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Bernhard Riemann was born in 1826 in Breselenz, a small town in what was
then the Kingdom of Hanover, roughly 50 miles South-East of Hamburg. His
father was a protestant minister, just able to make a living. Bernhard grew up
as the second of six children. His mother died when Riemann was in his early
teenage years. He then lived briefly with his maternal grandmother in Hanover,
unhappily and homesick. After his grandmother’s death, he attended a boarding
school in Lüneburg, then and still now a sleepy city more or less halfway between
Breselenz and Hamburg. Riemann was a good, but not outstanding student. He
put considerable effort into the study of theology and Hebrew, then a subject to
be learned if one was to become a Lutheran minister, like his father. The director
of his school, recognizing Riemann’s interest in mathematics, gave him access
to his own library, which included textbooks of mathematics, and in particular
Legendre’s book on the theory of numbers.

In 1846 Riemann became a student of theology at the University of Göttingen,
but he attended also some mathematics lectures. With his father’s permission – he
would not have defied his father! – he switched to the subject of mathematics, then
part of the Faculty of Philosophy. He attended lectures of Gauss. But lectures at
German universities at the time were large affairs, with lecturers typically unaware
of who their students were. There is no evidence at all that Gauss recognized
Riemann’s mathematical talent at that time.

In 1847 Riemann moved to the University of Berlin, attending lectures by
Dirichlet, Eisenstein, Jacobi, and Steiner. At the time Germany was a loose feder-
ation of principalities and kingdoms, but political unrest was brewing, culminat-
ing in the creation of a more tightly organized German state which then included
Austria, with Berlin as capital. In 1849 Riemann returned to Göttingen, where he
received his PhD, with Gauss as “Doktorvater”, i.e., PhD advisor, in 1851. The
thesis studied branched coverings of regions in the complex plane and holomor-
phic mappings between them; hence the name “Riemann surface”. Riemann was
the first mathematician to use what is now called the “Dirichlet Principle”. In his
report on Riemann’s PhD thesis, Gauss did mention the enormous talent of its
author.
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At Gauss’ urging, Riemann was appointed “Privatdozent” in Göttingen, which
might be loosely translated as assistant professor. He went through the process
of “Habilitation”, in effect a second, more advanced PhD thesis, a prerequisite
for becoming “Professor”, i.e., full professor. In this second thesis, Riemann in-
troduced what we now call the “Riemann integral”, and used it to rigorously
introduce Fourier series of periodic functions. An additional requirement for the
Habilitation was to prepare lectures on three subjects chosen by the lecturer, with
the final choice made by the faculty. They chose “Über die Hypothesen welche der
Geometrie zu Grunde liegen” – about the hypotheses underlying geometry. In his
lecture, Riemann rigorously defined the dimension of Euclidean n-space endowed
with what one now calls a “Riemannian metric”, studied the geodesics on such a
space and introduced the curvature tensor. He also related the curvature to the de-
viation of the area from that of a flat triangle. One of his contemporaries said that
in the audience, only Gauss was able to fully appreciate the depth of these ideas.

As Freudenthal observed in [6], Riemann was the first mathematician to realize
the distinction between the curvature of a space in terms of its embedding into
Rn on the one hand, and in terms of the metric determined by the embedding
on the other. But Riemann was not without critics: he had used what he called
the “Dirichlet Principle” to get solutions of Poisson’s equation as the minimum
of a certain energy functional. As Weierstrass pointed out, the minimum was not
unique. In the end David Hilbert gave a rigorous alternative argument using the
calculus of variations. Weierstrass and Riemann became rivals in other ways, as
well. Riemann had used Cauchy’s approach to holomorphic functions, in terms
of line integrals, whereas Weierstrass used the representability of holomorphic
functions by convergent power series. It is generally recognized that Weierstrass
introduced present day standards of rigor into mathematics. But Weierstrass was
quite aware of Riemann’s enormous talents: he withdrew a paper on Abelian func-
tions when he saw Riemann’s paper [9]. It should be noted that Riemann’s style
is informal and discursive, with results and their proofs not separated from the
surrounding text. He died prematurely in 1866, with tuberculosis as cause. In his
short life he managed to produce a remarkable amount of work. Richard Dedekind
and Heinrich Martin Weber edited the Collected Work of Bernhard Riemann [11].
I shall concentrate on [10] in this note.

The paper [10] is Riemann’s “Habilitation” thesis; the “Habilitation” was, and
still is, a second Doctoral degree in Germany (and some other European countries)
which is meant to demonstrate the author’s ability to teach at the university level.
Though complex numbers were introduced in the 16th century, they were used
primarily to solve polynomial equations. Riemann then launches into a historical
discussion: in the middle of the 18th century many mathematicians studied the
theory of vibrating strings. The position y(x, t) of a vibrating string, of uniform
thickness, fixed at the endpoints x = 0 and x = ` is governed by the differential
equation

(1) ∂ 2y
∂ t2 = α

2 ∂ 2y
∂x2 ,
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with an appropriately chosen constant α; this is an approximation, as Riemann
points out. The function y(x) must satisfy the initial conditions

(2) y(0, t) = y(`, t) = 0

for all t, of course.
Riemann credits d’Alembert with first describing the differential equation (1)

and the matching initial conditions (2) into

(3) ∂ 2y
∂u∂v

= 0 with u = x+αt, v = αt,

then if one knows the function f (x) for −`≤ x < `, one knows it for all values of x
by means of the equation

(4) f (x) = f (x+2`).

Besides this partial differential equation, the solution y(x, t) must satisfy the bound-
ary conditions (2):

(5) y(0, t) = y(`, t) = 0,

for all t, of course. Riemann defines a new function φ(x) = − f (−x) which trans-
forms the boundary conditions (2) into

(6) f (z) =−φ(−z), f (`+ z) =−φ(`− z),

which implies1

(7) f (z) =−φ(−z) = φ
(
`+(`+ z)

)
= f (2`+ z),

so f (z) is periodic with period 2`. After d’Alembert had established the periodicity
of f (z), he studied functions that are periodic.

