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ABSTRACT. Eisenstein congruences play an important role in modern
number theory. We survey some topics related to these congruences,
starting from the example of Ramanujan’s Delta function modulo 691.
This paper does not contain any new results, except Theorem 2.4.
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1. INTRODUCTION
1.1 THE EXAMPLE OF RAMANUJAN’S DELTA FUNCTION

This paper is a survey about (higher) Eisenstein congruences and their ap-
plications in number theory. As far as the author is aware, the first example of
Eisenstein congruences was found by Ramanujan in [46]. Consider the formal se-
ries A = g[1,>1(1 —¢")** = X, ©(n)g" (for T(n) € Z). Ramanujan proved that for
all prime p we have

7(p) =1+ p'!' (modulo 691).
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ON EISENSTEIN CONGRUENCES AND BEYOND

More generally, we have 7(n) = o11(n) (modulo 691), where 0;,(n) = ¥4,d™. This
congruence is a consequence of the Eisenstein congruence

(1.1) A=Ej (modulo 691),

where

Ey = —% + Y o i1(n)q"
n>1

is the weight k Eisenstein series of level SL»(Z), By being the kth Bernoulli number.
This congruence can be proved by noticing that Eg is a linear combination of Ej;
and A (c¢f. [49, §2.2]). The key fact is that the constant coefficient —% of Epp
is divisible by 691. A more conceptual argument for this congruence consists in
noticing that the modular form E|; is cuspidal modulo 691, and thus must coincide
with A modulo 691.

A different proof using modular symbols has been given by Manin in [31, §1.3].
The key fact used by Manin is a divisibility of special values of an L-function, which
we now explain. The L-function of A is the Dirichlet series L(A,s) = ¥,> %, which
can be shown to extend to an entire function on C. The critical values of L(A,s)
are the values for s =1,2,...,11. Manin proved (in much greater generality) that
the numbers

(m—1)L"

rm(A) = (Zﬂ)m L(Aam)
for m € {1,3,5,7,9,11} are all proportional up to a rational number, i.e. the pro-
jective vector [r{(A) : r3(A) :...:r11(A)] belongs to P>(Q) (cf. [31, §1.2]). In our

example (for the eigenform A), Manin computed

(1.2) [rl(A) : }’3(A) L.t rn(A)]
691 691 691 691

=11:— : D= :
22.34.5°23.32.5.7 23.32.5.7 7 22.34.5

—1].

Manin then expressed the coefficients 7(n) of A in terms of r,(A) for m =3,5,7,9
(the “Coefficients Theorem” of [31, §1.3]). Since these values are all divisible by 691
(up to a common transcendental factor called a period), Manin’s formula shows
that 7(n) = o11(n) (modulo 691).

Thus, we have seen two ways of understanding the Eisenstein congruence (1.1):
either by observing that E); is cuspidal modulo 691 (which requires the knowledge
of its constant coefficient), or by observing that the odd special values of L(A,s)
are (up to a period) divisible by 691. Let us explain why the second observation
should be considered as a consequence of the first (at least philosophically).

The Eisenstein series E}, also has an associated L-function L(Ej2,s). One com-
putes easily that L(E12,s) = {(s){ (s — 11) where § is the Riemann zeta function.
A congruence between eigenforms should philosophically give rise to a congruence
between special values of L-functions. Therefore, congruence (1.1) should imply

rm(A) = rp(E12) (modulo 691).

Jury 2023 ICCM NOTICES 161



E. LECOUTURIER

This does not quite make sense as the left-hand-side is likely transcendental, but
such a congruence should hold after dividing by an appropriate period. To avoid
choosing such a period, let us consider the corresponding element in the projective
space: one should expect

(1.3) [rl (A):m(A): ... rll(A)] = [rl (Ern):m3(Ep):...: rll(Elz)] (modulo 691),

both sides being in P°>(Q). The functional equation of { gives r{(Ej2) = —r11(E12) #
0. Furthermore, since {(s) vanishes if s is an even negative integer, one sees that
rm(Elz) =0forme {3,5,7,9}. Thus, we have [i‘](E12> : r3(E12) Lot rll(Eu)} = [1 :
0:...:0:—1] in P’(Q). We thus expect the Eisenstein congruence (1.1) to yield

[r1(A) s r3(A) .o (A)] =[1:0:...:0: —1] (modulo 691).

