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1. Introduction
Our article is in memory of John Coates, in memory of his energy, his generosity

of thought, his appreciation of ideas.

(Barry M.:)

He was an inspiration to me from the earliest days that I knew him — when
— beginning in 1969 — he was a Benjamin Pierce Assistant Professor at
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Harvard, to the later years, when he was based in Orsay, France and I was
at the IHES and when the two of us would jog together as he would explain
his latest mathematical thought.

(Michael H.:)

I had the privilege of meeting John as a new Ph.D. My thesis had been
largely inspired by the Coates–Wiles paper, which had appeared just one
year before. John’s encouragement and support were precious at this stage
of my career. Although I failed to find interesting applications of my the-
sis work and shifted my attention to other questions, I remained in close
contact with John, especially after John moved to France. Always elegant,
always diplomatic, always with just the slightest trace of a smile on his
lips, during his brief stay at Orsay and the École Normale Supérieure John
left an influence on number theory in France that is still felt today. After
he settled in Cambridge he did the same for Europe as a whole. John was
uniquely effective in helping to build European number theory, and this
left a deep impression on me when he moved to France, showing me that it
was possible to use the modest powers of a European academic creatively
as well as constructively. I never made any decisions that might signifi-
cantly affect our mathematical community without first consulting John.
Inevitably, John’s influence on me was primarily mathematical, through
his own work and through that of his mathematical descendants. No other
number theorist of his generation had such a vast mathematical family as
John — I have published papers with eight of them, with more on the way.
Inspired by Barry’s work on Selmer groups and by unpublished work of
Ralph Greenberg, John, together with his student Bernadette Perrin-Riou,
reformulated and reinvigorated (classical) Iwasawa theory by extending it
to motives. This perspective shaped my return to Iwasawa theory, starting
with a joint paper with Jacques Tilouine — the last of John’s students
in France. And, though this may not be so immediately apparent, it also
shapes my thoughts about the project on which this paper is a report.

(Tony F.:)

Unfortunately I never had the pleasure of meeting John Coates in person,
but I have had many encounters with his mathematics, which was and
continues to be an inspiration for me.

2. Beyond Class Field Theory
Let F be a number field and K be an open subgroup of the restricted product

∏
′
pO×p , where the product runs over the set of places p of F . Let K∞ denote the

maximal compact subgroup of (F⊗Q R)×; thus K∞

∼−→ (±1)r1 × (S1)r2 , where S1

is the unit circle; here as usual, r1 is the number of real embeddings and r2 is the
number of pairs of complex embeddings. Define the idèle class groupoid as the
quotient stack

IK = IF,K := [F×\A×F /K ·K∞].

December 2023 ICCM Notices 89



T. Feng, M. Harris and B. Mazur

Here the brackets mean that we take the quotient in the sense of groupoids, or in
other words we form the homotopy quotient. The “idèle class group” traditionally
considered in class field theory is the quotient group IK = F×\A×F /K ·K∞, which can
be thought of as the group π0(IK) of connected components of IK . However, the
groupoid IK has an interesting homotopy type that we will also want to consider.

Traditional class field theory describes π0(IK), as K varies, as the abelianizations
of certain Galois groups of the maximal field extension of F with ramification
dictated by K. However, we have good reason to want to describe the entirety of
IK , and not just its component group, in terms of Galois theory. In other words,
we would like to enlarge class field theory to account for the entire idèle class
groupoid and not just its group π0(IK) of connected components. The purpose of
the present article is to explain that this is possible: what we shall see is that
within this new framework, IK accounts completely for what we call the derived
abelianization of the absolute Galois group of F .

Why might we want this? The space IK is the locally symmetric space asso-
ciated to the reductive group G = GL(1) over F . We expect — thanks to ideas
of Galatius-Venkatesh [6] — that there is an analogous but perhaps subtler rela-
tion between the topology of locally symmetric spaces attached to more general
reductive groups and their corresponding Galois representations. See [4] for an
introduction to this circle of ideas. The general conjectures seem intractable at
present, but they encompass the case G = GL(1), so we might as well try to solve
that (easiest) case first. This will be done in forthcoming joint work of the authors
and Arpon Raksit [5]. Although the case of GL(1) is relatively simple, it arises
as a useful technical tool in studying other G (for example, one might want to
“twist by characters”, or “fix determinants”, etc.), and so nailing down this case
should help in the more interesting cases as well. The present survey explains a
component of [5] that we call “derived class field theory”.