Leonard Euler, according to Riemann, gave a better approach to the study of
periodic functions f (z). If one defines auxiliary functions

(8) g(x) = f (x)− f (−x) and h(x) =−α
(

f ′(x)+ f ′(−x)
)
,

then if one knows the values of g(·) and of h(·) for any point x between −` and
`, one can determine the values at other points by integration. Euler objected to
d’Alembert’s argument on the grounds that it required the existence of an analytic
expression for y(x, t). Before Euler could answer this objection, Daniel Bernoulli
[1] used a very different method. Even earlier Taylor [13] had observed that the
function

(9) y(x, t) = sin(nπx/`)cos(nπαt/`), with n ∈ Z≥0,

1 There is an apparent misprint: Riemann’s third term in (7) is −φ(`−(`+z)), which would make
the identity a tautology.
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provides a solutions for the equation (1). That, d’Alembert, explained why a vi-
brating string could generate tones not only at its ground frequency, but also at
integral multiples of the ground frequency. Bernoulli pointed out that the vibrating
string could vibrate at all these frequencies simultaneously: the function

(10) y(x, t) = ∑
n∈Z≥0

an sin(nπx/`)cos
(
nπα(t −βn)/`

)
,

provides a solution for the equation (1). Bernoulli even conducted experiments to
support his analytic expressions.

Leonhard Euler [3] countered d’Alembert by stating that the function y(x,0)
could be arbitrary, but only if any periodic function of x could be expanded in a
Fourier series – Fourier series had been introduced roughly a century earlier. At
the time it was unknown whether arbitrary periodic functions could be expanded
as Fourier series, or what conditions needed to be met for such an expression
to be valid. Euler therefore dismissed Bernoulli’s solution of the vibrating string
problem.

Since the argument between Euler and d’Alembert remained open, Lagrange
– not well known at the time – tried to obtain a solution by considering massless
strings weighted with N equal, equidistant weights, and then letting N tend to ∞.
But this limiting procedure was impossible to justify at the time. That seemed
to vindicate d’Alembert. But opinions of mathematicians at the time remained
divided.

Bernoulli’s results made Euler undertake a new attack on the problem [4].
He pointed out that Bernoulli’s solution was valid only if any periodic function
could be expressed as a Fourier series. At the time, it was unknown whether any
periodic function could be expressed as a Fourier series. Euler applied methods of
calculus to decide this question. Lagrange [7] considered Euler’s approach correct,
but considered his arguments insufficient. D’Alembert, to support his own point
of view, doubted that any periodic function could be expressed as a Fourier series.
Lagrange [8], on the other hand, believed he could prove this assertion.

For roughly 50 years this question remained open, until Joseph Fourier [5] made
the remarkable discovery that a continuous periodic function of period 2π could
be expressed as

(11) f (x) = a1 sinx+a2 sin2x+ · · ·+ 1
2

b0 +b1 cosx+b1 cosx+b2 cos2x+ · · · ,

with coefficients determined by the equations

(12) an =
1
π

∫
π

−π

f (x)sinnxdx, bn =
1
π

∫
π

−π

f (x)cosnxdx,

as he showed in [10]. For the first time in the development of Fourier series,
Fourier was specific about the hypotheses that f (x) needed to satisfy for such a
series expansion was to converge: piecewise continuity was enough.
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In 1807 he submitted a paper to the French academy which spelled out these
conditions. Lagrange, quite old at the time, found this assertion so unexpected
that he opposed it strenuously. Lagrange interpolated periodic functions by finite
Fourier series, and it seems strange today that he thought he would understand
periodic functions this way. Fourier series, of course, have been widely applied to
describe periodic phenomena. It took a long time before the expression of periodic
functions in terms of Fourier series was established rigorously.

Cauchy gave a lecture to the Paris Academy in February 1826 in which he tried
to establish the expression of periodic functions in terms of Fourier series rigor-
ously, but Dirichlet in 1929, in a paper in Crelle’s Journal [2], pointed out that
Cauchy’s argument fell short of rigorous proof: Cauchy assumed that the func-
tion in question extended to a holomorphic function on the holomorphic plane,
but that is not the case. It is now clear that much weaker hypotheses suffice –
extendability to a half plane is enough, as Riemann himself proved in his “Inau-
guraldissertation”, i.e., in his PhD thesis.

In the article [2] Dirichlet also rigorously proved the validity of Fourier ex-
pansions for integrable (in the sense of Riemann integration) functions with only
finitely many extrema. Riemann then discusses the difference between absolutely
and conditionally convergent series. That distinction, Riemann points out, was
not understood in the previous century – probably, according to Riemann, be-
cause power series converge absolutely in the largest open interval in which they
do converge.

Next Riemann discusses under which conditions a Fourier series converges. His
answer is the best possible: the Fourier series of a function of bounded variation
converges everywhere. As an additional criterion he mentions a criterion for the
integrability functions that are piecewise continuous except for a finite number of
points where they may become unbounded: if one removes intervals of length ε
around each point of discontinuity, the resulting integral must have a limit as ε
tends to zero. That limit is then considered to be the value of the integral. He then
gives an example of a discontinuous function that has left and right limits at every
point – which need not agree, of course – for which he is nonetheless able define
a value of the integral. Finally a discussion of the case of functions continuous
except at one point, where the function is allowed to tend to ∞; depending on
the rate of becoming infinite, there may be a definite limit for the integral. All
in all, this comes close to the notion of the Lebesgue integral with respect to the
Euclidean measure on the real line!

Riemann then studies a particular example. He uses the notation (x) for the
difference between the real number x and the nearest integer; if x lies exactly in
the middle between two integers, (x) = 0. He then considers the series

(13) f (x) =
(x)
1

+
(2x)

4
+

(3x)
9

+ · · ·= ∑
1≤n<∞

(nx)
n2 ;

it converges, as is easy to see, for all values of x. If x = p/2n, with two relatively
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prime numbers p and n, the limit is described by the identities

lim
y→x,y>x

f (y) = f (x)− 1
2n2

(
1+

1
9
+

1
25

+ · · ·
)
= f (x)− π2

16n2 ,

lim
y→x,y<x

f (y) = f (x)+
1

2n2

(
1+

1
9
+

1
25

+ · · ·
)
= f (x)+

π2

16n2 ,

(14)

but f (x) is continuous at all other points.
The function f (x) is therefore discontinuous at all rational points which, when

they are expressed as expressed as quotients x = p/2n, with p and n relatively
prime, therefore discontinuous infinitely often in any non-empty open interval,
but with the number of jumps greater than any particular η > 0 necessarily finite.
It is integrable (in the sense of Riemann integrability, of course). Indeed, that
requires only the finiteness of its values, the two properties that it has left and
right limits at each point, and that the number of jumps greater or equal to any
particular quantity σ > 0 is finite. For if we apply these considerations, we see
that in all intervals which do not contain such jumps, the variations are smaller
than σ , and that the total length which do contain such jumps, can be made as
small as one wishes by choosing the intervals appropriately.