This is indeed true as (1.2) shows.
The same discussion applies for the even critical values. Manin showed that
[r2(A) 1 r4(A) = ... r10(A)] belongs to P*(Q) and computed

52 5 52

— : D= 11,
24.3°22.3 24.3

[r2(A) s 7a(A) 1. rip(A)] = |1

On the other hand, we have for m € {2,...,10} even

(m—1)1i"
(2m)™

Lm)C(m—11) = B1z=m  Bm

Epy) = _ Bu
rn(Er2) 12—m 2m

One gets [r2(E12) : ra(E12) @ ... rio(Er2)] = [1/1584 : 1/28800 : 1/63504 : 1/28800 :
1/1584], and one can then check that

(1.4) [}’z(A) . r4(A) et rlo(A)] = [rz(Elz) . }"4(E12) et I’]()(Elz)] (modulo 691)

One thus sees that the congruence between modular forms (1.1) is reflected by
two different congruences (1.3) and (1.4) between special values of L-functions.
More precisely, (1.3) (resp. (1.4)) should be considered as a congruence modulo
691 in the space of even (resp. odd) weight 12 period polynomials. An even weight
k period polynomial (resp. odd weight k period polynomial) is simply an even
degree k—2 (resp. odd degree k— 3) polynomial in C[X] satisfying some functional
equations. We refer to Zagier [73, §2] for the original definition.

Let us note that the space of even weight k period polynomials has an Fisenstein
element in characteristic 0, i.e. an element annihilated by the Hecke operators
T, — 0_1(n), which is simply the polynomial X¥=2 — 1 corresponding to [1:0:...:
0 : —1]. However, the space of odd weight k period polynomials does not have
any Eisenstein element. Zagier enlarged this latter space so that it contains an
Eisenstein element (cf. the polynomial p, of [73, §2 Proposition]). Pagol and Popa
generalized Zagier’s definition to arbitrary weight and level in [44].

Thus, both congruences (1.3) and (1.4) can be considered as Eisenstein congru-
ences in certain (extended) spaces of period polynomials of weight 12. Let us note
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that (1.4) appears to be more complicated than the “trivial” congruence (1.3)
since the coefficients of the former involve Bernoulli numbers, while the latter
coefficients are almost all zero modulo 691.

1.2 SOME QUESTIONS
Ramanujan’s Eisenstein congruence raises the following questions:

(Ql) If k> 2 and T =T (N) or T'h(N), do we have “Eisenstein congruences” in
weight k and level I" analogous to (1.1), (1.3) and (1.4) modulo some prime
power p” (where p is a prime ideal in the ring of integers of a number field)?
What can be said about p”? More generally, do we have “Eisenstein con-
gruences” for other spaces of automorphic forms, e.g. for Bianchi modular
forms (GL; over an imaginary quadratic field), Shimura curves (non-definite
quaternion algebras) or over function fields?

(Q2) Since we know that ;TE@; e ;?Eﬁ; are divisible by p = 691, can we under-

r3(4A) ro(A)
pri(A)?7 77 pri(4)
gruences)? This would perhaps restore the balance between even and odd

period polynomials, since (1.4) appears to lie deeper than (1.3). Does this
question make sense in more general situations (e.g. weight k& and level
Ti(N))?

(Q3) What are the applications of Eisenstein congruences in algebraic number

stand the vector ( ) modulo p (“beyond” Eisenstein con-

theory or arithmetic geometry? For instance, can our Eisenstein congru-
ences for special values of L-functions give some results on the Bloch—Kato
conjecture (a generalization of the Birch and Swinnerton—-Dyer conjecture
for elliptic curves)?

(Q4) On a more technical note, many of the known results (for GL,/Q) on
Serre’s conjecture, the Fontaine-Mazur conjecture, R = T theorems, etc.,
require the Galois representation attached to our cuspidal eigenform to be
residually irreducible. What happens in the reducible case?

The goal of this expository paper is to survey some of the known results about
these four questions (which are obviously related to each other). The literature on
this topic being very large and the knowledge of the author being limited, we will
certainly miss some important results and fail to cite many papers. We apologize
for this and do not claim to be exhaustive in our survey.