In this survey we aim to give an informal and intuitive explanation, therefore
omitting technicalities on higher category theory and homotopical algebra, as well
as focusing on simplifying special cases. Precise and complete details will appear
in the article (joint with Raksit) [5]. See also the slides of Barry M.’s talk at the
Coates Memorial Conference at https://bpb-us-e1.wpmucdn.cteveryounwhaom/
sites.harvard.edu/dist/a/189/files/2023/08/Beamer.Coates.2023.07.20.pdf.

We thank the referees at ICCM for their careful reading of the manuscript.

3. A Derived Langlands Correspondence for GL(1) –
The Galois Side

3.1 Derived Abelianization

Let G be a discrete group. The abelianization of G is an abelian group Gab

for which the projection G −→ Gab is the universal solution to the problem of
morphisms from G to any abelian group. That is, for an abelian group A,

Homgps(G,A) = Homab.gps(G
ab,A).
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Explicitly, we have

(3.1) Gab = G/[G,G] = H1(G,Z).

Just as Gab gives us one-dimensional homology of G (as in Equation (3.1) above)
the derived abelianization of G, denoted Gab,•, is represented by a simplicial abelian
group that is constructed canonically in the appropriate category and captures all
of H∗(G,Z). Specifically, there is a canonical isomorphism

(3.2) πi(G
ab,•)' Hi+1(G,Z)

for i≥ 0.
Intuitively speaking, the derived abelianization should be a kind of “derived

functor of abelianization”. However, the process of “deriving” the abelianization
functor cannot be approached as in classical homological algebra, since the cate-
gory of groups is far from being the sort of abelian category to which the classical
theory of derived functors applies. What one uses instead is Quillen’s theory of
homotopical algebra [11].

Recall that homological algebra is implemented using the notion of chain com-
plex, which however is very specific to abelian categories. In contrast, Quillen’s
homotopical algebra uses the notion of simplicial objects, which applies to totally
general categories. A simplicial object of a category C is a collection of objects
Cn ∈ C for n≥ 0, together with maps Cm→Cn with combinatorics modeled on the
maps of standard simplices

∆n := {(t0, . . . , tn) ∈ Rn+1
+ : ∑ ti = 1}.

More precisely, the simplex ∆n is spanned by the n+ 1 vertices, with the vertex
labeled i satisfying ti = 1. There are maps ∆n→∆m induced by non-decreasing maps
{0, . . . ,n}→ {0, . . . ,m}. The category of finite non-empty sets is called the simplex
category ∆, and a simplicial object of C is a functor ∆op→ C. The corresponding
functor category Fun(∆op,C) is abbreviated sC.

There is a so-called “Quillen equivalence” between simplicial sets and CW
complexes (a class of “nice” topological spaces), which informally says that one
can think of simplicial sets and CW complexes as being interchangeable up to
homotopy. For this reason, one often refers to simplicial sets as “spaces”, and
thinks of the adjective “simplicial” as synonymous to “topological”. A simplicial
group (resp. simplicial abelian group) is a simplicial object in the category of groups
(resp. abelian groups).

The formalism of derived functors makes use, not only of simplicial objects,
but also of appropriate generalizations of “quasi-isomorphisms” and “projective
resolutions”. Such notions are provided by Quillen’s theory of model categories,
which is a specification of distinguished families of morphisms in sC satisfying
suitable properties. The existence of a model category structure on sC is not
guaranteed, but much work has gone into producing such structures on categories
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of interest. Often one starts with a standard model structure on the category sSet
of simplicial sets, and then bootstraps from this to sets with finitary algebraic
structure such as groups, abelian groups, rings, etc. We will not discuss these
details; see instead [1]. Once a model category structure is in place, one constructs
derived functors by a procedure analogous to the traditional calculus in derived
categories, using “projective resolutions”. (Actually in [5] this will all be used in a
different way, using the framework of ∞-categories [9].)

What does this have to do with homological algebra? Recall that a chain com-
plex is called connective if it is supported in non-negative degrees. If C is an abelian
category, then we denote by Ch+(C) the category of connective chain complexes of
objects in C. The Dold-Kan correspondence [7, §III.2] gives an equivalence between
sC and Ch+(C), demonstrating that in the case of abelian categories the “simpli-
cial” theory of homotopical algebra recovers the older “chain complex” theory of
homological algebra.

