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Potpourri

Joel Spencer

Some of our best work never appears in journal form. It is in notes
sent to colleagues and students. Here I have collected some notes
I have made over the years, with some current day annotation.
I have always enjoyed quotations and have sprinkled some of my
favorites through the text.

1. Maximal trianglefree graphs and Ramsey R(3, k)

Current Day Annotation These notes were written in 1995. Since 1961
the best lower bound on R(3, k) had been ck2 ln−2 k. Building on a paper of
Erdős, Winkler and Suen, I was able to show that c could be made arbitrarily
large. Why didn’t I publish? Only a few weeks later Jeong-Han Kim found
that R(3, k) = Ω(k2 ln−1 k), matching the upper bound of Ajtai, Komlós and
Szemerédi, so that R(3, k) = Θ(k2 ln−1 k). The ideas in these notes, studying
the random greedy trianglefree algorithm, were cited by Tom Bohman in his
analysis of this process and his alternate proof of Kim’s result.

1.1. Results

Working with Paul Erdős was like taking a walk in the hills. Every time when
I thought that we had achieved our goal and deserved a rest, Paul pointed to
the top of another hill and off we would go. – Fan Chung

We describe a random dynamic algorithm that creates a graph G on a vertex
set V = {1, . . . , n}. The 2-sets e ⊂ V are called pairs. To each pair e assign,
independently and uniformly, a real xe ∈ [0, n1/2]. (We further assume the
xe are distinct, this occurs with probability one.) We call xe the birthtime
of e. Begin at time zero with G empty. Let time increase. When an edge e

is born, add it to G if and only if that does not create a triangle in G. If e

is added to G, we say e is accepted, otherwise rejected. Let Gc be G at time
t = c and Gf be the final G, at time t = n1/2. Let Zc, Z

f be the number of
edges of Gc, G

f respectively. All these are random variables, dependent on
the choices of the xe. We will show:
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• For all L there exist c, n0 so that for n > n0

(1) E[Zc] ≥ L
n3/2

2

• For all ε > 0 there exist c, n0 so that for n > n0

(2) Pr[α(Gc) ≥ εn1/2(ln n)] < 1

In particular, there exists a graph G = Gc which is triangle-free and has no
independent set of size εn1/2(lnn). That is, the Ramsey Function R(3, k) > n

for k = εn1/2(ln n). Reversing, for all M > 0 if k is sufficiently large then

(3) R(3, k) > M
k2

ln2 k

improving Paul Erdős’s classic 1961 lower bound on R(3, k).
Fix a pair e = {i, j}. We say e survives at time c if there is no k �= i, j

with {i, k}, {j, k} ∈ Gc. Let fn(c) be the probability that e survives at time
c given xe = c. This is independent of the particular e. In an infinitesmal
time range c to c+dc there is probability n3/2dc/2 that some edge e is born
and probability n3/2fn(c)dc/2 that an edge is accepted. Thus

(4) E[Zc] =
n3/2

2
Fn(c)

where we define

(5) Fn(c) =
∫ c

0
fn(t)dt

We shall give an explicit function f(c) so that

(6) lim
n→∞

fn(c) = f(c)

and further the limit is uniform in that for every C, ε > 0 there exists n0 so
that |fn(c) − f(c)| < ε for all n > n0 and all 0 ≤ c ≤ C. We’ll further show,
by explicit integration, that

(7)
∫ ∞

0
f(c) = ∞
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Let’s show that this implies (1). Pick C so that
∫ C
0 f(c)dc > L + 1. Pick n0

so that for n > n0 and 0 ≤ c ≤ C we have |fn(c) − f(c)| < C−1. Then

Fn(C) =
∫ C

0
fn(c)dc >

∫ C

0
f(c)dc − 1 > L

1.2. A branching process

To define f(c) we consider a branching process beginning with a root “Eve”
with birthdate c. Eve gives birth to ordered twins, with birthdates x, y. The
set of “twinbirthdates” (x, y) is given by a Poisson distribution with unit
density over [0, c]×[0, c]. That is, for any 0 ≤ x, y < c and dx, dy infinitesmal
Eve has probability dx · dy of having a birth (x′, y′) with x′ ∈ [x, x + dx],
y′ ∈ [y + dy]. A child with birthdate a then has children (always twins)
independently by the same process, twinbirthdates (x, y) ∈ [0, a] × [0, a].
These children in turn may have children, and so on. Let T be the random
tree so generated. We’ll call T a twintree, in addition to root, mother and
daughter it contains the relation twin.

We claim T is finite with probability one. Note that if “Mary” has birth-
date a and b < a then the probability Mary has twinbirthdates (x, y) with
x in the infinitesmal interval [b, b + db] is a · db. Let Ng be the number of
children in the g-th generation. Then

(8) E[Ng] = 2g
∫ ∗

cx1 · · ·xg−1dx1 · · · dxg

where
∫ ∗ is over those (x1, . . . , xg) with 0 < xg < · · · < x1 < c. Here 2g

represents the choices of birth order and xi is the birthdate for the i-th
generation. This has the precise solution

(9) E[Ng] = (4c2)g g!
(2g)!

so the total number N of vertices of T has

(10) E[N ] = 1 +
∞∑

g=1

(4c2)g g!
(2g)!