It should be mentioned that functions which do not have infinitely many local
maxima and minima – which does not include the example (14) – do have the two
properties just mentioned except at points where they tend to ∞. These functions
are therefore integrable in the sense of Riemann, again away from points where
they tend to ∞, is not difficult to show directly.

Let us now consider the case of a function f (x) which we want to integrate, a
function that tends to +∞ at a particular point. We might as assume that this
happens at x = 0, so that as x tends to zero from above, f (x) grows eventually
beyond any given value.

In that case it is not difficult to show that x f (x) cannot stay larger than a
pre-given quantity c. For if that were to be the case,

(15)
∫ a

x
f (x)dx > c

∫ a

x

dx
dy

hence greater than c(log 1
x − log 1

a), a quantity that goes to ∞ as x tends to zero.
Consequently x f (x) must tend to 0 as x → 0 from above unless this function has
infinitely many local maxima and minima; otherwise f (x) would not be integrable
near zero. On the other hand, if

(16) f (x)xα = (1−α) f (x)
dx
dy

, where y = x1−α , with α < 1,

tends to 0 as x tends to zero from above, then it is clear that the integral (15)
tends to −∞ as the lower limit of the integral goes to zero. When the integral does
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converge, one finds that the functions

(17)
f (x)x log

1
x
=

f (x)dx

−d log log 1
x

, f (x)x log
1
x

log log
1
x
=

f (x)dx

−d log loglog 1
x

· · · ,

f (x)x log
1
x

log log
1
x
· · · logn−1 1

x
logn 1

x
=

f (x)dx

−d logn+1 1
x

cannot remain bounded away from zero as x tends to zero from above. Thus –
assuming the expression does not have infinitely many local maxima an minima –
tends to zero; on the other hand, the integral

∫
f (x)dx does converge as the lower

limit tends to zero from above, provided the expression

(18) f (x)x log
1
x
· · · logn−1 1

x
d

(
logn 1

x

)α

=
f (x)dx

−(logn 1
x )

1−α
with α > 1,

tends to zero as x → 0 from above.
On the other hand, if the function f (x) has infinitely many local maxima and

minima, one cannot say anything about how its order of growth near the origin as
x tends to zero from above. Indeed, if we assume that its order of growth is given –
and that alone determines the qualitative behavior of | f (x)| near the origin – then
one can by appropriately determining its sign one can arrange that the integral∫

f (x)dx converges as the lower limit goes to −∞. As example Riemann gives the
function

(19) d(xcose
1
x )

dx
= cose

1
x +

1
x

e
1
x sine

1
x .

That, says Riemann, should serve as sufficient example for this phenomenon. He
then turns to the main subject of this article, the representability of a periodic
function by a trigonometric series.

Previous studies of periodic functions, according to Riemann, had the purpose
to representing periodic functions occurring in nature by Fourier series; one could
therefore prove the representability for an arbitrary periodic function, putting
suitable restrictions on the function as necessary, if it served the purpose. For
this study of periodic functions. Here, on the other hand, he only wants to impose
those conditions that are required if one wants to represent a periodic function by a
trigonometric series; he therefore looks first for necessary conditions, and then for
those necessary conditions that are also sufficient. According to Riemann, previous
studies showed that if a periodic function has suitable properties, it is representable
by a Fourier series; now he considers the opposite question: if a periodic function
is representable by a trigonometric series, what can one say about its change when
the argument is varied? He initially considers the series

(20) a1 sinx+a2 sin2x+ · · ·+ 1
2

b0 +b1 cosx+b2 cos2x+ · · ·
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or, to shorten the formula, with A0 = 1
2 b0, A1 = a1 sinx+ b1 cosx, A2 = a2 sin2x+

b2 cos2x, . . . , he expresses the series as

(21) A0 +A1 +A2 + · · · .

Riemann denote this expression by Ω and its value as a function by f (x), a function
that is defined only for those x for which the series does converge.

To make the series converge, it is necessary the its terms tend to zero. If the
coefficients an and bn do go to zero as n → ∞, the terms of the series Ω go to zero
uniformly with respect to x; otherwise the series can converge only for certain
values of x. It is then necessary to consider both cases separately.

Riemann first assumes that the terms of the series Ω tend to zero uniformly
in x. Under this assumption, the series

(22) F(x) =C+C′x+A0
x2

2
−A1 −

A2

4
− A3

9
· · · ,

which one obtains by integrating the terms of Ω twice, converges for all values of
x; he denotes its value at x by F(x), and so F(x) is therefore integrable in the sense
of Riemann integration.

To show both – the convergence of the series and the continuity of the function
F(x) – Riemann denotes the sum of the terms up to, and including the term
− An

(n+1)2 by N, and the remainder of the series, i.e., the series

(23) − An+1

(n+1)2 −
An+2

(n+2)2 −·· ·

by R and the greatest value of Am for m > n by ε. In that case the value of R
satisfies the bound

(24) < ε

(
1

(n+1)2 +
1

(n+2)2 + · · ·
)
<
ε

n

so the sum of the remaining terms can be made as small as one chooses, provided
only that n is chosen large enough; consequently the series (22) converges.

The function F(x) is continuous; i.e., the change in F(x) can be made as small
as one wants if one bounds the change in x suitably. For the change in F(x) is
consists of the change in R and the change in N; evidently one can first require n
to be large enough so that R can be made as small as one wants, and then bound
the change in x suitably to bound the change of N to make it also as small as one
wants.

