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1. Introduction
In each mathematical field open problems are the lifeline that keeps the field

fresh and attractive. Birational geometry is one of those fields that has always
had plenty of open problems. It is then not surprising that over the years it has
attracted many brilliant minds. Some of these problems can be stated in very basic
terms but their solutions usually require a great understanding of various tools
and techniques some of which are specific to birational geometry itself and some
of which are borrowed from other areas of algebraic geometry and mathematics.

We list numerous open problems in birational geometry. This list is only a
sample of the many problems in the field. Also note that we do not aim to go
much into the history of the problems and related works. We usually only point
to one or two sources for more information.
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2. Preliminaries
2.1 Contractions

By a contraction we mean a projective morphism f : X → Y of schemes such
that f∗OX =OY ( f is not necessarily birational). In particular, f is surjective and
has connected fibres.

2.2 Pairs and Singularities

A pair (X ,B) consists of a normal quasi-projective variety X and a Q-divisor
B ≥ 0 such that KX +B is Q-Cartier. We call B the boundary divisor.

Let φ : W → X be a log resolution of a pair (X ,B). Let KW +BW be the pullback
of KX +B. The log discrepancy of a prime divisor D on W with respect to (X ,B) is
defined as

a(D,X ,B) := 1−µDBW

where µDBW denotes the coefficient of D in BW .
We say (X ,B) is lc (resp. klt)(resp. ε-lc) if a(D,X ,B) is ≥ 0 (resp. > 0)(resp.

≥ ε) for every D. This means that every coefficient of BW is ≤ 1 (resp. < 1)(resp.
≤ 1−ε). Note that since a(D,X ,B) = 1 for most prime divisors, we necessarily have
ε ≤ 1.

When we say a pair (X ,B) is projective we mean that X is projective.
By a Calabi-Yau pair (and log Calabi-Yau pair) we mean a projective pair

(X ,B) with lc singularities such that KX +B ∼Q 0.

2.3 b-Divisors

A b-Q-Cartier b-divisor over a variety X is the choice of a projective birational
morphism Y → X from a normal variety and an Q-Cartier Q-divisor M on Y up to
the following equivalence: another projective birational morphism Y ′ → X from a
normal variety and a Q-Cartier Q-divisor M′ define the same b-Q-Cartier b-divisor
if there is a common resolution W → Y and W → Y ′ on which the pullbacks of M
and M′ coincide.

A b-Q-Cartier b-divisor represented by some Y → X and M is b-Cartier if M is
b-Cartier, i.e. its pullback to some resolution is Cartier.

2.4 Generalised Pairs

A generalised pair consists of

• a normal quasi-projective variety X equipped with a projective morphism
X → Z,

• a Q-divisor B ≥ 0 on X , and
• a b-Q-Cartier b-divisor over X represented by some projective birational

morphism X ′ φ→ X and Q-Cartier Q-divisor M′ on X ′
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such that M′ is nef/Z and KX +B+M is Q-Cartier, where M := φ∗M′.
We refer to M′ as the nef part of the pair. Since a b-Q-Cartier b-divisor is

defined birationally, in practice we will often replace X ′ with a resolution and
replace M′ with its pullback. When Z is a point we drop it but say the pair is
projective.

Now we define generalised singularities. Replacing X ′ we can assume φ is a log
resolution of (X ,B). We can write

KX ′ +B′+M′ = φ
∗(KX +B+M)

for some uniquely determined B′. For a prime divisor D on X ′ the generalised log
discrepancy a(D,X ,B+M) is defined to be 1−µDB′.

We say (X ,B+M) is generalised lc (resp. generalised klt)(resp. generalised ε-lc)
if for each D the generalised log discrepancy a(D,X ,B+M) is ≥ 0 (resp. > 0)(resp.
≥ ε).

For the basic theory of generalised pairs see [15].