2. SOME ANSWERS

One of the key objects used to study these questions is the Fisenstein ideal. This
was first defined by Mazur in weight 2 in his seminal 1977 paper “Modular curves
and the Eisenstein ideal” [32]. The Eisenstein ideal corresponding to an Eisenstein
series E is the annihilator I of E in “the” Hecke algebra T (over Z). Here, by T we
mean the Hecke algebra acting on all modular forms of a given weight and level
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(including Eisenstein series). The cuspidal quotient of T (acting on cuspforms) is
denoted by TO. It is not clear what the correct definition of T should be: which
operators should we include at primes dividing the level N7 Some authors consider
T where the Atkin operators U, (for p | N) are included (e.g. [72] and other papers
of that author), while some authors consider instead the Atkin—Lehner involutions
w¢ when this makes sense (e.g. [43, 65] in squarefree level).

There are many results and conjectures related to the above questions. Let us
give a brief overview of some of these results and conjectures.

2.1 OVERVIEW OF Q1

One “measure” of the Eisenstein congruences is the finite abelian group T/I.
In particular, a prime p is in the support of T?/I if and only if there is a cuspidal
eigenform f (of our fixed weight and level) congruent to the Eisenstein series E
modulo a prime ideal dividing p. In weight 2 and level T'o(N) for a prime N, Mazur
proved that TY/I is cyclic of order the numerator of Nl—_zl (cf. [32, Proposition
11.9.7]). This number is (up to a factor 2) the constant coefficient at the cusp
infinity of the unique Eisenstein series in M,(To(N)), which should be expected
since we are considering for which coefficient ring the Eisenstein series is cuspidal.

This result was generalized by Ohta in weight 2 and level I'h(N) where N is
squarefree, after inverting 2 (cf. [43, Theorem 3.1.3]). As mentioned above, Ohta
includes the Atkin—Lehner involutions in the Hecke algebra T. Yoo proved a the-
orem similar to Ohta but including the operators U, instead of the Atkin-Lehner
involutions, in some cases after inverting 2 (cf. [69, Theorem 1.1] and [70, The-
orems 1.3 and 1.4]). In weight 2 and non-squarefree level, the ¢-primary part of
T%/I was determined for some choices of I and ¢ by Yoo in [72, Theorem 1.3 (2)
and Theorem 4.3].

In weight k > 2 and level SL,(Z), Kurihara showed that T°/I®Z, ~Z, /By -Z,
for odd primes p with k < p—1 (¢f. [21, Lemma 3.1]). This shows that the analogue
of Ramanujan’s congruence (1.1) holds in level SLy(Z) and weight k < p—1if p
divides By. Ohta considered the Hida theoretic analogue of T°/I in [40, Theorem
1.5.5]. His results should (by descent) yield a description of T°/I®Z, in weight k
and level T'| (N) under the assumptions that p divides N but p does not divide ¢@(N)
(the Euler function), combined with some restrictions on the Eisenstein series E.
Ohta also computed the index T°/I (away from 2) in weight 2 and level T'j(N)
when N is prime [42, Theorem IIJ.

We thus have a good understanding of the generalization of the Eisenstein
congruence (1.1). Let us now turn to the two congruences (1.3) and (1.4). We
are basically asking whether a congruence between a cuspidal eigenform and an
Eisenstein series yields a congruence between special values of L-functions (possi-
bly twisted by Dirichlet characters).

Mazur studied this question in [33]. His setting was as above: weight 2 and level
I'o(N) where N is prime. Mazur gave a congruence formula for L(f,y,1) for most
odd characters y (cf. [33, §7 Proposition]). Vatsal greatly generalized Mazur’s
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result in weight 2 and level T'j(N) under some conditions on N and the Eisenstein
series E (cf. [61, Theorem 2.10]). As for Mazur’s result, the congruence only holds
for “half” of the special values, namely for those values L(f,,i) where i and ¥
satisfy a certain sign condition depending on E (cf. (2.2) below).

Vatsal and Heumann later generalized Vatsal’s results to any weight k > 2 and
level '} (N) (cf. [15, Theorem 5.2]). Their assumptions are 2<k<p—1 and p{N,
where p is the congruence prime. Again, there is a parity restriction on y and i.
Let us mention that Hirano states in [16, Theorem 0.1] a generalization of the
Vatsal-Heumann result by allowing p | N. The author had a superficial look at
Hirano’s paper, and it seems to us that the statement of [16, Proposition 2.4] is
incorrect. Indeed, the left-hand side of [16, (2.3)] could a priori be of dimension
> 1 since the localization is only with respect to the mazimal ideal My (to get
dimension 1, one would need to localize at the height one prime ideal B¢ associated
with the cuspidal eigenform f). We have not checked and do not know whether
Hirano’s proof of [16, Theorem 0.1] still holds.

