac{1}{2}+\frac{1}{6}=\frac{14}{3}$	$1+\frac{1}{2}+\frac{1}{10}=\frac{8}{5}$	0	$1-\frac{4}{2}+\frac{14 / 3}{3}-\frac{8 / 5}{4}$	$=\frac{7}{45}$
2	$4+\frac{1}{2}+\frac{1}{6}+\frac{1}{2}=\frac{31}{6}$	$2+\frac{1}{2}+\frac{5}{10}=3$	1	$1-\frac{4}{2}+\frac{316}{3}-\frac{3}{4}+\frac{1}{5}$	$=\frac{31}{180}$
3	$4+\frac{2}{2}+\frac{6}{6}+\frac{1}{2}=\frac{13}{2}$	$3+\frac{2}{2}+\frac{6}{10}=\frac{23}{5}$	1	$1-\frac{4}{2}+\frac{13 / 2}{3}-\frac{23 / 5}{4}+\frac{1}{5}=\frac{13}{60}$	$=\frac{13}{60}$
4	$4+\frac{2}{2}=5$	$1+\frac{2}{2}+\frac{10}{10}=3$	1	$1-\frac{4}{2}+\frac{5}{3}-\frac{3}{4}+\frac{1}{5}$	$=\frac{7}{60}$
5	$4+\frac{4}{6}+\frac{2}{2}=\frac{17}{3}$	$3+\frac{8}{10}=\frac{19}{5}$	1	$1-\frac{4}{2}+\frac{17 / 3}{3}-\frac{19 / 5}{4}+\frac{1}{5}$	$=\frac{5}{36}$

We have
$\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|+\left|\Omega_{4}\right|=6-12+11-5+1=1$
and

$$
K_{\text {total }}=\frac{1}{5}+\frac{7}{45}+\frac{31}{180}+\frac{13}{60}+\frac{7}{60}+\frac{5}{36}=1=\chi .
$$

Example 5.16. Consider the following digraph G that is given by an m-square:

The space Ω_{2} consists of squares $e_{a b_{i} c}-e_{a b_{j} c}$ and their linear combinations, while $\Omega_{p}=\{0\}$ for all $p>2$. It is easy to see that Ω_{2} has the following basis:

$$
\begin{equation*}
\Omega_{2}=\left\langle e_{a b_{0} c}-e_{a b_{j} c}\right\rangle_{j=1}^{m} \tag{5.105}
\end{equation*}
$$

so that $\left|\Omega_{2}\right|=m$ and
$K_{\text {total }}=\chi=\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=(m+3)-2(m+1)+m=1$.
Orthogonalization of (5.105) gives the following orthogonal basis for Ω_{2} :

$$
\begin{aligned}
& \omega_{1}=e_{a b_{0} c}-e_{a b_{1} c} \\
& \omega_{2}=e_{a b_{0} c}+e_{a b_{1} c}-2 e_{a b_{2} c} \\
& \quad \ldots \\
& \omega_{i}=e_{a b_{0} c}+\ldots+e_{a b_{i-1} c}-i e_{a b_{i} c} \\
& \quad \ldots \\
& \omega_{m}=e_{a b_{0} c}+\ldots+e_{a b_{m-1} c}-m e_{a b_{m} c}
\end{aligned}
$$

We have

$$
\left[a, \omega_{i}\right]=\left[c, \omega_{i}\right]=\left\|\omega_{i}\right\|^{2}=i(i+1)
$$

while

$$
\left[b_{j}, \omega_{i}\right]= \begin{cases}0, & j>i \\ 1, & j<i \\ j^{2}, & j=i\end{cases}
$$

which implies

$$
\begin{equation*}
\left[a, \Omega_{2}\right]=\sum_{i=1}^{m} \frac{\left[a, \omega_{i}\right]}{\left\|\omega_{i}\right\|^{2}}=m \tag{5.106}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[b_{j}, \Omega_{2}\right] } & =\sum_{i=1}^{m} \frac{\left[b_{j}, \omega_{i}\right]}{i(i+1)}=\frac{j^{2}}{j(j+1)}+\sum_{i=j+1}^{m} \frac{1}{i(i+1)} \\
& =1-\frac{1}{m+1}=\frac{m}{m+1} \tag{5.107}
\end{align*}
$$

It follows that

$$
K_{c}=K_{a}=1-\frac{\operatorname{deg}(a)}{2}+\frac{\left[a, \Omega_{2}\right]}{3}=1-\frac{m+1}{2}+\frac{m}{3}=\frac{1}{2}-\frac{m}{6}
$$

and

$$
K_{b_{j}}=1-\frac{\operatorname{deg}\left(b_{j}\right)}{2}+\frac{\left[b_{j}, \Omega_{2}\right]}{3}=\frac{m}{3(m+1)} .
$$

Example 5.17. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges, and 26 faces, among them 8 triangular and 18 rectangular.

Let us make it into a digraph G by choosing direction $i \rightarrow j$ on an edge (i, j) if $i<j$. Then each face becomes a triangle or square.

For this digraph $\left|H_{2}\right|=1$ and $H_{p}=\{0\}$ for $p=1$ and $p>2$.
We have $\left|\Omega_{2}\right|=26$ and $\Omega_{p}=\{0\}$ for $p \geq 3 . \Omega_{2}$ is generated by 8 triangles and 18 squares:
$\Omega_{2}=\left\langle e_{023}, e_{178}, e_{456}, e_{91011}, e_{121415}, e_{131920}, e_{161718}, e_{212223}\right.$,

$$
\begin{aligned}
& e_{018}-e_{038}, e_{0113}-e_{01213}, e_{0214}-e_{01214}, e_{1719}-e_{11319} \\
& e_{236}-e_{246}, e_{2416}-e_{21416}, e_{3611}-e_{3811}, e_{4517}-e_{41617} \\
& e_{51011}-e_{5611}, e_{51022}-e_{51722}, e_{7811}-e_{7911}, e_{7921}-e_{71921} \\
& e_{91022}-e_{92122}, e_{121320}-e_{121520}, e_{141518}-e_{141618} \\
& \left.e_{151823}-e_{152023}, e_{172223}-e_{171823}, e_{192023}-e_{192123}\right\rangle
\end{aligned}
$$

while the generator of H_{2} is a signed sum of all these 2-paths.
This basis in Ω_{2} is orthogonal. Hence, we compute the curvature:

$x=$	$0,11,23$	$1,3,4,6,8,9,12,13$, $15,16,18,20,21$	$2,5,7,14$, $17,19,22$	10
$\left[x, \Omega_{2}\right]=$	$1+\frac{6}{2}=4$	$1+\frac{4}{2}=3$	$1+\frac{5}{2}=\frac{7}{2}$	$1+\frac{3}{2}=\frac{5}{2}$
$1-\frac{\operatorname{deg}(x)}{2}+\frac{\left\lfloor x, \Omega_{2}\right]}{3}=$	$1-\frac{4}{2}+\frac{4}{3}$	$1-\frac{4}{2}+\frac{3}{3}$	$1-\frac{4}{2}+\frac{7 / 2}{3}$	$1-\frac{4}{2}+\frac{5 / 2}{3}$
K_{x}	$=\frac{1}{3}$	$=0$	$=\frac{1}{6}$	$=-\frac{1}{6}$

It follows that

$$
K_{\text {total }}=\frac{3}{3}+\frac{7}{6}-\frac{1}{6}=2 .
$$

For comparison

$$
\begin{aligned}
\chi & =\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=24-48+26=2 \\
& =\left|H_{0}\right|-\left|H_{1}\right|+\left|H_{2}\right| .
\end{aligned}
$$

Example 5.18. Consider the following pyramid:

Let us make it into a digraph G by choosing direction $i \rightarrow j$ on an edge $i \sim j$ if $i<j$. We have $\left|\Omega_{0}\right|=8,\left|\Omega_{1}\right|=18$,

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{017}, e_{027}, e_{037}, e_{047}, e_{057}, e_{067}, e_{012}, e_{023},\right. \\
& \left.e_{034}, e_{045}, e_{056}, e_{127}, e_{237}, e_{347}, e_{457}, e_{567}\right\rangle \\
\Omega_{3}= & \left\langle e_{0127}, e_{0237}, e_{0347}, e_{0457}, e_{0567}\right\rangle \\
\Omega_{p}= & \{0\} \text { for } p \geq 4 .
\end{aligned}
$$

Let us compute the curvature:

x	$\left[x, \Omega_{2}\right]$	$\left[x, \Omega_{3}\right]$	$1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}$	$=K_{x}$
0,7	11	5	$1-\frac{7}{2}+\frac{11}{3}-\frac{5}{4}$	$=-\frac{1}{12}$
1,6	3	1	$1-\frac{3}{2}+\frac{3}{3}-\frac{1}{4}$	$=\frac{1}{4}$
$2,3,4,5$	5	2	$1-\frac{4}{2}+\frac{5}{3}-\frac{2}{4}$	$=\frac{1}{6}$

It follows that $K_{\text {total }}=-\frac{2}{12}+\frac{2}{4}+\frac{4}{6}=1$. For comparison $\chi=$ $8-18+16-5=1$.

Example 5.19. Let us compute the curvature of icosahedron (cf. Example 1.16):

Here we choose arrow $i \rightarrow j$ if $i \sim j$ and $i<j$. We have

$$
\begin{aligned}
& \left|H_{1}\right|=0, \quad\left|H_{2}\right|=1, \quad\left|H_{p}\right|=0 \quad \text { for } p>2 \\
& \left|\Omega_{0}\right|=12, \quad\left|\Omega_{1}\right|=30, \quad\left|\Omega_{2}\right|=25, \quad\left|\Omega_{3}\right|=6, \\
& \left|\Omega_{4}\right|=1 \quad \text { and } \quad \Omega_{p}=\{0\} \quad \text { for } p \geq 5 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\chi & =\left|H_{0}\right|-\left|H_{1}\right|+\left|H_{2}\right| \\
& =\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|+\left|\Omega_{4}\right|=2 .
\end{aligned}
$$

Here are the orthogonal bases in $\Omega_{2}, \Omega_{3}, \Omega_{4}$:

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{019}, e_{012}, e_{1211}, e_{026}, e_{059}, e_{056}, e_{5610}, e_{139}, e_{1311},\right. \\
& e_{267}, e_{6710}, e_{2711}, e_{349}, e_{348}, e_{4810}, e_{3811}, e_{459}, e_{4510}, \\
& e_{7810}, e_{7811}, e_{0111}-e_{0211}, e_{0510}-e_{0610}, \\
& \left.e_{2610}-e_{2710}, e_{3410}-e_{3810}, e_{027}-e_{067}\right\rangle \\
\Omega_{3}= & \left\langle e_{01211}, e_{05610}, e_{34810}, e_{0267},\right. \\
& \left.e_{26710},-e_{06710}+e_{02710}-e_{02610}\right\rangle \\
\Omega_{4}=\langle & \left.e_{026710}\right\rangle
\end{aligned}
$$

since the path e_{026710} is "snake like" and, hence, is ∂-invariant. Computation of the curvature:

$x=$	0	1		2	3,11
$\left[x, \Omega_{2}\right]=$	$6+\frac{4}{2}=8$	$5+\frac{1}{2}=\frac{11}{2}$	$5+\frac{4}{2}=7$		$5+\frac{2}{2}=6$
$\left[x, \Omega_{3}\right]=$	$3+\frac{3}{3}=4$	1	$3+\frac{2}{3}=\frac{11}{3}$		1
$\left[x, \Omega_{4}\right]=$	1	0	1		0
$\sum_{p=0}^{4}(-1)^{p} \frac{\left[x, \Omega_{p}\right]}{p+1}$	$1-\frac{5}{2}+\frac{8}{3}-\frac{4}{4}+\frac{1}{5}$	$1-\frac{5}{2}+\frac{11 / 2}{3}-\frac{1}{4}$	$1-\frac{5}{2}+\frac{7}{3}-\frac{11 / 3}{4}+\frac{1}{5}$		$1-\frac{5}{2}+\frac{6}{3}-\frac{1}{4}$
K_{x}	$=\frac{11}{30}$	$=\frac{1}{12}$	$=\frac{7}{60}$		$=\frac{1}{4}$
4, 5, 8	6	7		9	10
$5+\frac{1}{2}=\frac{11}{2}$	$5+\frac{3}{2}=\frac{13}{2}$	$5+\frac{3}{2}=\frac{13}{2}$		5	$5+\frac{6}{2}=8$
1	$3+\frac{2}{3}=\frac{11}{3}$	$2+\frac{2}{3}=\frac{8}{3}$		0	$3+\frac{3}{3}=4$
0	1	1		0	1
$1-\frac{5}{2}+\frac{11 / 2}{3}-\frac{1}{4} 1$	$1-\frac{5}{2}+\frac{13 / 2}{3}-\frac{11 / 3}{4}$	$+\frac{1}{5} 1-\frac{5}{2}+\frac{13 / 2}{3}$	$-\frac{8 / 3}{4}+\frac{1}{5}$	$1-\frac{5}{2}+\frac{5}{3}$	$1-\frac{5}{2}+\frac{8}{3}-\frac{4}{4}+\frac{1}{5}$
$=\frac{1}{12}$	$=-\frac{1}{20}$	$=\frac{1}{5}$		$=\frac{1}{6}$	$=\frac{11}{30}$

Note that $K_{6}=-\frac{1}{20}<0$.
The total curvature:

$$
K_{\text {total }}=\frac{11}{30} \cdot 2+\frac{1}{12} \cdot 4+\frac{7}{60}+\frac{1}{4} \cdot 2-\frac{1}{20}+\frac{1}{5}+\frac{1}{6}=2 .
$$

Example 5.20. Let us compute the curvature of the 2-torus $G=$ $T \square T$, where $T=\{0 \rightarrow 1 \rightarrow 2 \rightarrow 0\}$.

Here is the 2-torus G embedded onto a topological torus:

In Example 3.7 we have computed the basis in $\Omega_{2}(G)$ as follows (see (3.41)):

$$
\begin{aligned}
\Omega_{2}(G)= & \left\langle e_{034}-e_{014}, e_{145}-e_{125}, e_{253}-e_{203}\right. \\
& e_{367}-e_{347}, e_{478}-e_{458}, e_{586}-e_{536} \\
& \left.e_{601}-e_{671}, e_{712}-e_{782}, e_{820}-e_{860}\right\rangle
\end{aligned}
$$

This basis in $\Omega_{2}(G)$ is orthogonal and $\|\omega\|^{2}=2$ for any element ω of the basis. Besides, for any vertex x, we have $[x, \omega]=2$ for
two of $\omega,[x, \omega]=1$ for two of ω, and $[x, \omega]=0$ for the rest of ω. Hence,

$$
\left[x, \Omega_{2}\right]=\sum_{\omega} \frac{[x, \omega]}{\|\omega\|^{2}}=\frac{2 \cdot 2+2 \cdot 1}{2}=3
$$

and, for any $x \in G$,

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}=1-\frac{4}{2}+\frac{3}{3}=0 .
$$

Example 5.21. Consider the digraph G from Example 4.18.

This digraph has 7 vertices $\{0, \ldots, 6\}$ and 14 arrows as follows:

$$
i \rightarrow i+1 \text { and } i \rightarrow i+2
$$

where addition is considered mod7.
Fix $p \geq 1$ and consider for any $i=0, \ldots, 6$ the following ∂-invariant p-path

$$
\omega_{i}=e_{i(i+1)(i+2) \ldots(i+p)}
$$

and $(p+1)$-path

$$
\widetilde{\omega}_{i}=e_{i(i+1)(i+2) \ldots(i+p)(i+p+1) .} .
$$

It was shown in Example 4.18 that $\operatorname{dim} \Omega_{p}=14$ and that the space Ω_{p} has a basis $\left\langle\omega_{i}, \partial \varpi_{i}\right\rangle_{i=0}^{6}$.

Let us now compute the curvature $K_{x}^{(N)}$. The sequence $\left\{\omega_{i}\right\}$ is orthonormal, but $\left\{\partial \varpi_{i}\right\}$ is not, which is clear from

$$
\partial \widetilde{\varpi}_{i}=\omega_{i+1}+\sum_{q=1}^{p}(-1)^{q} e_{i \ldots i+q \ldots(i+p+1)}+(-1)^{p+1} \omega_{i} .
$$

Let us replace each $\partial \varpi_{i}$ with

$$
v_{i}=\partial \widetilde{\omega}_{i}-(-1)^{p+1} \omega_{i}-\omega_{i+1}=\sum_{q=1}^{p}(-1)^{q} e_{i \ldots i+q \ldots(i+p+1)} .
$$

Then we obtain that Ω_{p} has an orthogonal basis $\left\{\omega_{i}, v_{i}\right\}_{i=0}^{6}$.
By symmetry, $\left[x, \omega_{i}\right]$ is the same for all vertices x and i. Since

$$
\sum_{x, i}\left[x, \omega_{i}\right]=7(p+1),
$$

and $\left\|\omega_{i}\right\|=1$, we obtain

$$
\sum_{i} \frac{\left[x, \omega_{i}\right]}{\left\|\omega_{i}\right\|^{2}}=p+1
$$

For v_{i} we have

$$
\sum_{x, i}\left[x, v_{i}\right]=7(p+1) p
$$

and $\left\|v_{i}\right\|^{2}=p$ whence

$$
\sum_{i} \frac{\left[x, v_{i}\right]}{\left\|v_{i}\right\|^{2}}=\frac{(p+1) p}{p}=p+1
$$

Hence,

$$
\left[x, \Omega_{p}\right]=2(p+1),
$$

which implies that

$$
K_{x}^{(N)}=1+\sum_{p=1}^{N}(-1)^{p} 2=(-1)^{N}
$$

Hence, $\left\{K^{(N)}\right\}$ is a periodic sequence in N.
Problem 5.22. Describe classes of strongly regular digraphs having a non-trivial periodic sequence $\left\{K^{(N)}\right\}_{N=1}^{\infty}$.

5.5 Computation of $\left[x, \Omega_{2}\right]$

Recall that Ω_{2} has always a basis that consists of triangles, double arrows and squares. All different triangles and double arrows in G are always linearly independent and mutually orthogonal. Moreover, they are orthogonal to all squares. However, squares may be not mutually orthogonal in general.

In a special case when G contains no multisquares, are all squares orthogonal (and, hence, linearly independent). Indeed, if two squares are not orthogonal then they must have the same elementary term, say, $e_{a b c}-e_{a b^{\prime} c}$ and $e_{a b c}-e_{a b^{\prime \prime} c}$, which yields a 2-square $a,\left\{b, b^{\prime}, b^{\prime \prime}\right\}, c$ (cf. Subsection 1.5).

Let us introduce the following notation:

$$
\begin{aligned}
\operatorname{deg}_{\uparrow}(x) & =\#\{\text { double arrows } a \rightleftarrows b: x \in\{a, b\}\}, \\
\operatorname{deg}_{\Delta}(x) & =\#\left\{\text { triangles } e_{a b c}: x \in\{a, b, c\},\right. \\
\operatorname{deg}_{\square_{1}}(x) & =\#\left\{\text { squares } e_{a b c}-e_{a b^{\prime} c}: x \in\left\{b, b^{\prime}\right\}\right\}, \\
\operatorname{deg}_{\square_{2}}(x) & =\#\left\{\text { squares } e_{a b c}-e_{a b^{\prime} c}: x \in\{a, c\}\right\} .
\end{aligned}
$$

Lemma 5.23. Assume that G contains no multisquares. Then, for any vertex $x \in G$,
(5.108)

$$
\left[x, \Omega_{2}\right]=3 \operatorname{deg}_{\downarrow}(x)+\operatorname{deg}_{\Delta}(x)+\frac{1}{2} \operatorname{deg}_{\square_{1}}(x)+\operatorname{deg}_{\square_{2}}(x)
$$

Proof. Let $\left\{\omega_{n}\right\}$ be the sequence of all double arrows, triangles and squares in Ω_{2}. By hypothesis, the sequence $\left\{\omega_{n}\right\}$ forms an orthogonal basis in Ω_{2}.