2.5 Minimal Models, Mori Fibre Spaces, and MMP

Let X → Z be a projective morphism of normal quasi-projective varieties and
D be an Q-Cartier Q-divisor on X . Let Y be a normal quasi-projective variety,
projective over Z, and φ : X 99K Y/Z be a birational map whose inverse does not
contract any divisor. Assume DY := φ∗D is also Q-Cartier and that there is a
common resolution g : W → X and h : W →Y such that E := g∗D−h∗DY is effective
and exceptional/Y , and Suppg∗E contains all the exceptional divisors of φ .

Under the above assumptions we call Y a minimal model of D over Z if DY is
nef/Z. On the other hand, we call Y a Mori fibre space of D over Z if there is an
extremal contraction Y → T/Z with −DY ample/T and dimY > dimT .

If one can run a minimal model program (MMP) on D over Z which terminates
with a model Y , then Y is either a minimal model or a Mori fibre space of D over Z.
If X is a Mori dream space, eg if X is of Fano type over Z, then such an MMP
always exists by [12].

3. Open Problems
We work over an algebraically closed field k of characteristic zero unless stated

otherwise.

3.1 Minimal Models

One of the central problems in the field concerns existence of minimal models
and Mori fibre spaces.

Conjecture 3.2 (Minimal model). Let (X ,B) be a projective lc pair. Then (X ,B)
has a minimal model or a Mori fibre space.
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When X is a smooth surface and B = 0, the statement was settled by the Italian
school of algebraic geometry in late 19th century and early 20th century, partic-
ularly, by Enriques and Castelnuovo. After contributions of many people in the
1970’s-early 1990’s notably by Kawamata, Kollár, Mori, Reid, Shokurov, this con-
jecture was settled in dimension 3. The conjecture was verified by Shokurov in
dimension 4. Birkar-Cascini-Hacon-McKernan [12] settled the conjecture for pairs
of general type with klt singularities, in any dimension. Birkar proved the con-
jecture in dimension 5 for pairs of non-negative Kodaira dimension. See [10] for
some more historical remarks, and [34, 33, 38, 37] for relevant work. Vanishing
theorems [27] play an important role in approaching this and related problems.

3.3 Termination

The standard approach to the minimal model conjecture is via running a min-
imal model program (MMP) on the pair concerned. Running this program needs
many ingredients of deep nature. All the necessary ingredients have been worked
out except the following.

Conjecture 3.4 (Termination). Let (X ,B) be a projective lc pair. Then every
MMP on (X ,B) terminates with a minimal model or a Mori fibre space.

This was proved in dimension 3 by Kawamata [25] and Shokurov, and partial
cases in dimension 4 by Birkar and Moraga [31].

3.5 Abundance

One of the top problems in birational geometry and more generally in algebraic
geometry is the next problem.

Conjecture 3.6 (Abundance). Let (Y,BY ) be a projective lc pair with KY +BY

nef. Then KY +BY is semi-ample, that is, there is a contraction h : Y → S and an
ample Q-divisor H on S such that

KY +BY ∼Q h∗H.

Equivalently, |m(KY +BY )| is base point free for some m ∈ N.

When X is a smooth surface and B = 0, the statement was settled by the
Italian school of algebraic geometry. The conjecture was proved in dimension 3
in a series of papers of Miyaoka and Kawamata, and Keel-Matsuki-McKernan. It
is also known in any dimension when (Y,BY ) is klt of general type. Otherwise, it
is wide open in dimension ≥ 4. For more details on the 3-dimensional case, see
[30, 28].

3.7 Non-vanishing

A problem closely related to the above conjectures is the following.
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Conjecture 3.8 (Non-vanishing). Let (X ,B) be a projective lc pair where KX +B
is pseudo-effective. Then the Kodaira dimension κ(KX +B)≥ 0. That is,

h0(X ,m(KX +B)) 6= 0

for some m ∈ N.

This is known up to dimension 3. It follows from the abundance conjecture.
Conversely, it is expected that it is a first step towards a proof of abundance.
Moreover, it is known that it implies the minimal model conjecture [9]. In other
words, this problem is at the root of both the minimal model conjecture and the
abundance conjecture.