All the congruences mentioned in the previous two paragraphs (Mazur, Vatsal,
Vatsal-Heumann and Hirano) are a generalization of (1.4): they involve some prod-
uct of (generalized) Bernoulli numbers. Let us give the main ideas behind these re-
sults. Let T=T((N) or =T (N) for some N > 1. Let us suppose we have an Eisen-
stein congruence f =E (modulo @"), where f is a cuspidal eigenform in S;(T") and
o is some uniformizer in a finite extension O of Z,,. The Eichler-Shimura construc-
tion gives rise (after normalization) to a cohomology class 67 € H T, Via (0))7,
where Vy_»(R) are polynomials of degree < k—2 in R[X]. The sign oo = +1 cor-
responds to the eigenvalue for the action of the complex conjugation. Stevens
defined similarly a cohomology class &g in weight 2 in [58] and [59] (there is only
one sign for E, which Vatsal-Heumann denote by sgn(E)). Vatsal and Heumann
generalize Stevens’ construction to any weight, and construct some cohomology
class 8 € H'(T,V;_2(0))*8"E). Since the Eisenstein series E is “cuspidal” modulo
@", the class 6z modulo @" belongs to H,,, (T, Vi2(O/@"))*eE) | where H),. is
the parabolic cohomology subgroup.

Let m be the maximal ideal of T corresponding to the congruence f =
E (modulo @"). One can show that there is an isomorphism of T9,-modules

(2.1) H o (T, Vi 2 (0/07)) ™) @00 TS, ~ Hom(TY,, O/a").

In weight k =2 this follows from Wiles’ work on Fermat’s Last Theorem [67], as
noticed by Vatsal in the proof of [61, Theorem 2.10]. The case k > 2 can be reduced
to the weight 2 case using Hida theory, as sketched at the end of the proof of [15,
Theorem 5.2].

By (2.1), we have 5;gn(E) =c-6 in H;ar(F,Vk,z(O/a)'r))Sgn(E) for some ¢ €

(O/®")*, since these two classes are residually non trivial and have the same Hecke

eigenvalues modulo @" by assumption. Here, the subscript le,a means parabolic

T
cohomology. From this, Heumann and Vatsal manage to get a congruence between
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(normalized) L-values L(f,x,i) and L(E,),i). The sign restriction is

(2.2) (=1 x(=1) = sgn(E).

For instance, in weight k and level SLy(Z), we have sgn(Ey) = —1.

What about congruence (1.3)7 To our knowledge, even the obvious generaliza-
tion in weight k and level SLy(Z) is still open in general. The generalization of the
space of even polynomials of weight k in a ring R is the space Symbp(V;_»(R))~58™E),
where if M is any T-module, Symbp(M) is the space of I'-equivariant homomor-
phisms Z[P'(Q)]° — M (the exponent 0 means divisors of degree zero). The
T-modules Symbp(Vi_»(R)) ) and H'(T',V;_»(R))*#*) are dual.

Thus, to generalize (1.3) one would need H'(T,V,_»(O/@"))*s"E) to be
locally free of rank one over T® O/®@" at m. It seems to us that by (2.1),
HY(T,Vi_»(0))*#E) @1 Ty, should be isomorphic to Homgz, (T, 0) as a
Tw-module. One would need an isomorphism of Ty-modules Hom (T, Z,) ~ Tr,
i.e. that Ty, is Gorenstein.

This is a difficult question, which is open in general. It is sufficient that 7- ']I'g1
be a principal ideal (¢f. [10, Lemma 1.11] and [32, Proposition I1.15.3]). Mazur
proved that 7-T9 is principal in weight 2 and level To(N) if N is prime. In
weight k and level SLy(Z), Kurihara proved in [21, Theorem 0.4] that, under
the condition that %(Z[Cp])(a)g*k) =0, the ideal 7-TY is principal if and only if
C(Z[C,)) (@) ) is cyclic, where @, : Gal(Q({,)/ Q) — Z is the Teichmiiller char-
acter and %(Z[Cp])(a);,) is a);—eigenspace of the p-class group of Z[{,]. These two
conditions on the class group are consequences of the Vandiver conjecture, but
remain open.

