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Abstract. Eisenstein congruences play an important role in modern
number theory. We survey some topics related to these congruences,
starting from the example of Ramanujan’s Delta function modulo 691.
This paper does not contain any new results, except Theorem 2.4.
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1. Introduction

1.1 The Example of Ramanujan’s Delta Function

This paper is a survey about (higher) Eisenstein congruences and their ap-
plications in number theory. As far as the author is aware, the first example of
Eisenstein congruences was found by Ramanujan in [46]. Consider the formal se-
ries ∆ = q∏n≥1(1−qn)24 = ∑n≥1 τ(n)qn (for τ(n) ∈ Z). Ramanujan proved that for
all prime p we have

τ(p)≡ 1+ p11 (modulo 691).
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More generally, we have τ(n)≡ σ11(n) (modulo 691), where σm(n) = ∑d|n dm. This
congruence is a consequence of the Eisenstein congruence

(1.1) ∆ ≡ E12 (modulo 691),

where

Ek =−Bk

2k
+ ∑

n≥1
σk−1(n)q

n

is the weight k Eisenstein series of level SL2(Z), Bk being the kth Bernoulli number.
This congruence can be proved by noticing that E2

6 is a linear combination of E12

and ∆ (cf. [49, §2.2]). The key fact is that the constant coefficient −B12
24 of E12

is divisible by 691. A more conceptual argument for this congruence consists in
noticing that the modular form E12 is cuspidal modulo 691, and thus must coincide
with ∆ modulo 691.

A different proof using modular symbols has been given by Manin in [31, §1.3].
The key fact used by Manin is a divisibility of special values of an L-function, which
we now explain. The L-function of ∆ is the Dirichlet series L(∆,s)=∑n≥1

τ(n)
ns , which

can be shown to extend to an entire function on C. The critical values of L(∆,s)
are the values for s = 1,2, . . . ,11. Manin proved (in much greater generality) that
the numbers

rm(∆) :=
(m−1)!im

(2π)m L(∆,m)

for m ∈ {1,3,5,7,9,11} are all proportional up to a rational number, i.e. the pro-
jective vector [r1(∆) : r3(∆) : . . . : r11(∆)] belongs to P5(Q) (cf. [31, §1.2]). In our
example (for the eigenform ∆), Manin computed[

r1(∆) : r3(∆) : . . . : r11(∆)
]

(1.2)

=

[
1 : − 691

22 ·34 ·5
:

691
23 ·32 ·5 ·7

: − 691
23 ·32 ·5 ·7

:
691

22 ·34 ·5
: −1

]
.

Manin then expressed the coefficients τ(n) of ∆ in terms of rm(∆) for m = 3,5,7,9
(the “Coefficients Theorem” of [31, §1.3]). Since these values are all divisible by 691
(up to a common transcendental factor called a period), Manin’s formula shows
that τ(n)≡ σ11(n) (modulo 691).

Thus, we have seen two ways of understanding the Eisenstein congruence (1.1):
either by observing that E12 is cuspidal modulo 691 (which requires the knowledge
of its constant coefficient), or by observing that the odd special values of L(∆,s)
are (up to a period) divisible by 691. Let us explain why the second observation
should be considered as a consequence of the first (at least philosophically).

The Eisenstein series E12 also has an associated L-function L(E12,s). One com-
putes easily that L(E12,s) = ζ (s)ζ (s−11) where ζ is the Riemann zeta function.
A congruence between eigenforms should philosophically give rise to a congruence
between special values of L-functions. Therefore, congruence (1.1) should imply

rm(∆)≡ rm(E12) (modulo 691).
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This does not quite make sense as the left-hand-side is likely transcendental, but
such a congruence should hold after dividing by an appropriate period. To avoid
choosing such a period, let us consider the corresponding element in the projective
space: one should expect

(1.3)
[
r1(∆) : r3(∆) : . . . : r11(∆)

]
≡
[
r1(E12) : r3(E12) : . . . : r11(E12)

]
(modulo 691),

both sides being in P5(Q). The functional equation of ζ gives r1(E12) =−r11(E12) 6=
0. Furthermore, since ζ (s) vanishes if s is an even negative integer, one sees that
rm(E12) = 0 for m ∈ {3,5,7,9}. Thus, we have [r1(E12) : r3(E12) : . . . : r11(E12)] = [1 :
0 : . . . : 0 : −1] in P5(Q). We thus expect the Eisenstein congruence (1.1) to yield[

r1(∆) : r3(∆) : . . . : r11(∆)
]
≡ [1 : 0 : . . . : 0 : −1] (modulo 691).

This is indeed true as (1.2) shows.
The same discussion applies for the even critical values. Manin showed that

[r2(∆) : r4(∆) : . . . : r10(∆)] belongs to P4(Q) and computed

[
r2(∆) : r4(∆) : . . . : r10(∆)

]
=

[
1 : − 52

24 ·3
:

5
22 ·3

: − 52

24 ·3
: 1

]
.

On the other hand, we have for m ∈ {2, . . . ,10} even

rm(E12) =
(m−1)!im

(2π)m ζ (m)ζ (m−11) =
B12−m

12−m
· Bm

2m
.

One gets [r2(E12) : r4(E12) : . . . : r10(E12)] = [1/1584 : 1/28800 : 1/63504 : 1/28800 :
1/1584], and one can then check that

(1.4)
[
r2(∆) : r4(∆) : . . . : r10(∆)

]
≡
[
r2(E12) : r4(E12) : . . . : r10(E12)

]
(modulo 691).

One thus sees that the congruence between modular forms (1.1) is reflected by
two different congruences (1.3) and (1.4) between special values of L-functions.
More precisely, (1.3) (resp. (1.4)) should be considered as a congruence modulo
691 in the space of even (resp. odd) weight 12 period polynomials. An even weight
k period polynomial (resp. odd weight k period polynomial) is simply an even
degree k−2 (resp. odd degree k−3) polynomial in C[X ] satisfying some functional
equations. We refer to Zagier [73, §2] for the original definition.

Let us note that the space of even weight k period polynomials has an Eisenstein
element in characteristic 0, i.e. an element annihilated by the Hecke operators
Tn −σk−1(n), which is simply the polynomial Xk−2 −1 corresponding to [1 : 0 : . . . :
0 : −1]. However, the space of odd weight k period polynomials does not have
any Eisenstein element. Zagier enlarged this latter space so that it contains an
Eisenstein element (cf. the polynomial p−k of [73, §2 Proposition]). Paşol and Popa
generalized Zagier’s definition to arbitrary weight and level in [44].

Thus, both congruences (1.3) and (1.4) can be considered as Eisenstein congru-
ences in certain (extended) spaces of period polynomials of weight 12. Let us note
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that (1.4) appears to be more complicated than the “trivial” congruence (1.3)
since the coefficients of the former involve Bernoulli numbers, while the latter
coefficients are almost all zero modulo 691.

1.2 Some Questions

Ramanujan’s Eisenstein congruence raises the following questions:

(Q1) If k ≥ 2 and Γ = Γ1(N) or Γ0(N), do we have “Eisenstein congruences” in
weight k and level Γ analogous to (1.1), (1.3) and (1.4) modulo some prime
power pr (where p is a prime ideal in the ring of integers of a number field)?
What can be said about pr? More generally, do we have “Eisenstein con-
gruences” for other spaces of automorphic forms, e.g. for Bianchi modular
forms (GL2 over an imaginary quadratic field), Shimura curves (non-definite
quaternion algebras) or over function fields?