The finiteness of E[N ] gives the claim.
On a twintree T we define bottom-up the notion of a vertex surviving or

dying. A childless vertex survives. A vertex dies if and only if it has twins
both of whom survive. Now we define f(c) to be the probability that the
random tree T defined above has its root survive.
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1.3. The relevant history

I doubt sometimes whether a quiet and unagitated life would have suited me
– yet I sometimes long for it. – Byron

Here we show (6). Fix e = {i, j} and c > 0, condition on xe = c, and
consider fn(c). Define the relevant history of e to be a set T of edges defined
as follows. e ∈ T . If {u, l} ∈ T and xu,v, xl,v < xu,l then {u, v}, {l, v} ∈ T .
We can find T by a breadth first search, we search an edge {u, l} already
in T by checking whether any v satisfy the condition and if so adding those
edges to T . We call the relevant history normal if every time such a v is
found it is a vertex that has not yet appeared in any of the edges of T .
When the relevant history is normal we give T a twintree structure, letting
{u, v}, {l, v} be twins of {u, l}, with {u, v} the firstborn if and only if u < l.
For any twintree T let f(T, c) be the probability that the branching process
of §2 gives T and let fn(T, c) be the probability that the relevant history of
e is normal with twintree T .

Claim.

(11) lim
n→∞

fn(T, c) = f(T, c)

Let T have 2r edges, label them 1, . . . , 2r. Let Γ be the set of (x1, . . . , x2r)∈
[0, c]2r such that xi < xj whenever edge i lies below edge j in T . Then

(12) f(T, c) =
∫
Γ

e−c2−y2
1−···−y2

2rdy1 · · · dy2r

Indeed, to generate T with birthdates in the infinitesmal intervals [yi, yi+dyi]
there is probability

∏
dyi of having those births, probability exp[−c2] for Eve

to have no more births and exp[−y2
i ] for the child of edge i (with birthdate

yi) to have no further children.
Compare this with fn(c). There are (n − 2)r choices of vertices of G

that could generate T . (The vertices of e = {i, j} have been fixed but every
birth requires a new vertex v.) Fix such a representation of T . Let edge i be
represented by the pair (top(i), bot(i)) of vertices of G and let REP be the
of all r + 2 vertices in the representation (including the vertices of e). Take
(y1, . . . , y2r) ∈ Γ. The probability that each edge i in the representation has
xi in the infinitesmal interval [yi, yi + dyi] is n−1/2dyi. This gives

(13) fn(T, c) = (n − 2)r

∫
Γ

A(y1, . . . , y2r)n−rdy1 · · · dy2r
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where A is the probability, conditional on having the edges of T with birth-
dates yi, that the relevant history does not contain any more edges. We
require the asymptotics of A. With probability (1− o(1)) for each {u,w} ⊂
REP that is not an edge we have xu,w > c. Now for each u �∈ REP and each
edge i = {top(i), bot(i)} let Bu,i be the “bad” event that xu,v < yi for both
v = top(i) and v = bot(i). We’ll include the edge e as the case i = 0. Note
that these values (involving a new vertex u) are independent of previous
conditionings. Thus

(14) A ∼ Pr[∧u ∧2r
i=0 ¬Bu,i]

Clearly Pr[Bu,i] = y2
i n

−1 where we interpret y0 = c. Fix u and let i range
over the 2r + 1 edges. Any two edges i, i′ have Pr[Bu,i ∧ Bu,i′ ] = O(n−3/2)
since even when they overlap in a vertex we are requiring three pairs to have
small x-value. As r is fixed the first step of Inclusion-Exclusion gives

Pr[∨iBu,i] = (1 − o(1))

[ ∑
i

y2
i

]
n−1

for fixed u. But these events are mutually independent over u �∈ REP so

(15) A ∼ [1 − Pr[∨iBu,i]]
n−(r+2) ∼ e−c2−y2

1−···−y2
2r

The nr factors of (13) asymptotically cancel so (15) implies (11).
Now we show (6). Let ε > 0 be arbitrarily small and let FIN be a finite

family of twintrees so that the branching process yields a T ∈ FIN with
probability at least 1 − ε

2 . (E.g., FIN could be all twintrees with at most
some large number D of edges.) Now use (11) to pick n0 so that for n > n0

and each of the finite number of T ∈ FIN

|fn(T, c) − f(T, c)| <
ε

2|FIN |

Then fn(c) is at least the probability that there is a normal relevant history
with twintree T ∈ FIN with the root surviving and that is at least f(c)− ε.
Also 1 − fn(c) is at least the probability that there is a normal relevant
history with twintree T ∈ FIN with the root not surviving and that is at
least 1 − f(c) − ε. As ε was arbitrary this yields (6).

The required uniformity over c ∈ [0, C] for (6) is easy to check. From
(10) given ε > 0 we may pick FIN that works for every c ∈ [0, C] simultane-
ously. An examination of the proof of (11) gives that the limit is approached
uniformly for c ∈ [0, C].
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1.4. A differential equation

It’s a thing that non-mathematicians don’t realize. Mathematics is actually
an esthetic subject almost entirely. – John Conway

Here we find f(c) as the solution to a differential equation. Consider Eve
with birthdate c + Δc. For Eve to survive she must have no twins both
surviving with twinbirthdate (x, y) ∈ [0, c]2 nor twins both surviving with
twinbirthdate (x, y) ∈ X where we set X = [0, c+Δc]2− [0, c]2. The Poisson
nature of Eve’s births make these independent events. Thus

(16) f(c + Δc) = f(c)(1 − A)

where A is the probability Eve does have twins, both surviving, twinbirth-
date (x, y) ∈ X. We first bound 0 ≤ A ≤ 2Δc + (Δc)2, the latter being an
upper bound on the probability Eve has twins with twinbirthdates in this
interval. By itself, this implies that f is continuous and nonincreasing. Then
f is integrable. We define the integral

(17) F (u) =
∫ u

0
f(t)dt

Let Z be the number of Eve’s twins with twinbirths in X, both surviving.
Then E[Z] is simply the integral of f(x)f(y) over (x, y) ∈ X. Splitting X
into three rectangles and using Fubini’s Theorem

E[Z] = 2[F (c + Δc) − F (c)] · F (c) + [F (c + Δc) − F (c)]2

For c fixed we do asymptotics with Δc → 0. As f is nonincreasing the last
term is at most (f(c)Δc)2 = o(Δc). By continuity (and the fundamental
theorem of calculus!)