Any double arrow $a \rightleftarrows b$ induces two independent elements $e_{a b a}$ and $e_{b a b}$ of Ω_{2}. Clearly, we have

$$
\left[x, e_{a b a}\right]+\left[x, e_{b a b}\right]= \begin{cases}3, & x \in\{a, b\} \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
\begin{equation*}
\sum_{\omega_{n} \text { is a double arrow }} \frac{\left[x, \omega_{n}\right]}{\|\omega\|^{2}}=3 \operatorname{deg}_{\uparrow}(x) \tag{5.109}
\end{equation*}
$$

For a triangle $e_{a b c} \in \Omega_{2}$ we have

$$
\left[x, e_{a b c}\right]= \begin{cases}1, & x \in\{a, b, c\} \\ 0, & \text { otherwise }\end{cases}
$$

and, hence,

$$
\begin{equation*}
\sum_{\omega_{n} \text { is a triangle }} \frac{\left[x, \omega_{n}\right]}{\|\omega\|^{2}}=\operatorname{deg}_{\Delta}(x) \tag{5.110}
\end{equation*}
$$

For a square $e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}$ we have

$$
\left[x, e_{a b c}-e_{a b^{\prime} c}\right]= \begin{cases}2, & x \in\{a, c\} \\ 1, & x \in\left\{b, b^{\prime}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
\sum_{\omega_{n} \text { is a square }} \frac{\left[x, \omega_{n}\right]}{\|\omega\|^{2}}=\frac{1}{2} \operatorname{deg}_{\square_{1}}(x)+\operatorname{deg}_{\square_{2}}(x) .
$$

Since $\left\{\omega_{n}\right\}$ is an orthogonal basis that consists of all double arrows, triangles and squares, we obtain

$$
\begin{aligned}
{\left[x, \Omega_{2}\right] } & =\sum_{n} \frac{\left[x, \omega_{n}\right]}{\left\|\omega_{n}\right\|^{2}} \\
& =3 \operatorname{deg}_{\uparrow}(x)+\operatorname{deg}_{\Delta}(x)+\frac{1}{2} \operatorname{deg}_{\square_{1}}(x)+\operatorname{deg}_{\square_{2}}(x) .
\end{aligned}
$$

Example 5.24. For the prism as shown here we have:

$$
\begin{aligned}
\operatorname{deg}_{\Delta}(x) & =1 \text { for all } x ; \\
\operatorname{deg}_{\square_{1}}(0) & =0, \operatorname{deg}_{\square_{2}}(1)=2 \\
\operatorname{deg}_{\square_{1}}(1) & =1, \operatorname{deg}_{\square_{2}}(1)=1 \\
\operatorname{deg}_{\square_{1}}(2) & =2, \operatorname{deg}_{\square_{2}}(2)=0 \\
\operatorname{deg}_{\square_{1}}(3) & =2, \operatorname{deg}_{\square_{2}}(3)=0 \\
\operatorname{deg}_{\square_{1}}(4) & =1, \operatorname{deg}_{\square_{2}}(4)=1 \\
\operatorname{deg}_{\square_{1}}(5) & =0, \operatorname{deg}_{\square_{2}}(5)=2 .
\end{aligned}
$$

Consequently, we obtain by (5.108)

$$
\left[x, \Omega_{2}\right]=\left\{\begin{array}{ll}
3, & x=0,5 \\
\frac{5}{2}, & x=1,4 \\
2, & x=2,3
\end{array} .\right.
$$

Since $\Omega_{3}=\left\langle e_{0125}-e_{0145}+e_{0345}\right\rangle, \Omega_{4}=\{0\}$ and

$$
\left[x, \Omega_{3}\right]=\frac{1}{3} \begin{cases}3, & x=0,5 \\ 2, & x=1,4 \\ 1, & x=2,3\end{cases}
$$

it follows that

$$
K_{x}=1-\frac{\operatorname{deg}(x)}{2}+\frac{\left[x, \Omega_{2}\right]}{3}-\frac{\left[x, \Omega_{3}\right]}{4}=\left\{\begin{array}{cl}
\frac{1}{4}, & x=0,5 \\
\frac{1}{6}, & x=1,4 \\
\frac{1}{12}, & x=2,3
\end{array} .\right.
$$

Example 5.25. Consider a rhombic dodecahedron:

The arrows along the edges point in direction of the higher vertex number. The faces give rise to 12 squares forming a basis in space Ω_{2}, and $\Omega_{p}=\{0\}$ for all $p \geq 3$.

For $x \in\{0,13\}$ we have $\operatorname{deg}(x)=3$,

$$
\operatorname{deg}_{\square_{1}}(x)=0, \operatorname{deg}_{\square_{2}}(x)=3
$$

whence $\left[x, \Omega_{2}\right]=3$ and

$$
K_{x}=1-\frac{3}{2}+\frac{3}{3}=\frac{1}{2} .
$$

For $x \in\{3,5,6,7,9,10\}$ we have $\operatorname{deg}(x)=3$, $\operatorname{deg}_{\square_{1}}(x)=2$, $\operatorname{deg}_{\square_{2}}(x)=1$, whence $\left[x, \Omega_{2}\right]=2$ and

$$
K_{x}=1-\frac{3}{2}+\frac{2}{3}=\frac{1}{6}
$$

Finally, for $x \in\{1,2,4,8,11,12\}$ we have $\operatorname{deg}(x)=4, \operatorname{deg}_{\square_{1}}(x)=$ 2 , $\operatorname{deg}_{\square_{2}}(x)=2$, whence $\left[x, \Omega_{2}\right]=3$ and

$$
K_{x}=1-\frac{4}{2}+\frac{2}{3}=0 .
$$

Example 5.26. Consider a trapezohedron T_{m} as in Subsection 2.1.

By Proposition 2.1, the space Ω_{2} is spanned by $2 m$ squares as follows:

$$
\Omega_{2}=\left\langle e_{a i_{k-1} j_{k}}-e_{a i_{k} j_{k}}, e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1}} b\right\rangle_{m=0}^{m-1}
$$

also, $\Omega_{3}=\left\langle\tau_{m}\right\rangle$, where

$$
\tau_{m}=\sum_{k=0}^{m-1}\left(e_{a i_{k} j_{k} b}-e_{a i_{k} j_{k+1} b}\right)
$$

and $\Omega_{p}=\{0\}$ for all $p \geq 4$.
For all vertices we have $\operatorname{deg}_{\Delta}(x)=0$. For $x \in\{a, b\}$ we have $\operatorname{deg}_{\square_{1}}(x)=0, \operatorname{deg}_{\square_{2}}(x)=m$, whence $\left[x, \Omega_{2}\right]=m$. Since $\operatorname{deg}(x)=m$ and

$$
\left[x, \Omega_{3}\right]=\frac{\left[x, \tau_{m}\right]}{\left\|\tau_{m}\right\|^{2}}=\frac{m}{m}=1
$$

we obtain

$$
K_{a}=K_{b}=1-\frac{m}{2}+\frac{m}{3}-\frac{1}{4}=\frac{3}{4}-\frac{m}{6} .
$$

For all other vertices $x \in\left\{i_{k}, j_{k}\right\}$ we have

$$
\operatorname{deg}_{\square_{1}}(x)=2, \operatorname{deg}_{\square_{2}}(x)=1
$$

whence $\left[x, \Omega_{2}\right]=2$. Since $\operatorname{deg}(x)=3$ and

$$
\left[x, \Omega_{3}\right]=\frac{\left[x, \tau_{m}\right]}{\left\|\tau_{m}\right\|^{2}}=\frac{2}{m}
$$

we obtain

$$
K_{x}=1-\frac{3}{2}+\frac{2}{3}-\frac{1 / m}{4}=\frac{1}{6}-\frac{1}{4 m} .
$$

The total curvature

$$
K_{\text {total }}=2\left(\frac{3}{4}-\frac{m}{6}\right)+2 m\left(\frac{1}{6}-\frac{1}{4 m}\right)=1
$$

matches the Euler characteristic $\chi=1$.
Example 5.27. Consider a broken cube from Example 2.9. Then we have:

Ω_{2} is spanned by 6 squares and 2 triangles,

$$
\Omega_{3}=\left\langle e_{0158}-e_{0168}+e_{0268}-e_{0278}+e_{0378}-e_{0458}\right\rangle
$$

and $\Omega_{p}=\{0\}$ for $p \geq 4$.
For $x=0$ we have $\operatorname{deg}_{\square_{1}}(0)=0, \operatorname{deg}_{\square_{2}}(0)=4, \operatorname{deg}_{\Delta}(0)=0$ whence $\left[0, \Omega_{2}\right]=4$.

Since $\operatorname{deg}(0)=4$ and $\left[0, \Omega_{3}\right]=1$, it follows that

$$
K_{0}=1-\frac{4}{2}+\frac{4}{3}-\frac{1}{4}=\frac{1}{12}
$$

For $x \in\{1,2,6\}$ we have $\operatorname{deg}_{\square_{1}}(x)=2, \operatorname{deg}_{\square_{2}}(0)=1$, $\operatorname{deg}_{\Delta}(x)=0$ whence $\left[x, \Omega_{2}\right]=2$. Since $\operatorname{deg}(x)=3$ and $\left[x, \Omega_{3}\right]=$ $\frac{1}{3}$, it follows that

$$
K_{x}=1-\frac{3}{2}+\frac{2}{3}-\frac{1 / 3}{4}=\frac{1}{12}
$$

For $x \in\{3,4\}$ we have $\operatorname{deg}_{\square_{1}}(x)=2, \operatorname{deg}_{\square_{2}}(x)=0, \operatorname{deg}_{\Delta}(x)=1$ whence $\left[x, \Omega_{2}\right]=2$. Since $\operatorname{deg}(x)=3$ and $\left[x, \Omega_{3}\right]=\frac{1}{6}$, it follows that

$$
K_{x}=1-\frac{3}{2}+\frac{2}{3}-\frac{1 / 6}{4}=\frac{1}{8}
$$

For $x \in\{5,7\}$ we have $\operatorname{deg}_{\square_{1}}(x)=1, \operatorname{deg}_{\square_{2}}(x)=1, \operatorname{deg}_{\Delta}(x)=1$ whence $\left[x, \Omega_{2}\right]=5 / 2$. Since $\operatorname{deg}(x)=3$ and $\left[x, \Omega_{3}\right]=\frac{1}{3}$, it follows that

$$
K_{x}=1-\frac{3}{2}+\frac{5 / 2}{3}-\frac{1 / 3}{4}=\frac{1}{4} .
$$

Finally, for $x=8$ we have $\operatorname{deg}_{\square_{1}}(8)=0, \operatorname{deg}_{\square_{2}}(8)=3$, $\operatorname{deg}_{\Delta}(8)=2$ whence $\left[8, \Omega_{2}\right]=5$. Since $\operatorname{deg}(8)=5$ and $\left[8, \Omega_{3}\right]=$ 1, it follows that

$$
K_{8}=1-\frac{5}{2}+\frac{5}{3}-\frac{1}{4}=-\frac{1}{12} .
$$

Example 5.28. Consider again a rhombicuboctahedron (see Example 5.17).

We have for all vertices

$$
\operatorname{deg}(x)=4 \text { and } \operatorname{deg}_{\Delta}(x)=1
$$

All squares are linearly independent and $\Omega_{3}=\{0\}$ (cf. Example 5.17).

For $x=11: \operatorname{deg}_{\square_{1}}(x)=0, \operatorname{deg}_{\square_{2}}(x)=3$,

$$
\left[x, \Omega_{2}\right]=4, \quad K_{x}=1-\frac{4}{2}+\frac{4}{3}=\frac{1}{3}
$$

For $x=19: \operatorname{deg}_{\square_{1}}(x)=1, \operatorname{deg}_{\square_{2}}(x)=2$,

$$
\left[x, \Omega_{2}\right]=\frac{7}{2}, \quad K_{x}=1-\frac{4}{2}+\frac{7 / 2}{3}=\frac{1}{6} .
$$

For $x=13: \operatorname{deg}_{\square_{1}}(x)=2, \operatorname{deg}_{\square_{2}}(x)=1$,

$$
\left[x, \Omega_{2}\right]=3, \quad K_{x}=1-\frac{4}{2}+\frac{3}{3}=0
$$

For $x=10$ we have $\operatorname{deg}_{\square_{1}}(x)=3, \operatorname{deg}_{\square_{2}}(x)=0$, whence $\left[x, \Omega_{2}\right]=\frac{5}{2}$ and

$$
K_{x}=1-\frac{4}{2}+\frac{5 / 2}{3}=-\frac{1}{6} .
$$

Consider now a general case when G may contain multisquares. Fix a semi-arrow $a \rightharpoonup c$ and denote by $\left\{b_{i}\right\}_{i=0}^{m}$ the sequence of all vertices b_{i} such that $a \rightarrow b_{i} \rightarrow c$. Let $m \geq 1$. Then we have an m-square

$$
\begin{equation*}
\sigma=\left\{a,\left\{b_{i}\right\}_{i=0}^{m}, c\right\} \tag{5.111}
\end{equation*}
$$

that gives rise the following to the following family of squares

$$
\begin{equation*}
\left\{e_{a b_{i} c}-e_{a b_{j} c}: 0 \leq i<j \leq m\right\} \tag{5.112}
\end{equation*}
$$

(cf. Subsection 1.5 and Example 5.16).

An m-square
The family (5.112) contains m linearly independent squares, for example, they are

$$
\begin{equation*}
\left\{e_{a b_{0} c}-e_{a b_{i} c}\right\}_{i=1}^{m} \tag{5.113}
\end{equation*}
$$

As in Example 5.16, let $\left\{\omega_{i}\right\}_{i=1}^{m}$ be an orthogonalization of the sequence (5.113). Using the computations (5.106) and (5.107) of Example 5.16 we obtain

$$
\sum_{i=1}^{m} \frac{\left[x, \omega_{i}\right]}{\left\|\omega_{i}\right\|^{2}}= \begin{cases}m, & x \in\{a, c\} \tag{5.114}\\ \frac{m}{m+1}, & x \in\left\{b_{i}\right\}_{i=0}^{m} \\ 0, & \text { otherwise }\end{cases}
$$

For any m-square σ as in (5.111), denote

$$
[x, \sigma]= \begin{cases}m, & x \in\{a, c\} \tag{5.115}\\ \frac{m}{m+1}, & x \in\left\{b_{i}\right\}_{i=0}^{m} \\ 0, & \text { otherwise }\end{cases}
$$

so that

$$
\begin{equation*}
[x, \sigma]=\sum_{i=1}^{m} \frac{\left[x, \omega_{i}\right]}{\left\|\omega_{i}\right\|^{2}} \tag{5.116}
\end{equation*}
$$

Proposition 5.29. For any vertex $x \in G$, we have

$$
\begin{equation*}
\left[x, \Omega_{2}\right]=3 \operatorname{deg}_{\downarrow}(x)+\operatorname{deg}_{\Delta}(x)+\sum_{\sigma \text { is }}^{\substack{\text { an } m-\text { square } \\ m \geq 1}}[x, \sigma] \tag{5.117}
\end{equation*}
$$

Proof. Indeed, each m-square contributes m linearly independent elements to Ω_{2}, and different multiple squares give rise to mutually orthogonal elements. Hence, using in each multiple square an orthogonal basis and adding to them all double arrows and triangles, we obtain an orthogonal basis in Ω_{2}. Hence, combining (5.101), (5.109), (5.110) and (5.116), we obtain (5.117).

Let us prove the following identity for $[x, \sigma]$ that may be useful for computer assisted computations.

Lemma 5.30. Let $s_{i j}=e_{a b_{i} c}-e_{a b_{j} c}$ be all squares in an m-square σ as in (5.112). Then we have, for all x,

$$
\begin{equation*}
[x, \sigma]=\frac{1}{m+1} \sum_{0 \leq i<j \leq m}\left[x, s_{i j}\right] \tag{5.118}
\end{equation*}
$$

Proof. Indeed, if $x \in\{a, c\}$ then $\left[x, s_{i j}\right]=2$ and the number of terms in the above sum is $\frac{m(m+1)}{2}$, so that the right hand side of (5.118) equals to m as well as the left hand side. If $x=b_{k}$ then

$$
\left[x, s_{i j}\right]= \begin{cases}1, & i=k \text { or } j=k \\ 0, & \text { otherwise }\end{cases}
$$

and the number of 1 's in the sum (5.118) is m, so that the right hand side of (5.118) equals to $\frac{m}{m+1}$ as well as the left hand side.

Finally, if x does not belong to $\left\{a, c, b_{k}\right\}$ then the both sides of (5.118) vanish.

For any vertex x denote

$$
\operatorname{deg}_{m \square_{1}}(x)=\#\left\{m \text {-squares }\left\{a,\left\{b_{j}\right\}, c\right\}: x \in\left\{b_{j}\right\}\right\}
$$

and

$$
\operatorname{deg}_{m \square_{2}}(x)=\#\left\{m \text {-squares }\left\{a,\left\{b_{j}\right\}, c\right\}: x \in\{a, c\}\right\} .
$$

Corollary 5.31. For any $x \in G$ we have

$$
\begin{align*}
{\left[x, \Omega_{2}\right]=} & 3 \operatorname{deg}_{\uparrow}(x)+\operatorname{deg}_{\Delta}(x) \\
& +\sum_{m \geq 1}\left(\frac{m}{m+1} \operatorname{deg}_{m \square_{1}}(x)+m \operatorname{deg}_{m \square_{2}}(x)\right) . \tag{5.119}
\end{align*}
$$

Proof. Indeed, this follows from (5.115) and (5.117).
Clearly, the identity (5.108) is a particular case of (5.119) in the case when all m-squares are 1 -squares.

Example 5.32. Consider a randomly generated digraph:

We have $\left|\Omega_{0}\right|=15,\left|\Omega_{1}\right|=39,\left|\Omega_{2}\right|=28,\left|\Omega_{3}\right|=4, \Omega_{p}=$ $\{0\}$ for $p \geq 4,\left|H_{1}\right|=2,\left|H_{2}\right|=1, H_{p}=\{0\}$ for $p \geq 3$.

In particular,

$$
\begin{aligned}
\chi & =\left|H_{0}\right|-\left|H_{1}\right|+\left|H_{2}\right| \\
& =\left|\Omega_{0}\right|-\left|\Omega_{1}\right|+\left|\Omega_{2}\right|-\left|\Omega_{3}\right|=0 .
\end{aligned}
$$

Here are the bases in Ω_{2}, Ω_{3} :

$$
\begin{aligned}
\Omega_{2}= & \left\langle e_{13214}-e_{131214}, e_{13214}-e_{13914}, e_{0214}-e_{0914},\right. \\
& e_{143}-e_{163}, e_{1413}-e_{1613}, e_{506}-e_{516}, e_{7214}-e_{7914}, \\
& e_{914}-e_{9124}, e_{1014}-e_{10124}, e_{1072}-e_{10112}, \\
& e_{10113}-e_{10143}, e_{1109}-e_{1179}, e_{1151}-e_{1171}, \\
& e_{1243}-e_{12143}, e_{1271}-e_{12141}, e_{791}, e_{91214}, e_{9141}, \\
& e_{1071}, e_{10117}, e_{10127}, e_{101214}, e_{10141}, e_{1102}, e_{1135}, \\
& \left.e_{1150}, e_{1172}, e_{13912}\right\rangle \\
\Omega_{3}= & \left\langle e_{101172}, e_{1391214}, e_{101271}-e_{1012141},\right. \\
& \left.e_{110214}-e_{110914}+e_{117914}-e_{117214}\right\rangle .
\end{aligned}
$$

Note that the above basis in Ω_{2} is not orthogonal: it contains a 2 -square

$$
\sigma=\{13 \rightarrow\{2,9,12\} \rightarrow 14\}
$$

that corresponds to two squares

$$
e_{13214}-e_{131214} \quad \text { and } \quad e_{13214}-e_{13914},
$$

while all other squares in the above basis of Ω_{2} are 1-squares.
For the vertex $x=13$ we have then

$$
\operatorname{deg}_{2 \square_{1}}(x)=0, \quad \operatorname{deg}_{2 \square_{2}}(x)=1
$$

as well as

$$
\operatorname{deg}_{\Delta}(x)=1, \operatorname{deg}_{\square_{1}}(x)=0, \operatorname{deg}_{\square_{2}}(x)=1
$$

whence by (5.119)

$$
\begin{aligned}
{\left[13, \Omega_{2}\right]=} & \operatorname{deg}_{\Delta}(x)+\frac{1}{2} \operatorname{deg}_{\square_{1}}(x)+\operatorname{deg}_{\square_{2}}(x)+\frac{2}{3} \operatorname{deg}_{2 \square_{1}}(x) \\
& +2 \operatorname{deg}_{\square_{2}}(x) \\
= & 1+1+2=4
\end{aligned}
$$

Since also $\operatorname{deg}(13)=6$ and $\left[13, \Omega_{3}\right]=1$, we obtain

$$
K_{13}=1-\frac{6}{2}+\frac{4}{3}-\frac{1}{4}=-\frac{11}{12} .
$$

Since the vertex $x=2$ we have

$$
\operatorname{deg}_{2 \square_{1}}(x)=1, \quad \operatorname{deg}_{2 \square_{2}}(x)=0
$$

and

$$
\operatorname{deg}_{\Delta}(x)=2, \operatorname{deg}_{\square_{1}}(x)=2, \operatorname{deg}_{\square_{2}}(x)=1,
$$

whence

$$
\left[2, \Omega_{2}\right]=2+\frac{2}{2}+1+\frac{2}{3}=\frac{14}{3} .
$$

Since also $\operatorname{deg}(2)=5$ and $\left[2, \Omega_{3}\right]=\frac{3}{2}$, we obtain

$$
K_{2}=1-\frac{5}{2}+\frac{14 / 3}{3}-\frac{3 / 2}{4}=-\frac{23}{72} .
$$

Computation of the curvature at all other vertices yields

$$
\begin{aligned}
&\left\{K_{x}\right\}_{x=0}^{14}=\left\{-\frac{7}{24},-\frac{1}{12},-\frac{23}{72},-\frac{1}{6}, \frac{1}{6}, \frac{1}{6},-\frac{1}{3}, \frac{1}{6}, 0,\right. \\
&\left.\frac{13}{72}, \frac{2}{3}, \frac{1}{6}, \frac{1}{18},-\frac{11}{12}, \frac{13}{24}\right\} .
\end{aligned}
$$

5.6 Curvature of n-Cube

We use the notation of Subsection 3.4 where n-cube was defined. The purpose of this section is to prove the following statement.