Circling back to abelian groups: we use the formalism of simplicial abelian
groups as the context for derived functors involving abelian groups. A simplicial
abelian group G• has homotopy groups πi(G•); these coincide with the homotopy
groups of the topological space corresponding to the underlying simplicial set
of G•. The “singular simplices” functor from topological spaces to simplicial sets
promotes to a functor from topological abelian groups to simplicial abelian groups.
With these preparatory remarks in place, we return to the subject of derived
abelianization.
Construction 3.1 (Derived abelianization). The paper [5] gives several explicit
descriptions of the derived abelianization Γab,•, which require a bit more language
to explain. Instead, we will give a more down-to-earth model for its homotopy
type. Let Γ be a simplicial abelian group. Let (BΓ,e) be the bar construction on
Γ, viewed as a pointed space (see [10, Chapter 16, §5] for an explanation of the
bar construction).

Given any pointed space (X ,x), there is the infinite symmetric product [8, p.282]

Sym(X ,x) = lim−→
n

Symn(X)

where Symn(X) = Xn/Sn and the transition maps append the basepoint x. It is a
topological abelian monoid, under concatenation.

Then the homotopy type of the derived abelianization of Γ is represented by the
topological abelian group ΩSym(BΓ,e) where Ω is the (based) loop space functor.

As a sanity check, note that if Γ is discrete, then

π0(ΩSym(BΓ,e))∼= π1(Sym(BΓ,e))∼= H1(Γ;Z)∼= Γ
ab.

This affirms the intuition that (for discrete Γ) Γab,• should be a space whose
underlying group of connected components is Γab. In fact, the Dold-Thom theorem
[2] implies that — as signaled in (3.1) above — for all i≥ 0 we have:

(3.3) πi(ΩSym(BΓ,e))∼= πi+1(Sym(BΓ,e))∼= Hi+1(Γ;Z),
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giving us some understanding of the higher homotopy groups of Γab,• as well.
Under the Quillen equivalence between CW complexes and simplicial abelian

groups, ΩSym(BΓ,e) may be viewed as a simplicial abelian group. Then under the
Dold-Kan equivalence, it corresponds to a connective chain complex. This turns
out to be a familiar object: as a chain complex, Γab,• is quasi-isomorphic to the
(reduced, shifted) homology chains C∗(Γ,Z)[−1]; this is a refinement of (3.3).
Remark 3.2 (Derived abelianization of profinite groups). Since we are interested in
Galois groups, we will want to take the derived abelianization of profinite groups.
In this case it is natural to modify the derived abelianization construction to
produce a profinite abelian group. If Γ is a profinite group, then we denote by
Γab,• its profinite derived abelianization (the universal profinite simplicial abelian
group to which it maps). This can be described explicitly as follows: if Γ = lim←−α

Γα

is a profinite presentation of Γ, then Γab,• ∼= lim←−α
Γ

ab,•
α .

3.2 Derived Abelianization of Galois Groups

Let ΓS = π1(Spec(OF [1/S])) be the Galois group of the maximal extension FS/F
unramified outside a finite set S of prime ideals, equipped with its natural profinite
construction. We let Γ

ab,•
S be as in Remark 3.2. Then under a profinite version of

the Dold-Kan correspondence, we have

(3.4) Γ
ab,•
S

∼−→ C∗(ΓS, Ẑ)[−1].

In particular,

(3.5) π0(Γ
ab,•
S ) = H1(ΓS, Ẑ)∼= Γ

ab
S

is the classical profinite abelianization.

4. A Derived Langlands Correspondence for GL(1) –
The Automorphic Side

Class field theory identifies the classical abelianization of π1(Spec(OF [1/S]))
with the class group of OF [1/S]. We will now describe an enhancement of this
story. To simplify the exposition we will focus on the case where S is empty and
F is totally imaginary. Otherwise, there are subleties coming from the interaction
of real places with the prime 2. These subtleties are treated in detail in [5].