3.9 Finite Generation

The following algebraic looking problem is closely related to the minimal model
conjecture. Its local version is related to existence of flips.

Conjecture 3.10 (Finite generation). Let (X ,B) be a projective lc pair. Then

R(KX +B) :=
⊕
m≥0

H0(X ,bm(KX +B)c)

is a finitely generated k-algebra where k is the ground field.

This follows from the minimal model conjecture and the abundance conjecture
combined. It is known in any dimension when (X ,B) is klt [12]. An independent
proof in the klt case was given by Cascini and Lazić following Siu. The lc case
in dimension 4 is a result of Fujino. See [17] and the references therein for more
information.

The conjecture in dimension d implies both the minimal model and the abun-
dance conjecture in dimension d −1 [21].

Conjecture 3.11 (Finite generation II). Let X be a normal projective variety and
B1, . . . ,Br be Q-divisors such that (X ,Bi) are all klt pairs. Then

R =
⊕

m1,...,mr≥0

H0(X ,
⌊
∑mi(KX +Bi)

⌋)
is a finitely generated k-algebra.

When all the Bi are big, the conjecture is known [12]. Even the case when r = 2
and B2 is big implies the abundance conjecture in the same dimension [19].

3.12 Generalised Minimal Models

A generalised pair is roughly a pair together with a nef divisor on some bira-
tional model. The theory of generalised pairs has been an important tool in many
developments in birational geometry in recent years.
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Conjecture 3.13. Let (X ,B+M) be a projective generalised lc pair. Then (X ,B+

M) has a generalised minimal model or a generalised Mori fibre space.

More precisely, we expect that we can run a minimal model program on the pair
which ends with a generalised minimal model or a generalised Mori fibre space.
This first appeared as a question in Birkar-Zhang [15, before Lemma 4.4]. It was
also highlighted later in work of J. Han and Zh. Li. The conjecture is proved by
Moraga in dimension 3, and also in dimenion 4 when KX +B is pseudo-effective,
under mild conditions [31].

3.14 Generalised Abundance

It is expected that any nef divisor on any Calabi-Yau variety X with hi(X ,OX )=

0 for 0 < i < dimX , is a semi-ample divisor. A much more general form of this is
the following abundance conjecture for generalised pairs.

Conjecture 3.15 (Lazić-Peternell). Let (X ,B) be a projective klt pair with KX +B
pseudo-effective. Let M be a nef Q-divisor on X . If KX +B+M is nef, then KX +

B+M ≡ L for some semi-ample Q-divisor L.

Some cases of the conjecture are proved in dimension 3 by Lazić-Peternell. See
[29] and references therein.

3.16 Iitaka Conjecture

One of the old problems that motivated the development of the minimal model
program is the following.

Conjecture 3.17 (Iitaka). Let f : X → Z be a contraction of smooth projective
varieties. Then

κ(KX )≥ κ(KF)+κ(KZ)

where F is a general fibre of f .

As usual κ denotes the Kodaira dimension. In any dimension, Viehweg proved
the conjecture when Z is of general type and Kollár proved the case when F is
of general type. Kawamata showed that the conjecture follows from the minimal
model and abundance conjectures combined. The conjecture is also known up to
dimension 6. See [26, 32, 11] and the references therein.

3.18 Effective Iitaka Fibration

Understanding pluricanonical and anti-pluricanonical systems on varieties are
central themes in algebraic geometry. In the case of varieties X of non-negative
Kodaira dimension, there is the associated Iitaka fibration X 99K Z where dimZ =

κ(KX ) and the very general fibres have Kodaira dimension zero. This map is define
by the linear system |mKX | for sufficiently divisible m ∈ N.
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Conjecture 3.19 (Iitaka). Let X be a smooth projective variety of dimension d
and Kodaira dimension κ(KX ) ≥ 0. Then there is a natural number m depending
only on d such that the pluricanonical system |mKX | defines the Iitaka fibration.