Theorem 5.33. For any vertex x in n-cube we have

$$
K_{x}(n \text {-cube })=\frac{1}{(n+1)\binom{n}{|x|}} .
$$

For example, in a 4-cube that is shown here, for the marked vertex x we have $|x|=2$ and

$$
K_{x}=\frac{1}{5\binom{4}{2}}=\frac{1}{30}
$$

Let us first prove some lemmas about binomial coefficients.
Lemma 5.34. We have for all $M \geq l \geq 0$

$$
\begin{equation*}
\sum_{j=0}^{l}\binom{M}{j}(-1)^{j}=(-1)^{l}\binom{M-1}{l} \tag{5.120}
\end{equation*}
$$

Proof. Induction in M. For $M=l$ we have

$$
\sum_{j=0}^{l}\binom{l}{j}(-1)^{j}=(1-1)^{l}=0=(-1)^{l}\binom{l-1}{l}
$$

Induction step from M to $M+1$. We have

$$
\begin{aligned}
\sum_{j=0}^{l}\binom{M+1}{j}(-1)^{j} & =\sum_{j=0}^{l}\left(\binom{M}{j}+\binom{M}{j-1}\right)(-1)^{j} \\
& =(-1)^{l}\binom{M-1}{l}+\sum_{j=1}^{l}\binom{M}{j-1}(-1)^{j} \\
& =(-1)^{l}\binom{M-1}{l}-\sum_{i=0}^{l-1}\binom{M}{i}(-1)^{i} \\
& =(-1)^{l}\binom{M-1}{l}-(-1)^{l-1}\binom{M-1}{l-1} \\
& =(-1)^{l}\binom{M}{l}
\end{aligned}
$$

Lemma 5.35. We have for all $N \geq 0$ and $M \geq 1$

$$
\begin{equation*}
\sum_{l=0}^{N}\binom{N}{l} \frac{(-1)^{l}}{l+M}=\frac{1}{M\binom{N+M}{M}} \tag{5.121}
\end{equation*}
$$

Proof. We start with the identity

$$
\sum_{l=0}^{N}\binom{N}{l}(-z)^{l}=(1-z)^{N}
$$

for all $z \in \mathbb{R}$, whence

$$
\sum_{l=0}^{N}\binom{N}{l}(-z)^{l+M-1}=(-1)^{M-1}(1-z)^{N} z^{M-1}
$$

Integrating this identity from 0 to 1 , we obtain

$$
\begin{aligned}
-\left.\sum_{l=0}^{N}\binom{N}{l} \frac{(-z)^{l+M}}{l+M}\right|_{0} ^{1} & =(-1)^{M-1} B(N+1, M) \\
& =(-1)^{M-1} \frac{\Gamma(N+1) \Gamma(M)}{\Gamma(N+M+1)} \\
& =(-1)^{M--1} \frac{N!(M-1)!}{(N+M)!}
\end{aligned}
$$

$$
=(-1)^{M-1} \frac{1}{M\binom{N+M}{M}}
$$

while the left hand side is equal to

$$
-\sum_{l=0}^{N}\binom{N}{l} \frac{(-1)^{l+M}}{l+M}=(-1)^{M+1} \sum_{l=0}^{N}\binom{N}{l} \frac{(-1)^{l}}{l+M}
$$

which proves the claim.
Lemma 5.36. We have
$K_{m}:=\sum_{k=0}^{m} \sum_{l=0}^{n-m}\binom{m}{k}\binom{n-m}{l} \frac{(-1)^{k+l}}{\binom{k+l}{l}(k+l+1)}=\frac{1}{(m+1)\binom{n+1}{m+1}}$.
Proof. Set

$$
\begin{aligned}
S_{m, l} & =\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k+l}}{\binom{k+l}{l}(k+l+1)} \\
& =l!\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k+l}}{(k+1) \ldots(k+l)(k+l+1)} \\
& =l!\sum_{k=0}^{m} \frac{(-1)^{k+l} m(m-1) \ldots(m-k+1)}{(k+l+1)!} \\
& =\frac{l!}{(m+l+1) \ldots(m+1)} \\
& \times \sum_{k=0}^{m} \frac{(-1)^{k+l}(m+l+1) \ldots(m+1) m(m-1) \ldots(m-k+1)}{(k+l+1)!} \\
& =-\frac{1}{(l+1)\binom{m+l+1}{l+1}} \sum_{k=0}^{m}\binom{m+l+1}{k+l+1}(-1)^{k+l+1} \\
& =-\frac{1}{(l+1)\binom{m+l+1}{l+1}} \sum_{j=l+1}^{m+l+1}\binom{m+l+1}{j}(-1)^{j} \\
& =\frac{1}{(l+1)\binom{m+l+1}{l+1}} \sum_{j=0}^{l}\binom{m+l+1}{j}(-1)^{j}
\end{aligned}
$$

By (5.120) with $M=m+l+1$ we obtain

$$
\sum_{j=0}^{l}\binom{m+l+1}{j}(-1)^{j}=(-1)^{l}\binom{m+l}{l}
$$

whence

$$
\begin{aligned}
S_{m, l} & =\frac{(-1)^{l}}{(l+1)\binom{m+l+1}{l+1}}\binom{m+l}{l} \\
& =\frac{(-1)^{l} l!m!}{(m+l+1)!} \frac{(m+l)!}{l!m!} \\
& =\frac{(-1)^{l}}{m+l+1} .
\end{aligned}
$$

Therefore, by (5.121) with $N=n-m$ and $M=m+1$,

$$
\begin{aligned}
K_{m} & =\sum_{l=0}^{n-m}\binom{n-m}{l} S_{m, l}=\sum_{l=0}^{n-m}\binom{n-m}{l} \frac{(-1)^{l}}{m+l+1} \\
& =\frac{1}{(m+1)\binom{n+1}{m+1}}
\end{aligned}
$$

Proof of Theorem 5.33. Fix a vertex x of the n-cube and nonnegative integers k, l, p such that

$$
k+l=p .
$$

Let a and b be two vertices in the n-cube such

$$
\begin{equation*}
a \preceq x \preceq b, \quad|x|-|a|=k, \quad \text { and } \quad|b|-|x|=l . \tag{5.122}
\end{equation*}
$$

The cube $D_{a, b}$ has dimension $|b|-|a|=p$, and for any ∂-invariant p-path $\omega_{a, b}$ between a and b (cf. (3.43)), we have

$$
\left\|\omega_{a, b}\right\|^{2}=p!\quad \text { and } \quad\left[x, \omega_{a, b}\right]=k!l!.
$$

Indeed, $\omega_{a, b}$ is an alternating sum of all the elementary allowed paths from a to b, and the number of the elementary allowed paths from a to b going through x is $k!l!$, because the number of such paths from a to x is equal to k ! and that from x to b is equal to l !.

Hence, we have for such $\omega_{a, b}$

$$
\frac{\left[x, \omega_{a, b}\right]}{\left\|\omega_{a, b}\right\|^{2}}=\frac{k!l!}{p!}=\frac{1}{\binom{k+l}{k}} .
$$

Set $m=|x|$ and observe that the number of vertices $a \preceq x$ with $|x|-|a|=k$ is equal to $\binom{m}{k}$. Indeed, in the binary representations $a=\left(a_{1}, \ldots a_{n},\right)$ and $x=\left(x_{1}, \ldots x_{n},\right)$, we have $a_{i} \leq x_{i}$ and $\sum_{i}\left(x_{i}-a_{i}\right)=k$ which is only possible if $a_{i}=0$ at k out of m positions where $x_{i}=1$.

Similarly, the number of the vertices $b \succeq x$ with $|b|-|x|=l$ is equal to $\binom{n-m}{l}$. Hence, the number of pairs a, b satisfying (5.122) is equal to

$$
\binom{m}{k}\binom{n-m}{l}
$$

By Proposition 3.9, all p-paths $\omega_{a, b}$ with $a \preceq b$ form an orthogonal basis in Ω_{p} (n-cube). If x does not satisfy the condition $a \preceq x \preceq b$ then we have

$$
\left[x, \omega_{a, b}\right]=0
$$

Hence, we obtain

$$
\begin{aligned}
{\left[x, \Omega_{p}\right] } & =\sum_{\substack{a \leq x \preceq b \\
|b|-|a|=p}} \frac{\left[x, \omega_{a, b}\right]}{\left\|\omega_{a, b}\right\|} \\
& =\sum_{\substack{k+l=p \\
a \preceq x \\
|x|-|a|=k,|b|-|x|=l}} \frac{\left[x, \omega_{a, b}\right]}{\left\|\omega_{a, b}\right\|}=\sum_{k+l=p}\binom{m}{k}\binom{n-m}{l} \frac{1}{\binom{k+l}{k}},
\end{aligned}
$$

which implies by Lemma 5.36 that

$$
K_{x}=\sum_{p \geq 0} \frac{(-1)^{p}}{p+1}\left[x, \Omega_{p}\right]
$$

$$
\begin{aligned}
& =\sum_{k=0}^{m} \sum_{l=0}^{n-m}\binom{m}{k}\binom{n-m}{l} \frac{(-1)^{k+l}}{\binom{k+l}{l}(k+l+1)} \\
& =\frac{1}{(m+1)\binom{n+1}{m+1}} \\
& =\frac{m!(n-m)!}{(n+1)!} \\
& =\frac{1}{(n+1)\binom{n}{m}} .
\end{aligned}
$$

Note that the number of vertices x with $|x|=m$ is equal to $\binom{n}{m}$ whence

$$
K_{\text {total }}=\sum_{m=0}^{n} \frac{1}{(n+1)\binom{n}{m}}\binom{n}{m}=\sum_{m=0}^{n} \frac{1}{n+1}=1
$$

as expected because $\chi=1$.

5.7 Curvature of a Join

The main result of this section is Proposition 5.39 below. Recall that a join $Z=X * Y$ of two digraphs was defined in Subsection 3.6.

Let us first prove two lemmas. Everywhere $\langle\cdot, \cdot\rangle$ denotes the natural inner product in all spaces $\Lambda_{*}(X), \Lambda_{*}(Y)$ and $\Lambda_{*}(Z)$.
Lemma 5.37 ([29, Lemma 3.10]). If $u, u^{\prime} \in \Lambda_{*}(X)$ and $v, v^{\prime} \in$ $\Lambda_{*}(Y)$ then

$$
\begin{equation*}
\left\langle u v, u^{\prime} v^{\prime}\right\rangle_{Z}=\left\langle u, u^{\prime}\right\rangle_{X}\left\langle v, v^{\prime}\right\rangle_{Y} . \tag{5.123}
\end{equation*}
$$

Proof. Indeed, due to bilinearity it suffices to prove (5.123) if $u, u^{\prime}, v, v^{\prime}$ are elementary paths, say

$$
u=e_{i_{0} \ldots i_{p}}, u^{\prime}=e_{i_{0}^{\prime} \ldots i_{p^{\prime}}^{\prime}}, v=e_{j_{0} \ldots j_{q}}, v^{\prime}=e_{j_{0}^{\prime} \ldots j_{q^{\prime}}^{\prime}}
$$

Then

$$
\begin{aligned}
\left\langle u v, u^{\prime} v^{\prime}\right\rangle_{Z} & =\left\langle e_{i_{0} \ldots i_{p} j_{0} \ldots j_{q}}, e_{i_{0}^{\prime} \ldots i_{p^{\prime}}^{\prime}, j_{0}^{\prime} \ldots j_{q^{\prime}}^{\prime}}\right\rangle=\delta_{i_{0} \ldots i_{p} j_{0} \ldots j_{q}}^{i_{0}^{\prime} \ldots i_{p^{\prime}}^{\prime}, j_{0}^{\prime} \ldots j^{\prime}} \\
& =\delta_{i_{0} \ldots i_{p}^{\prime}}^{i_{0}^{\prime} \ldots \ldots i_{p}^{\prime}} \delta_{j_{0} \ldots j_{q}}^{j_{0}^{\prime} \ldots j_{q^{\prime}}^{\prime}}=\left\langle e_{i_{0} \ldots i_{p}}, e_{i_{0}^{\prime} \ldots i_{p^{\prime}}^{\prime}}\right\rangle\left\langle e_{\left.j_{0} \ldots j_{q}, e_{j_{0}^{\prime} \ldots j_{q^{\prime}}^{\prime}}\right\rangle}\right. \\
& =\left\langle u, u^{\prime}\right\rangle_{X}\left\langle v, v^{\prime}\right\rangle_{Y} .
\end{aligned}
$$

Lemma 5.38. Let $Z=X * Y$ be the join of two digraphs X and Y. Then, for all $x \in X$ and $r \geq 0$ we have

$$
\begin{equation*}
\left[x, \Omega_{r}(Z)\right]=\left[x, \Omega_{r}(X)\right]+\sum_{\substack{p+q=r-1, p, q \geq 0}}\left[x, \Omega_{p}(X)\right] \operatorname{dim} \Omega_{q}(Y) \tag{5.124}
\end{equation*}
$$

Proof. Let $\mathcal{B}_{p}(X)$ be an orthonormal basis in $\Omega_{p}(X)$ and $\mathcal{B}_{q}(Y)$ be an orthonormal basis in $\Omega_{q}(Y)$, for all $p, q \geq 0$. By Theorem 3.12, we obtain the following basis in $\Omega_{r}(Z)$: it consists of all elements of $\mathcal{B}_{r}(X), \mathcal{B}_{r}(Y)$ as well as of the elements of the form
(5.125)

$$
\left\{u v: u \in \mathcal{B}_{p}(X), v \in \mathcal{B}_{q}(Y), p+q=r-1, p, q \geq 0\right\}
$$

Note that the set (5.125) is empty if $r=0$, so it makes sense to consider it only if $r \geq 1$. This basis in also orthonormal due to the identity (5.123). Therefore, we obtain, for any $x \in X$ and any $r \geq 0$

$$
\begin{aligned}
{\left[x, \Omega_{r}(Z)\right]=} & \sum_{u \in \mathcal{B}_{r}(X)}\left(T_{x} u, u\right)+\sum_{v \in \mathcal{B}_{r}(Y)}\left(T_{x} v, v\right) \\
& +\sum_{\substack{p+q=r-1 \\
p, q \geq 0}} \sum_{\substack{u \in \mathcal{B}_{p}(X) \\
v \in \mathcal{B}_{q}(Y)}}\left(T_{x}(u v), u v\right) .
\end{aligned}
$$

Since $T_{x} v=0$ and $T_{x}(u v)=\left(T_{x} u\right) v$, we obtain

$$
\left(T_{x}(u v), u v\right)=\left(\left(T_{x} u\right) v, u v\right)=\left(T_{x} u, u\right)(v, v)=\left(T_{x} u, u\right)
$$

and

$$
\sum_{\substack{u \in \mathcal{B}_{p}(X) \\ v \in \mathcal{B}_{q}(Y)}}\left(T_{x}(u v), u v\right)=\left[x, \Omega_{p}(X)\right] \operatorname{dim} \Omega_{q}(Y),
$$

whence (5.124) follows.
Proposition 5.39. Let $Z=X * Y$ be the join of two digraphs X and Y. Assume that $\Omega_{N}(X)$ and $\Omega_{N}(Y)$ vanish for large enough N. Then, for any $x \in X$, we have

$$
\begin{equation*}
K_{x}(Z)=K_{x}(X)-\sum_{p \geq 0}(-1)^{p} C_{p}(Y)\left[x, \Omega_{p}(X)\right] \tag{5.126}
\end{equation*}
$$

where

$$
C_{p}(Y)=\sum_{q \geq 0} \frac{(-1)^{q}}{p+q+2} \operatorname{dim} \Omega_{q}(Y)
$$

A similar formula holds for $K_{y}(Z)$ for $y \in Y$:

$$
K_{y}(Z)=K_{y}(Y)-\sum_{q \geq 0}(-1)^{q} C_{q}(X)\left[y, \Omega_{q}(Y)\right],
$$

where

$$
C_{q}(X)=\sum_{p \geq 0} \frac{(-1)^{p}}{p+q+2} \operatorname{dim} \Omega_{p}(X) .
$$

Proof. It follows from (5.124) that

$$
\begin{aligned}
K_{x}(Z)= & \sum_{r \geq 0}(-1)^{r} \frac{\left[x, \Omega_{r}(Z)\right]}{r+1} \\
= & K_{x}(X)+\sum_{p, q \geq 0} \frac{(-1)^{p+q+1}}{p+q+2}\left[x, \Omega_{p}(X)\right] \operatorname{dim} \Omega_{q}(Y) \\
= & K_{x}(X) \\
& -\sum_{p \geq 0}(-1)^{p}\left(\sum_{q \geq 0} \frac{(-1)^{q}}{p+q+2} \operatorname{dim} \Omega_{q}(Y)\right)\left[x, \Omega_{p}(X)\right],
\end{aligned}
$$

which was to be proven.

Example 5.40. Consider on octahedron Z based on a square:

We have

$$
Z=X * Y
$$

where X is the following square:

$$
X=\{0 \rightarrow 1 \rightarrow 3,0 \rightarrow 2 \rightarrow 3\}
$$

and $Y=\{4,5\}$.
Since $\Omega_{q}(Y)$ is non-trivial only for $q=0$ and $\operatorname{dim} \Omega_{0}(Y)=2$, we obtain

$$
C_{p}(Y)=\frac{2}{p+2}
$$

As we have computed in Example 5.9,

$$
\left[0, \Omega_{2}(X)\right]=\left[3, \Omega_{2}(X)\right]=1, \quad\left[1, \Omega_{2}(X)\right]=\left[2, \Omega_{2}(X)\right]=\frac{1}{2}
$$

and

$$
K_{0}(X)=K_{3}(X)=\frac{1}{3}, \quad K_{1}(X)=K_{2}(X)=\frac{1}{6}
$$

Hence, we obtain by (5.126), for $x=0$ or 3 ,

$$
\begin{aligned}
K_{x}(Z) & =\frac{1}{3}-\sum_{p \geq 0}(-1)^{p} \frac{2}{p+2}\left[x, \Omega_{p}(X)\right] \\
& =\frac{1}{3}-1+\frac{2}{3} \cdot 2-\frac{2}{4} \cdot 1=\frac{1}{6}
\end{aligned}
$$

and for $x=1$ or 2 ,

$$
\begin{aligned}
K_{x}(Z) & =\frac{1}{6}-\sum_{p \geq 0}(-1)^{p} \frac{2}{p+2}\left[x, \Omega_{p}(X)\right] \\
& =\frac{1}{6}-1+\frac{2}{3} \cdot 2-\frac{2}{4} \cdot \frac{1}{2}=\frac{1}{4} .
\end{aligned}
$$

Next, we have

$$
C_{q}(X)=\sum_{p \geq 0} \frac{(-1)^{p}}{p+q+2} \operatorname{dim} \Omega_{p}(X)=\frac{4}{q+2}-\frac{4}{q+3}+\frac{1}{q+4}
$$

Since $\left[y, \Omega_{0}(Y)\right]=1, \Omega_{q}(Y)=\{0\}$ for $q \geq 1$, and $K_{y}(Y)=1$, we obtain, for $y=4$ or 5,

$$
K_{y}(Z)=1-C_{0}(X)\left[y, \Omega_{0}(Y)\right]=1-\left(\frac{4}{2}-\frac{4}{3}+\frac{1}{4}\right)=\frac{1}{12} .
$$

5.8 Strongly Regular Digraphs

Recall that a graph is called regular if $\operatorname{deg}(x)$ is constant.
Definition. We say that a digraph G is strongly regular if the function $x \mapsto\left[x, \Omega_{p}\right]$ is constant for any p (in particular, G is regular because $\operatorname{deg}(x)=\left[x, \Omega_{1}\right]$ is constant).