In conclusion, (1.4) generalizes well because it is related to some modular sym-
bols for which multiplicity-one is known, while the generalization of (1.3), while
expected in some cases, remains open because we do not know in general that the
Hecke algebra is Gorenstein at Eisenstein primes.

2.2 OVERVIEW OF Q2
2.2.1 The Case of Weight k and Level 1

Let us first consider the situation in weight k and level SLy(Z). We have seen in
the previous section that if p > 5 divides By and k < p—1 then there is a cuspidal
eigenform f € S;(SLa2(Z),O) congruent to Ex modulo @" (where @ is a uniformizer
in a finite extension O of Z, and r > 1 is maximal). Following Zagier [73, §2|, one
can attach to f two period polynomials

k—2
0= 3 (5,2 et

and
0= 3 (D) matnne

0<m<k—2
m even
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where we recall that

mimtl
rm1(f) = WL(f7m+ 1).
We have rjt (X) e SymbSLz(Z)(Vk,z(C))i. Fix embeddings Q «— Gpiand Q< C. By
the discussion of §2.1, one can find a period Q, € C* such that r;{f ) € O[X] and
!
ry (X)
~—— =7, (X) (modulo @"),
&y
where
B Br_p—
ra (X) _ m+1 k—m—1 X"

_1<m<k—1 (m+1)! (k—m—1)!

m odd
is Zagier’s odd Eisenstein extended period polynomial (denoted by p, (X) in [73,
§2 Proposition]). Note that @" | % by assumption, so 7, (X) is indeed a polynomial
modulo @" (there is no term in X~1).
For even period polynomials, we have seen that conjecturally one expects the

r+
existence of a period Q}r € C* (which can be taken to be L(f,1)) such that fg(f)
;
O[X] and

S

r(X)
(2.3) fQ ; = r{ (X) (modulo @"),
where

rg(X)=x%-1.

As explained in §2.1, (2.3) would hold true if we assume the following consequences
of Vandiver’s conjecture:

(2.4) € (Z[¢)) (wgfk) =0 and % (Z[{))) (a)llfk) is cyclic.
We shall assume that the two conditions stated in (2.4) hold in what follows.

T (f)
L(f.1)"

In particular, for any odd m € {3,...,k—3} we have @" Question 2 asks

what can be said about the vector

(ZU’L(f,l) (modulo ﬁ))me{&mk%} cFp

-2

up to a non-zero scalar (since @ was chosen arbitrarily anyway). In other words,
can we determine the polynomial

_ k—2 rm+1<f) m
VT(X)‘K,;M( m )65’-L(f,1)x Xl

up to non-zero scalar? Sharifi conjectured a beautiful and amazingly simple for-
mula for that polynomial.
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In order to state his conjecture, let us introduce some notation. If A is a com-
mutative ring, let K»(A) be Quillen’s second K-group of A. If x and y are in A*, one
can define the Steinberg symbol {x,y} € K»(A). It is bilinear in x and y and satisfies
the relation {x,y} =0 whenever x+y =1 (this is called the Steinberg relation).
If A is a field, these Steinberg symbols and relations describe completely K>(A),
namely we have an isomorphism

Kr(A) ~ A" @7 A /({{x,y} : x+y=1}).

If A= Ok is the S-ring of integers in a number field K, where S is a finite set of
primes, then we have an exact sequence

(2.5) 0— K>(Oks) = K2(K) = EDF; =0,

pes
the map K>(K) — Fy; being the tame symbol, i.e. it sends {x,y} to (1)) ;;zg
modulo p.

Let ¢, € Q be a primitive pth root of unity. There is an action of Gal(Q({,)/ Q)
on KZ(Z[%, {p]) and one can show that under our assumptions on class groups, there

is an isomorphism @ : (KQ(Z[%,CP]) ®Z/pZ)(w; ) S Z/pZ.

We can now state Sharifi’s conjecture (cf. [54, Conjecture 3]).