(Q2) Since we know that r3(∆)
r1(∆)

, . . . , r9(∆)
r1(∆)

are divisible by p = 691, can we under-
stand the vector ( r3(∆)

p·r1(∆)
, . . . , r9(∆)

p·r1(∆)
) modulo p (“beyond” Eisenstein con-

gruences)? This would perhaps restore the balance between even and odd
period polynomials, since (1.4) appears to lie deeper than (1.3). Does this
question make sense in more general situations (e.g. weight k and level
Γ1(N))?

(Q3) What are the applications of Eisenstein congruences in algebraic number
theory or arithmetic geometry? For instance, can our Eisenstein congru-
ences for special values of L-functions give some results on the Bloch–Kato
conjecture (a generalization of the Birch and Swinnerton–Dyer conjecture
for elliptic curves)?

(Q4) On a more technical note, many of the known results (for GL2 /Q) on
Serre’s conjecture, the Fontaine–Mazur conjecture, R = T theorems, etc.,
require the Galois representation attached to our cuspidal eigenform to be
residually irreducible. What happens in the reducible case?

The goal of this expository paper is to survey some of the known results about
these four questions (which are obviously related to each other). The literature on
this topic being very large and the knowledge of the author being limited, we will
certainly miss some important results and fail to cite many papers. We apologize
for this and do not claim to be exhaustive in our survey.

2. Some Answers
One of the key objects used to study these questions is the Eisenstein ideal. This

was first defined by Mazur in weight 2 in his seminal 1977 paper “Modular curves
and the Eisenstein ideal” [32]. The Eisenstein ideal corresponding to an Eisenstein
series E is the annihilator I of E in “the” Hecke algebra T (over Z). Here, by T we
mean the Hecke algebra acting on all modular forms of a given weight and level
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(including Eisenstein series). The cuspidal quotient of T (acting on cuspforms) is
denoted by T0. It is not clear what the correct definition of T should be: which
operators should we include at primes dividing the level N? Some authors consider
T where the Atkin operators Up (for p | N) are included (e.g. [72] and other papers
of that author), while some authors consider instead the Atkin–Lehner involutions
w` when this makes sense (e.g. [43, 65] in squarefree level).

There are many results and conjectures related to the above questions. Let us
give a brief overview of some of these results and conjectures.

2.1 Overview of Q1

One “measure” of the Eisenstein congruences is the finite abelian group T0/I.
In particular, a prime p is in the support of T0/I if and only if there is a cuspidal
eigenform f (of our fixed weight and level) congruent to the Eisenstein series E
modulo a prime ideal dividing p. In weight 2 and level Γ0(N) for a prime N, Mazur
proved that T0/I is cyclic of order the numerator of N−1

12 (cf. [32, Proposition
II.9.7]). This number is (up to a factor 2) the constant coefficient at the cusp
infinity of the unique Eisenstein series in M2(Γ0(N)), which should be expected
since we are considering for which coefficient ring the Eisenstein series is cuspidal.

This result was generalized by Ohta in weight 2 and level Γ0(N) where N is
squarefree, after inverting 2 (cf. [43, Theorem 3.1.3]). As mentioned above, Ohta
includes the Atkin–Lehner involutions in the Hecke algebra T. Yoo proved a the-
orem similar to Ohta but including the operators Up instead of the Atkin–Lehner
involutions, in some cases after inverting 2 (cf. [69, Theorem 1.1] and [70, The-
orems 1.3 and 1.4]). In weight 2 and non-squarefree level, the `-primary part of
T0/I was determined for some choices of I and ` by Yoo in [72, Theorem 1.3 (2)
and Theorem 4.3].

In weight k > 2 and level SL2(Z), Kurihara showed that T0/I⊗Zp ' Zp /Bk ·Zp

for odd primes p with k < p−1 (cf. [21, Lemma 3.1]). This shows that the analogue
of Ramanujan’s congruence (1.1) holds in level SL2(Z) and weight k < p− 1 if p
divides Bk. Ohta considered the Hida theoretic analogue of T0/I in [40, Theorem
1.5.5]. His results should (by descent) yield a description of T0/I⊗Zp in weight k
and level Γ1(N) under the assumptions that p divides N but p does not divide ϕ(N)

(the Euler function), combined with some restrictions on the Eisenstein series E.
Ohta also computed the index T0/I (away from 2) in weight 2 and level Γ1(N)

when N is prime [42, Theorem II].
We thus have a good understanding of the generalization of the Eisenstein

congruence (1.1). Let us now turn to the two congruences (1.3) and (1.4). We
are basically asking whether a congruence between a cuspidal eigenform and an
Eisenstein series yields a congruence between special values of L-functions (possi-
bly twisted by Dirichlet characters).

Mazur studied this question in [33]. His setting was as above: weight 2 and level
Γ0(N) where N is prime. Mazur gave a congruence formula for L( f ,χ,1) for most
odd characters χ (cf. [33, §7 Proposition]). Vatsal greatly generalized Mazur’s

164 ICCM Notices Vol.11



On Eisenstein Congruences and Beyond

result in weight 2 and level Γ1(N) under some conditions on N and the Eisenstein
series E (cf. [61, Theorem 2.10]). As for Mazur’s result, the congruence only holds
for “half” of the special values, namely for those values L( f ,χ, i) where i and χ

satisfy a certain sign condition depending on E (cf. (2.2) below).
Vatsal and Heumann later generalized Vatsal’s results to any weight k ≥ 2 and

level Γ1(N) (cf. [15, Theorem 5.2]). Their assumptions are 2 ≤ k ≤ p−1 and p - N,
where p is the congruence prime. Again, there is a parity restriction on χ and i.
Let us mention that Hirano states in [16, Theorem 0.1] a generalization of the
Vatsal–Heumann result by allowing p | N. The author had a superficial look at
Hirano’s paper, and it seems to us that the statement of [16, Proposition 2.4] is
incorrect. Indeed, the left-hand side of [16, (2.3)] could a priori be of dimension
> 1 since the localization is only with respect to the maximal ideal M f (to get
dimension 1, one would need to localize at the height one prime ideal P f associated
with the cuspidal eigenform f ). We have not checked and do not know whether
Hirano’s proof of [16, Theorem 0.1] still holds.