Riemann then formally states a “Lehrsatz” – i.e., theorem – to the effect that
if the series Ω, as defined just below (22), converges, then the expression

(25) F(x+α +β )−F(x+α −β )−F(x−α +β )+F(x−α −β )

4αβ
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converges to the same value as the series, provided α and β tend to zero and the
ratio of these to two quantities remains bounded from above and below. Indeed,

F(x+α +β )−F(x+α −β )−F(x−α +β )+F(x−α −β )

4αβ
(26)

= A0 +A1
sinα

α

sinβ

β
+A2

sin2α

2α

sin2β

2β
+A3

sin3α

3α

sin3β

3β
+ · · · ,

or to deal first with the simpler case of β = α,

(27) F(x+2α)−2F(x)+F(x−2α)

4α2 = A0 +A1

(
sinα

α

)2

+A2

(
sin2α

2α

)2

+ · · · .

If f (x) = A0 +A1 +A2 + · · · , and if f (x)+ εn = A0 +A1 +A2 + · · ·+An−1, then given
any δ > 0 there must exist an m = m(n) such that n > m implies εn < δ . If one
chooses α > 0 small enough so that mα < π, and if one substitutes An for εn+1−εn,
one obtains the identity

(28) ∑
0≤n<∞

An

(
sin(nα)

nα

)2

= f (x)+ ∑
1≤n<∞

εn

{(
sin(n−1)α
(n−1)α

)2

−
(

sinnα

nα

)2}
.

Riemann then expresses this series into three components, by putting together

1) the terms indexed from n = 1 to n = m,

2) indexed from n = m+1 to the greatest integer ≤ π

α
, which he denotes by s,

3) from s+1 to ∞.

(29)

The first component consists of a finite number of continuous terms and can
therefore be forced to be as small as one wants, by choosing α sufficiently small;
the second component is, disregarding signs,

(30) < δ

{(
sinmα

mα

)2

−
(

sinsα

sα

)2}
;

since the εn are positive. In order to bound the third term, Riemann expresses its
general term as a sum of two components,

(31) εn

{(
sin(n−1)α
(n−1)α

)2

−
(

sin(n−1)α
nα

)2}
,

and

(32) εn

{(
sin(n−1)α

nα

)2

−
(

sin(nα)

nα

)2}
=−εn

sin((2n−1)α)sinα

(nα)2 .
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It is therefore clear that this term is

(33) < δ

{(
1

(n−1)2α2

)2

−
(

1
n2α2

)}
+δ

1
n2α

.

Consequently the sum of terms indexed by n = s+1 to ∞ is

(34) < δ

{
1

(sα)2 +
1

sα

}
,

the value of which tends to a limit

(35) δ

{
1

π2 +
1
π

}
as α decreases.

As α tends to zero, the sum

(36) ∑
n
εn

{(
sin(n−1)α
(n−1)α

)2

−
(

sinnα

nα

)2}
goes to a limiting value which cannot be greater than

(37) δ

{
1+

1
π
+

1
π2

}
,

and which therefore must be zero. Consequently the expression

(38) F(x+2α)−2,F(x)+F(x−2α)

4α2 ,

which equals

(39) f (x)+∑εn

{(
sin(n−1)α
(n−1)α

)2

−
(

sin(nα)

nα

)2}
,

and thus tends to f (x) as α goes to zero. That establishes our theorem when
β = α. To prove this result in general, we set

(40)
F(x+α +β )−2F(x)+F(x−α −β ) = (α +β )2( f (x+δ1)

)
,

F(x+α −β )−2F(x)+F(x−α +β ) = (α −β )2( f (x+δ2)
)
,

which implies that

F(x+α +β )−F(x+α −β )−F(x−α +β )+F(x−α −β )(41)
= 4αβ f (x)+(α +β )2

δ1 − (α −β )2
δ2.

As consequence of what was just proved, both δ1 and δ2 go to zero as soon as α

and β tend to zero; it follows that

(42) (α +β )2

4αβ
δ1 −

(α −β )2

4αβ
δ2
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also tends to zero, provided the coefficients of δ1 and δ2 do not go to ∞; but that
does not happen if the ratio β

α
remains bounded. Consequently the expression

(43) F(x+α +β )+F(x+α −β )−F(x−α +β )+F(x−α −β )

4αβ

converges to f (x), as had to be proved. Riemann the states “Lehrsatz 2” – i.e.,
theorem 2 – as follows: the expression

(44) F(x+2α)+F(x−2α)−2F(x)
2α

converges to zero as α → 0.
In order to prove this theorem, Riemann divides the expression

(45) ∑
n

An

(
sinnα

nα

)2

into three groups, the first of which contains all terms up to a fixed index m, with
m chosen so that n ≥ m implies An ≤ ε; the second group all subsequent terms for
which nα is bounded from above by a fixed quantity c; and the third containing
all remaining terms. One can then see easily that, as α goes to zero, the sum of
the terms in the first group remains finite, i.e., bounded by a fixed quantity Q;
the sum of the terms in the second group is bounded by ε c

α
; and the sum of the

terms in the third group is bounded by

(46) ε ∑
c<nα

1
n2α2 <

ε

ac
.

Consequently

(47) F(x+2α)+F(x−2α)−2F(x)
2α

,

which equals

(48) 2α ∑
n

An

(
sinnα

nα

)2

< 2α ∑
n

An

(
sinnα

nα

)2

remains bounded by

(49) 2
(
Qα + ε

(
c+ c−1)),

and that implies “Lehrsatz 2”.
Riemann then states “Lehrsatz 3”. He considers two constants b and c, the

larger one c, and a function λ (x) on the interval, which has a continuous first
derivative. The function λ (x) and its first derivative are continuous b vanish at
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the boundary points, and whose second derivative does not have infinitely many
local maxima and minima. In that case the integral

(50) µ
2
∫ c

b
F(x)cos

(
µ(x−α)

)
λ (x)dx

tends to zero as µ →+∞.
If one substitutes for F(x) its expression as a series, one obtains for the expres-

sion (50) the series (Φ),

µ
2
∫ c

b

(
C+C′x+A0

x2

2

)
cos

(
µ(x−α)

)
λ (x)dx− ∑

1≤n<∞

µ2

n2

∫ c

b
An cos

(
µ(x−a)

)
λ (x)dx.

(51)

The term An cos(µ(x−a)) can be expressed as a linear combination of

cos
(
(µ +n)(x−a)

)
, sin

(
(µ +n)(x−a)

)
, cos

(
(µ −n)(x−a)

)
, sin

(
(µ −n)(x−a)

)
.