Conjecture 2.1 (Sharifi). One can normalize @ such that we have in F,[X]

=3 (5, etmnmn e

2<m<k—4
m even

where if j is odd, n; :H‘Z;ll(l - C,ﬁ’)”jil € Z[%7Cp]><'

Since r{ (X) is non-zero modulo p, Conjecture 2.1 implies the following purely
algebraic conjecture:

Conjecture 2.2. The Steinberg symbols {H;’;ll(l — Cg)am,]—[f;;ll(l _ C,?)“k_z_m} for
even m € {2,...,k—4} generate (KZ(Z[%, ) ®Z/pZ)(a)§*k),

As far as we know, Conjecture 2.2 remains open. This is a refined version of an
earlier conjecture of McCallum and Sharifi [37, Conjecture 5.3], which was made
before Sharifi discovered the relation between Steinberg products and Eisenstein
congruences. The best result we currently have toward Conjecture 2.1 is the fol-
lowing

Theorem 2.3. Under the assumption (2.4), Conjectures 2.1 and 2.2 are equiva-
lent.

Let us give the idea of the proof. One easily sees that for any prime ¢, there
exists ¢y € F), such that

(2.6) (T =" =) () = oo

where Ty is the ¢th Hecke operator.
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Furthermore, there exists ¢ such that ¢y # 0, i.e. rf“ is not annihilated by the

Eisenstein ideal I but instead by I7. We call rfr a higher Eisenstein element. The
notion of higher Eisenstein elements was introduced in my thesis in Mazur’s setting
[25]. The vector consisting of the ¢;’s is unique up to scaling; let us fix some
particular choice. Under (2.4), the relation (2.6) (for all ¢) characterizes uniquely
r{ modulo a multiple of rj. Let us note that we do not have a simple formula for
the coefficients c¢;. They may be expressed using Merel’s type formulae on Hecke
operators acting on Manin symbols [38], but it is unclear whether the resulting
formula can be simplified.

Let us assume Conjecture 2.2. To prove Conjecture 2.1, it is enough to prove
that the polynomial Y 2<u<i—s (k;2)¢({nm+1,nk,m,1})xm is annihilated by I? (it
cannot be annihilated l;ner;nbecause otherwise it would be proportional to ra“ ,
which is clearly not the case since it is non-zero and its coefficient in X*¥~2 is zero).
It suffices to show that the image of

> (k;2> O ({Mmr1: Me—m—1 1) X"

2<m<k—4
m even

in Héar(SLz(Z),Vk,z(Fp)) is annihilated by I. This has been proved by Fukaya—Kato
in [12, Theorem 5.2.3]. Fukaya and Kato actually work in level T';j(p) and weight
2, but it is well-known that one can always pass from modular symbols of level
SL,(Z) and weight k modulo p to modular symbols of level T'j(p) and weight 2
modulo p (with nebentype a)’[ﬁ’z).

There is actually a whole sequence of higher Eisenstein elements, rsr , rfr, e, r;
in F,[X] for some g > 1. They satisfy (T, — ¢! —1)(r") = ¢;,-r" | modulo the
subgroup generated by rar ,...,rf_z, for all primes ¢ and 1 <i < g. The element
rl.+ is uniquely determined by this property, modulo the subgroup generated by
ra“ . .,rltl. These elements are the key to go beyond the Eisenstein congruence
(2.3). It would be very interesting to know ry, when it exists.

Similarly, there exists a sequence of higher Eisenstein elements ry, ri,...,rg’;
these are extended period polynomials (with coefficients in X1 and X _1). We
do not know what the coefficients of r| are. Presumably, these should be linear
combinations of products of Bernoulli numbers and Steinberg symbols. We still
have some non-trivial information about r;". To our knowledge, although this result

is not deep it is new.

Theorem 2.4. Assume that Conjecture 2.1 is true. Write

r = Z am- X"

—1<m<k—1
m odd

for ay,, € ¥,. Then we have in F):
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(4=2k)-ar1+ Y, am

1<m<k—3
m odd
o n Bn+l B _n-1
- szk_z (k_z_m><p({nm+1,nkm1}) G 1 (n DT

m even >2n odd >1
This common quantity is zero if and only if g > 2.

Note that ¢ is only unique up to a scalar, but that scaling it also scales the
coefficients a,, by the same factor (because the coefficients ¢, above will also be
scaled by that factor).