All the congruences mentioned in the previous two paragraphs (Mazur, Vatsal,
Vatsal–Heumann and Hirano) are a generalization of (1.4): they involve some prod-
uct of (generalized) Bernoulli numbers. Let us give the main ideas behind these re-
sults. Let Γ= Γ0(N) or Γ= Γ1(N) for some N ≥ 1. Let us suppose we have an Eisen-
stein congruence f ≡ E (modulo ϖ r), where f is a cuspidal eigenform in Sk(Γ) and
ϖ is some uniformizer in a finite extension O of Zp. The Eichler–Shimura construc-
tion gives rise (after normalization) to a cohomology class δ α

f ∈ H1(Γ,Vk−2(O))±,
where Vk−2(R) are polynomials of degree ≤ k− 2 in R[X ]. The sign α = ±1 cor-
responds to the eigenvalue for the action of the complex conjugation. Stevens
defined similarly a cohomology class δE in weight 2 in [58] and [59] (there is only
one sign for E, which Vatsal–Heumann denote by sgn(E)). Vatsal and Heumann
generalize Stevens’ construction to any weight, and construct some cohomology
class δE ∈ H1(Γ,Vk−2(O))sgn(E). Since the Eisenstein series E is “cuspidal” modulo
ϖ r, the class δE modulo ϖ r belongs to H1

par(Γ,Vk−2(O/ϖ r))sgn(E), where H1
par is

the parabolic cohomology subgroup.
Let m be the maximal ideal of T corresponding to the congruence f ≡

E (modulo ϖ r). One can show that there is an isomorphism of T0
m-modules

(2.1) H1
par

(
Γ,Vk−2

(
O/ϖ

r))sgn(E)⊗T0 T0
m ' Hom

(
T0
m,O/ϖ

r).
In weight k = 2 this follows from Wiles’ work on Fermat’s Last Theorem [67], as
noticed by Vatsal in the proof of [61, Theorem 2.10]. The case k > 2 can be reduced
to the weight 2 case using Hida theory, as sketched at the end of the proof of [15,
Theorem 5.2].

By (2.1), we have δ
sgn(E)
f ≡ c · δE in H1

par(Γ,Vk−2(O/ϖ r))sgn(E) for some c ∈
(O/ϖ r)×, since these two classes are residually non trivial and have the same Hecke
eigenvalues modulo ϖ r by assumption. Here, the subscript H1

par means parabolic
cohomology. From this, Heumann and Vatsal manage to get a congruence between
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(normalized) L-values L( f ,χ, i) and L(E,χ, i). The sign restriction is

(2.2) (−1)i−1 ·χ(−1) = sgn(E).

For instance, in weight k and level SL2(Z), we have sgn(Ek) =−1.
What about congruence (1.3)? To our knowledge, even the obvious generaliza-

tion in weight k and level SL2(Z) is still open in general. The generalization of the
space of even polynomials of weight k in a ring R is the space SymbΓ(Vk−2(R))−sgn(E),
where if M is any Γ-module, SymbΓ(M) is the space of Γ-equivariant homomor-
phisms Z[P1(Q)]0 → M (the exponent 0 means divisors of degree zero). The
T-modules SymbΓ(Vk−2(R))−sgn(E) and H1(Γ,Vk−2(R))sgn(E) are dual.

Thus, to generalize (1.3) one would need H1(Γ,Vk−2(O/ϖ r))sgn(E) to be
locally free of rank one over T⊗O/ϖ r at m. It seems to us that by (2.1),
H1(Γ,Vk−2(O))sgn(E) ⊗T Tm should be isomorphic to HomZp(Tm,O) as a
Tm-module. One would need an isomorphism of Tm-modules Hom(Tm,Zp)' Tm,
i.e. that Tm is Gorenstein.

This is a difficult question, which is open in general. It is sufficient that I ·T0
m

be a principal ideal (cf. [10, Lemma 1.11] and [32, Proposition II.15.3]). Mazur
proved that I · T0

m is principal in weight 2 and level Γ0(N) if N is prime. In
weight k and level SL2(Z), Kurihara proved in [21, Theorem 0.4] that, under
the condition that C (Z[ζp])(ω

2−k
p ) = 0, the ideal I ·T0

m is principal if and only if
C (Z[ζp])(ω

1−k
p ) is cyclic, where ωp : Gal(Q(ζp)/Q)→ Z×

p is the Teichmüller char-
acter and C (Z[ζp])(ω

i
p) is ω i

p-eigenspace of the p-class group of Z[ζp]. These two
conditions on the class group are consequences of the Vandiver conjecture, but
remain open.

In conclusion, (1.4) generalizes well because it is related to some modular sym-
bols for which multiplicity-one is known, while the generalization of (1.3), while
expected in some cases, remains open because we do not know in general that the
Hecke algebra is Gorenstein at Eisenstein primes.

2.2 Overview of Q2

2.2.1 The Case of Weight k and Level 1

Let us first consider the situation in weight k and level SL2(Z). We have seen in
the previous section that if p ≥ 5 divides Bk and k ≤ p−1 then there is a cuspidal
eigenform f ∈ Sk(SL2(Z),O) congruent to Ek modulo ϖ r (where ϖ is a uniformizer
in a finite extension O of Zp and r ≥ 1 is maximal). Following Zagier [73, §2], one
can attach to f two period polynomials

r−f (X) = ∑
1≤m≤k−3

m odd

(
k−2

m

)
rm+1( f )Xm

and

r+f (X) = ∑
0≤m≤k−2
m even

(
k−2

m

)
rm+1( f )Xm
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where we recall that

rm+1( f ) =
m!im+1

(2π)m+1 L( f ,m+1).

We have r±f (X) ∈ SymbSL2(Z)(Vk−2(C))±. Fix embeddings Q ↪→ Qp and Q ↪→ C. By

the discussion of §2.1, one can find a period Ω
−
f ∈ C× such that

r−f (X)

Ω
−
f

∈O[X ] and

r−f (X)

Ω
−
f

≡ r−0 (X) (modulo ϖ
r),

where

r−0 (X) = ∑
−1≤m≤k−1

m odd

Bm+1

(m+1)!
Bk−m−1

(k−m−1)!
Xm

is Zagier’s odd Eisenstein extended period polynomial (denoted by p−k (X) in [73,
§2 Proposition]). Note that ϖ r | Bk

k! by assumption, so r−0 (X) is indeed a polynomial
modulo ϖ r (there is no term in X−1).

For even period polynomials, we have seen that conjecturally one expects the
existence of a period Ω

+
f ∈ C× (which can be taken to be L( f ,1)) such that

r+f (X)

Ω
+
f

∈
O[X ] and

(2.3)
r+f (X)

Ω
+
f

≡ r+0 (X) (modulo ϖ
r),

where
r+0 (X) = Xk−2 −1.

As explained in §2.1, (2.3) would hold true if we assume the following consequences
of Vandiver’s conjecture:

(2.4) C
(
Z[ζp]

)(
ω

2−k
p

)
= 0 and C

(
Z[ζp]

)(
ω

1−k
p

)
is cyclic.

We shall assume that the two conditions stated in (2.4) hold in what follows.
In particular, for any odd m ∈ {3, . . . ,k−3} we have ϖ r | rm( f )

L( f ,1) . Question 2 asks
what can be said about the vector(

rm( f )
ϖ r ·L( f ,1)

(modulo ϖ)
)

m∈{3,...,k−3}
∈ F

k
2−2
p

up to a non-zero scalar (since ϖ was chosen arbitrarily anyway). In other words,
can we determine the polynomial

r+1 (X)≡ ∑
2≤m≤k−4
m even

(
k−2

m

)
rm+1( f )

ϖ r ·L( f ,1)
Xm ∈ Fp[X ]

up to non-zero scalar? Sharifi conjectured a beautiful and amazingly simple for-
mula for that polynomial.
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In order to state his conjecture, let us introduce some notation. If A is a com-
mutative ring, let K2(A) be Quillen’s second K-group of A. If x and y are in A×, one
can define the Steinberg symbol {x,y} ∈ K2(A). It is bilinear in x and y and satisfies
the relation {x,y} = 0 whenever x+ y = 1 (this is called the Steinberg relation).
If A is a field, these Steinberg symbols and relations describe completely K2(A),
namely we have an isomorphism

K2(A)' A×⊗Z A×/
〈{

{x,y} : x+ y = 1
}〉

.