This is known for varieties of general type by a result of Hacon-McKernan
and Takayama. A more general result is proved in [23, 24]. Birkar and Zhang
essentially reduced the conjecture to the case κ(KX ) = 0 in [15].

3.20 Boundedness of Complements

Complements were introduced by Shokurov to study anti-pluri-canonical sys-
tems on varieties, in particular, Fano varieties. The following is one of the most
important problems in birational geometry and more generally algebraic geometry.

Conjecture 3.21 (Shokurov). Let d ∈N and let ε ∈Q>0. Then there is n ∈ N sat-
isfying the following. Let f : X → Z be a Fano contraction where X is of dimension
d with ε-lc singularities. Then for each z ∈ Z, there is B such that

• (X ,B) is a klt pair over a neighbourhood of z, and
• n(KX +B)∼ 0 over a neighbourhood of z.

This is known up to dimension 2 by a result of Birkar. It is known in any
dimension when Z is a point, in which case, the conjecture is equivalent to the
BAB conjecture which was proved by Birkar [6]. The conjecture can be viewed as
a relative version of the BAB conjecture. It implies many other results some of
which will be mentioned below.

Conjecture 3.22 (Shokurov). Let d ∈N and let Φ⊂ [0,1] be a finite set of rational
numbers. Then there is n ∈N satisfying the following. Let (X ,∆) be a projective lc
pair of dimension d such that KX +∆+L ∼Q 0 for some L ≥ 0. Then there is B ≥ ∆

such that

• (X ,B) is an lc pair, and
• n(KX +B)∼ 0.

The conjecture was proven by Birkar [7] in any dimension when X is of Fano
type, that is, when (X ,C) is klt and −(KX +C) is ample for some C, e.g. when X
itself is a klt Fano variety.

A special case of the conjecture is when L = 0 in which case the conjecture says
that the torsion index of KX +∆ is bounded. This is known as the index conjecture
for log Calabi-Yau varieties.

3.23 Boundedness of Singularities on Fibrations

Understading singularities on fibrations is an important ingredient of inductive
approaches to many problems.
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Conjecture 3.24 (Shokurov). Let d ∈ N and let ε ∈Q>0. Then there is δ ∈Q>0

satisfying the following. Let (X ,B) be a pair and let f : X → Z be a contraction
where

• (X ,B) is ε-lc and dimX −dimZ = d,
• KX +B ∼Q 0/Z, and
• −KX is big over Z.

Then there is a canonical bundle formula

KX +B ∼Q f ∗(KZ +BZ +MZ)

where BZ is the discriminant divisor and MZ is the moduli divisor such that (Z,BZ +

MZ) is a generalised δ -lc pair.

The divisor BZ measures the singularities of the fibres of f and the divisor MZ

measures the variation of the log fibres in their “moduli space”. In some formula-
tions of the conjecture instead of saying (Z,BZ +MZ) is generalised δ -lc, one says
that there is 0 ≤ NZ ∼Q MZ such that (Z,BZ +NZ) is a δ -lc pair.

The conjecture is known when (F,SuppBF) belongs to a bounded family where
F is a general fibre of f and BF = B|F [8]. Therefore, the conjecture holds if the
horizontal coefficients of B are ≥ t for some fixed t > 0; this is a consequence of [6, 8].
It is also known when d ≤ 1. Also, a global variant of the conjecture is established
in any dimension in [3]. A relatively easy argument reduces the conjecture to the
case when Z is a curve.

A special case of the conjecture is due to McKernan which says that if X → Z
is a Fano contraction where X is Q-factorial of dimension d with ε-lc singularities,
then Z has δ -lc singularities.

A consequence of the conjecture is the following simpler-looking problem.

Conjecture 3.25. Let d ∈ N and let ε ∈ Q>0. Then there is l ∈ N satisfying the
following. Let f : X → Z be a Fano contraction where X is ε-lc of dimension d and
Z is a smooth curve. Then for each z ∈ Z, every coefficient of f ∗z is ≤ l.