Let us sketch a proof. If R is a commutative ring in which (k—1)! is invert-
ible, let W,_»(R) be Zagier’s space of extended period polynomials of weight
k (cf. [73, §2 Theorem]). It decomposes into even and odd parts: Wy_»(R) =
Wi 2(R)* @Wi_2(R)~. We have W, _»(R)* C R[X]i_2 while W, 2(R)™ € X~ R[X]s.
The spaces VAVk,z(R)ﬂE carry an action of Hecke operators.

There is a perfect Hecke equivariant bilinear pairing e : W,",(F,,) x W,_,(F,) —
F, defined by the formula

m!n!
an-X"e b, - X" O - “am-b
og;%ﬁz " 71g§;‘k71 " m+§c72 " (m+n—k+2)!(k—-2)! "

m even n odd m even and n odd

where 0, = 1 except if n =k —1 in which case 6, = 2. This definition is taken from
a formula of Kohnen and Zagier (generalizing an earlier formula of Haberland)
expressing the Petersson product of two modular forms as a pairing between their
(extended) period polynomials (cf. [20, p. 246]). The Hecke property satisfied by
the higher Eisenstein elements shows that the pairing rl.+ or; depends only on i+ j,
is zero if i+ j < g and non-zero if i+ j = g.

We have checked that the identity of Theorem 2.4 holds using the tables of
Sharifi and McCallum [37] available on Sharifi’s webpage [51] for p < 1129. It turns
out that for p < 1129, we have g > 2 only when (p,k) = (547,486). This example
has already been noticed by Calegari in his computations on Galois deformations
[4, p. 68]. When g > 2, there exist higher Eisenstein elements r, and r; . We do not
know any explicit result concerning these elements, and in particular concerning
the pairing r| er; =r; er;.

2.2.2 Sharifi's Conjecture in Weight 2

Sharifi’s conjecture has been stated more generally in weight k =2 and level
I'1(N). We refer the reader to [52, Conjecture 5.8] for the original conjecture, and
to [53, Conjecture 4.3.5] for a slightly more general formulation. One should be
able to formulate the conjecture in weight k > 2 using Hida theory, but we are
not aware of such a formulation in the literature, except in the case of level N =1
considered above. Let us briefly explain what the conjecture says (in weight 2).

Let H;(X;(N),cusps,Z) be the singular homology relative to the cusps of the
(compact) modular curve X; (N) of level 'y (N). If o and 8 are in P'(Q), let {e, B} €
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H,(X;(N),cusps,Z) be the class of the closed geodesics in the upper-half plane
between o and B (this is called a modular symbol). If (u,v) € (Z /NZ)? is such
that ged(u,v,N) =1, let & (u,v) € H (X1 (N),cusps,Z) be the modular symbol {3,%
where (¢4) € SLy(Z) is such that (c,d) = (u,v) (modulo N); one can check that
this does not depend on the choice of (‘; Z). Manin proved that the elements & (u,v)
(called Manin symbols) generate Hy(Xi(N),cusps,Z), and also determined all the
relations satisfied by these elements [30, §1.9 Theorem].
Using Manin’s presentation of H;(X;(N),cusps,Z), Sharifi defined a map

o141 (6. 2) » (265 ) 23]

where C? is the subset of cusps in Xj(N) not lying over the cusp oo of Xp(N). This
map is characterized by the beautiful formula

w(g(”hv)) = {1 - C]ICU 1— CK’}
for u,v € (Z/NZ)—{0}. Sharifi conjectured the following:

Conjecture 2.5 (Sharifi). The map @ is annihilated by the Eisenstein ideal I
generated by the Hecke operators Ty —{— (£) for primes L1 N, where (£) is the (th
diamond operator. (There is also a conjecture regarding the Hecke operators for

¢|N.)

Much is now known about this conjecture. Fukaya and Kato proved it after
tensoring with Z, when p > 5 divides N (cf. [12, Theorem 5.2.3]). More recently,
Sharifi and Venkatesh proved that the restriction of @ to H;(X;(N),Z) is annihi-
lated by I (cf. [53, Theorem 4.3.7]). Their proof uses the K-theory of G2, and its
relation with motivic cohomology.

The result of Sharifi and Venkatesh should yield a generalization of Theorem 2.3
in weight 2 and level I'|(N), under the condition that the Hecke algebra Ty, is
Gorenstein at an Eisenstein maximal ideal m (without this condition, we do not
even have a generalization of (1.3), as explained above). The Gorenstein property
has been proved in certain specific situations (e.g. by Skinner and Wiles [55] and
Ohta [41, Theorem 3.3.2]), but does not hold in general.