If A =OK,S is the S-ring of integers in a number field K, where S is a finite set of
primes, then we have an exact sequence

(2.5) 0 → K2(OK,S)→ K2(K)→
⊕
p6∈S

F×
p → 0,

the map K2(K)→F×
p being the tame symbol, i.e. it sends {x,y} to (−1)vp(x)vp(y) xvp(y)

yvp(x)

modulo p.
Let ζp ∈ Q be a primitive pth root of unity. There is an action of Gal(Q(ζp)/Q)

on K2(Z[ 1
p ,ζp]) and one can show that under our assumptions on class groups, there

is an isomorphism ϕ : (K2(Z[ 1
p ,ζp])⊗Z/pZ)(ω2−k

p )
∼−→ Z/pZ.

We can now state Sharifi’s conjecture (cf. [54, Conjecture 3]).

Conjecture 2.1 (Sharifi). One can normalize ϕ such that we have in Fp[X ]

r+1 (X) = ∑
2≤m≤k−4

m even

(
k−2

m

)
ϕ
(
{ηm+1,ηk−m−1}

)
Xm

where if j is odd, η j = ∏
p−1
a=1(1−ζ a

p )
a j−1 ∈ Z[ 1

p ,ζp]
×.

Since r+1 (X) is non-zero modulo p, Conjecture 2.1 implies the following purely
algebraic conjecture:

Conjecture 2.2. The Steinberg symbols {∏
p−1
a=1(1−ζ a

p )
am
,∏

p−1
a=1(1−ζ a

p )
ak−2−m} for

even m ∈ {2, . . . ,k−4} generate (K2(Z[ 1
p ,ζp])⊗Z/pZ)(ω2−k

p ).

As far as we know, Conjecture 2.2 remains open. This is a refined version of an
earlier conjecture of McCallum and Sharifi [37, Conjecture 5.3], which was made
before Sharifi discovered the relation between Steinberg products and Eisenstein
congruences. The best result we currently have toward Conjecture 2.1 is the fol-
lowing

Theorem 2.3. Under the assumption (2.4), Conjectures 2.1 and 2.2 are equiva-
lent.

Let us give the idea of the proof. One easily sees that for any prime `, there
exists c` ∈ Fp such that
(2.6)

(
T`− `k−1 −1

)(
r+1

)
= c` · r+0 ,

where T` is the `th Hecke operator.
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Furthermore, there exists ` such that c` 6= 0, i.e. r+1 is not annihilated by the
Eisenstein ideal I but instead by I2. We call r+1 a higher Eisenstein element. The
notion of higher Eisenstein elements was introduced in my thesis in Mazur’s setting
[25]. The vector consisting of the c`’s is unique up to scaling; let us fix some
particular choice. Under (2.4), the relation (2.6) (for all `) characterizes uniquely
r+1 modulo a multiple of r+0 . Let us note that we do not have a simple formula for
the coefficients c`. They may be expressed using Merel’s type formulae on Hecke
operators acting on Manin symbols [38], but it is unclear whether the resulting
formula can be simplified.

Let us assume Conjecture 2.2. To prove Conjecture 2.1, it is enough to prove
that the polynomial ∑ 2≤m≤k−4

m even

(k−2
m

)
ϕ({ηm+1,ηk−m−1})Xm is annihilated by I2 (it

cannot be annihilated by I because otherwise it would be proportional to r+0 ,
which is clearly not the case since it is non-zero and its coefficient in Xk−2 is zero).
It suffices to show that the image of

∑
2≤m≤k−4
m even

(
k−2

m

)
ϕ
(
{ηm+1,ηk−m−1}

)
Xm

in H1
par(SL2(Z),Vk−2(Fp)) is annihilated by I. This has been proved by Fukaya–Kato

in [12, Theorem 5.2.3]. Fukaya and Kato actually work in level Γ1(p) and weight
2, but it is well-known that one can always pass from modular symbols of level
SL2(Z) and weight k modulo p to modular symbols of level Γ1(p) and weight 2
modulo p (with nebentype ωk−2

p ).
There is actually a whole sequence of higher Eisenstein elements, r+0 , r+1 , . . . ,r

+
g

in Fp[X ] for some g ≥ 1. They satisfy (T` − `k−1 − 1)(r+i ) = c` · r+i−1 modulo the
subgroup generated by r+0 , . . . ,r

+
i−2, for all primes ` and 1 ≤ i ≤ g. The element

r+i is uniquely determined by this property, modulo the subgroup generated by
r+0 , . . . ,r

+
i−1. These elements are the key to go beyond the Eisenstein congruence

(2.3). It would be very interesting to know r+2 , when it exists.
Similarly, there exists a sequence of higher Eisenstein elements r−0 , r−1 , . . . ,r

−
g ;

these are extended period polynomials (with coefficients in Xk−1 and X−1). We
do not know what the coefficients of r−1 are. Presumably, these should be linear
combinations of products of Bernoulli numbers and Steinberg symbols. We still
have some non-trivial information about r−1 . To our knowledge, although this result
is not deep it is new.

Theorem 2.4. Assume that Conjecture 2.1 is true. Write

r−1 = ∑
−1≤m≤k−1

m odd

am ·Xm

for am ∈ Fp. Then we have in Fp:
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(4−2k) ·ak−1 + ∑
1≤m≤k−3

m odd

am

= ∑
m+n≥k−2

m even ≥2,n odd ≥1

(
n

k−2−m

)
ϕ
(
{ηm+1,ηk−m−1}

) Bn+1

(n+1)!
Bk−n−1

(k−n−1)!
.

This common quantity is zero if and only if g ≥ 2.

Note that ϕ is only unique up to a scalar, but that scaling it also scales the
coefficients am by the same factor (because the coefficients c` above will also be
scaled by that factor).

Let us sketch a proof. If R is a commutative ring in which (k− 1)! is invert-
ible, let Ŵk−2(R) be Zagier’s space of extended period polynomials of weight
k (cf. [73, §2 Theorem]). It decomposes into even and odd parts: Ŵk−2(R) =
Ŵk−2(R)+

⊕
Ŵk−2(R)−. We have Ŵk−2(R)+ ⊂ R[X ]k−2 while Ŵk−2(R)− ⊂ X−1 ·R[X ]k.

The spaces Ŵk−2(R)± carry an action of Hecke operators.
There is a perfect Hecke equivariant bilinear pairing • : Ŵ+

k−2(Fp)×Ŵ−
k−2(Fp)→

Fp defined by the formula

∑
0≤m≤k−2
m even

am ·Xm • ∑
−1≤n≤k−1

n odd

bn ·Xn 7→ ∑
m+n≥k−2

m even and n odd

δn ·
m!n!