F (c + Δc) − F (c) ∼ f(c)(Δc)

so that

E[Z] ∼ 2f(c)F (c)(Δc)

Consider Z as A plus the sum over i ≥ 2 of i − 1 times the probability Eve
has i twinbirths in X, both surviving. Even neglecting the both surviving
requirement, this sum is O((Δc)2). Thus

A ∼ 2f(c)F (c)(Δc)
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so that (16) becomes

f(c + Δc) − f(c)
Δc

∼ −2f2(c)F (c)

which beomes (in F ) the second order differential equation

(18) F ′′(c) = −2(F ′(c))2F (c)

At c = 0 we have the initial conditions

(19) F (0) = 0, f(0) = F ′(0) = 1

Fortuitously (?!) this differential equation has the precise implicit solu-
tion

(20) c =
∫ F (c)

0
et2dt

which does indeed have the property that limc→∞ F (c) = ∞. This gives (7)
and therefore (1).

Remark and Conjecture. Let Gf , Zf be the final G and its number
of edges as defined in our opening paragraph. Note that while the use of
independent xe proved to be a handy analytic tool we could equally well have
defined Gf as follows. Randomly order the

(n
2

)
pairs. Begin with G = ∅. Add

each edge to G if it would not create a triangle. Then Gf in the final value of
G. What is the usual value of Zf? As Zf ≥ Zc we’ve shown that E[Zf ] grows
faster than n3/2. We conjecture that Z = Θ(n3/2(lnn)1/2) almost always. We
know that for c fixed E[Zc] ∼ F (c)n3/2/2. A simple analysis of (20) gives
that

(21) F (c) ∼ (ln c)1/2

asymptotically as c → ∞. If we “plug in” the final value c = n1/2 this would
give the conjecture. We emphasize that this is not a valid argument, the
limiting relation between fn(c) and f(c) held only for c a constant, albeit
an arbitrarily large one, not for c a function of n. We also note that the
results of the next section indicate that, at least to some extent, Gc can
be regarded as the random graph G(n, p) with p chosen so that the two
models have the same expected number of edges. If this applied to Gf and
if the expected number of edges in Gf were n3/2(ln n)1/2 then the simple
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argument of the next section would give that almost surely α(Gf ) < k
with k = Θ(n1/2(lnn)1/2) which would mean R(3, k) > n or, reversing
variables. R(3, k) = Ω(k2(ln k)−1). This would match the upper bound of
Ajtai, Komlós and Szemerédi.

Remark. We’ve shown Gc has expected size F (c)n3/2/2. N. Alon has given
an intuitive justification for this. Suppose Gc behaved like a random graph
with p = F (c)n−1/2. By time c+dc an additional 1

2n3/2dc pairs are born. The
probability that a pair has a common neighbor in G(n, p) is (1 − p2)n−2 ∼
exp[−F (c)2]. Thus it would be reasonable to expect exp[−F (c)2]12n3/2dc
pairs to be accepted. This would give F (c + dc) = F (c) + exp[−F (c)2]dc.
Taking dc infinitesmal this gives a differential equation with solution (20).

1.5. Ramsey R(3, k)

Our object here is to show (2). For intuitive guidance in view of (1) let’s
consider instead of Gc the usual random graph G ∼ G(n, p) with p = Ln−1/2

Let k = εn1/2(lnn). There are
(n
k

)
< nk k-sets S and for each

(22) Pr[S independent] = (1 − p)(
k

2) ∼ e−pk2/2

The expected number of independent k-sets is then less than nke−pk2/2 =
[ne−pk/2]k which is o(1) for L large. Our object will be to show that (22) is
roughly correct for our model Gc. By “roughly correct” we will mean up to
a constant factor in the exponent. Such a factor only affects the bound on
R(3, k) by a constant factor, and that is not our concern here. Added current
day: The remainder of the argument is technically quite complicated and is
omitted.

2. Three point Laplace inverse or lower bounds matching
Chernoff bounds

You just keep right on thinking there Butch, thats what you’re good at.
– Robert Redford to Paul Newman in Butch Cassidy and the Sundance Kid

Current Day Annotation I receive many interesting questions concerning
my book with Noga Alon, The Probabilistic Method. The question that comes
up most frequently, by far, is whether the Chernoff Bounds can be reversed
to give a lower bound on a large deviation. These notes indicate that the
answer is yes. Sometimes.
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For convenience we set

f(λ) = E[eλX ]

g(λ) = f(λ)e−λa

Recall that Pr[X ≥ a] ≤ g(λ) and the Chernoff bound is achieved by taking
that λ minimizing g(λ).

