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We begin with this challenge from analysis: for —1 < x < 1, determine the exact value
of the infinite series
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The pattern here is anything but clear, as signs flip-flop in strange fashion and certain
terms are unexpectedly missing. The sum turns out to be a simple one, but finding it,
as we shall see, requires familiarity with something called the “Mobius function.”

This function shows up in any comprehensive text on the theory of numbers. Af-
ter chapters on primes and congruences, on the Euclidean algorithm and Diophantine
equations, such a book will sooner or later introduce the Mobius function. It tends to
appear alongside its number-theoretic cousins: the sigma, tau, and phi functions. The
sigma function, o (k), sums all the divisors of k; the tau function, 7(k), counts all the
divisors of k; and the phi function, ¢(k), counts the numbers less than k and relatively
prime to it. These three have an obvious utility in number theory.

The Mobius function, by contrast, seems neither useful nor obvious. It is denoted
by w(k) and defined, for a whole number £, as follows:

(@ p(l)=1.
(b) w(k) =0 if kis divisible by the square of some prime.
(c) u(k) = (—1)"if k is the product of r different primes.

Thus, for the first ten numbers, (1) = 1; w(2) = u(3) = u(5) = u(7) = —1 because
each is a prime; u(4) = w(8) = w(9) = 0 because these are divisible, respectively, by
22,22, and 3%; and u(6) = u(10) = (—1)> = 1 because these are the products of two
different primes.

At first glance, these values seem uninformative. Unlike the sigma, Mobius’s func-
tion doesn’t sum anything. Unlike the tau and phi, Mobius’s function doesn’t count
anything. Because every fourth number is divisible by 22 = 4, the M&bius function
takes the value zero more than a quarter of the time. And the Mdbius function ex-
hibits strange runs, like ©£(33) = 1(34) = n(35) = 1 or u(242) = u(243) = u(244) =
w(245) = 0. In such cases, the function seems to conceal numerical information rather
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than to reveal it. Whereas the sigma, tau, and phi functions are “natural” concepts, the
Mobius function comes across as something of an oddity. What possible interest could
it hold?

Anyone who reads a bit further in that number theory text will discover that the
Mobius function is not only important but highly so. The deeper one digs, the more
significant the concept becomes. For instance, the prime number theorem can be recast
in terms of the Mobius function. The (famously unresolved) Riemann hypothesis can be
recast in a similar fashion. And there is even an application to quantum physics called
the “free Riemann gas model of supersymmetry” that involves — yes! — the Mdbius
function. Indeed, this is a concept to be reckoned with.

Where did the idea come from?

August Ferdinand Mobius
(1790-1868)

Here the story holds its surprises, for the function’s namesake, August Ferdinand
Mobius (1790-1868), did not introduce it via the conditions (a)—(c) above. Rather, the
concept appeared in his 1832 paper “Ueber eine besondere Art von Umkehrung der
Riehen” (On a special kind of inversion of series) about a subject that, at first glance,
had nothing to do with number theory [4, pp. 105-123].

Mobius began with a real function defined by the power series

f) =aix+ax® +ax® +ax* + -+,
which he sought to invert into an expression for x of the form
x = by f(x) + byf () + by f(3) + baf(xt) + - -

The challenge was to determine the values of the b; based on the known values of
the ay.

To simplify things, Mobius set all the a; equal to 1, thereby turning f(x) into the
geometric series

fO =x+2+3+x 4.

This, of course, sums to x/(1 — x) for — 1 < x < 1. His inversion therefore amounted
to writing

X = bif(X) + bof (F) + by f () + baf(x*) + - - -
=bhix+ X+ b+t 4]
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Collecting powers of x, Mobius arrived at
x = bix+[by + byl x* + [by + b31x° + [by + by + ba]x* + [by + bs]x°
+ [b1 + by + b3 + bl x° + [by + byl x” + [by + by + by + bg]x® + - -.

Matching coefficients of x, he saw that b; = 1. Using this fact and equating coefficients
from consecutively higher powers, he got:

0=1+by, 0=1+bs, 0=1+4by+ by, 0=1+bs,
0 =1+ by + bz + bg, and so on. (1)
Thus,
by=—1,b3=—1,by=—1—-0by =0, bs=—1, b =—1—by — b3 =1,
b;=—1, bg=—1—by — by =0, etc.

Mobius wished to calculate the by by identifying a pattern in these coefficients rather
than by solving a string of ever-longer equations. This he did, although here too his
approach might strike the modern reader as strangely complicated.

First, Mobius observed, perhaps with some surprise, that “one finds these coeffi-

cients ... are either —1, 0, or 1.” [4, p. 110] He then showed that they were generated
by the following rules.

Rule 1: If p is prime, the pertinent equation to emerge from (1) is obviously 0 =1 +
b,. Hence b, = —1 for all primes p.

Rule 2: If k = p - g, where p and q are different primes, then the equation from (1) will
be

0=1+b, +by+bp,.