4.1 The Picard Groupoid of Spec(OF)

Recall that the class group of OF may be defined as the group of equivalence
classes of line bundles over Spec(OF). A more refined structure is the Picard
groupoid of Spec(OF), which is the category whose objects are line bundles on
Spec(OF) and morphisms are isomorphisms of line bundles. This construction
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makes sense more generally on any scheme X , and in fact, the Picard groupoid
of X can be naturally promoted to a simplicial abelian group (the underlying
simplicial can be taken to be the nerve of the groupoid, and the group operation
comes from tensor product of line bundles), which we denote Pic(X). We abbreviate
Pic(OF) := Pic(Spec(OF)). In these terms the class group may be described as

(4.1) Cl(OF) = π0 Pic(OF).

This is a reflection of the fact that for any scheme X , there is a natural isomor-
phism between H1(X ,Gm) and equivalence classes of line bundles on X . More gen-
erally, there is a cohomological description of the Picard groupoid. We may view
H1

fppf(X ,Gm) as the 0th cohomology group of the cohomology complex
C•fppf(X ,Gm[1]), which is well-defined in the homotopy category of complexes. There
is a truncation functor τ≤0 on the category of chain complexes, which extracts the
connective cover of a complex, and it is a general fact that the Picard groupoid of
X is naturally isomorphic to τ≤0C•fppf(X ,Gm[1]), the connective cover of the fppf
cohomology1 complex C•fppf(X ,Gm[1]). Taking the 0th cohomology group of this
isomorphism recovers (4.1).

4.2 The Picard Groupoid and the Idèle Class Groupoid

If F is the function field of a curve X over a finite field, then Weil’s construction
identifies the idèle class groupoid IF,Kmax , where Kmax is the product over all places
v of F of the maximal compact subgroups of F×v , with the groupoid of line bundles
on X . A similar construction can be applied when F is a number field, which
involves metrics at archimedean places. However, these can be ignored under our
simplifying assumption that F is totally imaginary. So we can get away (under
this assumption) with just considering the Picard groupoid Pic(OF); we then get
a natural homotopy equivalence

Pic(OF)' IF,Kmax .

Here the left hand side is the simplicial abelian group defined above, while the
right hand side is the topological abelian group IF,Kmax , viewed as the geometric
realization of the left hand side.

We let K = Kmax in what follows. We abbreviate by C∗(OF ,•) the cohomol-
ogy complex of Spec(OF) with coefficients in the fppf sheaf •. We then have a
cohomological description of the idèle class groupoid, as

(4.2) τ
≤0C•(OF ,Gm[1])' Pic(OF)' IF,K .

1 We could have equivalently taken Zariski or étale cohomology here, but in later situations we
will really need to use fppf cohomology.
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4.3 The Profinite Completion of the Picard Groupoid and Flat
Cohomology

In applications to deformation rings, we need the profinite completion of the
derived abelianization of π1(SpecOF). We will compare this with the profinite
completion (in the derived sense) of the Picard groupoid. We consider the Kummer
exact sequence

(4.3) 1→ µn→Gm
n→Gm→ 1

which we can write as an isomorphism in the derived category of sheaves on the
fppf topology of Spec(OF):

(4.4) [Gm
n→Gm]' µn[1]; (Gm)ˆ := lim←−

n
Gm/n' lim←−

n
µn[1].

The profinite completion of C∗(OF ,Gm) is therefore

(4.5) C∗(OF ,Gm)̂ := lim←−
n

C∗(OF ,Gm)/n
∼−→ C∗(OF , lim←−

n
Gm/n)∼= C∗(OF ,µ[1])

where µ := lim←−n
µn is the Tate module of roots of unity.

Combining (4.5) with (4.4), we identify the profinite completion of C∗(OF ,Gm)

with the flat cohomology complex:

(4.6) C∗(OF ,Gm)̂ ' C∗(OF ,µ[1]).

There is a generalization of profinite completion to simplicial sets and simplicial
abelian groups. Combining (4.2) and (4.6) yields

(4.7) Pic(OF )̂
∼−→ τ

≤0C∗(OF ,µ[2]).

5. Derived Class Field Theory via Poitou-Tate
Duality

5.1 Derived Poitou-Tate Duality

Recall that an oriented manifold M enjoys Poincaré duality, which can be
formulated as an isomorphism

Hi(M,Z)∼= Hn−i
c (M,Z)

where n = dimM. In fact, this can be promoted to an isomorphism of complexes
(in a suitable localization of the category of complexes)

Ci(M,Z)∼= Cn−i
c (M,Z).