For any positive u and ε:

X ≥ a + u ⇒ λX ≤ (λ + ε)X − εa − εu

X ≤ a − u ⇒ λX ≤ (λ − ε)X + εa − εu

so that

E[eλXχ(X ≥ a + u)] ≤ f(λ + ε)e−εae−εu

E[eλXχ(X ≤ a − u)] ≤ f(λ − ε)e+εae−εu

so that, subtracting these,

E[eλXχ(|X − a| < u)] ≥ f(λ) − e−εu[f(λ + ε)e−εa + f(λ − ε)e+εa]

When |X − a| < u, eλX ≤ eλueλa so

Pr[|X − a| < u] ≥ e−λue−λaE[eλXχ(|X − u| < a)]

It is convenient to rewrite this

Pr[|X − a| < u] ≥ e−λu [
g(λ) − e−εu[g(λ + ε) + g(λ − ε)]

]
In actual application we often just want a lower bound on the large deviation
probability so we often use the weaker

(23) Pr[X > a − u] ≥ e−λu [
g(λ) − e−εu[g(λ + ε) + g(λ − ε)]

]
In application we select λ = λ0 so as to minimize (or nearly minimize)

g(λ). Then we select ε fairly small. As g was minimized at (or near) λ0

we should have g(λ ± ε) fairly close to g(λ). We select u with, say, g(λ ±
ε)/g(λ) < 1

4eεu. Now the g(λ ± ε) terms have limited effect and we would
have Pr[X > a − u] ≥ e−λug(λ)/2. Hopefully, this will be fairly close to the
upper bound g(λ).
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Lets try (23) with the standard normal N where we know the Laplace
Transform f(λ) = eλ2/2. Let a be large. We set λ = λ0 = a and g(λ) =
e−a2/2, the Chernoff Bound. Here, rather conveniently, g(λ±ε)/g(λ) = eε2/2.
Thus

Pr[N ≥ a − u] ≥ g(λ)e−au[1 − 2e−εueε2/2]

Suppose we take ε = 2 and u = 2. This gives

Pr[N ≥ a − 2] ≥ e−a2/2e−2a[1 − 2e−2]

Note that we have only used the three values f(a − 2), f(a), f(a + 2) of the
Laplace Transform to derive this bound. This compares to the upper bound
Pr[N ≥ a − 2] ≤ e−(a−2)2/2 = Θ(e−a2/2e4a). So the bounds are off by a
factor of Θ(e4a). This is not great but for a large it does give the correct
asymptotics for the logarithm of the large deviation.

In many applications one does not have the precise values of the Laplace
Transform f(λ). Suppose, however, that we have reasonably good estimates
in both directions on f(λ). Then (23) will give a lower bound for Pr[X > a−u]
by using an upper bound for g(λ) and lower bounds for g(λ ± ε).

The applications work particularly well when there is some parameter
n and the Laplace Transform is exponential in n. A standard example is to
take X = Sn (the sum of n random ±1) and parametrize a = nα for some
fixed α ∈ (0, 1). The Laplace Transform

E[eλSn ] = E[eλX1 ]n = (cosh(λ))n

So that

g(λ) = eh(λ)n

where we set h(λ) = ln(cosh(λ))−αλ. Here there is a λ = λ0 (which can be
computed explicitly using Calculus) where h is minimized and the Chernoff
Bound gives

Pr[Sn > nα] < enh(λ)

For the lower bound we set in (23) u = nδ where δ is arbitrarily small.
Because (critically) h has its minimum at λ we have h′(λ) = 0 so for ε

small

h(λ ± ε) ≤ h(λ) +
K

2
ε2
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Here we take K so that |h′′(s)| ≤ K for all s in an interval I around λ that
contains [λ − ε, λ + ε]. Then

ln

[
e−εug(λ ± ε)

g(λ)

]
≤ n

[
− εδ +

K

2
ε2

]

We select ε positive with −εδ + K
2 ε2 < 0. Now the terms e−εug(λ ± ε) are

exponentially small compared to g(λ) and so (23) gives

Pr[Sn > n(α − δ)] ≥ e−λδng(λ)(1 − o(1))

or

(24) ln[Pr[Sn > n(α − δ)]] ≥ n[h(λ) − λδ] − o(1)

From this we would like to deduce:

1
n

ln[Pr[Sn > nα]] = h(λ)

That is, the Chernoff bound is, up to a 1 + o(1) factor in the exponent, cor-
rect. Indeed, this is the case and the following is a fairly general setting in
which one can match the Chernoff Bounds with a logarithmically asymptotic
lower bound.

Let Zn be any sequence of random variables. Define

F (λ) = lim
n→∞

1
n

ln E[eλZn ]

noting that the limit might not exist. Let a be a real number.

Theorem. Suppose that there exists a λ ≥ 0 and an open interval I con-
taining λ such that
• F (s) exists and has a first and second derivative for all s ∈ I.
• F ′(λ) = a.
• The function F ′ is strictly increasing over I.
• There exist K such that |F ′′

(s)| ≤ K for all s ∈ I.
Then

lim
n→∞

1
n

ln[Pr[Zn > an]] = F (λ) − aλ

This may also be written Pr[Zn > an] = en(F (λ)−aλ+o(1)).
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Note: For any Z the function F (s) = lnE[esZ ] has F ′′(s) ≥ 0 so that F ′ is
increasing. The F in the theorem is defined by a limit and F ′ is needed to
be strictly increasing, but this does occur in many natural cases.

The upper bound is the Chernoff Bound as

Pr[Zn > an] = Pr[eλZn > eλan] ≤ E[eλZn ]e−λan = en(F (λ)−aλ+o(1))

For the lower bound we want to apply the bounds above.
First note that since F ′ is continuous (as it is differentiable) and mono-

tone over I it has a continuous inverse H defined over some interval J
containing a. Note H(a) = λ. Let u be a positive real sufficiently small that
H(a + u) ± u

K ∈ I. All sufficiently small u satisfy this since limu→0 H(a +
u) ± u

K = H(a) = λ. Set a∗ = a + u and λ∗ = H(a∗) so that F ′(λ∗) = a∗.
We define

gn(s) = E[esZn ]e−sa∗

Inequality (23) becomes (noting that an = a∗n − un)

Pr[Zn > an] ≥ e−λ∗a∗n[gn(λ∗) − e−εun[gn(λ∗ + ε) + gn(λ∗ − ε)]]