(m+n− k+2)!(k−2)!
·am ·bn

where δn = 1 except if n = k−1 in which case δn = 2. This definition is taken from
a formula of Kohnen and Zagier (generalizing an earlier formula of Haberland)
expressing the Petersson product of two modular forms as a pairing between their
(extended) period polynomials (cf. [20, p. 246]). The Hecke property satisfied by
the higher Eisenstein elements shows that the pairing r+i •r−j depends only on i+ j,
is zero if i+ j < g and non-zero if i+ j = g.

We have checked that the identity of Theorem 2.4 holds using the tables of
Sharifi and McCallum [37] available on Sharifi’s webpage [51] for p≤ 1129. It turns
out that for p ≤ 1129, we have g ≥ 2 only when (p,k) = (547,486). This example
has already been noticed by Calegari in his computations on Galois deformations
[4, p. 68]. When g ≥ 2, there exist higher Eisenstein elements r−2 and r+2 . We do not
know any explicit result concerning these elements, and in particular concerning
the pairing r+1 • r−2 = r+2 • r−1 .

2.2.2 Sharifi’s Conjecture in Weight 2

Sharifi’s conjecture has been stated more generally in weight k = 2 and level
Γ1(N). We refer the reader to [52, Conjecture 5.8] for the original conjecture, and
to [53, Conjecture 4.3.5] for a slightly more general formulation. One should be
able to formulate the conjecture in weight k > 2 using Hida theory, but we are
not aware of such a formulation in the literature, except in the case of level N = 1
considered above. Let us briefly explain what the conjecture says (in weight 2).

Let H1(X1(N),cusps,Z) be the singular homology relative to the cusps of the
(compact) modular curve X1(N) of level Γ1(N). If α and β are in P1(Q), let {α,β}∈
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H1(X1(N),cusps,Z) be the class of the closed geodesics in the upper-half plane
between α and β (this is called a modular symbol). If (u,v) ∈ (Z/N Z)2 is such
that gcd(u,v,N) = 1, let ξ (u,v)∈ H1(X1(N),cusps,Z) be the modular symbol { b

d ,
a
c}

where
(

a b
c d

)
∈ SL2(Z) is such that (c,d) ≡ (u,v) (modulo N); one can check that

this does not depend on the choice of
(

a b
c d

)
. Manin proved that the elements ξ (u,v)

(called Manin symbols) generate H1(X1(N),cusps,Z), and also determined all the
relations satisfied by these elements [30, §1.9 Theorem].

Using Manin’s presentation of H1(X1(N),cusps,Z), Sharifi defined a map

ϖ : H1
(
X1(N),Co,Z

)
→ K2

(
Z
[

ζN ,
1
N

])
⊗Z

[
1
2

]
where Co is the subset of cusps in X1(N) not lying over the cusp ∞ of X0(N). This
map is characterized by the beautiful formula

ϖ
(
ξ (u,v)

)
=
{

1−ζ
u
N ,1−ζ

v
N

}
for u,v ∈ (Z/N Z)−{0}. Sharifi conjectured the following:

Conjecture 2.5 (Sharifi). The map ϖ is annihilated by the Eisenstein ideal I
generated by the Hecke operators T`− `−〈`〉 for primes ` - N, where 〈`〉 is the `th
diamond operator. (There is also a conjecture regarding the Hecke operators for
` | N.)

Much is now known about this conjecture. Fukaya and Kato proved it after
tensoring with Zp when p ≥ 5 divides N (cf. [12, Theorem 5.2.3]). More recently,
Sharifi and Venkatesh proved that the restriction of ϖ to H1(X1(N),Z) is annihi-
lated by I (cf. [53, Theorem 4.3.7]). Their proof uses the K-theory of G2

m and its
relation with motivic cohomology.

The result of Sharifi and Venkatesh should yield a generalization of Theorem 2.3
in weight 2 and level Γ1(N), under the condition that the Hecke algebra Tm is
Gorenstein at an Eisenstein maximal ideal m (without this condition, we do not
even have a generalization of (1.3), as explained above). The Gorenstein property
has been proved in certain specific situations (e.g. by Skinner and Wiles [55] and
Ohta [41, Theorem 3.3.2]), but does not hold in general.

Let us describe one situation where Skinner and Wiles prove that Tm is a
complete intersection, and a fortiori Gorenstein. Let N ≥ 1 be prime to p and such
that p - ϕ(N). Let ϕ : (Z/N pZ)× → O× be a primitive even Dirichlet character,
where O is a finite unramified extension of Zp (one can also view φ as having
values in C). Let χ = ϕ ·ωp : (Z/N pZ)× → O×. Assume that p does not divide
the χ-eigenspace of the class group of the extension Qχ of Q cut out by χ (this
is equivalent to the fact that a certain generalized Bernoulli number is prime to
p). There is an Eisenstein series E1,ϕ whose `th Fourier coefficient is 1+`ϕ(`) (for
a prime `). The L-function of E1,ϕ is ζ (s)L(ϕ,s− 1). Let I be the corresponding
Eisenstein ideal, generated by the Hecke operators T`−1− `〈`〉 and 〈`〉−ϕ(`) for
primes ` - N p, and by U`− 1 for ` | N p. There is a unique maximal ideal m of T
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containing I and p. Skinner and Wiles proved that Tm is a complete intersection,
by identifying Tm with a minimal universal deformation ring [55, Theorem 6.1]
(cf. also the discussion of [41, Remark 3.3.3] for the Hecke operators U`).

In this particular situation, one has an Eisenstein congruence similar to (1.3).
Namely, assume that there exists f ∈ S2(Γ1(N p)) such that

(2.7) f ≡ E1,ϕ (modulo π
r)

for some uniformizer π in a finite extension of Zp and some r ≥ 1. Let ψ be an even
Dirichlet character of conductor m, and assume for simplicity that gcd(m,N p) = 1.
We have L(Eϕ,1,ψ,1)= L(ψ,1)L(ψϕ,0)= 0 if ψ 6= 1. If ψ = 1, then L(E1,ϕ ,ψ,1) 6= 0.
There exists a period Ω

+
f such that for all even ψ 6= 1 of conductor m prime to

N p, we have
τ(ψ)L( f ,ψ,1)

Ω
+
f

≡ 0 (modulo π
r)

and
L( f ,1)

Ω
+
f

≡ 1 (modulo π
r).

Here, τ(ψ) is the Gauss sum associated with ψ.
The analogue of Conjecture 2.1 is the following. There should exist a surjective

group homomorphism α : (K2(Z[ζN p])⊗Z O)(ϕ)→ Z/pZ such that

τ(ψ)L( f ,ψ,1)

πrΩ+
f

≡ α

(
Norm

{
∏

a∈(Z/mZ)×

(
1−ζ

a
m

)ψ−1(a)
, ∏

a∈(Z/mN pZ)×

(
1−ζ

a
mN p

)(ϕ−1ψ)(a)
})

(modulo π)

where Norm : K2(Z[ζmN p]) → K2(Z[ζN p]) is the norm map and (ϕ) means the
ϕ-eigenspace. In particular, we expect that the Eisenstein congruence (2.7) implies
(K2(Z[ζN p])⊗O)(ϕ) 6= 0. Although we have not checked it, this may follow from
Ohta’s computation of T0/I [40, Theorem 1.5.5]. A similar statement has been
proved by Ohta in level Γ1(N) when N is prime.