(52)

If in this sum one denotes the first two components by Bµ+n and the sum of the
last two components by Bµ−n, one finds An cos(µ(x−a)) = Bµ+n +Bµ−n, and thus
obtains the identities

(53)
d2Bµ+n

dx2 =−(µ +n)2Bµ+n,
d2Bµ−n

dx2 =−(µ −n)2Bµ−n,

and both Bµ+n and Bµ−n tend to zero as n → ∞ uniformly with respect to x. The
general term of the series Φ,

(54) −µ2

n2

∫ c

b
F(x)cos

(
µ(x−a)

)
λ (x)dx,

therefore equals

(55) µ2

n2(µ +n)2

∫ c

b

d2Bµ+n

d2x
λ (x)dx+

µ2

n2(µ −n)2

∫ c

b

d2Bµ−n

d2x
λ (x)dx,

or by twice integrating by parts, first regarding λ (x), then λ ′(x) as constant,

(56) µ2

n2(µ2 +n)2

∫ c

b
B(µ+n)λ

′′(x)dx+
µ2

n2(µ2 −n)2

∫ c

b
B(µ±n)λ

′′(x)dx,

since both λ (x) and λ ′(x) vanish at the upper and lower limits of the integral.
It is not difficult to see that

∫ c
b Bµ±ν λ ′′(x)dx tends to zero as µ goes to infinity,

independently of n; for this expression is a combination of the integrals

(57)
∫ c

b
cos(µ ±n)(x−a)λ ′′(x)dx,

∫ c

b
sin(µ ±n)(x−a)λ ′′(x)dx,
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and as µ±n goes to ∞, these integrals tend to zero, not because n grows indefinitely,
but because the coefficients of this expression go to zero. To prove our theorem,
it therefore suffices if the sum

(58) ∑
n

µ2

n2(µ −n2)
,

summed over all values of n which satisfy the conditions n <−c′, c′′ < n < µ −c′′′,
µ + cIV < n, remains bounded no matter how c is chosen. For disregarding terms
for which

(59) −c′ < n < c′′, µ − c′′′ < n < µ + cIV ,

which are finite in number, and each of which tends to zero, the series Φ remains
smaller than this sum, multiplied by the largest value of

(60)
∫ c

b
Bµ±nλ

′′(x)dx,

which tends to zero.
On the other hand, if the quantity c is strictly greater than one, the sum (58),

summed over the indices n in the same ranges as above in (60),

(61) ∑
µ

µ2

(µ −n)2x2 =
1
µ

∑
n

1
µ

(1− n
µ
)2( n

µ
)2 ,

is bounded by

(62) 1
µ

∫
dx

(1,−x)2x2 ,

integrated in over the following intervals:

(63) −∞ < x <−c′−1
µ

,
c′′−1

µ
< x < 1− c′′′−1

µ
, 1+

cIV −1
µ

< x < ∞;

for if one divides the real line into intervals of length 1
µ

symmetrically about the
origin, and if in each such interval one takes the smallest value of the function,
one bounds all terms of the series since the function has no local maximum.

If one carries out the integration, one obtains the expression

(64) 1
µ

∫
dx

x2(1− x)2 =
1
µ

(
−1

x
+

1
1− x

+2logx−2log(1− x)

)
+ const.,

and consequently one gets a value between the limits just mentioned which does
not go to ∞ as µ tends to infinity.

By means of these results one can make the following remarks about the rep-
resentability of a function by a trigonometric series, whose individual terms tend
to zero:
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I. If a periodic function f (x) of period 2π is to be representable by a trigono-
metric series, whose individual terms tend to zero, there must exist a continuous
function F(x), depending on f (x), so that

(65) F(x+α +β )−F(x+α −β )−F(x−α +β )−F(x−α −β )

4αβ

tends to f (x) when α and β go to zero, provided their ration remains bounded
from above and away from zero. In addition the integral

(66) µ
2
∫ c

b
F(x)cos

(
µ(x−a)

)
λ (x)dx

must go to zero as µ grows, provided λ (x) and λ ′(x) vanish at the limits of the inte-
gral and are continuous in between, and provided λ ′′(x) does not have indefinitely
many local maxima and minima.

II. If conversely these two conditions are satisfied, there exists a trigonometric
series, whose coefficients tend to zero, a series that represents the function f (x)
at all points where it converges. For if one determines the constants C′, A0 so
that

(67) F(x)−C′x−A0
x2

2

is a periodic function of period 2π, and if one expresses this function according to
Fourier’s method as a trigonometric series

(68) C− A1

1
− A2

4
− A3

9
−·· · ,

with coefficients

C =
1

2π

∫
π

−π

(
F(x)−C′t −A0

t2

2

)
dt,

−An

n2 =
∫

π

−π

(
F(x)−C′t −A0

t2

2

)
cos

(
n(x− t)

)
dt,

(69)

then, as explained in section V. of [5], the quantity

(70) An =−n2

π

∫
π

−π

(
F(x)−C′t −A0

t2

2

)
cos

(
n(x− t)

)
dt

must go to zero as n → ∞; that, as mentioned in the text after (21), implies that
the series

(71) A0 +A1 +A2 + · · ·

converges to f (x) at all places where it does converge.
III. Suppose b < x < c, and that ρ(t) is a function with the following properties:

both ρ(t) and ρ ′(t) vanish at t = b and t = c and are continuous on the open interval
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(b,c); ρ ′′(t) does not have infinitely many local maxima and minima; and at t = x
the function ρ takes the value 1; both ρ ′ and ρ ′′ vanish at x = t; ρ ′′′ and ρ IV are
have finite values an are continuous. In that case the difference between

(72) A0 +A1 + · · ·+An

and the integral

(73) 1
2π

∫ c

b
F(t)

d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 ρ(t)dt

tends to zero as n → ∞. The series

(74) A0 +A1 +A2 + · · ·

will therefore converge, where it does converge, to f (x).