We select ε = u
K . Our selection of u assures us that λ∗ ± ε belong to I. We

have

lim
n→∞

1
n

ln

[
e−εungn(λ∗ + ε)

gn(λ∗)

]
= −εu + F (λ∗ + ε) − F (λ∗) − εa∗

We have selected λ∗ so that F ′(λ∗) = a∗. Since |F ′′(s)| ≤ K in the interval
I Taylor Series bounds

|F (λ∗ + ε) − F (λ∗) − εa∗| ≤ K

2
ε2

Our choice of ε (chosen to minimize the quadratic though any sufficiently
small ε would do) gives that

−εu + F (λ∗ + ε) − F (λ∗) − εa∗ ≤ − u2

2K

Thus e−εngn(λ∗ + ε)/gn(λ∗) drops exponentially quickly. We only use that
for n sufficiently large the ratio is less than 0.25. The same argument shows
that for n sufficiently large e−εngn(λ∗ − ε)/gn(λ∗) < 0.25. For such n we
then have

Pr[Zn > an] ≥ 1
2
e−λ∗a∗ngn(λ∗)
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This lower bound is exp[n(F (λ∗)−λ∗a∗ +o(1))]. Now consider F (λ∗)−λ∗a∗

as a function of u. As u → 0, λ∗ = H(a + u) → H(a) = λ. As F , being
differentiable, is continuous F (λ∗) → F (λ). Clearly a∗ = a + u → a and
therefore λ∗a∗ → λa. Let ε1 be an arbitrary positive integer. As

F (λ∗) − λ∗a∗ → F (λ) − λa

there exists a positive u such that

F (λ∗) − λ∗a∗ ≥ F (λ) − λa − ε1

This gives a lower bound on Pr[Zn > an] of exp[n(F (λ) − λa − ε1 + o(1))].
As ε1 is arbitrary we deduce Pr[Zn > an] ≥ exp[n(F (λ)−λa+ o(1))], which
completes the argument.

3. Percolating thoughts

I have no home, the world is my home. – Paul Erdős

Current Day Annotation These notes were sent out on December 30, 2001.
The letter format certainly allows a free form of expression. Many of the
conjectures have been shown in the past nine years in joint work with Nick
Wormald and now in current work with Milyun Kang and Will Perkins, and
through the work of many others as well.
Dear Friends,

As the first year of the new millennium comes to a close I invite you to
put aside thoughts of the state of the world. Let’s talk math!

At the Poznań meeting last summer Svante Janson showed me the follow-
ing intriguing explanation (not proof!) for why the Erdős-Rényi explosion,
creating the giant component, occurs at tn

2 edges with t = 1. Let t, thought
of as time, be when tn

2 edges have been put into the random graph. For any
G on n vertices let X = X(G) = 1

n

∑
v |C(v)| where C(v) is the component

containing v. So X is the expected size of the component containing any
fixed v, a natural notion in percolation. Equivalently, letting Ci, 1 ≤ i ≤ s
denote the components, X = 1

n

∑s
i=1 |Ci|2. Add a random edge giving G+.

For i < j precisely |Ci| · |Cj | times components Ci, Cj are merged and X
goes up by 2

n |Ci| · |Cj |. Thus

E[X(G+) − X(G)] =
2

n(n − 1)

∑
i<j

2
n
|Ci|2|Cj |2 ∼ 2

n3

∑
i�=j

|Ci|2|Cj |2
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The sum is n2X2(G) − ∑
i |Ci|4. Now some handwaving. Ignore the fourth

powers. (They could not be ignored if there was a giant component |Ci| =
Ω(n) but we are here only interested in going up to the critical value where
the giant component starts to exist.) Let G(t) be the graph at time t and
G(t + dt) at infinitesmal time dt later. Ignore the cross effects and suppose
that each of the dtn

2 edges add that much so that

E[X(G(t + dt)) − X(G(t))] ∼ X2(G(t))dt

Further suppose X(G(t)) is tightly concentrated around some value f(t).
This gives the functional equation f(t + dt) − f(t) ∼ f2(t)dt which is the
differential equation f ′(t) = f2(t) which, with initial value f(0) = 1 has the
solution f(t) = 1

1−t . At t = 1, which we know to be the explosion value, this
blows up! Indeed f(t) = 1

1−t is the right answer for t < 1. But can this be
justified in any rigorous way???

Dimitris Achlioptas has a fascinating question. Begin with the empty
graph on n edges. Each round two random edges are created. Carole must
select one of them and add it to the graph. Her object (there are many
variants) is to delay the creation of a giant component for as long as possible.
Clearly she can hold off until t = 1 (some writers scale tn rounds so you’ll see
t = 1

2) by always selecting the first edge and reducing to the Erdős-Rényi
scenario. In Poznań Alan Frieze presented a result (with Tom Bohman)
that she can hold off until something like t = 1.07. He emphasized that
they were only trying to break the t = 1 barrier. This problem was actively
discussed by many people in Poznań, including myself and Nick Wormald.
In November, Nick visited Courant for a few weeks and the thoughts, results
and speculations below stem from that visit.