Given the results of Fukaya–Kato or Sharifi–Venkatesh, we expect that a re-
sult similar to Theorem 2.3 holds. We have not checked the details though. Let
us briefly explain the appearance of the norm in the formula. The special value
τ(ψ)L( f ,ψ,1)

πrΩ
+
f

is related to the modular symbol

Θψ = ∑
a∈(Z/mZ)×

ψ
−1(a)

{
∞,

a
m

}
∈ H1

(
X1(N),O

)+
(the ‘+’ being for the action of the complex conjugation). We want to compute
ϖ(Θψ), but we cannot do so directly because Θψ cannot be explicitly written as
a combination of Manin symbols ξ (u,v).
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Nevertheless, we can go up to level Γ1(mN p) and express WmN p(Θψ) as a combi-
nation of Manin symbols there, where WmN p is the Atkin–Lehner involution. One
can then use Sharifi’s conjecture at level mN p and descend using the norm. We
need a certain compatibility between the maps ϖ when changing levels; this has
been done in [68] and [26]. This whole procedure has been carried out in at level
Γ1(N) when N is prime in [27].

2.2.3 Mazur’s Case

The phenomenon of “higher Eisenstein congruences” for modular symbols dis-
covered by Sharifi had actually been noticed in a very special case by Mazur [32],
although Mazur does not phrase it in terms of K-theory and cup products. Mazur’s
setting is that of weight 2 and level Γ0(N). This situation has been studied exten-
sively and we have many additional results in this case. We thus spend some time
to describe these results in more detail.

Assume that N is prime and let p ≥ 5 be a prime dividing N −1. In this case,
there is only one Eisenstein series

E2,N =
N −1

24
+ ∑

n≥1

(
∑
d|n

gcd(d,N)=1

d

)
qn.

Let I ⊂T be the corresponding Eisenstein ideal. Mazur proved (cf. [32, Proposition
II.18.8]) that there is a unique maximal ideal m containing I and p. He also proved
that there is a group isomorphism

(2.8) M : H1
(
X0(N),Zp

)+
/I ·H1

(
X0(N),Zp

)+ ∼−→ (Z/N Z)×⊗Zp

sending a Manin symbol ξ (u,v) to uv−1 ⊗1 (where u, v ∈ (Z/N Z)×).
The map M defined in (2.8) can actually be deduced from Sharifi’s map ϖ as

follows: there is a commutative diagram

H1(X1(N),Co,Zp)
+ K2(Z[ζN ,

1
N ])⊗Zp

H1(X0(N),Zp)
+/I ·H1(X0(N),Zp)

+ (Z/N Z)×⊗Zp

ϖ

π ∂

M

where π : H1(X1(N),Co,Zp)
+ →H1(X0(N),Zp)

+ is induced by the forgetful map and
∂ : K2(Z[ζN ,

1
N ])→ (Z/N Z)×⊗Zp is the tame symbol map as in (2.5).

Fix a surjective group homomorphism log : (Z/N Z)× →Z/pZ (which is similar
to the choice of ϕ just above Conjecture 2.1). By duality, the group homomorphism

log◦M : H1
(
X0(N),Z/pZ

)+
/I ·H1

(
X0(N),Z/pZ

)+ → Z/pZ

gives an element e−1 ∈ H1(X0(N),Z/pZ)− annihilated by I. One can lift e−1 to
H1(Y0(N),Z/pZ)−. This lift is unique up to a multiple of e−0 , where e−0 is the class
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of a little loop around the cusp ∞. Note that e−0 is annihilated by I. The element
e−1 satisfies the property (in H1(Y0(N),Z/pZ)−)

(2.9) (T`− `−1)
(
e−1

)
= (`−1) log(`) · e−0

for all primes ` - N.
The relation (2.9) is the analogue of (2.6) in weight k and level 1, with the

notable difference that the coefficient c` in Mazur’s case is very explicit: it is
simply (`−1) log(`). Using the so called winding homomorphism, Mazur deduces
that there is a group isomorphism I/I2 ⊗Z/pZ ∼−→ Z/pZ given by

(2.10) T`− `−1 7→ (`−1) log(`)

(cf. [32, Proposition II.18.9]). This is a beautiful formula: it essentially gives higher
Eisenstein congruences for cuspforms.

Mazur attributes this formula in the case N = 11 to Serre [32, p. 139]. If N = 11
and p = 5, we have S2(Γ0(11)) = C · f where f = q∏n≥1(1−qn)2

∏n≥1(1−q11n)2. We
know that f ≡ E2,11 (modulo p). Formula (2.10) tells us that one can normalize
log : (Z/11Z)× → Z/5Z so that for all prime ` 6= 11, we have

(2.11) a`( f )≡ `+1+ p · (`−1) log(`) (modulo p2),

where a`( f ) is the `th Fourier coefficient of f . As Mazur notes, it turns out that
we need to choose log(−3) = 2. For a thorough discussion of this example and its
history, see [62, §1.1.1].

A key remark is that (2.11) may be rewritten as

(2.12) a`( f )≡ χ(`)−1 + `χ(`) (modulo p2),

where χ : (Z/11Z)× → (Z/25Z)× is given by χ(`) = 1+5log(`). This implies that
the Galois representation J0(11)[25] is reducible, i.e. its trace is the sum of two char-
acters. This is remarkable, because the Eisenstein congruence f ≡E2,11 (modulo p)
a priori only tells us that J0(11)[5] is reducible. To our knowledge, this remark was
first made by Calegari in [4, p. 68]. Wake called this phenomenon extra-reducibility
in [62]. He also generalized (2.12) in weight k (under some assumptions) (cf. [62,
Corollary 5.2.5]).

This extra-reducibility has been used in a crucial way in my work on higher
Eisenstein elements, but in a different form. Namely, we reinterpret (2.12) by
saying that

f ≡
E1,χ +Eχ−1,1

2
(modulo p2)

for some standard Eisenstein series E1,χ and Eχ−1,1 in M2(Γ1(11)). Thus, our extra-
reducibility is in some sense explained by the modular curve X1(11). This is not
surprising, as Mazur’s proof of (2.8) uses the Shimura covering X1(N) → X0(N).
Of course all this discussion is not specific to N = 11; it can be generalized to any
prime N as above.
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Let us conclude this paragraph by mentioning that even in Mazur’s case,
Sharifi’s conjecture yields more information than the extra-reducibility considered
above. Namely, one can use Sharifi’s map ϖ : H1(X1(N),Co,Zp)

+ → K2(Z[ζN ,
1
N ])⊗

Zp to construct the second higher Eisenstein element e−2 ∈ H1(Y0(N),Z/pZ)−

(when it exists). The element e−2 is uniquely determined modulo the subgroup
generated by e−0 and e−1 , and satisfies the equation

(T`− `−1)
(
e−2

)
= (`−1) log(`) · e−1 (modulo (Z/pZ) · e−0 ).

We refer to [28, Theorem 1.12] for a formula for e−2 . The element e−2 does not arise
from any extra-reducibility; it is thus in some sense more mysterious than e−1 .

We should really view e−2 as the true analogue of r+1 (cf. (2.6)) in weight k
and level 1 (where there is no extra-reducibility). Although the higher Eisenstein
element e+1 has been determined in [25] using the extra-reducibility, we do not
know a formula for e+2 (when it exists, i.e. when e−2 exists). This is similar to the
fact that the higher Eisenstein element r−1 in weight k and level 1 is not explicitly
known.