(75) 1
2π

∫
π

−π

F(t)
t2

2

d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 λ (t)dt

tends to a finite limit. It is not difficult to see, using integration by parts, that

(76) 1
2π

∫ c

b

(
C′t +A0

t2

2

)d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 ρ(t)dt

converges to A0. Indeed,

(77) A1 +A2 + · · ·+An =
1
π

∫
π

−π

(
F(t)−C′t −A0

t2

2

)
∑

1≤m≤n

(
−m2)cos

(
m(x− t)

)
dt

or equivalently

2 ∑
1≤m≤n

(
−m2)cos

(
m(x− t)

)
= 2 ∑

1≤m≤n

d2 cos(m(x− t))
dt2 =

d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2(78)

=
1

2π

∫
π

−π

(
F(t)−C′t −A0

t2

2

)
=

d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 dt.

As follows from the argument around the formula (73), this quantity must tend to
zero as n → ∞, provided the following conditions are satisfied: both λ and λ ′ are
continuous; λ ′′ does not have infinitely many local maxima and minima, λ (t), λ ′(t)
and λ ′′(t) vanish at t = x; and both λ ′′′(t) and λ ′′′′(t) are finite and continuous.

If one requires λ (t) to take the value 1 outside the interval (b,c), and inside
that interval the value 1− ρ(t), conditions that evidently can be imposed, the
difference between the expression A1 + · · ·+An and the integral (78)

(79) 1
2π

∫
π

−π

(
F(t)−C′t −A0

t2

2

)d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 ρ(t)dt
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tends to zero as n →+∞, which implies by partial integration that

(80) 1
2π

∫
π

−π

(
C′t +A0

t2

2

)d2 sin((2n+1)(x−t))/2)
sin((x−t)/2)

dt2 ρ(t)dt

converges to A0 as n →+∞.
These investigations have shown that the convergence at x of the series Ω, as

defined in (21), depends only on the behavior of the function f (x) near x, provided
the coefficients of the series tend to zero. Whether the coefficients do tend to zero
cannot be decided by its expressions in terms of definite integrals in many cases,
but must be established by other means. But one case, in which one can decide
this based on the nature of the function directly, needs to be mentioned separately:
the case of a function f (x) that is bounded and integrable throughout.

Indeed, if one divides the interval [−π,π] into subintervals of length δ1,δ2,δ3, . . . ,
and if one denotes the greatest variation of f (x) in the first interval by D1, in the
second interval by D2, the expression

(81) δ1D1 +δ2D2 +δ3D3 + · · ·

can be made arbitrarily small, provided all the δ j are small enough.
If one divides the integral

∫
π

−π
f (x)sin(n(x−a))dx, which apart from the factor

1/π expresses the coefficients of the series, or equivalently the integral∫ a+2π

a f (x)sin(n(x−a))dx, into integrals over subintervals of length 2π/n, and each
of these subintervals contributes at most an amount 2π/n, multiplied by the great-
est absolute variation of f (x) in that interval. The sum of these contributions must
therefore tend to zero as n →+∞. Indeed, these contributions can be expressed as

(82)
∫ a+2π(s+1)/n

a+2πs/n
f (x)sin

(
n(x−a)

)
dx

The sine function is positive in the first half of the subinterval, negative in the
second. If one denotes the greatest value of f (x) in this subinterval by M and
the smallest value by m, then it is clear that the integral becomes larger if one
replaces f (x) in the first half by M and in the second half by m; on the other hand,
the integral becomes smaller if one replaces f (x) in the first half by m and in the
second half by M. In the first case one obtains the value 2

n(M − n), and in the
second case the value 2

n(m−M). Disregarding signs, the integral is smaller than
2
n(M−n), and the integral

(83)
∫ a

a+2π

f (x)sin
(
n(x−a)

)
dx

smaller than

(84) 2
n
(M1 −m1)+

2
n
(M2 −m2)+

2
n
(M3 −m3)+ · · ·
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if one denotes the largest value of f (x) in the i-th interval by Mi and the smallest
value by mi; this sum must tend to zero as n → +∞, provided the function f (x)
is integrable, since then the length of the subintervals tends to zero. In this case,
then, the coefficients of the series tend to zero.

One case remains to be examined, the case when the terms of the series Ω at x
tend to zero as n → ∞, even if this does not happen for all values of the argument.
This case can be deduced from the previous one. For if one adds the terms of the
series at x+ t and x− t, one obtains the series

(85) 2A0 +2A1 cos(t)+2A2 cos(2t)+ · · · ,

whose terms go to zero for every value of t, and which can therefore be reduced to
the previous case. For this purpose, if one denotes the value of the infinite series

(86) C+C′x+A0
x2

2
+A0

t2

2
−A1

cos(t)
1

−A2
cos(2t)

4
−A3

cos(3t)
9

−·· ·

by G(t), so that F(x+t)+F(x−t)
2 equals G(t) at all points where the series for F(x+ t)

and for F(x− t) converge, one obtains the following conclusions:
I. If the terms of the series Ω – as in (21) – at the point x tend to zero as n

tends to infinity, the integral

(87) µ
2
∫ c

b
G(t)cos

(
µ(t −a)

)
λ (t)dt

must tend to zero as µ tends to infinity; here λ (t) denotes a function which tends
to zero as µ goes to infinity.

II. Suppose that the terms of the series Ω – as in example (21) – tend to zero
at the point x. Then it depends only on the behavior of the function G(t) near
zero whether or not the series converges; the difference between the sum

(88) A0 +A1 + · · ·+An

and the integral

(89) 1
π

∫ b

0
G(t)

d2 sin((2n+1)t/2)
sin(t/2)

dt2 ρ(t)dt

goes to zero as n → ∞, provided b is a constant between 0 and π, and ρ(t) is
a function with the following properties: both ρ(t) and ρ ′(t) are continuous and
vanish at t = b; ρ ′′(t) does not have infinitely many local maxima and minima;
and at t = 0, ρ takes the value 1, both ρ ′ and ρ ′′ vanish, with both ρ ′′′(t) and
ρ ′′′′(t) continuous and taking finite values.

The conditions for the representability of a function by a trigonometric series
can be reduced somewhat, and thereby our investigations about the representabil-
ity of a trigonometric series can go further without making any special assumptions
about the nature of the function. For example, the assumption that ρ ′′(0) = 0 can
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be omitted if in the integral (89) one replaces G(t) by G(t)−G(0). But that does
not make a significant difference.