Rearranging terms and adding b, - b, to both sides of the equation, Mobius deduced
that

—bpg+bybg=14by+by+bp-by=(1+by) (1+by) =0
by Rule 1. Thus by, = b, - by = (— 1)> = 1. In like fashion, he saw that if k is the product
of r different primes, then by = (—1)".
Rule 3: If k = p? for some prime p, then the corresponding equation from (1) will be
0=1+b,+bp,

andso b, = —(1 + b,) = O by Rule 1. Similarly, if n =p’,hegot0 =1+ b,+by +
by and so by = —(1 + b,) — bz = 0. The same outcome holds for any higher power
of p.

[)2

Rule 4: Finally, Mobius considered the case where & is divisible by the square of a
prime. For a simple example, we look at k = p?q where p and ¢ are different primes.
From (1) we have

0=1+4+b,+byp+by+by+ by,
Knowing that b,, = b, - b, and adding b, - b, = 0 to both sides, he got
—bpg+bp-by=1+b,+bp+by+by,-by+by-by
= (14+by+bp) A+b)=0
by Rule 1. Thus b2, = b,z - b; = 0 - b, = 0 by Rule 3.
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In this fashion, Mobius determined rules for calculating his coefficients by. Of
course, these yield precisely what is called (k) in today’s textbooks. But it is interest-
ing that, rather than simply defining a number theoretic concept, Mobius had derived
it from the inversion of a geometric series.

We should say a word about the modern notation. This is not due to Mobius, who, as
we just saw, used “b;”. Rather, it was the mathematician Franz Mertens (1840-1927)
who, in an 1874 paper, introduced “u”, the Greek counterpart of “m,” to denote this
function [3]. We can read this choice as homage to “Mobius” ... with the fortunate
coincidence that it also celebrated “Mertens”!

Returning to the original inversion problem, we restate Mobius’s conclusion as

x=D1f () +bof () + b f () + baf ) - =Y bef(6) =Y ) &),

k=1 k=1

or simply

X =

o (k) XK
vk
= 1 —x

1

because, as noted,
X

fx)=

1—x '
This, by the way, answers our opening question, for the infinite series
2 3 5 6 7 10 11

X X X X N X X N X X
1—x 1—x2 1—-x 1—=x 1—x0 1—x7 1—xI0 1l
=iu(k)xk=
1 —x*

In short, our infinite series sums to x. What could be simpler?

So, it is tempting to conclude that the Mobius function first appeared in this paper
from 1832 and was subsequently given the name of the author. Alas, that conclusion
needs revision, for in 1748 Leonhard Euler (1707-1783) had stumbled upon the same
idea, although in a very different fashion. This, by the way, was half a century before
August Ferdinand Mobius was even born.

Leonhard Euler
(1707-1783)

188 ICCM NOTICES Vor.11



THE EARLY (AND PECULIAR) HISTORY OF THE MOBIUS FUNCTION

VOL. 91, NO. 2, APRIL 2018 87

Euler’s discovery appeared in Chapter XV of his classic text, Introductio in analysin
infinitorum. The title of this chapter translates as “On Series Which Arise from Prod-
ucts,” and, as we shall see, it was aptly chosen [1, pp. 228-255].

First, for an arbitrary whole number n, we introduce the infinite quotient

1
(=D H-H-H

where the terms in the denominators run through the primes. (Note: Euler, who never
employed subscripts, simply called this “M,” but the subscript will prove useful below.)
Because 1 +a + a> + a® + --- = 1/(1 — a), he expressed this as an infinite product
of infinite series:

I | I B 11
My=(14+—+—+_—+- It — o+ ) (1ot +

Mll

2n - 4n 0 gn 3n 9 27" S5t 25"

1+1+ ! +
7n 49" '

Upon multiplying these series, Euler concluded that

1+1+1+1+1+1+1+1+1+ il
- 3 5006 T TR — K
where every whole number k appears in one and only one denominator. This follows
from the unique factorization of whole numbers into primes, the so-called fundamental
theorem of arithmetic.
Perhaps more relevant to our story is the behavior of the reciprocal 1/M,,, an infinite
product that we shall denote by Q,. Clearly,

o=(-2)(-3)(-4)0-3)

an expression whose product Euler sought to determine. We first observe that the primes
occurring in these various denominators are different, so there is no way that something
like

1 1 1 1 1 1 1

T TR TR T T TR T

could appear in the product. In other words, when the binomials of Q, are multiplied,
the resulting terms must look like 1/a" where a is not divisible by the square of any
prime. Such a number is called “square-free.”