There is an analogy between number fields and 3-manifolds, under which Poincaré
duality is analogous to the so-called Poitou-Tate duality. The latter is a bit
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subtle, but the upshot is that for a finite fppf sheaf F with Cartier dual
FD :=Hom(F ,Gm), there are isomorphisms

Hi(OF ,F)∼= H3−i
c (OF ,FD).

Here the compactly supported cohomology groups H3−i
c (OF ,FD) are a bit more

involved to define in general – they are defined formally as cones of restric-
tion maps to Archimedean places, where one also has to replace cohomology
by Tate cohomology. However, under our simplifying assumptions we will have
H3−i

c (OF ,FD) = H3−i(OF ,FD), and we can ignore the compact support condition
entirely. It turns out that in this case, similarly to the case of manifolds, one can
promote Poitou-Tate duality to an isomorphism

C∗(OF ,F)∼= C∗(OF ,FD[3]).

This promotion is quite formal but we prefer to leave the details to [5]. Applying
this with F = µn and taking limits in n, the upshot is a natural isomorphism

C∗(OF , Ẑ)∼= C∗(OF ,µ[3]).

Combining this with (4.7) gives the following:

(5.1) Pic(OF )̂
∼−→ τ

≤0C∗(OF ,µ[2])
∼−→ τ

≤0C∗(π1(Spec(OF)), Ẑ[−1]).

5.2 Derived Class Field Theory
Now we put together the isomorphism (5.1) with (3.4) and (4.6) to find the

following dual description of the derived abelianization of Galois groups:

Theorem 5.1. Suppose that F is a totally imaginary number field. Then there is
a natural isomorphism of simplicial abelian groups(

π1(Spec(OF))
ab,•

)
ˆ' (IF,K )̂

where K = ∏vO×F,v is the maximal compact subgroup of the finite idèles, such that
applying π0(−) recovers the usual isomorphism of class field theory

π1(Spec(OF))
ab ∼= π0(IF,K).

A complete proof of this Theorem, in the more precise language of ∞-categories
and animated sets, will appear in [5].

5.3 Allowing for Ramification
The version of derived class field theory explained above recovers the idèle

quotient π0(IF,K) when K is the product of the unit groups O×v at all primes v. For
more general K, one can interpret π0(IF,K) as the group of equivalence classes of
invertible OF -modules M with a given level K structure. This is defined as follows.

96 ICCM Notices Vol.11



Derived Class Field Theory

If K ⊂∏v∈SOv is the principal congruence subgroup KJ of level J, where J ⊂OF

is an ideal supported at S, then a level K structure is a trivialization

ι :OF/J
∼−→ M/JM.

In general, any open subgroup K ⊂∏v∈SOv contains some KJ, and a level K struc-
ture is an equivalence class of level KJ structures for the action of K/KJ. There is a
(relatively formal) way to enhance Theorem 5.1 to encompass such level structures,
using relative derived abelianization, which will be explained in [5].

6. Functoriality
6.1 Behavior Under Finite Field Extensions

Let E/F be a finite extension of degree n. Fix a finite set S of non-archimedean
places of F and let ΓF,S = π1(OF,S), ΓE,S = π1(OE,S). Let KS

F = ∏v/∈SOv ⊂ A×F ,
KS

E ⊂ A×E , be the corresponding subgroups. The following commutative diagrams
are the derived versions of the familiar functorialities of class field theory; the
profinite completions have been omitted.

IKS
E

NE/F

��

// Γab,•
E,S

ι

��
IKS

F

// Γab,•
F,S

(6.1)

IKS
E

// Γab,•
E,S

IKS
F

ι

OO

// Γab,•
F,S

tr

OO
(6.2)

The horizontal maps are the derived class field theory equivalences discussed
above.

The vertical maps labelled ι are induced by the natural inclusions F ↪→ E or
ΓE,S ↪→ ΓF,S, which go in opposite directions for the idèle classes and Galois groups
(inclusion followed by abelianization, in the latter case). The map NE/F is the
norm map. As usual, the only map that requires explanation is the right-hand
vertical map in (6.2). This is the transfer, which on homotopy groups is given by
the corestriction on group cohomology.