Let us describe one situation where Skinner and Wiles prove that T, is a
complete intersection, and a fortiori Gorenstein. Let N > 1 be prime to p and such
that pt @(N). Let ¢ : (Z/NpZ)* — O be a primitive even Dirichlet character,
where O is a finite unramified extension of Z, (one can also view ¢ as having
values in C). Let y = @ -w, : (Z/NpZ)* — O*. Assume that p does not divide
the y-eigenspace of the class group of the extension Q, of Q cut out by x (this
is equivalent to the fact that a certain generalized Bernoulli number is prime to
p). There is an Eisenstein series E , whose ¢th Fourier coefficient is 1+ £¢(¢) (for
a prime ¢). The L-function of Ej ¢ is {(s)L(@,s —1). Let I be the corresponding
Eisenstein ideal, generated by the Hecke operators T; — 1 — ¢(¢) and (¢) — ¢(¢) for
primes ¢{ Np, and by Uy —1 for ¢ | Np. There is a unique maximal ideal m of T
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containing I and p. Skinner and Wiles proved that Ty, is a complete intersection,
by identifying Ty, with a minimal universal deformation ring [55, Theorem 6.1]
(cf. also the discussion of [41, Remark 3.3.3] for the Hecke operators Uy).

In this particular situation, one has an Eisenstein congruence similar to (1.3).
Namely, assume that there exists f € S>2(I'1(Np)) such that

(2.7) f=Eie (modulo ©")

for some uniformizer 7 in a finite extension of Z, and some r > 1. Let y be an even
Dirichlet character of conductor m, and assume for simplicity that ged(m,Np) = 1.
We have L(Eg,1,y,1) =L(y,1)L(ye,0)=0if y # 1. If y =1, then L(E} ¢, y,1) #0.
There exists a period QJfr such that for all even y # 1 of conductor m prime to

Np, we have
DL 1
w =0 (modulo 7")
f
and
L(f,1
(f; ) =1 (modulo #").
Q2

Here, 7(y) is the Gauss sum associated with y.
The analogue of Conjecture 2.1 is the following. There should exist a surjective
group homomorphism o : (K2(Z[{y,]) ®z O)(@) — Z /pZ such that

T(Y)L(f vy, 1)
n’Q}r

E(X(Norm{ (]‘[ (1-¢)"' @ I (- ;Np)“”l"’)(“’}) (modulo 7)

Z/mZ)* ac(Z /mNpZ)*

where Norm : K>(Z[Cunp]) — K2(Z[Cyp]) is the norm map and (¢) means the
@-eigenspace. In particular, we expect that the Eisenstein congruence (2.7) implies
(K2(Z[Cnp)) @ O) (@) # 0. Although we have not checked it, this may follow from
Ohta’s computation of T°/I [40, Theorem 1.5.5]. A similar statement has been
proved by Ohta in level I'j(N) when N is prime.

Given the results of Fukaya—Kato or Sharifi-Venkatesh, we expect that a re-
sult similar to Theorem 2.3 holds. We have not checked the details though. Let

us briefly explain the appearance of the norm in the formula. The special value
T(W)L(f.w,1)

ot 18 related to the modular symbol
f

Oy= Y 1,/1(61){%,“}eHl(Xl(N),O)+

ac(Z/mZ)* m

(the ‘+’ being for the action of the complex conjugation). We want to compute
®(Oy), but we cannot do so directly because © cannot be explicitly written as
a combination of Manin symbols & (u,v).
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Nevertheless, we can go up to level I'; (mNp) and express W,v,(0©y ) as a combi-
nation of Manin symbols there, where W,,y, is the Atkin-Lehner involution. One
can then use Sharifi’s conjecture at level mNp and descend using the norm. We
need a certain compatibility between the maps @ when changing levels; this has
been done in [68] and [26]. This whole procedure has been carried out in at level
I';(N) when N is prime in [27].

2.2.3 Mazur's Case

The phenomenon of “higher Eisenstein congruences” for modular symbols dis-
covered by Sharifi had actually been noticed in a very special case by Mazur [32],
although Mazur does not phrase it in terms of K-the