2.3 Overview of Q3

Eisenstein congruences have been used to prove many important results in
number theory. We survey a few of these results, but given the vast literature on
the subject our coverage is far from exhaustive.

Possibly one of the first applications is the pioneering work of Mazur and Tate
[35]. They prove that no elliptic curve over Q has a rational point of order 13,
which is equivalent to the fact that X1(13) has no rational points except its 6
rational cusps. To do so, they rely on the fact that J1(13) has a rational point
of order 19 (in the cuspidal group). Although they do not use Eisenstein ideals
explicitly, this rational point is explained by an Eisenstein congruence modulo 19.
These ideas were used extensively later by Mazur in [32] to determine the possible
rational torsion of elliptic curves over Q. Mazur’s torsion theorem is crucial in
the proof of Fermat’s last theorem, as was noted by Serre in his proof of [50,
Proposition 6].

Another pioneering work using Eisenstein congruences is the work of Ribet
on class groups of cyclotomic fields [47]. Ribet proved that if p is an odd prime
and χ : (Z/pZ)× → Z×

p is an odd character, then the χ−1-eigenspace of the p-class
group of Q(ζp) is non-trivial if the generalized Bernoulli number B1,χ is not coprime
to p (the converse is an older result of Herbrand).

Ribet’s idea is quite simple: the condition that B1,χ is not coprime to p im-
plies that there is an Eisenstein congruence between a cuspidal eigenform and the
Eisenstein series E1,ω−1

p χ
. One can use this cusp form to construct a Galois repre-

sentation ρ : Gal(Q/Q)→ GL2(Fp) which is reducible and cuts out an everywhere
unramified Z/pZ-extension L of Q(ζp) such that Gal(Q(ζp)/Q) acts by χ−1 on
Gal(L/Q(ζp)). Class field theory then yields the result on the class group of Q(ζp).
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One may summarize Ribet’s idea by saying that an Eisenstein congruence relates
the geometry/arithmetic of GL2 /Q (e.g. cuspidal eigenforms) to the arithmetic of
GL1 /Q (e.g. class groups). This is also a motivating idea in Sharifi’s conjecture
(cf. [13, §1.2])

Ribet’s idea has been vastly generalized and is a central tool for people work-
ing in Iwasawa theory. For instance, Mazur and Wiles proved the Iwasawa main
conjecture for cyclotomic fields using these kinds of ideas [36]. Wiles then general-
ized these techniques to prove the Iwasawa main conjecture for totally real fields
[66]. Skinner and Urban have used Eisenstein congruences for the unitary group
GU(2,2) to prove a divisibility in the Iwasawa main conjecture for elliptic curves
[57].

In another direction, Ribet’s idea has been used by Calegari and Emerton in [5]
to prove the following beautiful result. Let N and p be primes ≥ 5 with p | N −1,
as in Mazur’s setting. If the quantity ∏

N−1
2

k=1 kk is a pth power modulo N, then the
p-class group of Q(N1/p) is not cyclic. Their proof relies on two ingredients: a
criterion of Merel for the rank of T0

m to be ≥ 2 [39] and a careful analysis of the
Galois representation J0(N)[I3, p] (which is not reducible as noted before). Cale-
gari and Emerton’s result has recently been proved using only classical algebraic
number theory in [24] and then refined in [48].

Lang and Wake [22] have also recently used Eisenstein congruences to prove
that if N and p are primes ≥ 5 such that p divides N +1, then p divides the class
number of Q(N1/p). They prove that there is an Eisenstein congruence in weight
2 and level Γ0(N2). Although unlike Mazur’s case there is no extra-reducibility
associated with this Eisenstein congruence, they show that after restricting their
Galois representation to Q(N1/p) the representation becomes extra-reducible.

We have seen in §2.2 that Eisenstein (higher) congruences provide (higher) con-
gruences for special values of L-functions. The Bloch–Kato conjecture relates these
special values to Selmer groups, in a way generalizing the Birch and Swinnerton-
Dyer conjecture for elliptic curves. One may thus ask whether Eisenstein con-
gruences can be used to prove results toward the Bloch–Kato conjecture. Mazur
proved that this is indeed the case [33].

For the sake of simplicity, let us consider the simplest application of Mazur’s
result. Denote by E the elliptic curve over Q given by X0(11). Let D < 0 be a
fundamental discriminant coprime with 11 so that 11 is inert in Q(

√
D). We denote

by E(D) the quadratic twist of E by Q(
√

D). Mazur then proved that p divides the
algebraic part of L(E(D),1) if and only if the p-part of the Selmer group of E(D)

(over Q) is non-trivial. This is predicted by the BSD conjecture for E(D).
Mazur’s proof is rather indirect: he first proves that p divides the algebraic

part of L(E(D),1) if and only if p divides h(D) (the class number of Q(
√

D)). His
proof uses a congruence similar to (1.4), involving products of Bernoulli numbers.
Mazur then proves that p divides h(D) if and only if the p-part of the Selmer
group of E(D) is non-trivial. This can be shown using Galois cohomology. The key
idea is that the residual Galois representation modulo p is reducible, so the Selmer
group is related to a class group.

176 ICCM Notices Vol.11



On Eisenstein Congruences and Beyond

Very recently, the author and Jun Wang tackled the same situation as Mazur
but for D > 0 and 11 splitting in Q(

√
D) (cf. [27]). This was left open in Mazur’s

paper. The main reason is that the “trivial” Eisenstein congruence of the type
(1.3) is not good enough: it only gives

Lalg(E(D),1
)
≡ 0 (modulo 5),

where Lalg(E(D),1) is the “algebraic part” of L(E(D),1).
One needs a “higher” congruence for the special values L(E(D),1) modulo 25.

Such a congruence can be obtained using Sharifi’s conjecture, and more precisely
the element e−2 considered at the end of §2.2. It takes the form

(2.13) Lalg(E(D),1
)
≡ 5 · (∗) ·

(
h(D) · log

(
u(D)

))2 (modulo 25),

where (∗) is a non-zero easy factor, u(D) is a fundamental unit of Q(
√

D) and
log : O×

Q(
√

D)
→ Z/5Z is a discrete logarithm modulo 11. The author gave another

proof of (2.13) in using Mazur’s element e−1 and a formula of Waldspurger and
Popa for the special value L(E/Q(

√
D),1) (cf. [23, Equation (26)]).

Using Galois cohomological methods, Wang and I then proved that h(D) ·
log(u(D)) ≡ 0 (modulo 5) if and only if the 5-part of the Selmer group of E(D) is
non-trivial. Putting this together with (2.13), we get that 25 divides Lalg(E(D),1)
if and only if the 5-part of the Selmer group of E(D) is non-trivial. This is again
predicted by the BSD conjecture (cf. the introduction of [27]).

We hope to have illustrated the fact that Eisenstein (higher) congruences have
important applications to conjectures on special values of L-functions. Let us men-
tion that, similarly, Eisenstein congruences have been used to get results for the
Iwasawa main conjecture of residually reducible elliptic curves over Q (the results
of Skinner and Urban assume in particular that the elliptic curve is residually
irreducible). See for instance the work of Greenberg and Vatsal [14], and more
recently Castella–Grossi–Lee–Skinner [6] and Skinner–Grossi [7].