Conjecture 3.24 can be reduced to this one. This reduction is implicit in the
arguments of [8]. In particular, this also shows that Conjecture 3.21 implies Con-
jecture 3.24.

Mori and Prokhorov proved the latter conjecture in case X is a 3-fold with
terminal singularities [35]. The toric case was proved by Birkar and Y. Chen [13].

3.26 Minimal Log Discrepancies

Minimal log discrepancies measure the singularities of a pair around a point.
More precisely, given a pair (X ,B) and a closed point x ∈ X , the minimal log
discrepancy is defined as

mldx(X ,B) = inf{a(D,X ,B) | D prime divisor over X mapping to x}
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where a(D,X ,B) denotes the log discrepancy of D with respect to (X ,B). By D over
X we mean D is a divisor on some log resolution of X .

Conjecture 3.27 (Shokurov). Let d ∈ N and let Φ ⊂ [0,1] be a DCC set. Then
the set {mldx(X ,B)} satisfies the ACC where (X ,B) and x run through all the pairs
(X ,B) and closed points x ∈ X such that

• (X ,B) is of dimension d, and
• the coefficients of B are in Φ.

The conjecture was proved by Alexeev and Shokurov in dimension two. It is
also known for toric pairs by a result of Ambro, and known in some other special
cases. Otherwise it is wide open.

There is also the following related conjecture.

Conjecture 3.28 (Ambro). Let (X ,B) be a pair. Then mldx(X ,B) viewed as a
function on the set of closed points of X is lower semi-continuous.

Ambro proved the conjecture in dimension 3.
See [18] and the references therein for more on these conjectures which also

discusses the conjectures for generalised pairs. Shokurov proved that the two con-
jectures together imply the termination of flips conjecture.

3.29 Boundedness of Certain Rationally Connected Varieties

The next problem is a generalisation of the BAB conjecture.

Conjecture 3.30 (McKernan-Prokhorov). Let d ∈ N and let ε ∈ Q>0. Consider
projective pairs (X ,B) where

• (X ,B) is ε-lc of dimension d,
• −(KX +B) is nef, and
• X is rationally connected.

Then such X form a bounded family.

A slightly weaker form of this is known up to dimension 3 [14] which crucially
relies on [3].

3.31 Boundedness of Calabi-Yau Varieties

Boundedness of Fano varieties [6] and canonically polarised varieties [22] are
central results in birational geometry and moduli theory. One can ask whether
Calabi-Yau varieties and pairs also form bounded families under natural condi-
tions. It is well-known that K3 surfaces do not form a bounded family but they
are bounded topologically.
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Conjecture 3.32 (Yau). For fixed d, consider smooth projective varieties X of
dimension d with KX ≡ 0. Then such X are topologically bounded.

See page 3 of [42]. Also see [41] and the references therein for some related
results.

In any fixed dimension, boundedness of Calabi-Yau varieties with klt singular-
ities and with an ample Weil divisor of bounded volume is a result of Birkar [5].

3.33 Semi-ampleness of Moduli Divisors

Let (X ,B) be a projective lc pair and f : X → Z be a contraction such that
KX +B ∼Q 0/Z. Then the so-called canonical bundle formula says that we write

KX +B ∼Q f ∗(KZ +BZ +MZ)

where BZ is the discriminant divisor and MZ is the moduli divisor. The divisor
BZ measures the singularities of the fibres of f and the divisor MZ measures the
variation of the log fibres in their “moduli space”. Given any birational contraction
φ : Z′ → Z one can similarly define a discriminant divisor BZ′ and moduli divisor
MZ′ so that

KZ′ +BZ′ +MZ′ = φ
∗(KZ +BZ +MZ).