Here is an algorithm for Carole. If the first edge is isolated pick it, oth-
erwise pick the second edge. How does this do? Let y1(t) be the proportion
of vertices in components of size one (i.e., isolated vertices) at round tn

2 .
Consider a round at time t when there are y1(t)n isolated vertices. With
probability y2

1(t) the first edge is isolated and y1 is decreased by 2
n . With

probability 1 − y2
1(t) the second edge is picked. As this is a random edge it

will decrease y1 by (on average) 2y1(t)
n . In n

2 dt rounds y1(t) is decreased by
y2
1(t)dt + (1 − y2

1(t))y1(t)dt which gives the differential equation

y′1(t) = −y2
1(t) − (1 − y2

1(t))y1(t)

with initial condition y1(0) = 1. This is a smooth function with no critical
point (under this scaling) and limt→∞ y1(t) = 0. General methods Nick has
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developed can be applied to justify this for any finite interval [0, T ]. Now
let X = X(G) = 1

n

∑
v |C(v)| as before and let f(t) be the value of X(G)

at time t. At time t with probability y2
1(t) we take the first, isolated, edge.

This increases f(t) by 2
n . With probability 1 − y2

1(t) we take the second,
random, edge. This increases f(t) by (on average) 2

nf2(t). We are led to the
differential equation

f ′(t) = y2
1(t) + (1 − y2

1(t))f
2(t)

with initial value f(0) = 1. This differential equation blows up at a value
t0. But is the blow-up connected to the birth of the giant component in the
random process?
Conjecture 1 At t0 − ε the largest component has size O(ln n).
Conjecture 2 At t0 + ε the largest component has size Ω(n).
What we can prove:
• At t0−ε the largest component has size O(lnO(1) n) with the O(1) exponent
dependent on ε and going to infinity as ε → 0+.

Some general thoughts. What is particularly interesting to me is not
so much (sorry Dimitris!) the original problem. Rather, we have a host of pos-
sible algorithms. Each algorithm leads to an evolution of the graph in rounds
and (I think) a percolation point where the giant component is suddenly cre-
ated. All of the questions (but, so far, few of the answers!) usually raised
in the study of percolation from the usual Mathematical Physics vantage
point can be raised here. The notion that Math Physics ideas, particularly
percolation, are useful in studying computer generated random processes is
something I myself picked up from Christian Borgs and Jennifer Chayes and
I now recognize as an extremely powerful idea.

There are scads of possible algorithms but let me restrict to what I will
call Size Algorithms. Carole is handed two edges which we think of as four
(ordered, for convenience) vertices. The vertices are in components of sizes
a, b, c, d respectively. The determination of which edges to take (joining a, b
components or joining c, d components) depends only on the values a, b, c, d.
(You might object that if an edge joins two vertices in the same component
it certainly should be taken. Until the giant component starts to exist this
occurs with probability near zero and has an asymptotically negligible effect.
That said, the effect might not be negligible in some more detailed questions
concerning behavior near the critical value.) Two examples: in the Product
Rule take the first edge if ab ≤ cd, otherwise the second; in the Minimin
Rule take the first edge if min(a, b) ≤ min(c, d), otherwise the second. There
is a tighter restriction to what I will call Bounded Size Algorithms. Here
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there is a constant K so that any values a, b, c, d that are bigger than K
are treated the same. Thus the algorithm is given by a finite list, for every
a, b, c, d ∈ {1, . . . ,K,> K} saying which edge to select. Our first algorithm
is of that type with K = 1: Select the first edge if a = b = 1, otherwise the
second edge.
Conjecture 3 Any Size Algorithm has a critical value t0 such that at t0 − ε
the largest component is O(ln n) while at t0 + ε the largest component is
Ω(n).
Conjecture 4 Further, at t0 + ε the second largest component is O(ln n).

Given a Size Algorithm a restriction to K is a Bounded Size Algorithm
with that K that agrees with the Size Algorithm when a, b, c, d ≤ K. There
can be many such restrictions, as the restriction does not determine what
to do when, for example, a, b, c ≤ K and d > K.
Conjecture 5 For any Size Algorithm and any positive δ there exists K0

such that all restrictions with K ≥ K0 have critical value within δ of the
critical value of the original algorithm.

Any Bounded Size Algorithm yields, as in the example, differential equa-
tions for the proportion yi(t) of vertices in components of size i for 1 ≤ i ≤
K. These are all nice functions with no critical points and limt→∞ yi(t) = 0
for all i. We can show that the random algorithm will stay close to those
values. Further there is a differential equation for f(t), the expected size of
the component of a random vertex as earlier defined and this differential
equation has a blowup at some value t∗.
Conjecture 6 The blowup point t∗ is the critical point t0 which satisfies
Conjecture 3.

HornBlowing We (Nick Wormald and I) have shown for arbitrary Bounded
Size Algorithms that at t∗ − ε the largest component has size O(lnO(1) n).
Thus the giant component has not yet appeared. We have tried some algo-
rithms – for example, the product and minimin rules described above with
K = 128 and had the computer find the blowup point t∗. We have found
algorithms with t∗ as large as 1.78. Thus, in terms of Achlioptas’ original
problem, Carole can stave off the giant component at least until 1.78 or, in
the other notation, until 0.89n edges have been accepted.

Given a rule, say the product rule, we have a number of percolation
questions. Let t0 be the critical value and let g(i) be the proportion of
vertices in components of size > i at the critical value.
Question 1 What are the asymptotics of g(i)?

In the usual Erdős-Rényi evolution t0 = 1 and g(i) is the probability that
the Poisson mean one birth process has size bigger than i, the asymptotics
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are g(i) ∼ ci−1/2. Some early computer studies indicate that this is not the
asymptotics for g(i) for the product rule, though we are not even sure what
to conjecture here.
Question 2 What is the proper scaling for the critical window?
Question 3 How large is the largest component inside the critical window?