As we turn to the consideration of special cases, we shall first try to com-
plete the investigation of functions, which do not have infinitely local maxima an
minima, an investigation that is still possible beyond the efforts of Dirichlet.

As has been remarked before, such a function can be integrated where it does
not tend to infinity, and it is evident that this can happen only at a finite number
of values of its argument. Dirichlet’s argument to the effect that the integral

(90) 1
π

∫ x+b

x
f (t)

sin((x− t)(n+ 1
2))

sin((x− t)/2)
dt, with 0 < b < π,

converges to π f (limx>0,x→0 f (x)) as n tends to ∞ is beyond reproach, even if one
omits the unnecessary assumption that the function f (t) is continuous. It only re-
mains to be determined under what conditions in these integrals the contributions
of places where the function tends to infinity tends to zero as n goes to infinity.
This investigation has not been undertaken; only Dirichlet has shown occasionally
that this happens under the assumption that the function in question is integrable,
an assumption that is unnecessary.

We have seen above that if the terms of the series Ω tend to zero for every
value of x, the function F(x), whose second derivative is f (x), must be continuous
with finite values, and that

(91) F(x+α)−2F(x)+F(x−α)

α

has to tend to zero as α → 0. As t goes to zero, if the expression F ′(x+t)−F ′(x−t)
do not have infinitely many local maxima and minima, this expression must tend
to a finite limit L as t goes to zero, or it must tend to infinity; it is then evident
that

(92) 1
α

∫
α

0

(
F ′(x+α)−F ′(x−α)

)
=

F(x+α)−2F(x)+F(x−α)

α

must also converge to L or to ∞; this quantity can therefore tend to zero only
if F ′(x+ t)−F′(x− t) converges to zero. Consequently, if f (x) tends to infinity at
x = a, at least f (a+ t)+ f (a− t) can be integrated down to t = 0. That suffices to
ensure that the expression

(93)
∫ a−ε

b
f (x)cos

(
n(x−a)

)
dx+

∫ c

a+ε
f (x)cos

(
n(x−a)

)
dx

converges as ε tends to zero; this quantity can be made arbitrarily small by choos-
ing n large enough. Since F(x) is continuous and takes finite values, the function
F ′(x) is integrable down to x = a, and since (x− a)F ′(x) tends to zero as x → a,
provided this function does not have infinitely many local maxima and minima;

116 ICCM Notices Vol.11



Bernhard Riemann’s Paper on Fourier Series

this implies that

(94) d
dx

(
(x−a)F ′(x)

)
= (x−a) f (x)+F ′(x)

can be integrated down to x = a. Therefore also the integral
∫

f (x)sin(n(x−a))dx
can be performed all the way to x−a; to force the coefficients of the series to tend
to zero, it is evidently only necessary that the integral

(95)
∫ c

b
f (x)sin

(
n(x−a)

)
dx, with b < a < c,

tends to zero as n → ∞. If one defines

(96) φ(x) = f (x)sin
(
n(x−a)

)
,

then, as Dirichlet has shown,∫ c

b
f (x)sin

(
n(x−a)

)
dx(97)

=
∫ c

b

φ(x)
x−a

sin
(
n(x−a)

)
dx =

limx>a,x→a φ(x)+ limx<a,x→a φ(x)
2

.

Consequently

(98) φ(a+ t)+φ(a− t) = t f (x+ t)− t f (x− t)

must tend to zero as t → 0. And since f (a+ t)+ f (a− t) can be integrated down
to t = 0, the expression

(99) t f (a+ t)+ t f (t − t)

must tend to zero as t → 0, and consequently both t f (a+t) and t f (a−t) must tend
to zero as t → 0. Disregarding functions that have infinitely many local maxima
and minima, to represent a function f (x) by a trigonometric series – a series whose
n-th coefficient tends to zero as n → ∞ – it is both necessary and sufficient that
at points x = a where the function tends to ±∞, both t f (a+ t) and t f (a− t) tend
to zero as t → 0 and that also both t f (a+ t) and t f (a− t) go to zero as t → 0, and
that f (a+ t)+ f (a− t) can be integrated down to zero.

A function f (x), which does not have infinitely many local maxima and minima,
can be represented by a trigonometric series whose coefficients do not tend to zero
only at a finite number of values of x, since the integral

(100) µ
2
∫ c

b
F(x)cos

(
µ(x−a)

)
λ (x)dx

tends to zero as µ goes to infinity only at a finite number of values of x, but we
do not need to dwell on this further.
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Concerning functions which do have infinitely local maxima and minima, it
should be noted that such a function f (x) can be integrable, yet not be repre-
sentable by a Fourier series. As an example, consider the function f (x) which
between 0 and 2π is given by the formula

(101)
d(xν cos( 1

x ))

dx
, and 0 < ν <

1
2
.

To see this, consider the integral

(102)
∫ 2π

0
f (x)cos

(
n(x−a)

)
dx.

To speak in general terms, as n tends to infinity, the contribution of a neighborhood
of

√
1
n becomes so large, that the ratio of the integral (102) to the quantity

(103) 1
2

sin

(
2
√

n−na+
π

4

)√
πn

1−2ν
4

converges to 1, as will be argued below. In order to generalize this example, and
to clarify the nature of this matter, let us define

(104)
∫

f (x)dx = φ(x)cos
(
ψ(x)

)
,

with φ(x) tending to zero and ψ(x) to infinity as x→ 0. Furthermore these functions
should have a continuous second derivative and not have infinitely many local
maxima near the origin. Then

(105) f (x) = φ
′(x)cos

(
ψ(x)

)
−φ(x)ψ ′(x)sin

(
ψ(x)

)
.

That makes the integral
∫

f (x)cos(ψ(x))dx equal to the sum of the four integrals

(106) 1
2

∫
φ
′(x)cos

(
ψ(x)±n(x−a)

)
dx, −1

2

∫
φ(x)ψ ′(x)sin

(
ψ(x)±n(x−a)

)
dx.

Now, with ψ(x) assumed to be positive-valued, let us consider the term

(107) −1
2

∫
φ(x)ψ ′(x)sin

(
ψ(x)±n(x−a)

)
dx.

In this integral, let us examine the value of x at which the sine function changes
signs most slowly.