Actually φ∗BZ′ =BZ and φ∗MZ′ =MZ . An important result of Kawamata and Ambro
[1] (in the klt case which was extended to the lc case by Fujino and Gongyo) says
that MZ′ is nef and abundant when Z′ is a high enough resolution and that MZ′′ is
the pullback of MZ′ for any birational contraction Z′′ → Z′. But more is expected.

Conjecture 3.34. Let d ∈N and let Φ ⊂ [0,1] be a finite set of rational numbers.
Then there is n ∈ N satisfying the following. Let (X ,B) be a projective lc pair of
dimension d and f : X → Z be a contraction such that KX +B ∼Q 0/Z. Assume the
horizontal coefficients of B are in Φ. Then we have an adjunction formula

KX +B ∼Q f ∗(KZ +BZ +MZ)

and there is a resolution Z′ → Z so that nMZ′ is base point free.

This conjecture is widely open. See [36, §7 and 8] for more details, where the
conjecture is verified when dimX − dimZ = 1. Another version of the conjecture
just says that MZ′ is semi-ample without fixing n. This is also wide open but it is
known in some very special cases, e.g. dimZ = 1 and when the general fibres of f
are abelian varieties, see [20] and the reference therein.

3.35 Finiteness of Minimal Models

In dimension two if a pair has a minimal model, then the minimal model is
unique. In higher dimension uniqueness does not hold but the following conjecture
says that there should be finitely many in some sense.
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Conjecture 3.36 (Kawamata). Let (X ,B) be a projective klt pair. Then (X ,B)
has only finitely many Q-factorial minimal models, up to isomorphism.

Here we need to consider the minimal models (Y,BY ) up to isomorphism for-
getting the birational map X 99K Y . The conjecture is open from dimension 3.

3.37 The Cone Conjecture

Conjecture 3.36 is related to another more refined problem on the geometry
of cones on a Calabi-Yau pair. First we need to recall some notation. Let X be
a normal projective variety. Let N1(X) be the space of R-Cartier divisors on X
modulo numerical equivalence. We denote the closed cone in N1(X) generated
by nef divisors on X as A(X) and the closed cone generated by movable divisors
as M(X). The cone generated by effective divisors is denoted Be(X) (this is not
necessarily closed). Define

Ae(X) = A(X)∩Be(X) and Me(X) = M(X)∩Be(X).

Now assume (X ,B) is a projective pair. The group of automorphisms of X
mapping B to itself is denoted by Aut(X ,B). A pseudo-automorphism of X is a
birational map X 99K X which is an isomorphism in codimension one. The group
of pseudo-automorphisms mapping B to itself is denoted by PsAut(X ,B).

A small Q-factorial modification (SQM) of X is a birational map X 99KX ′ which
is an isomorphism in codimension one and where X ′ is a normal Q-factorial variety.

Conjecture 3.38 (Morrison-Kawamata-Totaro). Let (X ,B) be a Q-factorial pro-
jective klt Calabi-Yau pair. Then

1. the number of Aut(X ,B)-equivalence classes of faces of the cone Ae(X) corre-
sponding to birational contractions or fiber space structures is finite. More-
over, there exists a rational polyhedral cone Π which is a fundamental do-
main for the action of Aut(X ,B) on Ae(X) in the sense that

• Ae(X) =
⋃

g∈Aut(X ,B) g∗Π,
• IntΠ∩g∗ IntΠ = /0 unless g∗ = 1;

2. the number of PsAut(X ,B)-equivalence classes of chambers Ae(X ′) in the cone
Me(X) corresponding to SQMs X ′ of X is finite. Equivalently, the number
of isomorphism classes of SQMs of X (ignoring the birational identification
with X) is finite. Moreover, there exists a rational polyhedral cone Π′ which
is a fundamental domain for the action of PsAut(X ,B) on Me(X).

The conjecture was settled in dimension two by Totaro [39]. The conjecture
also makes sense in the relative setting. Kawamata proved the relative version for
3-folds with terminal singularities over a positive dimensional base when B = 0.