For the Erdős-Rényi evolution, the scaling is n
2 + λn2/3 when written

in terms of the number of edges. When λ → ∞ a dominant component
has emerged whose size is much greater than the second largest component
whereas when λ → ∞ the largest components are nearly the same size. For
any fixed λ the largest components have size Θ(n2/3). Is there a similar scal-
ing t0n+λnγ with the largest components of size Θ(nη) for the product rule?
For the minimin rule? Is the value γ giving the size of the scaling window the
same for different rules? Can we nicely describe the random process inside
the scaling window? Lots and lots of questions here. No answers. Yet!
– Joel

4. Stirling’s formula

If you take a number and double it and double it again and then double it a
few more times, the number gets bigger and bigger and goes higher and higher
and only arithmetic can tell you what the number is when you quit doubling.
– from Arithmetic by Carl Sandburg

Current Day Annotation Notes for students.
Surely the most beautiful asymptotic formula in all of mathematics is

Stirling’s Formula:

(25) n! ∼ nne−n
√

2πn

How do the two most important fundamental constants of mathematics, e

and π, find their way into an asymptotic formula for the product of integers?
We give two very different arguments (one will not show the full formula)
that, between them, illustrate a good number of basic asymptotic methods.

4.1. Asymptotic estimation of an integral

Consider the integral

(26) In =
∫ ∞

0
xne−xdx
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A standard result of Freshman Calculus, done by Integration by Parts, is
that

(27) In = n!

Our problem now is to estimate the integral of (26).

• Asymptotically, Integrals are Dominated by the largest value of the function
being integrated.

Let us set

(28) y = yn(x) = xne−x and z = zn(x) = ln y = n ln x − x

Setting z′ = nx−1−1 = 0 we find that z(x) (and hence y(x)) has a maximum
at x = n.

Let’s compare y(n) = nne−n with values of y(x) when x is “near” n. For
example, take x = 1.1n.

(29) y(1.1n) = (1.1n)ne−1.1n = y(n)(1.1e−0.1)n

But 1.1e−0.1 = 0.9953 · · · . While this number is close to one, it is a constant
less than one and so y(1.1n) is exponentially smaller than y(n). Values near
1.1n will make a negligible contribution to the integral. Let’s move closer
and try x = n + 1. Now

(30) y(n + 1) = (n + 1)ne−n−1 = y(n)
(

1 +
1
n

)n

e−1

As (1+ 1
n)n ∼ e, y(n+1) ∼ y(n) and so values near x = n+1 do contribute

substantially to the integral.
Moving from x = n in the positive direction (the negative is similar) the

function y = y(x) decreases. If we move out 1 (to x = n + 1) we do not yet
“see” the decrease while if we move out 0.1n (to x = 1.1n) the decrease is so
strong that the function has effectively disappeared. (Yes, y(1.1n) is large
in an absolute sense but it is small relative to y(n).) How do we move out
from x = n so that we can effectively see the decrease in y = y(x)? This is
a question of scaling.

• Scaling is the art of asymptotic integration.

Let’s look more carefully at z(x) near x = n. Note that an additive
change in z(x) means a multiplicative change in y(x) = ez(x). We have
z′(x) = nx−1 − 1 = 0 at x = n. The second derivative z′′(x) = −nx−2 so
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that z′′(n) = −n−1. We can write the first terms of the Taylor Series for
z(x) about x = n:

(31) z(n + ε) = z(n) − 1
n

ε2 + · · ·

This gives us a heuristic explanation for our earlier calculations. When
ε = 1 we have 1

nε2 ∼ 0 so z(n + ε) = z(n) + o(1) and thus y(n + ε) ∼ y(n).
When ε = 0.1n the opposite is indicated as 1

nε2 is large. The middle ground
is given when ε2 is on the order of n, when ε is on the order of

√
n. We are

thus led to the scaling ε = λ
√

n, or

(32) x = n + λ
√

n

We formally make this substitution in the integral (26). Further we take
the factor y(n) = nne−n outside the integral so that now the function has
maximal value one. We have scaled both axes. The scaled function is

(33) gn(λ) =
y(n + λ

√
n)

y(n)
= (1 + λn−1/2)ne−λn

and we find (noting that dx =
√

ndλ)

(34)
∫ ∞

0
xne−xdx = nne−n√n

∫ +∞

−√
n

gn(λ)dλ

The Taylor Series with error term gives

(35) ln(1 + ε) = ε − 1
2
ε2 + O(ε3)

as ε → 0. Let λ be an arbitrary but fixed real number. Then λn−1/2 → 0 so
that

(36) n ln(1+λn−1/2)−λn1/2 = λn1/2 − 1
2
λ2 + o(1)−λn1/2 = −1

2
λ2 + o(1)

and

(37) gn(λ) → e−λ2/2

That is, when properly scaled, the function y = xne−x looks like the bell
shaped curve!



256 Joel Spencer

Now we would like to say

(38) lim
n

∫ +∞

−√
n

gn(λ)dλ =
∫ ∞

−∞
e−λ2/2dλ =

√
2π

Interchanging limits in the integration of a sequence of functions requires
justification. We quote a classic result:

Arzela’s Theorem. Let fn be a sequence of Riemann integrable functions
on an interval [a, b]. Suppose f is also Riemann integrable on [a, b] and
fn(λ) → f(λ) for each λ ∈ [a, b]. Suppose further there is a constant K
so that |fn(x)| ≤ K for all n and all x ∈ [a, b]. Then limn

∫ b
a fn(x)dx =∫ b

a f(x)dx.