If one defines y=ψ(x)+n(x−a), that happens where dy
dx vanishes, and therefore

with α substituted for x, where

(108) ψ
′(α)+n = 0.

Let us examine the behavior of the integral

(109) −1
2

∫
α+ε

α−ε
φ(x)ψ ′(x)sin(y)dx,
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in case that ε tends to zero as n → ∞, and let us introduce a new variable y. If one
defines

(110) β = ψ(α)+n(α −a),

then for sufficiently small values of ε,

(111) y = β +ψ
′′(α)

(x−α)2

2
+ · · · .

Here ψ ′′(α) is positive, since ψ(x) tends to +∞ when x goes to zero from above;
furthermore

(112) dy
dx

= ψ
′′(α)(x−a) =±

√
2ψ ′′(α)(y−β ),

with the sign depending on whether x−α is positive or negative; also

−1
2

∫
α+ε

α−ε
φ(x)ψ ′(x)sin(y)dx =

1
2

∫
β

β+ψ ′′(α)+ε2/2

φ(α)ψ ′(α)ε2/2√
2ψ ′′(α)

(
sin(y)

dy√
y−β

)(113)

− 1
2

∫
β+ψ ′′(α)+ε2/2

β

φ(α)ψ ′(α)ε2/2√
2ψ ′′(α)

(
sin(y)

dy√
y−β

)

=−
∫

ψ ′′(α) ε
2
2

0
sin(y+β )

φ(α)ψ ′(α)√
2ψ ′′(α)

dy√
2ψ ′′(α)

.

If one lets ε decrease as n tends to infinity, at a rate such that ψ ′′(α)ε2 tends to
infinity, then

(114) −
∫ a+ε

a−ε
φ(x)ψ ′(x)sin

(
ψ(x)+n(x−a)

)
dx =−sin

(
β +

π

4

)√
πφ(α)ψ ′(α)

2
√

2ψ ′′(α)
,

modulo terms of lower order, provided ratio of

(115)
∫ 2π

0
cos

(
n(y−a)

)
dx

to the quantity (114) converges to 1, since its other components tend to one as
n → ∞ as n goes to infinity.

If one assumes that φ(x) and ψ ′(x) can be expanded in fractional powers of x
near the origin, starting with xν in the case of φ and with x−µ−1 in the case of
ψ ′(x) – which forces ν > 0 and µ ≥ – then the expansion of

(116) φ(α)ψ ′(α)√
2ψ ′(′′(α))

in fractional powers of x starts with αν− µ

2 , and therefore does not tend to zero near
the origin if µ ≥ 2ν . More generally, if xψ ′(x) tends to +∞ as x→ 0 – or equivalently,
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if this is the case for ψ(x)
logx – then φ(x) can be chosen so that limx→0 φ(x) = 0, but

so that

(117) φ(x)
ψ ′(x)√
2ψ ′′(x)

=
φ(x)√

−2 d
dx

1
ψ ′(x)

=
φ(x)√

−2lim 1
xψ ′(x)

tends to infinity as x goes to zero. Consequently f (x) is integrable down to zero.
On the other hand, the integral

(118)
∫ 2π

0
f (x)cos(n(x−a)

)
dx

does not tend to zero as n → ∞. As one can see, in the integral
∫

0 f (x)dx the
contributions near the origin tend to cancel each other, even though their ratio
relative to the change in the variable x grows rapidly; however, the factor cos(n(x−
a)) has the effect of making these contributions add up.

Even though an integrable periodic function f (x) may have a divergent Fourier
series, and even though its n-th term may become large as n grows, it is possible
for the Fourier series to converge on a dense subset of its domain. An example one
might consider the function

(119) ∑
1≤n<∞

(nx)
n

;

here (x) is Riemann’s notation for the integer closest to x. It can be represented
by the Fourier series

(120) ∑
1≤n<∞

∑
θ −(−1)θ

nπ
sin(2nπx);

with (x) denoting the distance between the number x and the integer closest to x
and the variable θ runs over all the proper divisors of n. This function is unbounded
in any non-empty open interval, and therefore fails to be integrable in the sense
of the Riemann integral. As another example, consider the two series

(121) ∑
0≤n<∞

cn cos
(
n2x

)
, ∑

1≤n<∞

cn sin
(
n2x

)
,

with positive coefficients cn that are monotonely decreasing to zero, but such that
the finite series ∑1≤s<n cs does not have a finite limit as n → ∞, whereas ∑1≤s≤n cs

tends to infinity as n → ∞. For if the ratio of x to 2π is rational, and expressed
as a fraction of relatively prime integers has denominator m, then these series will
converge or diverge with infinite limit, depending on whether the quantities

(122) ∑
0≤n≤m−1

cos
(
n2x

)
, ∑

1≤n≤m−1
cos

(
n2x

)
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equal zero or are non-zero. Both cases do occur infinitely often in any open interval,
according to a well known theorem about “Kreisteinung” – i.e., ruler and compass
constructions of regular n-gons.

To the same extent a Fourier series Ω can converge, even though the value of
the series obtained by integration,

(123) C′+A0x−∑

dAn
dx

n2 ,

which one obtains by integrating the series Ω term-by term, fails to be integrable2

over any non-empty open interval. If, for example, the expression

(124) ∑
1≤n<∞

1
n3

(
1−qn) log

(
− log(1−qn)

qn

)
,

with the logarithms chosen so that they vanish at q = 0, is developed in increasing
powers of q, and if one substitutes eix for q, then the imaginary part becomes
a trigonometric series; when this series if differentiated twice, it converges for
infinitely many values of x in any open interval, whereas its first derivative has an
infinite limit infinitely often in any non-empty open interval.

To the same extent – i.e., infinitely often between any two unequal values of x
– a trigonometric series can converge even if its n-th coefficient does not tend to
zero as n → ∞. Here is a simple example of such a series:

(125) ∑
1≤n<∞

sin(n!xπ), where n! = 1×2×3×·· ·×n,

using customary notation. This series converges not only for rational values of n
– in which case the series (125) reduces to a finite series – but also for an infinite
number of irrational values of x, the simplest of which are the numbers sin(1),
cos(1), 2

e and their integral multiples, odd multiples of e, e−e−1

4 , and so forth.
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