6.2 Iwasawa Theory

Now suppose F = F0 ⊂ F1 ⊂ ·· · ⊂ Fn ⊂ . . . is a tower of extensions of F , with
Gal(Fn/F)

∼−→ Z/pnZ, so that F∞ =∪nFn is a Zp-extension of F . This is the setting
of Iwasawa theory to which so much of John Coates’s work was devoted. Write
Γ = Gal(F∞/F).
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In classical Iwasawa theory, one considers the limit and colimit of the classical
abelianizations (Γab

Fn,S
)̂p in this tower

(6.3) (ΓF∞,S)̂p := lim←−
n
(Γab

Fn,S)̂p; (Aab
F∞,S)̂p = lim−→

n
(Γab

Fn,S)̂p.

Here (−)̂p denotes p-adic completion. One views the resulting objects in (6.3)
as compact and discrete modules, respectively, over the Iwasawa algebra Zp[[Γ]],
where the double brackets denote the completion of the group algebra with re-
spect to the inverse limit topology. It may be interesting to investigate a derived
enhancement of this story.

References
[1] W. G. Dwyer, J. Spaliński, Homotopy theories and model categories. Handbook of algebraic

topology, 73–126, North-Holland, Amsterdam, 1995. MR1361887
[2] Dold, Albrecht; Thom, René. Quasifaserungen und unendliche symmetrische Produkte.

(German) Ann. of Math. (2) 67 (1958), 239–281. MR0097062
[3] M. Emerton, X. Zhu, work in progress.
[4] T. Feng, M. Harris, Derived Aspects of the Langlands correspondence, IHES Summer School

2022 proceedings, in preparation.
[5] T. Feng, M. Harris, B. Mazur, A. Raksit, Derived Langlands for GL(1), in preparation.
[6] Galatius, S.; Venkatesh, A. Derived Galois deformation rings. Adv. Math. 327 (2018),

470–623. MR3762000
[7] P. M. Goerss, J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser, Modern Birkhäuser

Classics (2009). MR2840650
[8] Hatcher, Allen. Algebraic topology. Cambridge University Press, Cambridge, 2002. xii+544

pp. MR1867354
[9] Lurie, Jacob. Higher topos theory. Annals of Mathematics Studies, 170. Princeton University

Press, Princeton, NJ, 2009. xviii+925 pp. MR2522659
[10] May, J. P. A concise course in algebraic topology. Chicago Lectures in Mathematics. Uni-

versity of Chicago Press, Chicago, IL, 1999. x+243 pp. MR1702278
[11] Quillen, Daniel G. Homotopical algebra. Lecture Notes in Mathematics, No. 43 Springer-

Verlag, Berlin-New York 1967 iv+156 pp. MR0223432
[12] X. Zhu, Coherent sheaves on the stack of Langlands parameters, arXiv:2008.02998v2

[math.AG].

Tony Feng
fengt@berkeley.edu

Department of Mathematics
University of California at Berkeley

Berkeley, CA 94720

Michael Harris
harris@math.columbia.edu

Department of Mathematics, Columbia University
New York, NY 10027, USA

Barry Mazur
mazur@g.harvard.edu

Department of Mathematics, Harvard University
Cambridge, MA 02138, USA

98 ICCM Notices Vol.11

http://www.ams.org/mathscinet-getitem?mr=1361887
http://www.ams.org/mathscinet-getitem?mr=0097062
http://www.ams.org/mathscinet-getitem?mr=3762000
http://www.ams.org/mathscinet-getitem?mr=2840650
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=2522659
http://www.ams.org/mathscinet-getitem?mr=1702278
http://www.ams.org/mathscinet-getitem?mr=0223432

	Introduction
	Beyond Class Field Theory
	A Derived Langlands Correspondence for GL(1) – The Galois Side 
	Derived Abelianization
	Derived Abelianization of Galois Groups

	A Derived Langlands Correspondence for GL(1) – The Automorphic Side 
	The Picard Groupoid of Spec (OF)
	The Picard Groupoid and the Idèle Class Groupoid
	The Profinite Completion of the Picard Groupoid and Flat Cohomology

	Derived Class Field Theory via Poitou-Tate Duality
	Derived Poitou-Tate Duality
	Derived Class Field Theory
	Allowing for Ramification

	Functoriality
	Behavior Under Finite Field Extensions
	Iwasawa Theory

	References