2.4 Overview of Q4

Let us first consider the question of Serre’s conjecture. The classical conjecture
of Serre [50] starts with an absolutely irreducible odd Galois representation ρ :
Gal(Q/Q) → GL2(Fp). It tells us that ρ is modular and predicts explicitly the
“minimal” weight and level for a newform f giving rise to ρ. The conjecture
has been proved by Khare and Wintenberger [18] (building on the work of many
others).

If ρ is reducible, we have to be careful. One reason is that in the residually
reducible case, the reduction of the Galois representation ρ f : Gal(Q/Q)→GL2(K)

attached to a newform f depends on the choice of a lattice T ⊂ K2 where K is a
finite extension of Qp. One may consider the semi-simplification ρ

ss and ask for
the “minimal” weight and level of a newform f giving rise to ρ

ss.
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Serre’s original conjecture must be modified in the reducible case. For instance,
one may consider ρ

ss = 1⊕ χ p, where χ p is the reduction modulo p of the p-adic
cyclotomic character. As recalled above, Mazur proved that for N prime, there
exists a newform f ∈ S2(Γ0(N)) such that ρ

ss
f ' 1⊕χ p if and only if p divides the

numerator of N−1
12 . But there are no newforms of weight 2 and level 1. Therefore,

there is no “minimal” level in this case. Following Ribet, we call the set of such
N’s the non-optimal levels of ρ

ss.
Yoo and Ribet partly generalized Mazur’s result to square-free level, but their

results are not complete. The situation is quite complicated in non-prime square-
free level. Let us give an example of their results (cf. [71, Theorem 2.3]). Assume
that p ≥ 5. For primes N1 and N2 with N1 ≡ 1 (modulo p), there exists a newform
f ∈ S2(Γ0(N1N2)) with ρ

ss
f ' 1⊕ χ p and UNi f = f for i = 1,2 if and only if either

N2 ≡ 1 (modulo p) or N2 is a pth power modulo N1.
The question of non-optimal levels has been considered for certain levels in

weight k > 2 by Billerey and Menares in [2] and [3].
Let us now consider R = T type theorems. Mazur defined under some condi-

tions the universal deformation ring attached to a residual Galois representation
ρ : Gal(Q/Q)→ GL2(Fp) (cf. [34]). Let us note that R fails (without additional de-
formation conditions) to exist if ρ is reducible and semi-simple. By adding certain
deformation conditions at bad places and on the determinant, one can often prove
that R is isomorphic to a certain Hecke algebra T . This was first proved under some
assumptions, including the irreducibility of the restriction of ρ to Gal(Q/Q(ζp)),
by Wiles and Taylor–Wiles in their proof of Fermat’s last theorem [67, 60].

To our knowledge, the first R = T theorem in the case where ρ is reducible
but not semi-simple is due to Skinner and Wiles [55, Theorem 6.1]. Skinner and
Wiles assume that their deformations are ordinary at p. Their proof relies on the
numerical criteria of Wiles and Lenstra [29]. They compute directly the congruence
module and the cohomology groups involved in the numerical criterion.

Later, Calegari and Emerton proved an R = T theorem in Mazur’s situation
[5] (weight 2 and level Γ0(N) for a prime N such that p divides the numerator of
N−1

12 ). As explained above, this situation is the “non-minimal” case. Their residual
representation is ρ = 1⊕χ p, so in particular the universal deformation ring R does
not exist without modification. They rigidify the deformation problem by adding
the data of a line fixed by the inertia at N. The local condition at p is “finite flat”.
Their proof again consists in checking the numerical criterion “by hand” (using
class field theory).

Shortly after, Calegari proved various R = T theorems in minimal cases. For
instance, if k < p − 1 and p || Bk then Calegari proves that R = T where T is
the Eisenstein completion of the Hecke algebra of weight k and level 1. In that
situation, R turns out to be a DVR [4, Lemma 4.8], and the surjective map R → T
must be an isomorphism. As Calegari noted, his results are not covered by Skinner
and Wiles since he considers either non-ordinary deformations or locally split
residual representations.
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The result of Calegari and Emerton is very specific to Mazur’s situation. It
is not obvious how to extend it to more general situations (e.g. weight 2 and
squarefree level). Wake and Wang-Erickson developed extensively what seems like
the most natural setting to study residually reducible representations. Namely,
instead of considering deformations of ρ, they simplify the problem and only
deform the trace of ρ, i.e. the pseudo-representation attached to ρ. Wake and
Wang-Erickson had to consider pseudo-deformation conditions, and in particular
the “finite flat” condition, whose definition is not obvious a priori. They develop
the general theory of pseudo-deformation conditions in [63] and the finite-flat
condition in [64, §2.3]. They rely crucially on the notion of generalized matrix
algebras (GMA) due to Bellaïche and Chenevier [1, 8], which are a kind of matrix
representation of a pseudo-presentation but with entries in modules rather than
rings.

Wake and Wang-Erickson applied their pseudo-deformation techniques to prove
a pseudo-deformation version of the R = T theorem of Calegari–Emerton. They
also applied it in some cases to certain Eisenstein ideals of weight 2 and squarefree
level [65]. Wake, Wang-Erickson and Hsu proved R = T in the same situation
(weight 2 and squarefree level) but under different assumptions. They require a
numerical condition which turns out to force the rank of R and T over Zp to be 3
(cf. [17, Theorem 1.3.3]).

Wake used similar techniques in higher weight and prime level Γ0(N) [62], under
the assumptions that p≥ 5, k > 2 is even, p - ζ (1−k) and p |N−1. Let us note that
Wake does not prove an R = T theorem in this case, but instead a weaker version
for reducible deformations. Deo improved Wake’s result and managed to prove
R = T under certain assumptions [9, Theorem B]. Deo actually considers both
deformations and pseudo-deformations in his work, as he needs to know when a
pseudo-deformation arises from an actual deformation (of a Galois representation).

It is clear that R = T type results in the residually reducible case constitute
a fertile area of current research, as many cases are still unexplored (e.g. more
general weights and levels).

Theorems of the type R = T are useful in proving modularity lifting theorems,
and in particular in proving results toward the Fontaine–Mazur conjecture. The
Fontaine–Mazur conjecture basically states that an odd Galois representation ρ :
Gal(Q/Q)→ GL2(Qp) satisfying certain natural conditions should be associated
(up to twist) with a cuspidal eigenform. This conjecture has been proved in many
cases by Kisin [19] and Emerton [11], but they require that the restriction of ρ to
Gal(Q/Q(ζp)) be irreducible (and in particular that ρ be irreducible).

In the case where ρ is reducible, Skinner–Wiles were able in the ordinary case
to prove (most of the time) the Fontaine–Mazur conjecture [56, §1 Theorem].
Unlike in their previous work [55], they do not prove an R = T theorem in general,
but instead rely on a base change to a totally real field. Recently, Pan proved the
residually reducible Fontaine–Mazur conjecture in most of the non-ordinary cases,
and also in the ordinary cases left open by Skinner and Wiles (cf. [45, Theorem
1.0.2]).
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