For a strongly regular digraph G the function $x \mapsto K_{x}$ is constant, and we set

$$
K(G):=K_{x}=\frac{\chi(G)}{|V|}
$$

Recall the definition of m-suspension $\operatorname{sus}_{m} G$: it is obtained by adding to G new m vertices $\left\{y_{1}, \ldots, y_{m}\right\}$ and all arrows $x \rightarrow$ $y_{i} \forall x \in G$.

In other words, $\mathrm{sus}_{m} G=G * Y$ where

$$
Y=\left\{y_{1}, \ldots, y_{m}\right\} .
$$

Theorem 5.41. Let G be a strongly regular digraph, such that for some $k, m \in \mathbb{N}$ and any $p \geq 0$
(binom $(k, m))$

$$
\operatorname{dim} \Omega_{p}(G)=\binom{k}{p+1} m^{p+1} .
$$

Then $\operatorname{sus}_{m} G$ is strongly regular, and for all $p \geq 0$
$(\operatorname{binom}(k+1, m)) \quad \operatorname{dim} \Omega_{p}\left(\operatorname{sus}_{m} G\right)=\binom{k+1}{p+1} m^{p+1}$.
Proof. We have

$$
|X|=\operatorname{dim} \Omega_{0}(X)=\binom{k}{1} n=k n .
$$

Since for any $x \in X$

$$
\sum_{x \in X}\left[x, \Omega_{p}(X)\right]=\left[\mathbf{1}, \Omega_{p}(X)\right]=(p+1) \operatorname{dim} \Omega_{p}(X),
$$

it follows that

$$
\begin{aligned}
{\left[x, \Omega_{p}(X)\right] } & =\frac{(p+1) \operatorname{dim} \Omega_{p}(X)}{|X|}=\frac{p+1}{k n}\binom{k}{p+1} n^{p+1} \\
& =\binom{k-1}{p} n^{p} .
\end{aligned}
$$

Since $\operatorname{dim} \Omega_{0}(Y)=n$ and $\Omega_{q}(Y)=\{0\}$ for all $q \geq 1$, we obtain from (5.124) that, for $r \geq 1$,

$$
\left[x, \Omega_{r}(Z)\right]=\left[x, \Omega_{r}(X)\right]+n\left[x, \Omega_{r-1}(X)\right]
$$

$$
=\binom{k-1}{r} n^{r}+n\binom{k-1}{r-1} n^{r-1}=\binom{k}{r} n^{r} .
$$

In the same way, for any $y \in Y$ and $r \geq 1$,

$$
\begin{aligned}
{\left[y, \Omega_{r}(Z)\right] } & =\left[y, \Omega_{r}(Y)\right]+\sum_{\substack{p+q=r-1, p, q \geq 0}}\left[y, \Omega_{q}(Y)\right] \operatorname{dim} \Omega_{p}(X) \\
& =\operatorname{dim} \Omega_{r-1}(X)=\binom{k}{r} n^{r} .
\end{aligned}
$$

It follows that, for all $z \in Z$,

$$
\left[z, \Omega_{r}(Z)\right]=\binom{k}{r} n^{r}
$$

Consequently, we have

$$
\begin{aligned}
\operatorname{dim} \Omega_{r}(Z) & =\frac{|Z|\left[z, \Omega_{r}(Z)\right]}{r+1}=\frac{|X|+|Y|}{r+1}\binom{k}{r} n^{r}=\frac{k n+n}{r+1}\binom{k}{r} n^{r} \\
& =\binom{k+1}{r+1} n^{r+1} .
\end{aligned}
$$

Finally, for $r=0$ we obtain

$$
\operatorname{dim} \Omega_{0}(Z)=k n+n=(k+1) n=\binom{k+1}{0+1} n^{0+1} .
$$

5.9 Digraphs of Constant Curvature

For the digraph G as in Theorem 5.41 we have

$$
\begin{aligned}
\chi(G) & =\sum_{p \geq 0}(-1)^{p} \operatorname{dim} \Omega_{p}=\sum_{p=0}^{k-1}(-1)^{p}\binom{k}{p+1} m^{p+1} \\
& =-\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} m^{j}=1-(1-m)^{k} .
\end{aligned}
$$

It follows that

$$
K(G)=\frac{\chi(G)}{|V|}=\frac{\chi(G)}{\operatorname{dim} \Omega_{0}}=\frac{1-(1-m)^{k}}{k m}
$$

Of course, the same formula is true for $K\left(\operatorname{sus}_{m} G\right)$ with k replaced by $k+1$:

$$
K\left(\operatorname{sus}_{m} G\right)=\frac{1-(1-m)^{k+1}}{(k+1) m}
$$

Example 5.42. We have seen that a triangle ($=2$-simplex) is strongly regular and
$\operatorname{dim} \Omega_{0}=3, \operatorname{dim} \Omega_{1}=3, \operatorname{dim} \Omega_{2}=1, \operatorname{dim} \Omega_{p}=0$ for $p \geq 3$
that is, the sequence $\left\{\operatorname{dim} \Omega_{p}\right\}_{p \geq 0}$ is the sequence $\binom{3}{p+1}$ that satisfies (binom(3,1$)$). The 1 -suspension of an n-simplex is an $(n+1)$-simplex. Hence, we obtain by induction that the n-simplex is strongly regular and satisfies (binom $(n+1,1)$). In particular,

$$
K(n-\text { simplex })=\frac{1}{n+1}
$$

For any $m \in \mathbb{N}$ denote by D_{m} a digraph with m vertices and no arrows. Then

$$
\begin{aligned}
& \operatorname{dim} \Omega_{0}\left(D_{m}\right)=m=\binom{1}{p+1} m^{p+1} \\
& \text { for } p=0 \\
& \operatorname{dim} \Omega_{p}\left(D_{m}\right)=0=\binom{1}{p+1} m^{p+1} \\
& \text { for } p \geq 1
\end{aligned}
$$

so that $(\operatorname{binom}(1, m))$ is satisfied. Clearly, D_{m} is strongly regular.
For any $k \in \mathbb{N}$ define digraph $D_{m}^{* k}$ as the k-th join power of D_{m}, that is,

$$
D_{m}^{* 1}=D_{m}
$$

and

$$
D_{m}^{*(k+1)}=D_{m}^{* k} * D_{m}=\operatorname{sus}_{m} D_{m}^{* k}
$$

Here are digraphs $D_{m}^{* 1}, D_{m}^{* 2}, D_{m}^{* 3}, D_{m}^{* 4}$:

In fact, $D_{m}^{* k}$ is a digraph version of a complete k-partite graph $K_{m, m, \ldots, m}$ where the index m repeats k times, that can also be denoted by $\vec{K}_{m, m, \ldots, m}$.

Using Theorem 5.41, by obtain by induction that $D_{m}^{* k}$ is strongly regular and satisfies (binom (k, m)).

Hence, $D_{m}^{* k}$ has a constant curvature

$$
\begin{equation*}
K\left(D_{m}^{* k}\right)=\frac{1-(1-m)^{k}}{k m} \tag{5.127}
\end{equation*}
$$

One can show that the only non-trivial Betti number of $D_{m}^{* k}$ is $\beta_{k-1}=(m-1)^{k}$ (see [7]).
Example 5.43. For $m=1$ we have by (5.127)

$$
K\left(D_{1}^{* k}\right)=\frac{1}{k} .
$$

Clearly, $D_{1}^{* k}$ is a $(k-1)$-simplex:

Example 5.44. For $m=2$ we have by (5.127)

$$
K\left(D_{2}^{* k}\right)=\left\{\begin{array}{cc}
0, & k \text { even } \\
\frac{1}{k}, & k \text { odd }
\end{array}\right.
$$

For example, $D_{2}^{* 2}$ is a diamond: that is an analogue of 1 -sphere. We have $K\left(D_{2}^{* 2}\right)=0$.

We can regard $D_{2}^{*(k+1)}$ as a digraph analogue of a k-sphere \mathbb{S}^{k} because $D_{2}^{*(k+1)}$ is obtained from $D_{2}^{* k}$ by 2 -suspension, similarly to how \mathbb{S}^{k} is obtained from \mathbb{S}^{k-1}. Besides, the only non-trivial Betti number of $D_{2}^{*(k+1)}$ is $\beta_{k}=1$ like the Betti numbers for \mathbb{S}^{k}. Here is $D_{2}^{* 3}$, that is an octahedron, based on a diamond:

It is an analogue of 2 -sphere; it has constant curvature $\frac{1}{3}$. $D_{2}^{* 4}$ is an analogue of 3 -sphere; it has constant curvature 0.

Example 5.45. For $m=3$ we have by (5.127)

$$
K\left(D_{3}^{* k}\right)=\frac{1-(-2)^{k}}{3 k}=\frac{1}{3 k} \begin{cases}1-2^{k}, & k \text { even } \\ 1+2^{k}, & k \text { odd }\end{cases}
$$

Here is $D_{3}^{* 2}$ that is a directed version of $K_{3,3}$:

We have $K\left(D_{3}^{* 2}\right)=-\frac{1}{2}$ and $K\left(D_{3}^{* 3}\right)=1$.

5.10 Cartesian Product and Curvature

Recall that a Cartesian product $X \square Y$ of two digraphs was defined in Subsection 3.2.

Theorem 5.46. Let X be any digraph with a finite chain sequence $\left\{\Omega_{p}\right\}$ and Y be a cyclic digraph $\{0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow 0\}$ of at least 3 vertices. Then, with respect to the natural inner product $\langle\cdot, \cdot\rangle$, we have

$$
K_{z}(X \square Y)=0 \quad \text { for any } z \in X \square Y
$$

In particular, we have $K\left(T^{\square n}\right)=0$. Recall that in Example 5.20 we have computed directly that $K\left(T^{\square 2}\right)=0$.

Proof. Let $Y=(V, E)$. Then

$$
\begin{aligned}
& \Omega_{0}(Y)=\left\langle e_{a}: a \in V\right\rangle, \quad \Omega_{1}(Y)=\left\{e_{a b}: a b \in E\right\} \\
& \Omega_{p}(Y)=\{0\} \text { for } p>2
\end{aligned}
$$

We have

$$
K_{x}(X)=\sum_{p \geq 0}(-1)^{p} \frac{\left[x, \Omega_{p}\right]}{p+1}
$$

Denote by $\mathcal{B}_{p}(X)$ an orthogonal basis in $\Omega_{p}(X)$ so that

$$
\left[x, \Omega_{p}\right]=\sum_{\omega \in \mathcal{B}_{p}(X)} \frac{[x, \omega]}{\|\omega\|^{2}}
$$

We have by Theorem 3.5

$$
\begin{aligned}
\mathcal{B}_{p}(Z)=\left\{u \times e_{a}, v \times e_{a b}:\right. & u \in \mathcal{B}_{p}(X), v \in \mathcal{B}_{p-1}(X), \\
a & \in V, a b \in E\} .
\end{aligned}
$$

This basis is orthogonal due to the identity

$$
\begin{equation*}
\left\langle u \times \omega, u^{\prime} \times \omega^{\prime}\right\rangle_{Z}=\binom{p+q}{p}\left\langle u, u^{\prime}\right\rangle_{X}\left\langle\omega, \omega^{\prime}\right\rangle_{Y} \tag{5.128}
\end{equation*}
$$

where $u \in \Omega_{p}(X), u^{\prime} \in \Omega_{p^{\prime}}(X), \omega \in \Omega_{q}(Y), \omega^{\prime} \in \Omega_{q^{\prime}}(Y)$ (see [29, Lemma 4.13]).

Hence, we have

$$
\left[z, \Omega_{p}(Z)\right]=\sum_{\substack{u \in \mathcal{B}_{p}(X) \\ a \in V}} \frac{\left[z, u \times e_{a}\right]}{\left\|u \times e_{a}\right\|^{2}}+\sum_{\substack{v \in \mathcal{B}_{p-1}(X) \\ a b \in E}} \frac{\left[z, v \times e_{a b}\right]}{\left\|v \times e_{a b}\right\|^{2}} .
$$

Let $u=\sum u^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}}$ so that

$$
u \times e_{a}=\sum_{i_{0} \ldots i_{p}} u^{i_{0} \ldots i_{p}} e_{i_{0} \ldots i_{p}} \times e_{a} .
$$

We have for $z=(x, y)$

$$
\left[z, e_{i_{0} \ldots i_{p}} \times e_{a}\right]=\left[(x, y), e_{\left(i_{0} a\right)\left(i_{1} a\right) \ldots\left(i_{p} a\right)}\right]=\left[x, e_{i_{0} \ldots i_{p}}\right][y, a],
$$

whence

$$
\sum_{a \in V}\left[z, e_{i_{0} \ldots i_{p}} \times e_{a}\right]=\left[x, e_{i_{0} \ldots i_{p}}\right] .
$$

It follows that

$$
\begin{aligned}
\sum_{a \in V}\left[z, u \times e_{a}\right] & =\sum_{a \in V} \sum_{i_{0} \ldots i_{p}}\left(u^{i_{0} \ldots i_{p}}\right)^{2}\left[z, e_{i_{0} \ldots i_{p}} \times e_{a}\right] \\
& =\sum_{i_{0} \ldots i_{p}} \sum_{a \in V}\left(u^{i_{0} \ldots i_{p} 2}\right)\left[z, e_{i_{0} \ldots i_{p}} \times e_{a}\right] \\
& =\sum_{i_{0} \ldots i_{p}}\left(u^{i_{0} \ldots i_{p}}\right)^{2}\left[x, e_{i_{0} \ldots i_{p}}\right]=[x, u] .
\end{aligned}
$$

Since also $\left\|u \times e_{a}\right\|=\|u\|$, we obtain

$$
\sum_{u \in \mathcal{B}_{p}(X)} \sum_{a \in V} \frac{\left[z, u \times e_{a}\right]}{\left\|u \times e_{a}\right\|^{2}}=\sum_{u \in \mathcal{B}_{p}(X)} \frac{[x, u]}{\|u\|^{2}}=\left[x, \Omega_{p}(X)\right] .
$$

Now let us handle the term $\left[z, v \times e_{a b}\right]$. Let $v=$ $\sum_{i_{0} \ldots i_{p}} v^{i_{0} \ldots i_{p-1}} e_{i_{0} \ldots i_{p-1}}$ so that

$$
v \times e_{a b}=\sum_{i_{0} \ldots i_{p}} v^{i_{0} \ldots i_{p-1}} e_{i_{0} \ldots i_{p-1}} \times e_{a b} .
$$

We have

$$
e_{i_{0} \ldots i_{p-1}} \times e_{a b}=\sum_{k=0}^{p-1}(-1)^{p-1-k} e_{\left(i_{0} a\right)\left(i_{1} a\right) \ldots\left(i_{k} a\right)\left(i_{k} b\right) \ldots\left(i_{p-1} b\right)}
$$

Note that

$$
\left[(x, y), e_{\left(i_{0} a\right)\left(i_{1} a\right) \ldots\left(i_{k} a\right)\left(i_{k} b\right) \ldots\left(i_{p-1} b\right)}\right]=\left\{\begin{array}{l}
{\left[x, e_{i_{0} \ldots i_{k}}\right], \quad y=a} \\
{\left[x, e_{k_{k} \ldots i_{p-1}}\right], \quad y=b} \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

Considering all arrows $a b \in E$, there is exactly one $a=y$ and exactly one $b=y$. It follows that

$$
\begin{aligned}
\sum_{a b \in E}\left[(x, y), e_{\left(i_{0} a\right)\left(i_{1} a\right) \ldots\left(i_{k} a\right)\left(i_{k} b\right) \ldots\left(i_{p-1} b\right)}\right] & =\left[x, e_{i_{0} \ldots i_{k}}\right]+\left[x, e_{i_{k} \ldots i_{p-1}}\right] \\
& =\left[x, e_{i_{0} \ldots i_{p-1}}\right]+1_{\left\{x=i_{k}\right\}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{a b \in E}\left[z, e_{i_{0} \ldots i_{p-1}} \times e_{a b}\right] & =\sum_{k=0}^{p-1}\left(\left[x, e_{i_{0} \ldots i_{p-1}}\right]+\mathbf{1}_{\left\{x=i_{k}\right\}}\right) \\
& =(p+1)\left[x, e_{i_{0} \ldots i_{p-1}}\right] .
\end{aligned}
$$

We obtain that

$$
\begin{aligned}
\sum_{a b \in E}\left[z, v \times e_{a b}\right] & =\sum_{i_{0} \ldots i_{p}} \sum_{a b \in E}\left(v^{i_{0} \ldots i_{p-1}}\right)^{2}\left[z, e_{i_{0} \ldots i_{p-1}} \times e_{a b}\right] \\
& =(p+1) \sum_{i_{0} \ldots i_{p}}\left(v^{i_{0} \ldots i_{p-1}}\right)^{2}\left[x, e_{i_{0} \ldots i_{p-1}}\right] \\
& =(p+1)[x, v] .
\end{aligned}
$$

Since

$$
\left\|e_{i_{0} \ldots i_{p-1}} \times e_{a b}\right\|^{2}=p
$$

we have

$$
\left\|v \times e_{a b}\right\|^{2}=\sum_{i_{0} \ldots i_{p}}\left(v^{i_{0} \ldots i_{p-1}}\right)^{2} p=p\|v\|^{2},
$$

whence

$$
\sum_{a b \in E} \frac{\left[z, v \times e_{a b}\right]}{\left\|v \times e_{a b}\right\|^{2}}=\frac{p+1}{p} \frac{[x, v]}{\|v\|^{2}}
$$

and

$$
\sum_{v \in \mathcal{B}_{p-1}(X)} \sum_{a b \in E} \frac{\left[z, v \times e_{a b}\right]}{\left\|v \times e_{a b}\right\|^{2}}=\frac{p+1}{p}\left[x, \Omega_{p-1}(X)\right] .
$$

We obtain

$$
\left[z, \Omega_{p}(Z)\right]=\left[x, \Omega_{p}(X)\right]+\frac{p+1}{p}\left[x, \Omega_{p-1}(X)\right],
$$

whence it follows that

$$
\begin{aligned}
K_{z}-1 & =\sum_{p \geq 1}(-1)^{p} \frac{\left[z, \Omega_{p}(Z)\right]}{p+1} \\
& =\sum_{p \geq 1}(-1)^{p} \frac{\left[x, \Omega_{p}(X)\right]}{p+1}+\sum_{p \geq 1}(-1)^{p} \frac{\left[x, \Omega_{p-1}(X)\right]}{p} \\
& =\left(K_{x}-1\right)-K_{x}=-1,
\end{aligned}
$$

that is, $K_{z}=0$.

5.11 Some Problems

Problem 5.47. How to compute $K(X \square Y)$ for general digraphs X, Y ?

Problem 5.48. Is $\left|\Omega_{2}\right|=25$ true for an icosahedron (see Example 5.19) with any numbering of the vertices?
Problem 5.49. Let a digraph G be determined by a triangulation of \mathbb{S}^{2} (see Subsection 1.10). Assume that $\operatorname{deg}(x) \leq 4$ for all $x \in G$. Is it true that $K_{x} \geq 0$ for all $x \in G$?

We have verified above that $K_{x} \geq 0$ for the following triangulations of \mathbb{S}^{2} : simplex, bipyramid, octahedron, but with specific orientations of edges (the question remains open when the numbering of vertices is arbitrary). All these digraphs have $\operatorname{deg}(x) \leq 4$. We have seen that $K_{x}<0$ can occur for icosahedron with $\operatorname{deg}(x)=5$ and for a pyramid with $\operatorname{deg}(x)=7$.

Problem 5.50. Denote $D=\max _{x \in G} \operatorname{deg}(x)$. Is it true that $\left|K_{x}\right| \leq$ C_{D} for some constant C_{D} depending only on D ? What about upper bounds for $\left|K_{x}^{(2)}\right|$ and $\left|K_{x}^{(3)}\right|$?

Note that K_{x} can be take arbitrarily large positive and negative values. For example, for a strongly regular digraph satisfying (binom (k, m)), we have

$$
K_{x}=\frac{1-(1-m)^{k}}{k m}
$$

while $D=\frac{2 \operatorname{dim} \Omega_{1}}{\operatorname{dim} \Omega_{0}}=(k-1) m$. In this case one can verify that $\left|K_{x}\right| \leq e^{0.3 D}$.
Problem 5.51. What can be said about the curvature of random digraphs?

Problem 5.52. Let \mathcal{S} be a simplicial complex and $G_{\mathcal{S}}$ be its Hasse diagram (see Subsection 1.9). Is there any relation of $K_{x}\left(G_{\mathcal{S}}\right)$ to properties of \mathcal{S} ? For example, we have

$$
K_{\text {total }}\left(G_{S}\right)=\chi\left(G_{\mathcal{S}}\right)=\chi_{\text {simp }}(\mathcal{S})
$$

Can one give an explicit formula for computing $K_{\sigma}\left(G_{\mathcal{S}}\right)$ for any simplex $\sigma \in \mathcal{S}$?