Thus, upon multiplying these binomials, Euler found that

NN S R R | I DS T
On=1-———— et ot —

2n 3¢ 5t et 710" 11" 13" 0 14" 15"
The pattern here should look familiar. The signs obey Rules 1 to 4 of the Mobius func-
tion. Euler put it this way:

“We note that the terms with primes, or products of three different primes, or
any product of an odd number of different primes, appear with a negative sign.
Those terms which are the product of two, four, six, or any even number of
different primes, appear with a positive sign.” [1, p. 230]
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(To this we might add that terms divisible by the square of a prime do not appear at all.)
As an example of the pattern, Euler observed that * ... the term 1/30" appears with a
negative sign, because 30 is the product of three different primes.” >

This description exactly matches the rules Mobius would later generate. In modern
notation, what Euler had found was

| N (9
Qn=ﬁ=2

n k=1

Next, Euler introduced an infinite quotient differing from M,, above only in the signs
of the terms. We shall write it as

1
(I+2) (1 5) (14 5) (4 5)
Letting R, be the reciprocal of N,, we see that

o (143 (3) (+5) ()

_l—i-i—l—i—i—l—i-l—l—1 1—l—l—i-1+1+1
35 6t 10" " 13" 14t 15"
This is the same series as that of Q, above but with plus signs throughout. As be-
fore, only square-free terms appear in the denominators, so we can express this
result as

N, =

At this point, it is worth observing that Euler’s derivations conformed to the fashion
of the eighteenth century, when modern analytic rigor still lay far over the mathematical
horizon. Later mathematicians would tidy up the logic of his results, but in this, as in
so many other cases throughout his career, Euler’s analytic intuition did not fail him.

Having generated these formulas, he was ready to specify values of n. To fol-
low his line of attack, we recall three particular series whose sums were familiar to
Euler.

* Since (at least) the previous century, the harmonic series was known to diverge. In
Euler’s day, this divergence was expressed as

syl ly
— — — — cee = 0OQ.
27374 "5

* In 1734, Euler had evaluated the sum of reciprocals of the squares as
s z,
— k?
* Likewise, Euler had summed the reciprocals of the 4™ powers to get
s
k90
Armed with these results, he returned to M,,, Q,, and R, above. Forn =1,

=14ttt r b
= — — — — — —_— =0
! 2374756778 9" 10
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and so its reciprocal, Q, is given by

Q—1111+1 1+1 1 1+1+1 _1_0
'Y 273 576 7710 11 131415 T oo
In modern notation, this becomes the critical formula
o0
k
ZM}({)zo
k=1
Next, Euler let n = 2 to get
1 1 1 1 1 1 =1 72
M, =1 — — — — — — e = —_ = —,
=it atatptetetet k;kz 6
and so
0, =1 1 1 1+1 1+ 1 1 1 . 1 n 1
T2 e te e 12 13 142 15
L6
_1‘42_7'(27

which we would write as

-~

=1
This is a remarkable result, but Euler had one more trick up his sleeve. For n = 4,
he knew that

T4

1 1 1 1
My=14 — 4+ — 4+ — 4 — o=
4 +24+34+44+54+ %0
and so
My 76 15
M, 7490 7?2’

But the Ms and the Qs are reciprocals of one another, and so

15 _ M0 _(1=3)( =) (1-3)(1-4)--
M0 (= (- H(-H ()

(o)) o) e

because
(1-%) <1+pz)'<1—;z>=<l+1)
(=% (-3 4
Consequently,
% I i [ugnz
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In words, this means that if we sum the reciprocals of the squares of the square-free
whole numbers, we get

1 1 1 1 1 1 1 1 1 1

1+—-—+ -4+ — 4+ —+ —+ —+ — ...
+22+32+52+62+72+102+112+132+142+152+
—1+1+1+1+1+1+1+1+1+1+1+ 15
a 49 25 36 49 100 121 169 196 = 225 T2

These formulas involving the Mobius function can be spotted—albeit without the “/t”
notation—in Euler’s Introductio [2].

I I I I X St N (e
e=1—g— 3Ty FE Ty YT n
| I
— 4+ — &c..
TRT
X ¢
X 1 I _1___!_ — —— -
S=I— g g g ~ ST T

From this last expression, it follows that the sum the reciprocals of the squares of
those integers that are not square-free will be

k=1 k=1
That is,
1+1+1+1+1+1+1+1+1+ 7t =90
16 64 81 144 256 324 400 576 625 - 6n?

Look at this sum for a moment. It is exact. It is strange. It is astonishing. We have
surely found our way into analytic territory where intuition is of no use whatever.

These wonderful results are examples of Euler being Euler, manipulating symbols
with a gusto that can take one’s breath away. In so doing, he not only anticipated the
Mobius function but generated formulas more sophisticated than anything its namesake
would discover eight decades later. Euler was, yet again, far ahead of his time.

With this, we conclude our story of a familiar number theoretic concept and its most
peculiar ancestry. This tale reminds us—if we need reminding—that the history of math-
ematics can provide a host of unexpected rewards.
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Summary. The Mobius function is a fixture of modern courses in number theory. It is usually traced back to an
1832 paper by August Ferdinand Mobius where the function unexpectedly arose in answer to an analytic, rather
than a number theoretic, question. But perhaps more unexpected is that the function can be found in Leonhard
Euler’s classic text, Introductio in analysis infinitorum, from 1748. Besides presenting the origins of what might
be called the “Euler/ Mobius” function, this article is a reminder that the history of mathematics holds its share of
surprises.
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