The conjecture was first proposed by Morrison for varieties, then generalised
to the relative setting by Kawamata for varieties and extended to pairs in the
relative setting by Totaro. For more on relevant results and history see [39].

July 2023 ICCM Notices 93



C. Birkar

3.39 Boundedness of Stein Degree

Let S → Z be a projective morphism between varieties and let S → V → Z be
the Stein factorisation. We define the Stein degree of S over Z to be sdeg(S/Z) :=
deg(V/Z). If S → Z is not surjective, this degree is 0 by convention.

Recall that a log Calabi-Yau fibration (X ,B)→ Z consists of an lc pair (X ,B)
and a contraction X → Z such that KX +B ∼Q 0/Z.

Conjecture 3.40 (Birkar). Let d ∈ N and let t ∈ R>0. Let (X ,B) → Z be a log
Calabi-Yau fibration of dimension d and let S be a horizontal/Z component of B
whose coefficient in B is ≥ t. Then sdeg(S/Z) is bounded from above depending
only on d, t.

The case t = 1 is a recent result of Birkar. This case has important applications
to boundedness of stable minimal models and to existence of their moduli spaces.
See [2] for more details.

A variant of the conjecture is of interest in arithmetic geometry, e.g. over
number fields.

Conjecture 3.41 (Birkar). Let d ∈ N and let t ∈ R>0. Let k be a field of charac-
teristic zero. Let (X ,B) be a log Calabi-Yau pair over k of dimension d and let S
be a component of B whose coefficient in B is ≥ t. Then

sdeg(S/Speck) = dimk H0(S,OS)

is bounded from above depending only on d, t.

3.42 Boundedness of Irrationality

An important problem in birational geometry is to check whether a variety is
rational or if not how far it is from being rational or at least from being ratio-
nally connected. There are different ways to measure the degree of irrationality or
irrational-connectedness.

The following problem was motivated by the study of degenerations of Fano
varieties.

Conjecture 3.43 (Birkar-Loginov). Let d ∈ N and let t ∈ R>0. Suppose that
f : (X ,B)→ Z is a Fano type log Calabi-Yau fibration where dimX = d. Assume S
is a component of B with coefficient ≥ t contracted to a point on Z. Then there is
a rational map S 99K T where the general fibres are rationally connected and T is
a smooth projective variety with bounded gonality.

By gonality of T we mean the least possible degree of dominant rational maps
T 99K PdimT . Without the Fano type assumption the answer to the question is
expected to be negative. For example, it is conjectured that gonality of K3 surfaces
F are not bounded but they appear as fibres of the log Calabi-Yau fibration
F ×Z → Z where the morphism is projection and Z is a smooth curve.
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The conjecture was confirmed when dimX = 3 and dimZ ≥ 1 by Birkar and
Loginov. See [4] for more details.

3.44 Rational Points on Varieties

Let k be a number field. For a variety over k and for a field extension k ⊂ k′

we denote the set of k′-rational points of X by X(k′). It is expected that there is a
close connection between the geometry of X and the properties of the sets X(k′).

Conjecture 3.45 (Bombieri-Lang). Let X be a smooth projective variety of gen-
eral type over a number field k. Then X(k′) is not Zariski dense for any finite field
extension k ⊂ k′.

This is known in dimension one by a result of Faltings.
In the opposite direction we have:

Conjecture 3.46 (Campana). Let X be a smooth projective variety over a number
field k. If X is Calabi-Yau or Fano, then X(k′) is Zariski dense for some finite
extension k ⊂ k′.

This is known for Fano surfaces and most Fano 3-folds but it seems it is not
known in full generality for Calabi-Yau surfaces. See [40] for more details.

Campana proposes a more general conjecture. He defines special varieties and
expects that the latter conjecture holds for them. See [16] for more details.

One can also consider pairs with singularities:

Conjecture 3.47. Let (X ,B) be a klt Calabi-Yau pair over a number field k. Then
X(k′) is Zariski dense for some finite extension k ⊂ k′.
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