6. Hodge Laplacian on Digraphs

In this section $\mathbb{K}=\mathbb{R}$. Let us fix an arbitrary inner product $\langle\cdot, \cdot\rangle$ in each of the spaces \mathcal{R}_{p} so that we have an inner product also in all Ω_{p}. In all examples we use the natural inner product.

6.1 Definition and Spectral Properties of Δ_{p}

For the operator $\partial: \Omega_{p} \rightarrow \Omega_{p-1}$, consider the adjoint operator $\partial^{*}: \Omega_{p-1} \rightarrow \Omega_{p}$. By the definition of an adjoint operator, we have

$$
\langle\partial u, v\rangle=\left\langle u, \partial^{*} v\right\rangle \quad \text { for all } u \in \Omega_{p} \text { and } v \in \Omega_{p-1} .
$$

Definition. Define the Hodge-Laplace operator $\Delta_{p}: \Omega_{p} \rightarrow \Omega_{p}$ by

$$
\begin{equation*}
\Delta_{p} u=\partial^{*} \partial u+\partial \partial^{*} u \tag{6.129}
\end{equation*}
$$

The pairs ∂^{*}, ∂ and ∂, ∂^{*} appearing in (6.129) are the following operators:

$$
\Omega_{p-1} \underset{\partial^{*}}{\stackrel{\partial}{\leftrightarrows}} \Omega_{p} \quad \text { and } \quad \Omega_{p} \underset{\partial *}{\stackrel{\partial}{\leftrightarrows}} \Omega_{p+1}
$$

Proposition 6.1. The operator Δ_{p} is self-adjoint and nonnegative definite.

Proof. We have for all $u, v \in \Omega_{p}$
$\left\langle\Delta_{p} u, v\right\rangle=\left\langle\partial^{*} \partial u+\partial \partial^{*} u, v\right\rangle=\langle\partial u, \partial v\rangle+\left\langle\partial^{*} u, \partial^{*} v\right\rangle=\left\langle u, \Delta_{p} v\right\rangle$
so that Δ_{p} is self-adjoint, and

$$
\begin{equation*}
\left\langle\Delta_{p} u, u\right\rangle=\|\partial u\|^{2}+\left\|\partial^{*} u\right\|^{2} \geq 0 \tag{6.130}
\end{equation*}
$$

so that $\Delta_{p} \geq 0$.
Hence, the spectrum of Δ_{p} is real, non-negative and consists of a finite sequence of eigenvalues.

Proposition 6.2. Denote $D=\max _{i \in V} \operatorname{deg}(i)$. If $\langle\cdot, \cdot\rangle$ is the natural inner product then spec $\Delta_{0} \subset[0,2 D]$.
Proof. By the variational principle, it suffices to prove that for all $u \in \Omega_{0}$

$$
\frac{\left\langle\Delta_{0} u, u\right\rangle}{\|u\|^{2}} \leq 2 D
$$

Since $\partial u=0$, we have by (6.130)

$$
\left\langle\Delta_{0} u, u\right\rangle=\left\|\partial^{*} u\right\|^{2}
$$

Since for any $i \rightarrow j$

$$
\left\langle\partial^{*} u, e_{i j}\right\rangle=\left\langle u, \partial e_{i j}\right\rangle=\left\langle u, e_{j}-e_{i}\right\rangle=u^{j}-u^{i},
$$

it follows that

$$
\begin{align*}
\left\|\partial^{*} u\right\|^{2} & =\sum_{i \rightarrow j}\left(u^{j}-u^{i}\right)^{2} \leq 2 \sum_{i \rightarrow j}\left(u^{j}\right)^{2}+2 \sum_{i \rightarrow j}\left(u^{i}\right)^{2} \\
& =2 \sum_{i} \operatorname{deg}(i)\left(u^{i}\right)^{2} \leq 2 D\|u\|^{2} \tag{6.131}
\end{align*}
$$

whence the claim follows.
The bottom eigenvalue of Δ_{0} is always 0 because if all $u^{k}=1$ then by (6.131) $\partial^{*} u=0$ and, hence, $\Delta_{0} u=\partial \partial^{*} u=0$. If G a complete bipartite graph $K_{D, D}$, then G is D-regular and $2 D$ is the top eigenvalue of Δ_{0}.

For a general p, the multiplicity of 0 as an eigenvalue of Δ_{p} is equal to the Betti number β_{p} as we will see below in Corollary 6.7.
Problem 6.3. Find reasonable upper bounds for $\operatorname{spec} \Delta_{p}$. The question amounts to obtaining an upper bound for the Rayleigh quotient for non-zero $u \in \Omega_{p}$:

$$
\frac{\|\partial u\|^{2}+\left\|\partial^{*} u\right\|^{2}}{\|u\|^{2}} \leq ?
$$

Problem 6.4. Find estimates of the eigenvalues of Δ_{p} in terms of geometric and combinatorial properties of G.

6.2 Harmonic Paths

A path $u \in \Omega_{p}$ is called harmonic if $\Delta_{p} u=0$.
Lemma 6.5 ([23, Lemma 3.2]). A path $u \in \Omega_{p}$ is harmonic if and only if $\partial u=0$ and $\partial^{*} u=0$.

Proof. Indeed, if $\partial u=0$ and $\partial^{*} u=0$ then by (6.129) we have $\Delta_{p} u=0$. Conversely, if $\Delta_{p} u=0$ then we obtain by (6.130) that

$$
\|\partial u\|^{2}+\left\|\partial^{*} u\right\|^{2}=\left\langle\Delta_{p} u, u\right\rangle=0
$$

whence $\|\partial u\|=\left\|\partial^{*} u\right\|=0$.
Denote by \mathcal{H}_{p} the set of all harmonic paths in Ω_{p}, so that \mathcal{H}_{p} is a subspace of Ω_{p}.
Theorem 6.6 (Hodge decomposition [23, Lemma 3.3]). The space Ω_{p} is an orthogonal sum:

$$
\begin{equation*}
\Omega_{p}=\partial \Omega_{p+1} \bigoplus \partial^{*} \Omega_{p-1} \bigoplus \mathcal{H}_{p} \tag{6.132}
\end{equation*}
$$

Proof. If $u \in \partial \Omega_{p+1}$ and $v \in \partial^{*} \Omega_{p-1}$ then $u=\partial u^{\prime}$ and $v=\partial^{*} v^{\prime}$, and we have

$$
\langle u, v\rangle=\left\langle\partial u^{\prime}, \partial^{*} v^{\prime}\right\rangle=\left\langle\partial^{2} u^{\prime}, v^{\prime}\right\rangle=0,
$$

so that the subspaces $\partial \Omega_{p+1}$ and $\partial^{*} \Omega_{p-1}$ are orthogonal.

Denote by K the orthogonal complement of $\partial \Omega_{p+1} \oplus \partial^{*} \Omega_{p-1}$ in Ω_{p}. Then we have
$w \in K \Leftrightarrow\langle w, u\rangle=0 \forall u \in \partial \Omega_{p+1}$ and $\langle w, v\rangle=0 \forall v \in \partial^{*} \Omega_{p-1}$, that is,

$$
\begin{aligned}
w \in K & \Leftrightarrow\left\langle w, \partial u^{\prime}\right\rangle=0 \forall u^{\prime} \in \Omega_{p+1} \text { and }\left\langle w, \partial^{*} v^{\prime}\right\rangle=0 \forall v^{\prime} \in \Omega_{p-1} \\
& \Leftrightarrow\left\langle\partial^{*} w, u^{\prime}\right\rangle=0 \forall u^{\prime} \in \Omega_{p+1} \text { and }\left\langle\partial w, v^{\prime}\right\rangle=0 \forall v^{\prime} \in \Omega_{p-1} \\
& \Leftrightarrow \partial^{*} w=0 \text { and } \partial w=0 \\
& \Leftrightarrow w \in \mathcal{H}_{p} .
\end{aligned}
$$

Hence, $K=\mathcal{H}_{p}$ which finishes the proof.
Corollary 6.7 ([23, Corollary 3.4]). There is a natural linear isomorphism

$$
\begin{equation*}
H_{p} \cong \mathcal{H}_{p} \tag{6.133}
\end{equation*}
$$

In particular, $\operatorname{dim} \mathcal{H}_{p}=\beta_{p}$; that is, the multiplicity of 0 as an eigenvalue of Δ_{p} is equal to the Betti number β_{p}.
Proof. Observe that $Z_{p}:=\left.\operatorname{ker} \partial\right|_{\Omega_{p}}$ is the orthogonal complement of $\partial^{*} \Omega_{p-1}$ in Ω_{p} because, for any $u \in \Omega_{p}$,

$$
\begin{aligned}
u \in Z_{p} & \Leftrightarrow \partial u=0 \Leftrightarrow\langle\partial u, v\rangle=0 \forall v \in \Omega_{p-1} \\
& \Leftrightarrow\left\langle u, \partial^{*} v\right\rangle=0 \forall v \in \Omega_{p-1} \Leftrightarrow u \perp \partial^{*} \Omega_{p-1} .
\end{aligned}
$$

Since by (6.132)

$$
\Omega_{p}=\partial \Omega_{p+1} \bigoplus \mathcal{H}_{p} \bigoplus \partial^{*} \Omega_{p-1}
$$

we obtain

$$
\begin{equation*}
Z_{p}=\left(\partial^{*} \Omega_{p-1}\right)^{\perp}=\partial \Omega_{p+1} \bigoplus \mathcal{H}_{p} \tag{6.134}
\end{equation*}
$$

whence $\mathcal{H}_{p} \cong Z_{p} / \partial \Omega_{p+1}=H_{p}$.
Remark 6.8. It follows from this argument that \mathcal{H}_{p} is an orthogonal complement of B_{p} in Z_{p} and that any homology class $\omega \in H_{p}$ has a unique harmonic representative $u \in \mathcal{H}_{p}$. In addition, u minimizes the norm $\|\cdot\|$ among all representatives of ω.

6.3 Matrix of Δ_{p}

Let $\left\{\alpha_{i}\right\}$ be an orthonormal basis in $\Omega_{p},\left\{\beta_{m}\right\}$ be an orthonormal basis in Ω_{p-1} and $\left\{\gamma_{n}\right\}$ be an orthonormal basis in Ω_{p+1} :

$$
\begin{array}{ccccc}
\Omega_{p-1} \\
\left\{\beta_{m}\right\}
\end{array} \underset{\partial}{\stackrel{\partial^{*}}{\rightleftarrows}} \Omega_{p} \underset{\left\{\alpha_{i}\right\}}{\stackrel{\partial^{*}}{\rightleftarrows}} \underset{\partial}{\rightleftarrows} \Omega_{p+1} .
$$

The operator $\partial: \Omega_{p} \rightarrow \Omega_{p-1}$ has in the bases $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{m}\right\}$ the matrix representation

$$
\begin{equation*}
B=\left(\left\langle\beta_{m}, \partial \alpha_{i}\right\rangle\right)_{m, i} \tag{6.135}
\end{equation*}
$$

where m is the row index and i is the column index.
Similarly, the operator $\partial^{*}: \Omega_{p} \rightarrow \Omega_{p+1}$ has the matrix representation

$$
\begin{equation*}
C=\left(\left\langle\gamma_{n}, \partial^{*} \alpha_{i}\right\rangle\right)_{n, i}=\left(\left\langle\partial \gamma_{n}, \alpha_{i}\right\rangle\right)_{n, i} \tag{6.136}
\end{equation*}
$$

where n is the row index and i is the column index. Since $\Delta_{p}=$ $\partial^{*} \partial+\left(\partial^{*}\right)^{*} \partial^{*}$, we obtain the matrix representation of Δ_{p} in the basis $\left\{\alpha_{i}\right\}$:

$$
\begin{equation*}
\text { matrix of } \Delta_{p}=B^{T} B+C^{T} C \tag{6.137}
\end{equation*}
$$

More explicitly, the (i, j)-entry of the matrix of Δ_{p} in the basis $\left\{\alpha_{i}\right\}$ is given by

$$
\begin{equation*}
\left\langle\Delta_{p} \alpha_{i}, \alpha_{j}\right\rangle=\sum_{m}\left\langle\partial \alpha_{i}, \beta_{m}\right\rangle\left\langle\partial \alpha_{j}, \beta_{m}\right\rangle+\sum_{n}\left\langle\alpha_{i}, \partial \gamma_{n}\right\rangle\left\langle\alpha_{j}, \partial \gamma_{n}\right\rangle, \tag{6.138}
\end{equation*}
$$

where i is the row index and j is the column index.
Example 6.9. Recall that $\Omega_{-1}=\{0\}, \Omega_{0}=\left\{e_{i}: i \in V\right\}$ and $\Omega_{1}=$ $\left\langle e_{k l}: k \rightarrow l\right\rangle$. Assuming that $\langle\cdot, \cdot\rangle$ is the natural inner product, we obtain by (6.138) that the matrix of Δ_{0} is

$$
\begin{aligned}
\left\langle\Delta_{0} e_{i}, e_{j}\right\rangle & =\sum_{k \rightarrow l}\left\langle e_{i}, \partial e_{k l}\right\rangle\left\langle e_{j}, \partial e_{k l}\right\rangle \\
& =\sum_{k \rightarrow l}\left\langle e_{i}, e_{l}-e_{k}\right\rangle\left\langle e_{j}, e_{l}-e_{k}\right\rangle \\
& =\sum_{k \rightarrow l}\left(\delta_{i l}-\delta_{i k}\right)\left(\delta_{j l}-\delta_{j k}\right) \\
& =\sum_{k \rightarrow i} \delta_{i j}+\sum_{i \rightarrow l} \delta_{i j}-\mathbf{1}_{\{i \rightarrow j\}}-\mathbf{1}_{\{j \rightarrow i\}}
\end{aligned}
$$

$$
=\operatorname{deg}(i) \delta_{i j}-\mathbf{1}_{\{i \rightarrow j\}}-\mathbf{1}_{\{j \rightarrow i\}} .
$$

If G has no double arrow then

$$
\text { the matrix of } \Delta_{0}=\operatorname{diag}(\operatorname{deg}(i))-\mathbf{1}_{\{i \sim j\}},
$$

where $\mathbf{1}_{\{i \sim j\}}$ is the adjacency matrix of G. Hence, in this case Δ_{0} is the usual unnormalized Laplacian ($=$ Kirchhoff operator) on functions on V. Consequently, we have

$$
\begin{equation*}
\operatorname{trace} \Delta_{0}=\sum_{i \in V} \operatorname{deg}(i)=2|E| . \tag{6.139}
\end{equation*}
$$

6.4 Examples of Computation of the Matrix of Δ_{1}

In this section, we denote by V and E respectively the numbers of vertices and arrows of the digraph in question.

Let us compute Δ_{1} for the natural inner product. We use the orthonormal bases $\left\{e_{m}\right\}$ in Ω_{0} and $\left\{e_{i j}: i \rightarrow j\right\}$ in Ω_{1}. Let $\left\{\gamma_{n}\right\}$ be an orthonormal basis in Ω_{2}.

The matrix of Δ_{1} has dimensions $E \times E$ and, by (6.138), its entries are
(6.140)

$$
\left\langle\Delta_{1} e_{i j}, e_{i^{\prime} j^{\prime}}\right\rangle=\sum_{m}\left\langle\partial e_{i j}, e_{m}\right\rangle\left\langle\partial e_{i^{\prime} j^{\prime}}, e_{m}\right\rangle+\sum_{n}\left\langle e_{i j}, \partial \gamma_{n}\right\rangle\left\langle e_{i^{\prime} j^{\prime}}, \partial \gamma_{n}\right\rangle
$$

for all arrows $i \rightarrow j$ and $i^{\prime} \rightarrow j^{\prime}$.
For the first sum in (6.140) we have

$$
\begin{aligned}
\sum_{m}\left\langle\partial e_{i j}, e_{m}\right\rangle\left\langle\partial e_{i^{\prime} j^{\prime}}, e_{m}\right\rangle & =\sum_{m}\left\langle e_{j}-e_{i}, e_{m}\right\rangle\left\langle e_{j^{\prime}}-e_{i^{\prime}}, e_{m}\right\rangle \\
& =\sum_{m}\left(\delta_{j m}-\delta_{i m}\right)\left(\delta_{j^{\prime} m}-\delta_{i^{\prime} m}\right) \\
& =\delta_{j j^{\prime}}-\delta_{i j^{\prime}}-\delta_{j i^{\prime}}+\delta_{i i^{\prime}}=:\left[i j, i^{\prime} j^{\prime}\right] .
\end{aligned}
$$

The values of $\left[i j, i^{\prime} j^{\prime}\right]$ are shown here:

Hence, in the case $p=1$, we have

$$
\begin{equation*}
B^{T} B=\left(\left[i j, i^{\prime} j^{\prime}\right]\right) \tag{6.141}
\end{equation*}
$$

In particular, diagonal entries of $B^{T} B$ are equal to 2 .
Example 6.10. Consider a 1-torus $T=\{0 \rightarrow 1 \rightarrow 2 \rightarrow 0\}$. In this case we have $\Omega_{1}=\left\langle e_{01}, e_{12}, e_{20}\right\rangle$ and the matrix of $\Delta_{1}=B^{T} B=\left(\left[i j, i^{\prime} j^{\prime}\right]\right)$

$$
=\left(\begin{array}{cccc}
& e_{01} & e_{12} & e_{20} \\
e_{01} & {[01,01]} & {[01,12]} & {[01,20]} \\
e_{12} & {[12,01]} & {[12,12]} & {[12,20]} \\
e_{20} & {[20,01]} & {[20,12]} & {[20,20]}
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

The eigenvalues of Δ_{1} are $(0,3,3)$.
Example 6.11. Consider a dodecahedron (as in Example 5.7):

We have $V=20, E=30, \Omega_{2}=\{0\}$ and $\left|H_{1}\right|=11$. In particular, $C^{T} C=0$ and, hence, $\Delta_{1}=B^{T} B$.

The matrix of Δ_{1} is shown here:

The eigenvalues of Δ_{1} are:

$$
\left(0_{11}, 2_{5}, 3_{4}, 5_{4},(3 \pm \sqrt{5})_{3}\right)
$$

where the subscripts show multiplicity.
For a general digraph G with $\Omega_{2} \neq\{0\}$, let us compute the entry $\left\langle e_{i j}, \partial \gamma_{n}\right\rangle$ of the matrix C assuming that $\gamma_{n}=\gamma$ is a triangle or square (note that although Ω_{2} always has a basis of triangles and squares, the squares in this basis do not have to be orthogonal). If $\gamma=e_{a b c}$ is a triangle then we have

$$
\left\langle e_{i j}, \partial \gamma\right\rangle=\left\langle e_{i j}, e_{a b}+e_{b c}-e_{a c}\right\rangle=[i j, \gamma],
$$

where

$$
[i j, \gamma]:= \begin{cases}1, & \text { if } i j \in\{a b, b c\} \\ -1 & \text { if } i j=a c \\ 0, & \text { otherwise }\end{cases}
$$

If $\gamma=\frac{e_{a b c}-e_{a b^{\prime} c}}{\sqrt{2}}$ is a (normalized) square then

$$
\left\langle e_{i j}, \partial \gamma\right\rangle=\frac{1}{\sqrt{2}}\left\langle e_{i j}, e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c}\right\rangle=\frac{1}{\sqrt{2}}[i j, \gamma]
$$

where

$$
[i j, \gamma]= \begin{cases}1, & \text { if } i j \in\{a b, b c\} \\ -1 & \text { if } i j \in\left\{a b^{\prime}, b^{\prime} c\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Example 6.12. Let G be a triangle $\{0 \rightarrow 1 \rightarrow 2,0 \rightarrow 2\}$. Then $\Omega_{1}=\left\langle e_{01}, e_{12}, e_{02}\right\rangle$ and

$$
\begin{aligned}
B^{T} B=\left(\left[i j, i^{\prime} j^{\prime}\right]\right) & =\left(\begin{array}{cccc}
& e_{01} & e_{12} & e_{02} \\
e_{01} & {[01,01]} & {[01,12]} & {[01,20]} \\
e_{12} & {[12,01]} & {[12,12]} & {[12,20]} \\
e_{02} & {[02,01]} & {[02,12]} & {[02,02]}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

The basis $\left\{\gamma_{n}\right\}$ of Ω_{2} consists of a single triangle $\gamma=e_{012}$ so that

$$
\begin{gathered}
C=\left(\begin{array}{ccc}
& e_{01} & e_{12} \\
e_{02} \\
e_{012} & {[01, \gamma]} & {[12, \gamma]}
\end{array}\left[\begin{array}{ccc}
{[02, \gamma]}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right),\right. \\
C^{T} C=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right),
\end{gathered}
$$

matrix of $\Delta_{1}=B^{T} B+C^{T} C=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$.

Example 6.13. Let G be a square $\{0 \rightarrow 1 \rightarrow 3,0 \rightarrow 2 \rightarrow 3\}$. Then $\Omega_{1}=\left\langle e_{01}, e_{02}, e_{13}, e_{23}\right\rangle$ and

$$
\begin{aligned}
B^{T} B=\left(\left[i j, i^{\prime} j^{\prime}\right]\right) & =\left(\begin{array}{ccccc}
& e_{01} & e_{02} & e_{13} & e_{23} \\
e_{01} & {[01,01]} & {[01,02]} & {[01,13]} & {[01,23]} \\
e_{02} & {[02,01]} & {[02,02]} & {[02,13]} & {[02,23]} \\
e_{13} & {[12,01]} & {[13,02]} & {[13,13]} & {[13,23]} \\
e_{23} & {[23,01]} & {[23,02]} & {[23,13]} & {[23,23]}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
2 & 1 & -1 & 0 \\
1 & 2 & 0 & -1 \\
-1 & 0 & 2 & 1 \\
0 & -1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

The basis $\left\{\gamma_{n}\right\}$ of Ω_{2} consists of a single square $\gamma=$ $\frac{1}{\sqrt{2}}\left(e_{013}-e_{023}\right)$ so that

$$
\begin{aligned}
C & =\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
e_{01} & e_{02} & e_{13} & e_{23} \\
\gamma & {[01, \gamma]} & {[02, \gamma]} & {[13, \gamma]} & {[23, \gamma]}
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{lllll}
1 & -1 & 1 & -1
\end{array}\right) \\
C^{T} C= & \frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

Hence,

$$
\text { matrix of } \Delta_{1}=B^{T} B+C^{T} C=\left(\begin{array}{cccc}
\frac{5}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{5}{2} & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{5}{2} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{5}{2}
\end{array}\right)
$$

and the eigenvalues of Δ_{1} are $\left(2_{3}, 4\right)$.
Example 6.14. Consider the following digraph:

Here $V=5, E=6,\left|\Omega_{2}\right|=2$ and

$$
\Omega_{2}=\left\langle e_{014}-e_{024}, e_{014}-e_{034}\right\rangle
$$

However, this basis is not orthogonal.
Orthogonalization gives an orthonormal basis for Ω_{2} :

$$
\begin{aligned}
\gamma_{1} & =\frac{1}{\sqrt{2}}\left(e_{014}-e_{024}\right), \\
\gamma_{2} & =\frac{1}{\sqrt{6}}\left(e_{014}+e_{024}-2 e_{034}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \partial \gamma_{1}=\frac{1}{\sqrt{2}}\left(e_{01}+e_{14}-e_{02}-e_{24}\right) \\
& \partial \gamma_{2}=\frac{1}{\sqrt{6}}\left(e_{01}+e_{04}+e_{02}+e_{24}-2 e_{03}-2 e_{34}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
C & =\left(\left\langle e_{i j}, \partial \gamma_{n}\right\rangle\right) \\
& =\left(\begin{array}{ccccccc}
& e_{01} & e_{14} & e_{02} & e_{24} & e_{03} & e_{34} \\
\partial \gamma_{1} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\partial \gamma_{2} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{6}}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{6}}
\end{array}\right)
\end{aligned}
$$

and

$$
C^{T} C=\left(\begin{array}{cccccc}
\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right)
$$

Now we compute $B^{T} B$:

$$
B^{T} B=\left(\left[e_{i j}, e_{i^{\prime} j^{\prime}}\right]\right)=\left(\begin{array}{cccccc}
2 & -1 & 1 & 0 & 1 & 0 \\
-1 & 2 & 0 & 1 & 0 & 1 \\
1 & 0 & 2 & -1 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 & 2 & -1 \\
0 & 1 & 0 & 1 & -1 & 2
\end{array}\right)
$$

whence

$$
\begin{aligned}
\text { matrix of } \Delta_{1} & =B^{T} B+C^{T} C \\
& =\left(\begin{array}{cccccc}
\frac{8}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{8}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{8}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{8}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{8}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{8}{3}
\end{array}\right) .
\end{aligned}
$$

The eigenvalues of Δ_{1} are $\left(2_{4}, 3,5\right)$.
Example 6.15. Consider the following pyramid:

For this digraph $V=5, E=8,\left|\Omega_{2}\right|=5$, and

$$
\Omega_{2}=\left\langle e_{014}, e_{024}, e_{134}, e_{234}, e_{013}-e_{023}\right\rangle
$$

We have then

$$
\begin{aligned}
& B^{T} B=\left(\left[i j, i^{\prime} j^{\prime}\right]\right) \\
& =\left(\begin{array}{ccccccccc}
& e_{01} & e_{02} & e_{13} & e_{23} & e_{04} & e_{14} & e_{24} & e_{34} \\
e_{01} & 2 & 1 & -1 & 0 & 1 & -1 & 0 & 0 \\
e_{02} & 1 & 2 & 0 & -1 & 1 & 0 & -1 & 0 \\
e_{13} & -1 & 0 & 2 & 1 & 0 & 1 & 0 & -1 \\
e_{23} & 0 & -1 & 1 & 2 & 0 & 0 & 1 & -1 \\
e_{04} & 1 & 1 & 0 & 0 & 2 & 1 & 1 & 1 \\
e_{14} & -1 & 0 & 1 & 0 & 1 & 2 & 1 & 1 \\
e_{24} & 0 & -1 & 0 & 1 & 1 & 1 & 2 & 1 \\
e_{34} & 0 & 0 & -1 & -1 & 1 & 1 & 1 & 2
\end{array}\right), \\
& C=\left(\begin{array}{ccccccccc}
& e_{01} & e_{02} & e_{13} & e_{23} & e_{04} & e_{14} & e_{24} & e_{34} \\
e_{014} & 1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
e_{024} & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
e_{134} & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
e_{234} & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\
\frac{1}{\sqrt{2}}\left(e_{013}-e_{023}\right) & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0
\end{array}\right), \\
& C^{T} C=\left(\begin{array}{cccccccc}
\frac{3}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -1 & 1 & 0 & 0 \\
-\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} & -1 & 0 & 1 & 0 \\
\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} & 0 & -1 & 0 & 1 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{3}{2} & 0 & 0 & -1 & 1 \\
-1 & -1 & 0 & 0 & 2 & -1 & -1 & 0 \\
1 & 0 & -1 & 0 & -1 & 2 & 0 & -1 \\
0 & 1 & 0 & -1 & -1 & 0 & 2 & -1 \\
0 & 0 & 1 & 1 & 0 & -1 & -1 & 2
\end{array}\right),
\end{aligned}
$$

matrix of $\Delta_{1}=B^{T} B+C^{T} C$

$$
=\left(\begin{array}{cccccccc}
\frac{7}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{7}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & \frac{7}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{7}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 4
\end{array}\right)
$$

The eigenvalues of Δ_{1} are $\left(3_{5}, 5_{3}\right)$.
Example 6.16. Let G be an $(n-1)$-simplex, that is, the vertices are $\{0,1, \ldots, n-1\}$ and

$$
i \rightarrow j \Leftrightarrow i<j
$$

Let us show that

$$
A:=\text { matrix of } \Delta_{1}=\operatorname{diag}(n)
$$

Let $i j$ and $i^{\prime} j^{\prime}$ be two arrows. Then the $\left(i j, i^{\prime} j^{\prime}\right)$-entry of A is

$$
\begin{align*}
A_{i j, i^{\prime} j^{\prime}} & =\left(B^{T} B\right)_{i j, i^{\prime} j^{\prime}}+\left(C^{T} C\right)_{i j, i^{\prime} j^{\prime}} \\
& =\left[i j, i^{\prime} j^{\prime}\right]+\sum_{n}\left[i j, \gamma_{n}\right]\left[i^{\prime} j^{\prime}, \gamma_{n}\right] \tag{6.142}
\end{align*}
$$

where $\left\{\gamma_{n}\right\}$ is an orthonormal basis of Ω_{2}, which we may take to consist of all triangles in G.

If $i j=i^{\prime} j^{\prime}$ then $\left[i j, i^{\prime} j^{\prime}\right]=2$. Since the arrow $i j$ belongs to $(n-2)$ triangles γ_{n}, we obtain

$$
A_{i j, i j}=2+(n-2)=n
$$

that is, all the diagonal entries of Δ_{1} are equal to n. It remains to show that if $i j \neq i^{\prime} j^{\prime}$ then

$$
\begin{equation*}
A_{i j, i^{\prime} j^{\prime}}=0 \tag{6.143}
\end{equation*}
$$

If $i j$ and $i^{\prime} j^{\prime}$ have no common vertex then they cannot belong to the same triangle γ_{n} and, hence, all the terms in (6.142) vanish.

Suppose $i^{\prime}=i$ and $j^{\prime} \neq j$:

Then $\left[i j, i^{\prime} j^{\prime}\right]=1$ while $\left[i j, \gamma_{n}\right]\left[i^{\prime} j^{\prime}, \gamma_{n}\right]$ is nonzero only when γ_{n} is the triangle formed by i, j, j^{\prime}. In this case the arrows $i j$ and $i^{\prime} j^{\prime}$ have opposite orientations with respect to γ_{n}, whence $\left[i j, \gamma_{n}\right]\left[i^{\prime} j^{\prime}, \gamma_{n}\right]=-1$ and (6.143) follows.

Suppose $j^{\prime}=i$ and $i^{\prime} \neq j$:

Then $\left[i j, i^{\prime} j^{\prime}\right]=-1$ while $\left[i j, \gamma_{n}\right]\left[i^{\prime} j^{\prime}, \gamma_{n}\right]$ is nonzero only when γ_{n} is the triangle $i^{\prime} i j$. In this case the arrows $i j$ and $i^{\prime} j^{\prime}$ have the same orientation with respect to γ_{n}, whence $\left[i j, \gamma_{n}\right]\left[i^{\prime} j^{\prime}, \gamma_{n}\right]=1$ and again (6.143) follows.

The cases $j=i^{\prime}$ and $j=j^{\prime}$ are similar.

Problem 6.17. Describe all the digraphs for which Δ_{1} has only one eigenvalue.

Problem 6.18. Devise a program for computing the matrix and spectrum of Δ_{1} for large digraphs.

6.5 Trace of Δ_{1}

Recall that by (6.139)

$$
\operatorname{trace} \Delta_{0}=\sum_{i \in V} \operatorname{deg}(i)=2 E
$$

where E denotes the number of arrows. Here is a similar result for the trace of Δ_{1}.

Theorem 6.19. Let T be the number of triangles in Ω_{2}, S be the number of linearly independent squares in Ω_{2}, and D be the number of double arrows $a \rightleftarrows b$. Then

$$
\begin{equation*}
\operatorname{trace} \Delta_{1}=2 E+3 T+2 S+4 D \tag{6.144}
\end{equation*}
$$

By a square here we mean an allowed 2-path $e_{a b c}-e_{a b^{\prime} c}$ such that $a \neq c$ and $a \nrightarrow c$.

For example, for the pyramid from Example 6.15 we have $E=8, T=4, S=1$ and $D=0$, whence

$$
\operatorname{trace} \Delta_{1}=2 \cdot 8+3 \cdot 4+2 \cdot 1=30
$$

which matches the sum of the eigenvalues as well as the sum of the diagonal values of the matrix of Δ_{1} as determined there.
Proof. Let $\left\{\gamma_{n}\right\}$ be an orthogonal basis for Ω_{2}. Let us first prove that

$$
\begin{equation*}
\operatorname{trace} \Delta_{1}=2 E+\sum_{n} \frac{\left\|\partial \gamma_{n}\right\|^{2}}{\left\|\gamma_{n}\right\|^{2}} \tag{6.145}
\end{equation*}
$$

By (6.137), $\operatorname{trace} \Delta_{1}=\operatorname{trace} B^{T} B+\operatorname{trace} C^{T} C$. As we have seen above (see (6.141)), all the diagonal entries of $B^{T} B$ are equal to 2 so that

$$
\operatorname{trace} B^{T} B=2 E
$$

Let us compute trace $C^{T} C$. Without loss of generality assume that the basis $\left\{\gamma_{n}\right\}$ is orthonormal basis. Let $\left\{\alpha_{i}\right\}$ be the sequence of all arrows. Since $\left\{\alpha_{i}\right\}$ is an orthonormal basis for Ω_{1}, we have by (6.136)

$$
C=\left(\left\langle\partial \gamma_{n}, \alpha_{i}\right\rangle\right)_{n, i}
$$

and, hence,

$$
\left(C^{T} C\right)_{i j}=\sum_{n}\left\langle\partial \gamma_{n}, \alpha_{i}\right\rangle\left\langle\partial \gamma_{n}, \alpha_{j}\right\rangle
$$

It follows that

$$
\operatorname{trace} C^{T} C=\sum_{i} \sum_{n}\left\langle\partial \gamma_{n}, \alpha_{i}\right\rangle^{2}=\sum_{n} \sum_{i}\left\langle\partial \gamma_{n}, \alpha_{i}\right\rangle^{2}=\sum_{n}\left\|\partial \gamma_{n}\right\|^{2},
$$

whence (6.145) follows.
As we know, Ω_{2} has a basis $\left\{\gamma_{n}\right\}$ that consists of triangles, squares and double arrows. The only non-orthogonal pairs in
this basis are pairs of squares containing the same elementary 2-path, like $e_{a b c}-e_{a b^{\prime} c}$ and $e_{a b c}-e_{a b^{\prime \prime} c}$. Assume first that the entire basis $\left\{\gamma_{n}\right\}$ is orthogonal (which is equivalent to absence of multisquares).

A double arrow $a \rightleftarrows b$ gives two elements of the basis $\left\{\gamma_{n}\right\}$: $e_{a b a}$ and $e_{b a b}$. If $\gamma_{n}=e_{a b a}$ then

$$
\left\|\gamma_{n}\right\|^{2}=1, \quad \partial \gamma_{n}=e_{b a}+e_{a b}, \quad\left\|\partial \gamma_{n}\right\|^{2}=2
$$

and

$$
\frac{\left\|\partial \gamma_{n}\right\|^{2}}{\left\|\gamma_{n}\right\|^{2}}=2
$$

The same is true for $\gamma_{n}=e_{b a b}$ so that each double arrow contributes 4 to the sum

$$
\begin{equation*}
\sum_{n} \frac{\left\|\partial \gamma_{n}\right\|^{2}}{\left\|\gamma_{n}\right\|^{2}} \tag{6.146}
\end{equation*}
$$

If γ_{n} is a triangle $e_{a b c}$ then

$$
\left\|\gamma_{n}\right\|^{2}=1, \quad \partial \gamma_{n}=e_{b c}-e_{a c}+e_{a b}, \quad\left\|\partial \gamma_{n}\right\|^{2}=3
$$

whence

$$
\frac{\left\|\partial \gamma_{n}\right\|^{2}}{\left\|\gamma_{n}\right\|^{2}}=3
$$

so that each triangle contributes 3 to the sum (6.146).
If γ_{n} is a square $e_{a b c}-e_{a b^{\prime} c}$ then

$$
\left\|\gamma_{n}\right\|^{2}=2, \quad \partial \gamma_{n}=e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c}, \quad\left\|\partial \gamma_{n}\right\|^{2}=4
$$

so that

$$
\frac{\left\|\partial \gamma_{n}\right\|^{2}}{\left\|\gamma_{n}\right\|^{2}}=2
$$

so that each square contributes 2 to the sum (6.146). Hence, we obtain that the sum (6.146) is equal to $3 T+2 S+4 D$, which proves (6.144) in this case.

In the general case G may contain multisquares. Assume that G contains the following m-square

$$
a,\left\{b_{k}\right\}_{k=0}^{m}, c
$$

which gives rise to m linearly independent squares:

$$
\begin{equation*}
e_{a b_{0} c}-e_{a b_{1} c}, e_{a b c}-e_{a b_{2} c}, \ldots, e_{a b c}-e_{a b_{m} c} \tag{6.147}
\end{equation*}
$$

The sequence (6.147) is not orthogonal, and its orthogonalization gives the following sequence:

$$
\begin{aligned}
& \omega_{1}=e_{a b_{0} c}-e_{a b_{1} c} \\
& \omega_{2}=e_{a b_{0} c}+e_{a b_{1} c}-2 e_{a b_{2} c} \\
& \quad \ldots \\
& \omega_{k}=e_{a b_{0} c}+\ldots+e_{a b_{k-1} c}-k e_{a b_{k} c} \\
& \quad \ldots \\
& \omega_{m}=e_{a b_{0} c}+\ldots+e_{a b_{m-1} c}-m e_{a b_{m} c}
\end{aligned}
$$

(cf. Example 5.16). We have

$$
\begin{gathered}
\partial \omega_{k}=\left(e_{a b_{0}}+e_{b_{0} c}\right)+\ldots+\left(e_{a b_{k-1}}+e_{b_{k-1} c}\right)-k\left(e_{a b_{k}}+e_{b_{k} c}\right) \\
\left\|\partial \omega_{k}\right\|^{2}=2 k+2 k^{2},\left\|\omega_{k}\right\|^{2}=k+k^{2}
\end{gathered}
$$

whence

$$
\frac{\left\|\partial \omega_{k}\right\|^{2}}{\left\|\omega_{k}\right\|^{2}}=2
$$

Hence, each ω_{k} contributes 2 to the sum (6.146), which completes the proof.

Since the sum of all eigenvalues is trace Δ_{1} and the eigenvalue 0 has the multiplicity β_{1}, we obtain that the average of the positive eigenvalues is

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}
$$

6.6 An Upper Bound on $\lambda_{\max }\left(\Delta_{1}\right)$

Denote by $\lambda_{\text {max }}(A)$ the maximal eigenvalue of a symmetric operator A. Recall that, by Proposition 6.2,

$$
\lambda_{\max }\left(\Delta_{0}\right) \leq 2 \max _{i} \operatorname{deg}(i) .
$$

For any arrow $i \rightarrow j$ in G denote by $\operatorname{deg}_{\Delta}(i j)$ the number of triangles containing the arrow $i \rightarrow j$, and by $\operatorname{deg}_{\square}(i j)$ the number of squares containing $i \rightarrow j$.

Theorem 6.20. Assume that there is an orthogonal basis $\left\{\gamma_{n}\right\}$ for Ω_{2} that consists of triangles and squares. Then (6.148)

$$
\lambda_{\max }\left(\Delta_{1}\right) \leq 2 \max _{i} \operatorname{deg}(i)+3 \max _{i \rightarrow j} \operatorname{deg}_{\Delta}(i j)+2 \max _{i \rightarrow j} \operatorname{deg}_{\square}(i j)
$$

Proof. Recall that

$$
\lambda_{\max }\left(\Delta_{1}\right)=\sup _{u \in \Omega_{1} \backslash\{0\}}\left(\frac{\|\partial u\|^{2}}{\|u\|^{2}}+\frac{\left\|\partial^{*} u\right\|^{2}}{\|u\|^{2}}\right)
$$

Since the operators $\partial: \Omega_{1} \rightarrow \Omega_{0}$ and $\partial^{*}: \Omega_{0} \rightarrow \Omega_{1}$ are dual, they have the same norm. The norm of the latter was estimated in the proof of Proposition 6.2 (cf. (6.131)), whence we obtain the same estimate for the norm of the former, that is, for any non-zero $u \in \Omega_{1}$,

$$
\frac{\|\partial u\|^{2}}{\|u\|^{2}} \leq 2 \max _{i \in V} \operatorname{deg}(i)
$$

Let us prove that

$$
\begin{equation*}
\frac{\left\|\partial^{*} u\right\|^{2}}{\|u\|^{2}} \leq 3 \max _{i \rightarrow j} \operatorname{deg}_{\Delta}(i j)+2 \max _{i \rightarrow j} \operatorname{deg}_{\square}(i j) \tag{6.149}
\end{equation*}
$$

Let $u=\sum_{i \rightarrow j} u^{i j} e_{i j}$ and, hence,

$$
\|u\|^{2}=\sum_{i \rightarrow j}\left(u^{i j}\right)^{2}
$$

Using the basis $\left\{\gamma_{n}\right\}$ in Ω_{2}, we obtain

$$
\left\|\partial^{*} u\right\|^{2}=\sum_{n} \frac{\left\langle\partial^{*} u, \gamma_{n}\right\rangle^{2}}{\left\|\gamma_{n}\right\|^{2}}=\sum_{n} \frac{\left\langle u, \partial \gamma_{n}\right\rangle^{2}}{\left\|\gamma_{n}\right\|^{2}}
$$

If γ_{n} is a triangle $e_{a b c}$ then $\left\|\gamma_{n}\right\|=1$,

$$
\begin{gathered}
\left\langle u, \partial \gamma_{n}\right\rangle=\left\langle u, e_{b c}-e_{a c}+e_{a b}\right\rangle=u^{b c}-u^{a c}+u^{a b} \\
\left\langle u, \partial \gamma_{n}\right\rangle^{2} \leq 3\left(\left(u^{b c}\right)^{2}+\left(u^{a c}\right)^{2}+\left(u^{a b}\right)^{2}\right)
\end{gathered}
$$

Summing up over all triangles γ_{n} and using that any arrow $i \rightarrow j$ occurs in $\operatorname{deg}_{\Delta}(i j)$ triangles, we obtain

$$
\sum_{n: \gamma_{n} \text { is a triangle }} \frac{\left\langle u, \partial \gamma_{n}\right\rangle^{2}}{\left\|\gamma_{n}\right\|^{2}} \leq 3 \sum_{i \rightarrow j}\left(u^{i j}\right)^{2} \operatorname{deg}_{\Delta}(i j)
$$

$$
\begin{equation*}
\leq 3\|u\|^{2} \max _{i \rightarrow j} \operatorname{deg}_{\Delta}(i j) \tag{6.150}
\end{equation*}
$$

Let now γ_{n} be a square $e_{a b c}-e_{a b^{\prime} c}$ (such that $a \nrightarrow c$). Then $\left\|\gamma_{n}\right\|^{2}=2$,

$$
\begin{gathered}
\left\langle u, \partial \gamma_{n}\right\rangle=\left\langle u, e_{a b}+e_{b c}-e_{a b^{\prime}}+e_{b^{\prime} c}\right\rangle=u^{a b}+u^{b c}-u^{a b^{\prime}}-u^{b^{\prime} c} \\
\left\langle u, \partial \gamma_{n}\right\rangle^{2} \leq 4\left(\left(u^{a b}\right)^{2}+\left(u^{b c}\right)^{2}+\left(u^{a b^{\prime}}\right)^{2}+\left(u^{b^{\prime} c}\right)^{2}\right)
\end{gathered}
$$

Summing up over all squares γ_{n} and using that any arrow $i \rightarrow j$ occurs in $\operatorname{deg}_{\square}(i j)$ squares, we obtain

$$
\begin{align*}
\sum_{n: \gamma_{n} \text { is a square }} \frac{\left\langle u, \partial \gamma_{n}\right\rangle^{2}}{\left\|\gamma_{n}\right\|^{2}} & \leq 2 \sum_{i \rightarrow j}\left(u^{i j}\right)^{2} \operatorname{deg}_{\square}(i j) \\
& \leq 2\|u\|^{2} \max _{i \rightarrow j} \operatorname{deg}_{\square}(i j) \tag{6.151}
\end{align*}
$$

Adding up (6.150) and (6.151), we obtain (6.149).
Problem 6.21. How sharp is the upper bound on $\lambda_{\max }\left(\Delta_{1}\right)$ in (6.148)? Is it attained on some digraphs? Extend (6.148) to the general case when a basis of triangles and squares requires orthogonalization.

6.7 Examples of Computations of $\operatorname{spec} \Delta_{1}$

Example 6.22. Consider an octahedron based on a diamond:

For this digraph $V=6, E=12,\left|\Omega_{2}\right|=8$. The space Ω_{2} is generated by 8 triangles:

$$
\Omega_{2}=\left\langle e_{024}, e_{025}, e_{034}, e_{035}, e_{124}, e_{125}, e_{134}, e_{135}\right\rangle
$$

Hence, $T=8, S=0$, and we obtain

$$
\operatorname{trace} \Delta_{1}=2 E+3 T=48
$$

Since $\beta_{1}=0$, it follows that

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{48}{12}=4
$$

The eigenvalues of Δ_{1} are

$$
\left(2_{3}, 4_{6}, 6_{3}\right)
$$

where the subscript denotes the multiplicity.
Example 6.23. Consider a prism as in Example 5.24:

Since $E=9, T=2, S=3$, we have

$$
\operatorname{trace} \Delta_{1}=2 E+3 T+2 S=30
$$

and

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{30}{9}
$$

The eigenvalues of Δ_{1} are

$$
\left(2,\left(\frac{5}{2}\right)_{2}, 3_{3}, 4,5_{2}\right)
$$

Example 6.24. Consider a 3-cube:

We have $V=8, E=12,\left|\Omega_{2}\right|=6, H_{p}=\{0\}$ for $p \geq 1$. Space Ω_{2} is generated by 6 squares, so that

$$
S=6 \quad \text { and } \quad T=0 .
$$

Hence, we obtain by (6.144)

$$
\operatorname{trace} \Delta_{1}=2 E+2 S=2 \cdot 12+2 \cdot 6=36
$$

Since $\beta_{1}=0$, we obtain

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=3
$$

In fact, the eigenvalues of Δ_{1} on a 3-cube are

$$
\left(2_{6}, 3_{2}, 4_{3}, 6\right)
$$

Example 6.25. Let G be the n-cube, that is,

$$
G=I^{n \square}=\underbrace{I \square I \square \ldots \square I}_{n \text { times }}
$$

where $I=\{0 \rightarrow 1\}$ (see Subsection 3.4). Then

$$
V=2^{n}, \quad E=n 2^{n-1}, \quad S=\left|\Omega_{2}\right|=2^{n-3} n(n-1)
$$

and $T=0$. Hence,

$$
\operatorname{trace} \Delta_{1}=2 E+2 S=2^{n-2} n(n+3)
$$

and

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{2^{n-2} n(n+3)}{n 2^{n-1}}=\frac{n+3}{2} .
$$

For example, for the 4-cube we obtain

$$
\operatorname{trace} \Delta_{1}=2^{2} \cdot 4 \cdot 7=112
$$

The eigenvalues of Δ_{1} on the 4-cube are

$$
\left(2_{10}, 3_{8}, 4_{9}, 6_{4}, 8\right)
$$

For the 5-cube we obtain

$$
\operatorname{trace} \Delta_{1}=2^{3} \cdot 5 \cdot 8=320
$$

The eigenvalues of Δ_{1} on the 5-cube are

$$
\left(2_{15}, 3_{20}, 4_{25}, 5_{4}, 6_{10}, 8_{5}, 10\right)
$$

Problem 6.26. Determine the full spectrum of Δ_{1} on the n-cube. In particular, prove that

$$
\lambda_{\max }=2 n \quad \text { and } \quad \lambda_{\min }=2_{\frac{n(n+1)}{2}}
$$

Prove that $\operatorname{spec} \Delta_{1}$ consists of all even integers from 2 to $2 n$ and of all odd integers from 3 to n.

The difficulty here is that the method of separation of variables does not work for Δ_{1} on Cartesian products.

Example 6.27. Consider the 2-torus $G=T \square T$ where $T=$ $\{0 \rightarrow 1 \rightarrow 2 \rightarrow 0\}$.

Here $V=9, E=18,\left|\Omega_{2}\right|=9,\left|H_{1}\right|=2$. Space Ω_{2} is generated by 9 squares, whence

$$
\operatorname{trace} \Delta_{1}=2 \cdot 18+2 \cdot 9=54
$$

The eigenvalues of Δ_{1} on the 2-torus are

$$
\left(0_{2},\left(\frac{3}{2}\right)_{4}, 3_{8}, 6_{4}\right)
$$

For the 3-torus $G=T^{\square 3}$ we have

$$
E=81, \quad S=\left|\Omega_{2}\right|=81, \quad\left|H_{1}\right|=3,
$$

whence

$$
\operatorname{trace} \Delta_{1}=2 \cdot 81+2 \cdot 81=324
$$

The eigenvalues of Δ_{1} on the 3-torus are

$$
\left(0_{3},\left(\frac{3}{2}\right)_{12}, 3_{30},\left(\frac{9}{2}\right)_{16}, 6_{12}, 9_{8}\right)
$$

For the n-torus $G=T^{\square n}$ we have

$$
E=n 3^{n}, \quad S=\left|\Omega_{2}\right|=\frac{n(n-1)}{2} 3^{n},\left|H_{1}\right|=n,
$$

whence

$$
\operatorname{trace} \Delta_{1}=2 E+2 S=n(n+1) 3^{n}
$$

and

$$
\lambda_{\text {average }}=(n+1) \frac{3^{n}}{3^{n}-1} .
$$

Problem 6.28. Compute the full spectrum of Δ_{1} for the n-torus. In particular, prove that

$$
\lambda_{\max }=(3 n)_{2^{n}}
$$

In fact, $\lambda_{\min }=0_{n}$, which is a consequence of $\beta_{1}=n$.
Example 6.29. Consider a trapezohedron T_{m} (see Subsection 2.1 and Proposition 2.1).

For example, T_{4} is shown here:

We have $V=2 m+2, E=4 m$, while Ω_{2} is generated by $S=2 m$ squares. It follows that on T_{m}

$$
\text { trace } \Delta_{1}=2 E+2 S=12 m
$$

Since $\beta_{1}=0$, we obtain

$$
\lambda_{\text {average }}=\frac{\text { trace } \Delta_{1}}{E-\beta_{1}}=\frac{12 m}{4 m}=3 .
$$

In the case $m=2$ the eigenvalues of Δ_{1} are as follows:

$$
\left(2,3_{5}, \frac{7}{2} \pm \frac{1}{2} \sqrt{17}\right)
$$

where

$$
\begin{aligned}
& \lambda_{\min }=\frac{7}{2}-\frac{1}{2} \sqrt{17}=1.438 \ldots \quad \text { and } \\
& \lambda_{\max }=\frac{7}{2}+\frac{1}{2} \sqrt{17}=5.561 \ldots
\end{aligned}
$$

In the case $m=3$ the trapezohedron T_{3} coincides with a 3-cube, and as was already shown above, the eigenvalues of Δ_{1} are:

$$
\left(2_{6}, 3_{2}, 4_{3}, 6\right)
$$

In the case $m=4$ the characteristic polynomial of Δ_{1} is

$$
(z-2)(z-3)^{4}(z-5)\left(z^{2}-9 z+16\right)\left(z^{2}-4 z+\frac{7}{2}\right)^{2}\left(z^{2}-6 z+7\right)^{2}
$$

and the eigenvalues of Δ_{1} are

$$
\left\{2,3_{4}, 5, \frac{9}{2} \pm \frac{1}{2} \sqrt{17},\left(2 \pm \frac{1}{2} \sqrt{2}\right)_{2},(3 \pm \sqrt{2})_{2}\right\}
$$

with

$$
\begin{aligned}
& \lambda_{\min }=2-\frac{1}{2} \sqrt{2}=1.292 \ldots \quad \text { and } \\
& \lambda_{\max }=\frac{9}{2}+\frac{1}{2} \sqrt{17}=6.561 \ldots
\end{aligned}
$$

In the case $m=5$ the characteristic polynomial of Δ_{1} is

$$
\begin{aligned}
& (z-2)\left(z-\frac{5}{2}\right)^{4}(z-6)\left(z^{2}-10 z+20\right)\left(z^{2}-7 z+11\right)^{2} \\
& \quad \times\left(z^{2}-5 z+5\right)^{2}\left(z^{2}-4 z+\frac{11}{4}\right)^{2}
\end{aligned}
$$

and the eigenvalues of Δ_{1} are

$$
\left\{2,\left(\frac{5}{2}\right)_{4}, 6,5 \pm \sqrt{5},\left(\frac{7}{2} \pm \frac{1}{2} \sqrt{5}\right)_{2},\left(\frac{5}{2} \pm \frac{1}{2} \sqrt{5}\right)_{2},\left(2 \pm \frac{1}{2} \sqrt{5}\right)_{2}\right\}
$$

where
$\lambda_{\text {min }}=2-\frac{1}{2} \sqrt{5}=0.881 \ldots \quad$ and $\quad \lambda_{\max }=5+\sqrt{5}=7.236 \ldots$.
In the case $m=6$ the characteristic polynomial of Δ_{1} is
$(z-2)^{5}(z-3)^{7}(z-4)^{2}(z-7)(z-8)\left(z^{2}-3 z+\frac{3}{2}\right)^{2}\left(z^{2}-6 z+6\right)^{2}$,
and the eigenvalues of Δ_{1} are

$$
\left(2_{5}, 3_{7}, 4_{2}, 7,8,\left(\frac{3}{2} \pm \frac{1}{2} \sqrt{3}\right)_{2},(3 \pm \sqrt{3})_{2}\right)
$$

where

$$
\lambda_{\min }=\frac{3}{2}-\frac{1}{2} \sqrt{3}=0.633 \ldots \quad \text { and } \quad \lambda_{\max }=8
$$

In the case $m=7$ the characteristic polynomial of Δ_{1} is

$$
\begin{aligned}
& (z-2)(z-8)\left(z^{2}-12 z+28\right)\left(z^{3}-6 z^{2}+\frac{41}{4} z-\frac{29}{8}\right)^{2} \\
& \quad \times\left(z^{3}-10 z^{2}+31 z-29\right)^{2}\left(z^{3}-7 z^{2}+\frac{63}{4} z-\frac{91}{8}\right)^{2} \\
& \quad \times\left(z^{3}-8 z^{2}+19 z-13\right)^{2} .
\end{aligned}
$$

It has eigenvalues 2 and 8, and all other eigenvalues are irrational.
Problem 6.30. Determine the full spectrum of Δ_{1} on the trapezohedron T_{m} for any m. In particular, what are $\lambda_{\text {min }}$ and $\lambda_{\max }$?

Example 6.31. Consider a rhombic dodecahedron as in Example 5.25. The arrows go along edges from smaller numbers to larger ones.

Here $V=14, E=24, S=12, T=0$. It follows that

$$
\begin{aligned}
\operatorname{trace} \Delta_{1} & =2 E+2 S=72 \\
\lambda_{\text {average }} & =\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{72}{24}=3
\end{aligned}
$$

The characteristic polynomial of Δ_{1} is

$$
(z-1)^{3}(z-2)^{3}(z-3)^{9}(z-4)^{2}(z-7)\left(z^{2}-7 z+8\right)^{3}
$$

and the eigenvalues of Δ_{1} are

$$
\left(1_{3}, 2_{3}, 3_{9}, 4_{2}, 7,\left(\frac{7}{2} \pm \frac{\sqrt{17}}{2}\right)_{3}\right)
$$

Example 6.32. Consider a rhombicuboctahedron (see also Examples 5.17 and 5.28).

Here $V=24, E=48,\left|\Omega_{2}\right|=26 . \Omega_{2}$ is generated by 8 triangles and 18 squares so that $T=8, S=18$. Hence, we obtain

$$
\text { trace } \Delta_{1}=2 E+3 T+2 S=156
$$

Since $\beta_{1}=0$, we have

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{156}{48}=3.25
$$

A computation of the eigenvalues of Δ_{1} gives

$$
\lambda_{\min }=0.518 \ldots \quad \text { and } \quad \lambda_{\max }=7_{2} .
$$

There are many multiple eigenvalues: $1_{3}, 2_{3}, 3_{3}, 4_{4}, 5_{6}$, etc. The full spectrum of Δ_{1} is shown here:

Example 6.33. Consider the icosahedron as in Examples 1.16, 5.19.

We have here $V=12, E=30,\left|\Omega_{2}\right|=25$. The space Ω_{2} is generated by 20 triangles and 5 squares (cf. Example 5.19). Hence, $T=20, S=5$ and

$$
\operatorname{trace} \Delta_{1}=2 E+3 T+2 S=130
$$

Since $\beta_{1}=0$, we have

$$
\lambda_{\text {average }}=\frac{\operatorname{trace} \Delta_{1}}{E-\beta_{1}}=\frac{130}{30}=4.333 \ldots
$$

Computation shows that

$$
\lambda_{\min }=0.810 \ldots \quad \text { and } \quad \lambda_{\max }=(5+\sqrt{5})_{3} .
$$

Other multiple eigenvalues are 6_{5} and $(5-\sqrt{5})_{3}$. The full spectrum of Δ_{1} is shown here:

6.8 Eigenvalues of Δ_{1} on Trapezohedron

Here we give a partial answer to Problem 6.30. Recall that the trapezohedra T_{m} were defined in Subsection 2.1.

Proposition 6.34. For any $m \geq 2$, the operator Δ_{1} on the trapezohedron T_{m} has eigenvalues $\lambda=2$ and $\lambda=m+1$.

Proof. The vertices of T_{m} will be denoted as here:

Consider the following 1-paths on T_{m} :

$$
v=e_{i_{0} j_{1}}+e_{i_{1} j_{2}}+\ldots+e_{i_{m-1} j_{0}}-\left(e_{i_{0} j_{0}}+e_{i_{1} j_{1}}+\ldots+e_{i_{m-1} j_{m-1}}\right)
$$

$$
=\sum_{k=0}^{m-1}\left(e_{i_{k-1} j_{k}}-e_{i_{k} j_{k}}\right)
$$

where the index k is regarded $\bmod m$, and

$$
\begin{aligned}
u & =e_{a i_{0}}+e_{a i_{1}}+\ldots+e_{a i_{m-1}}-\left(e_{j_{0} b}+e_{j_{1} b}+\ldots+e_{j_{m-1} b}\right) \\
& =\sum_{k=0}^{m-1}\left(e_{a i_{k}}-e_{j_{k} b}\right)
\end{aligned}
$$

The 1-paths u and v are obviously allowed and, hence, ∂-invariant. We will prove that

$$
\Delta_{1} v=2 v \quad \text { and } \quad \Delta_{1} u=(m+1) u
$$

which will settle the claim. We have clearly

$$
\partial v=\sum_{k=0}^{m-1}\left(e_{j_{k}}-e_{i_{k-1}}-e_{j_{k}}+e_{i_{k}}\right)=0
$$

and, hence, $\partial * \partial v=0$.
In order to compute $\partial^{*} v \in \Omega_{2}$ we use the following orthogonal basis in Ω_{2} that consists of all $2 m$ squares in T_{m} :

$$
\varphi_{k}=e_{a i_{k-1} j_{k}}-e_{a i_{k} j_{k}} \quad \text { and } \quad \psi_{k}=e_{i_{k} j_{k} b}-e_{i_{k} j_{k+1} b}
$$

where $k=0, \ldots, m-1$ (cf. Proposition 2.1). We have for any k

$$
\begin{gathered}
\left\langle\partial^{*} v, \varphi_{k}\right\rangle=\left\langle v, \partial \varphi_{k}\right\rangle=\left\langle v, e_{i_{k-1} j_{k}}+e_{a i_{k-1}}-e_{i_{k} j_{k}}-e_{a i_{k}}\right\rangle=2 \\
\left\langle\partial^{*} v, \psi_{k}\right\rangle=\left\langle v, \partial \psi_{k}\right\rangle=\left\langle v, e_{j_{k} b}+e_{i_{k} j_{k}}-e_{j_{k+1} b}-e_{i_{k} j_{k+1}}\right\rangle=-2
\end{gathered}
$$

which together with $\left\|\varphi_{k}\right\|^{2}=\left\|\psi_{k}\right\|^{2}=2$ implies that

$$
\partial^{*} v=\sum_{k=0}^{m-1}\left(\varphi_{k}-\psi_{k}\right)
$$

Hence, we obtain

$$
\begin{aligned}
\Delta_{1} v=\partial \partial^{*} v= & \sum_{k=0}^{m-1}\left(\partial \varphi_{k}-\partial \psi_{k}\right) \\
= & \sum_{k=0}^{m-1}\left(e_{i_{k-1} j_{k}}+e_{a i_{k-1}}-e_{i_{k} j_{k}}-e_{a i_{k}}\right) \\
& -\sum_{k=0}^{m-1}\left(e_{j_{k} b}+e_{i_{k} j_{k}}-e_{j_{k+1} b}-e_{i_{k} j_{k+1}}\right) \\
= & 2 \sum_{k=0}^{m-1}\left(e_{i_{k-1} j_{k}}-e_{i_{k} j_{k}}\right)=2 v
\end{aligned}
$$

Next, let us compute $\partial^{*} u$. We have for any k,

$$
\begin{aligned}
& \left\langle\partial^{*} u, \varphi_{k}\right\rangle=\left\langle u, \partial \varphi_{k}\right\rangle=\left\langle u, e_{i_{k-1} j_{k}}+e_{a i_{k-1}}-e_{i_{k} j_{k}}-e_{a i_{k}}\right\rangle=0 \\
& \left\langle\partial^{*} u, \psi_{k}\right\rangle=\left\langle u, \partial \psi_{k}\right\rangle=\left\langle u, e_{j_{k} b}+e_{i_{k} j_{k}}-e_{j_{k+1} b}-e_{i_{k} j_{k+1}}\right\rangle=0
\end{aligned}
$$

whence $\partial^{*} u=0$ and, hence, $\partial \partial^{*} u=0$. It remains to compute $\partial^{*} \partial u$. We have

$$
\partial u=\sum_{k=0}^{m-1}\left(e_{i_{k}}-e_{a}-e_{b}+e_{j_{k}}\right)=\sum_{k=0}^{m-1}\left(e_{i_{k}}+e_{j_{k}}\right)-m\left(e_{a}+e_{b}\right)
$$

For any 0-path e_{i} and any 1-path $e_{\alpha \beta}$ we have

$$
\left\langle\partial^{*} e_{i}, e_{\alpha \beta}\right\rangle=\left\langle e_{i}, \partial e_{\alpha \beta}\right\rangle=\left\langle e_{i}, e_{\beta}-e_{\alpha}\right\rangle=\delta_{i \beta}-\delta_{i \alpha}
$$

whence

$$
\partial^{*} e_{i}=\sum_{\alpha \rightarrow \beta}\left(\delta_{i \beta}-\delta_{i \alpha}\right) e_{\alpha \beta}=\sum_{\alpha \rightarrow i} e_{\alpha i}-\sum_{i \rightarrow \beta} e_{i \beta}
$$

It follows that

$$
\begin{gathered}
\partial^{*} e_{i_{k}}=e_{a i_{k}}-e_{i_{k} j_{k}}-e_{i_{k} j_{k+1}} \\
\partial^{*} e_{j_{k}}=e_{i_{k-1} j_{k}}+e_{i_{k} j_{k}}-e_{j_{k} b} \\
\partial^{*} e_{a}=-\sum_{k=0}^{m-1} e_{a i_{k}}, \quad \partial^{*} e_{b}=\sum_{k=0}^{m-1} e_{j_{k} b}
\end{gathered}
$$

whence

$$
\begin{aligned}
\Delta_{1} u=\partial^{*} \partial u= & \sum_{k=0}^{m-1}\left(e_{a i_{k}}-e_{i_{k} j_{k}}-e_{i_{k} j_{k+1}}+e_{i_{k-1} j_{k}}+e_{i_{k} j_{k}}-e_{j_{k} b}\right) \\
& +m \sum_{k=0}^{m-1}\left(e_{a i_{k}}-e_{j_{k} b}\right) \\
= & (m+1) \sum_{k=0}^{m-1}\left(e_{a i_{k}}-e_{j_{k} b}\right)=(m+1) u
\end{aligned}
$$

which finishes the proof.

6.9 Spectrum of Δ_{p} on Join

In this section we use the augmented chain complex (3.46):

$$
\text { (6.152) } \mathbb{K} \stackrel{\partial}{\leftarrow} \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

Denote by $\widetilde{\Delta}_{p}$ the Hodge Laplacian associated with this complex. Of course, $\widetilde{\Delta}_{p}$ coincides with Δ_{p} for $p \geq 1$ but is different for $p=-1$ and $p=0$.

For example, we have for the chain complex (6.152)

$$
\left\langle\partial^{*} e, e_{i}\right\rangle=\left\langle e, \partial e_{i}\right\rangle=\langle e, e\rangle=1
$$

so that

$$
\partial^{*} e_{i}=\sigma:=\sum_{k \in V} e_{k}
$$

whence

$$
\tilde{\Delta}_{-1} e=\partial \partial^{*} e=\partial \sigma=|V| e
$$

In particular,

$$
\operatorname{spec} \widetilde{\Delta}_{-1}=\{|V|\}
$$

In the case $p=0$ we have

$$
\widetilde{\Delta}_{0} e_{i}=\partial^{*} \partial e_{i}+\partial \partial^{*} e_{i}=\partial^{*} e+\Delta_{0} e_{i}=\Delta_{0} e_{i}+\sigma
$$

that is,

$$
\left(\tilde{\Delta}_{0} e_{i}\right)^{j}=\left(\Delta_{0} e_{i}\right)^{j}+1
$$

Therefore, the matrix of $\widetilde{\Delta}_{0}$ is obtained from the matrix of Δ_{0} by adding 1 to each entry. For any $u \in \Omega_{0}$ we have

$$
\widetilde{\Delta}_{0} u=\Delta_{0} u+\left(\sum_{k \in V} u^{k}\right) \sigma .
$$

The advantage of using the chain complex (6.152) lies in the following statements.

Lemma 6.35 ([23, Lemma 5.5]). Let X, Y be two digraphs. Then, for $u \in \Omega_{p}(X), v \in \Omega_{q}(Y)$ and $r=p+q+1$, we have

$$
\begin{equation*}
\widetilde{\Delta}_{r}(u * v)=\left(\widetilde{\Delta}_{p} u\right) * v+u * \widetilde{\Delta}_{q} v . \tag{6.153}
\end{equation*}
$$

Theorem 6.36. Let X, Y be two digraphs. We have for any $r \geq 0$ (6.154)
$\operatorname{spec} \widetilde{\Delta}_{r}(X * Y)=\bigsqcup_{\{p, q \geq-1: p+q=r-1\}}\left(\operatorname{spec} \widetilde{\Delta}_{p}(X)+\operatorname{spec} \widetilde{\Delta}_{q}(Y)\right)$.
Here we denote by $\operatorname{spec} A$ a sequence of all the eigenvalues of the operator A counted with multiplicities. The sum of two such sequences consists of all pairwise sums of the elements of the sequences, and the disjoint union of sequences means the union of all sequences, summing up the multiplicities. In particular, if one of the sequences is empty then its sum with another sequence is also empty.

Proof of Theorem 6.36. Observe that if $u \in \Omega_{p}(X)$ and $v \in$ $\Omega_{q}(Y)$ are eigenvectors such that

$$
\widetilde{\Delta}_{p} u=\lambda u \quad \text { and } \quad \widetilde{\Delta}_{q} v=\mu v
$$

then we have by (6.153) for $r=p+q+1$:

$$
\widetilde{\Delta}_{r}(u * v)=\left(\widetilde{\Delta}_{p} u\right) * v+u * \widetilde{\Delta}_{q} v=(\lambda+\mu)(u * v)
$$

that is, $u * v$ is an eigenvector of $\widetilde{\Delta}_{r}$ on $X * Y$ with the eigenvalue $\lambda+\mu$.

In each $\Omega_{p}(X)$ there is a basis that consists of eigenvectors of $\widetilde{\Delta}_{p}$; denote by $\left\{u_{k}\right\}$ the union of all such bases of $\Omega_{p}(X)$ across all $p \geq-1$, with the corresponding eigenvalues $\left\{\lambda_{k}\right\}$. Let $\left\{v_{l}\right\}$ be a similar sequence on Y with the eigenvalues $\left\{\mu_{l}\right\}$. By Theorem 3.12, we have, for any $r \geq-1$,

$$
\Omega_{r}(X * Y) \cong \bigoplus_{\{p, q \geq-1: p+q=r-1\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right)
$$

that is, $\Omega_{r}(X * Y)$ has a basis

$$
\left\{u_{k} * v_{l}:\left|u_{k}\right|+\left|v_{l}\right|=r-1\right\}
$$

The elements of this basis are the eigenvectors of $\widetilde{\Delta}_{r}$ on $X * Y$ with eigenvalues $\lambda_{k}+\mu_{l}$, whence (6.154) follows.

In particular, for $r=0$ we have

$$
\begin{aligned}
\operatorname{spec} \widetilde{\Delta}_{0}(X * Y) & =\left(\operatorname{spec} \widetilde{\Delta}_{-1}(X)+\operatorname{spec} \widetilde{\Delta}_{0}(Y)\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}(X)+\operatorname{spec} \widetilde{\Delta}_{-1}(Y)\right) \\
& =\left(\{|X|\}+\operatorname{spec} \widetilde{\Delta}_{0}(Y)\right)
\end{aligned}
$$

$$
\begin{equation*}
\sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}(X)+\{|Y|\}\right) \tag{6.155}
\end{equation*}
$$

and for $r=1$

$$
\begin{aligned}
\operatorname{spec} \widetilde{\Delta}_{1}(X * Y) & =\left(\operatorname{spec} \widetilde{\Delta}_{-1}(X)+\operatorname{spec} \widetilde{\Delta}_{1}(Y)\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{1}(X)+\operatorname{spec} \widetilde{\Delta}_{-1}(Y)\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}(X)+\operatorname{spec} \widetilde{\Delta}_{0}(Y)\right) .
\end{aligned}
$$

Since $\widetilde{\Delta}_{1}=\Delta_{1}$, we conclude that

$$
\begin{aligned}
\operatorname{spec} \Delta_{1}(X * Y) & =\left(\{|X|\}+\operatorname{spec} \Delta_{1}(Y)\right) \\
& \sqcup\left(\operatorname{spec} \Delta_{1}(X)+\{|Y|\}\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}(X)+\operatorname{spec} \widetilde{\Delta}_{0}(Y)\right) .
\end{aligned}
$$

6.10 Spectrum of Δ_{1} on Digraph Spheres

Consider a family $\left\{S^{n}\right\}_{n=0}^{\infty}$ of digraphs that is defined inductively as follows: $S^{0}=\{\cdot, \cdot\}$ and

$$
S^{n+1}=\operatorname{sus}_{2} S^{n}
$$

For example, S^{1} is a diamond and S^{2} the octahedron (see also Example 3.10):

S^{1} is a diamond

S^{2} is an octahedron

The digraph S^{n} can be regarded as an analogue of an n-sphere. In the notation of Subsection 5.9, we have $S^{n}=D_{2}^{*(n+1)}$.
Proposition 6.37. We have for all $n \geq 0$ (6.157)

$$
\operatorname{spec} \Delta_{1}\left(S^{n}\right)=\left\{2(n-1)_{\frac{n(n+1)}{2}},(2 n)_{n(n+1)}, 2(n+1)_{\frac{n(n+1)}{2}}\right\} .
$$

Example 6.38. For example, we have

$$
\operatorname{spec} \Delta_{1}\left(S^{1}\right)=\left\{0,2_{2}, 4\right\}
$$

and

$$
\operatorname{spec} \Delta_{1}\left(S^{2}\right)=\left\{2_{3}, 4_{6}, 6_{3}\right\}
$$

as we have seen above. For $n=3$ we obtain from (6.157)

$$
\operatorname{spec} \Delta_{1}\left(S^{3}\right)=\left\{4_{6}, 6_{12}, 8_{6}\right\}
$$

Proof of Proposition 6.37. Let us first prove by induction that

$$
\begin{equation*}
\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n}\right)=\left\{(2 n)_{n+1},(2 n+2)_{n+1}\right\} \tag{6.158}
\end{equation*}
$$

For $n=0$ we have

$$
\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{0}\right)=\{0,2\}
$$

which verifies (6.158) for $n=0$. For the induction step from $n-1$ to n, let us observe that $S^{n}=S^{0} * S^{n-1},\left|S^{0}\right|=2$ and $\left|S^{n-1}\right|=2 n$, so that we obtain by (6.155)

$$
\begin{aligned}
\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n}\right) & =\left(\left\{\left|S^{0}\right|\right\}+\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n-1}\right)\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{0}\right)+\left\{\left|S^{n-1}\right|\right\}\right) \\
& =\left(\{2\}+\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n-1}\right)\right) \sqcup(\{0,2\}+\{2 n\}) \\
& =\left(\{2\}+\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n-1}\right)\right) \sqcup(\{2 n, 2 n+2\}) .
\end{aligned}
$$

By the induction hypothesis we have

$$
\begin{equation*}
\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n-1}\right)=\left\{(2 n-2)_{n},(2 n)_{n}\right\} \tag{6.159}
\end{equation*}
$$

whence

$$
\begin{aligned}
\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n}\right) & =\left\{(2 n)_{n},(2 n+2)_{n}\right\} \sqcup\{2 n, 2 n+2\} \\
& =\left\{(2 n)_{n+1},(2 n+2)_{n+1}\right\}
\end{aligned}
$$

which was to be proved.
Let us prove (6.157). For $n=0$ we have

$$
\operatorname{spec} \Delta_{1}\left(S^{0}\right)=\emptyset
$$

which matches (6.157). For the induction step from $n-1$ to n, we obtain by (6.156) and (6.159)

$$
\begin{aligned}
\operatorname{spec} \Delta_{1}\left(S^{n}\right) & =\left(\left\{\left|S^{0}\right|\right\}+\operatorname{spec} \Delta_{1}\left(S^{n-1}\right)\right) \\
& \sqcup\left(\operatorname{spec} \Delta_{1}\left(S^{0}\right)+\left\{\left|S^{n-1}\right|\right\}\right) \\
& \sqcup\left(\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{0}\right)+\operatorname{spec} \widetilde{\Delta}_{0}\left(S^{n-1}\right)\right) \\
& =\left(\{2\}+\operatorname{spec} \Delta_{1}\left(S^{n-1}\right)\right) \\
& \sqcup\left(\{0,2\}+\left\{(2 n-2)_{n},(2 n)_{n}\right\}\right) \\
& =\left(\{2\}+\operatorname{spec} \Delta_{1}\left(S^{n-1}\right)\right) \\
& \sqcup\left\{(2 n-2)_{n},(2 n)_{2 n},(2 n+2)_{n}\right\} .
\end{aligned}
$$

Using the induction hypothesis

$$
\operatorname{spec} \Delta_{1}\left(S^{n-1}\right)=\left\{2(n-2)_{\frac{n(n-1)}{2}}, 2(n-1)_{n(n-1)},(2 n)_{\frac{n(n-1)}{2}}\right\}
$$

we obtain

$$
\begin{aligned}
\operatorname{spec} \Delta_{1}\left(S^{n}\right) & =\left\{2(n-1)_{\frac{n(n-1)}{2}},(2 n)_{n(n-1)}, 2(n+1)_{\frac{n(n-1)}{2}}\right\} \\
& \sqcup\left\{2(n-1)_{n},(2 n)_{2 n}, 2(n+1)_{n},\right\} \\
& =\left\{2(n-1)_{\frac{n(n+1)}{2}},(2 n)_{n(n+1)}, 2(n+1)_{\frac{n(n+1)}{2}}\right\}
\end{aligned}
$$

which finishes the proof.

Acknowledgement

The author is grateful to Chao Chen for his $C++$ program for computation of path homology groups. The author is indebted to S. -T. Yau for initiating and leading the research on this subject as well as for his constant support and encouragement.

The author acknowledges a continued financial support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 - SFB 1283, as well as the hospitality and support of Tsinghua University (Beijing) and Chinese University of Hong Kong during multiple visits there.

Copyright

The copyright for this paper belongs to the author. Used with permission.

References

[1] Barcelo, H., Capraro, V., White, J.A., Discrete homology theory for metric spaces, Bull. London Math. Soc., 46 (2014) 889-905. MR3262192
[2] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Homology groups of cubical sets with connections, Applied Categorical Structures, 29 (2021) 415-429. MR4255582
[3] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Discrete cubical and path homologies of graphs, Algebr. Comb., 2 (2019) no. 3, 417-437. MR3968745
[4] Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, Ch., Foundations of a connectivity theory for simplicial complexes, Advances in Appl. Mathematics, 26 (2001) 97-128. MR1808443
[5] Bollobás, B., Erdös, P., Cliques in random graphs, Math. Proc. Camb. Phil. Soc., 80 (1976) 419-427. MR0498256
[6] Chen, B., Yau, S.-T., Yeh, Y.-N., Graph homotopy and Graham homotopy, Discrete Math., 241 (2001) 153-170. MR1861415
[7] Chowdhury, S., Gebhart, T., Huntsman, S., Yutin, M., Path homologies of deep feedforward networks, in: "18th IEEE International Conference on Machine Learning and Applications (ICMLA)", IEEE (2019) 1077-1082.
[8] Chowdhury, S., Huntsman, S., Yutin, M., Path homologies of motifs and temporal network representations, Applied Network Science, 7 (2022) 1-23.
[9] Chowdhury, S., Mémoli, F., Persistent path homology of directed networks, in: "Proceedings of the Twenty-Ninth Annual ACMSIAM Symposium on Discrete Algorithms", Society for Industrial and Applied Mathematics (2018) 1152-1169. MR3775863
[10] Cushing, D., Kamtue, S., Liu Shiping, Peyerimhoff, N., BakryÉmery curvature on graphs as an eigenvalue problem, Calc. Var, 61:62 (2022). https://doi.org/10.1007/s00526-021-02179-z. MR4376541
[11] Dimakis, A., Müller-Hoissen, F., Differential calculus and gauge theory on finite sets, J. Phys. A, Math. Gen., 27 (1994) no. 9, 3159-3178. MR1282159
[12] Dimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory, J. Math. Phys., 35 (1994) no. 12, 6703-6735. MR1303075
[13] Dimakis, A., Müller-Hoissen, F., Discrete Riemannian geometry, J. Math. Phys., 40 (1999) no. 3, 1518-1548. MR1674638
[14] Dlotko, P., Hess, K., Levi, R., Nolte, M., Muller, E., Reimann, M., Scolamiero, M., Turner, K., Markram, H., Topological analysis of the connectome of digital reconstructions of neural microcircuits, arXiv:1601.01580v1 (2016).
[15] Gerstenhaber, M., Schack, S.D., Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Algebra, 30 (1983) 143-156. MR0722369
[16] Grigor'yan, A., Jimenez, R., Muranov, Yu., Fundamental groupoids of digraphs and graphs, Czech Math J., 68 (2018) 35-65. MR3783584
[17] Grigor'yan, A., Jimenez, R., Muranov, Yu., Homology of digraphs, Math. Notes, 109 (2021) no. 5, 712-726. MR4250525
[18] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., On the path homology theory and Eilenberg-Steenrod axioms, Homology, Homotopy and Appl., 20 (2018) 179-205. MR3812462
[19] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., Homology of path complexes and hypergraphs, Topology and its Applications, 267 (2019) art. 106877. MR4002637
[20] Grigor'yan, A., Lin, Y., Muranov, Yu., Yau, S.-T., Homologies of path complexes and digraphs, arXiv:1207.2834v4 (2013)
[21] Grigor'yan, A., Lin, Y., Muranov, Yu., Yau, S.-T., Homotopy theory for digraphs, Pure Appl. Math. Quaterly, 10 (2014) no. 4, 619-674. MR3324763
[22] Grigor'yan, A., Lin, Y., Muranov, Yu., Yau, S.-T., Path complexes and their homologies, J. Math. Sciences, 248 (2020) no. 5, 564-599. MR3845076
[23] Grigor'yan, A., Lin, Y., Yau, S.-T., Analytic and Reidemeister torsions of digraphs and path complexes, arXiv:2012.07302 (2020).
[24] Grigor'yan, A., Muranov, Yu., On homology theories of cubical digraphs, to appear in Pacific J. Math.
[25] Grigor'yan, A., Muranov, Yu., Vershinin, V., Yau, S.-T., Path homology theory of multigraphs and quivers, Forum Math., 30 (2018) no. 5, 1319-1337. MR3849650
[26] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Graphs associated with simplicial complexes, Homology, Homotopy and Appl., 16 (2014) no. 1, 295-311. MR3211747
[27] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Cohomology of digraphs and (undirected) graphs, Asian J. Math., 19 (2015) 887-932. MR3431683
[28] Grigor'yan, A., Muranov, Yu., Yau, S.-T., On a cohomology of digraphs and Hochschild cohomology, J. Homotopy Relat. Struct.,

11 (2016) no. 2, 209-230. MR3511820
[29] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Homologies of digraphs and Künneth formulas, Comm. Anal. Geom., 25 (2017) no. 5, 969-1018. MR3733797
[30] Grigor'yan, A., Tang, X.X., Yau, S.-T., Linear join of digraphs and path homology, in preparation.
[31] Happel D., Hochschild cohomology of finite dimensional algebras, in: "Lecture Notes in Math", Springer-Verlag, 1404 (1989) 108-126. MR1035222
[32] Huntsman, S., Path homology as a stronger analogue of cyclomatic complexity, arXiv:2003.00944v2 (2020).
[33] Ivashchenko, A.V., Contractible transformations do not change the homology groups of graphs, Discrete Math., 126 (1994) 159-170. MR1264484
[34] Lippner, G., Horn, P., An example of a digraph with infinite homological dimension, private communication, 2012.
[35] Reimann, M.W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Dlotko, P., Levi, R., Hess, K., Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Frontiers in Computational Neuroscience, 11 (2017) article 49. https://doi.org/10.3389/fncom.2017.00048.
[36] Tahbaz-Salehi, A., Jadbabaie, A., Distributed coverage verification in sensor networks without location information, IEEE Transactions on Automatic Control, 55 (2010) 1837-1849. MR2681280
[37] Talbi, M.E., Benayat, D., Homology theory of graphs, Mediterranean J. of Math, 11 (2014) 813-828. MR3198642

[^0]: * Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany
 E-mail: grigor@math.uni-bielefeld.de