In our examples, however, the limits of integration are either infinity or
approaching infinity in n. We use the following extension:

Extended Arzela’s Theorem. Let fn be a sequence of Riemann integrable
functions on the real line. Suppose fn(λ) → f(λ) for each real λ. Suppose f
is Riemann integrable on the real line and that

∫ ∞
−∞ f(x)dx exists. Suppose

further that for all L there is a constant K so that |fn(x)| ≤ K for all n and
all x ∈ [−L,+L]. Suppose further that for all ε > 0 there exists an L and
an n0 so that for all n ≥ n0

(39)

∣∣∣∣∣
∫ +∞

L
fn(x)dx

∣∣∣∣∣ < ε and

∣∣∣∣∣
∫ −L

−∞
fn(x)dx

∣∣∣∣∣ < ε

Then limn
∫ ∞
−∞ fn(x)dx =

∫ ∞
−∞ f(x)dx.

In our instance the functions gn(λ) have domain [−√
n,∞) but we can

extend them to the full real line by simply defining gn(λ) = 0 for λ < −√
n.

As we have normalized by dividing yn(n+λ
√

n) by its maximal value yn(n)
we have gn(λ) ≤ 1 for all n and all λ. (Clearly, all functions are nonnegative
as well.)

It remains to bound the “tail” of the functions gn. Here we can employ
rough upper bounds for the integrals as we just need to show that they
approach zero appropriately. The technical difficulty is that the estimate of
ln(1+ ε) by ε− 1

2ε2 is only valid for ε small and we require bounds that work
for all ε. The following specific bounds are often useful:

(40) ln(1 + ε) ≤ ε − 1
2
ε2 when − 1 < ε ≤ 0
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(41) ln(1 + ε) ≤ ε − 1
4
ε2 when 0 < ε ≤ 1

(42) ln(1 + ε) ≤ 0.7ε when ε > 1

Applying (40) to (33) we see that for 0 > λ > −√
n

(43) ln gn(λ) ≤ n

(
λn−1/2 − 1

2
λ2n−1

)
− λ

√
n = −1

2
λ2

for all n so that

(44)
∫ −L

−∞
gn(λ)dλ ≤

∫ −L

−∞
e−λ2/2dλ

which does go to zero with L. That is, on the negative side the function
gn(λ) is uniformly bounded by the bell shaped curve.

The positive side is slightly more complex. We split
∫ ∞
L gn(λ)dλ = I1+I2

with

(45) I1 =
∫ √

n

L
gn(λ)dλ and I2 =

∫ ∞
√

n
gn(λ)dλ

From (41), (42) respectively we have

(46) I1 ≤
∫ ∞

L
e−λ2/4dλ

(47) I2 ≤
∫ ∞
√

n
e−0.3nλdλ

Both integrals go uniformly to zero and hence so does their sum.
Hence the conditions for the extended Arzela’s Theorem are met, (38)

has been justified, In has been asymptotically evaluated and Stirling’s For-
mula has been proven.

Observe that I2 is actually extremely small, on the order of exp[−Θ(n3/2)].
We employed a rather crude bound (42) to bound it. This embodies two gen-
eral principles

• Crude upper bounds can be used for negligible terms as long as they stay
negligible.

• Terms that are extremely small often require quite a bit of work.
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4.2. Approximating sums by integrals

I was interviewed in the Israeli Radio for five minutes and I said that more
than 2,000 years ago, Euclid proved that there are infinitely many primes.
Immediately the host interrupted me and asked “Are there still infinitely many
primes?” – Noga Alon

Our object here will be to estimate the logarithm of n! via the formula

(48) Sn := ln(n!) =
n∑

k=1

ln(k)

The notion is that Sn should be close to the integral of the function ln(x)
between x = 1 and x = n. We set

(49) In :=
∫ n

1
ln(x)dx = x ln(x) − x]n1 = n ln(n) − n + 1

Let Tn be the value for the approximation of the integral In via the trape-
zoidal rule, using step sizes one. So

(50) Tn =
1
2

ln(1) +
n−1∑
k=2

ln(k) +
1
2

ln(n) = Sn − 1
2

ln(n)

Set En = In − Tn, the error when approximating the integral of ln(x)
by the trapezoidal rule. For 1 ≤ k ≤ n − 1 let Sk denote the “sliver” of
area under the curve y = ln(x) for k ≤ x ≤ k + 1 but over the straight line
between (k, ln(k)) and (k + 1, ln(k + 1)). The curve is over the straight line
as the curve is concave. Then En =

∑n−1
k=1 μ(Sk) where μ denotes the area.

The μ(Sk) are all positive so the sequence En is an increasing one. Now
we bound μ(Sk) from above. As ln(x) is concave its derivative is decreasing
and so is always between 1

k+1 and 1
k in k ≤ x ≤ k + 1. Thus

(51) ln(k) +
1

k + 1
(x − k) ≤ ln x ≤ ln(k) +

1
k
(x − k)

Between x = k and x = k + 1 the curve y = ln(x) therefore lies below the
straight line y = ln(x) + 1

k (x − k). As ln(k + 1) ≤ ln(k) + 1
k (x = k + 1 in

(51)) the trapezoidal line from (k, ln(k) to (k + 1, ln(k + 1)) lies over the
straight line y = ln(x) + 1

k+1(x − k). Thus the sliver Sk is contained in the
triangle, call it Δk, created by the these two lines cut off at x = k (where
they meet) and x = k+1. Consider the line segment from (k+1, ln(k)+ 1

k+1)
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to (k + 1, ln(k) + 1
k ) as the base of Δk. The base is length 1

k − 1
k+1 and the

altitude is one. Thus

(52) μ(Sk) ≤ μ(Δk) ≤
1
2

(
1
k
− 1

k + 1

)

We return to the errors En. We have

(53)
∞∑

k=1

μ(Sk) ≤
∞∑

k=1

1
2

(
1
k
− 1

k + 1

)
=

1
2

Critically, the sum converges. As the En form an increasing sequence there
must be a real number c, 0 ≤ c ≤ 1

2 , so that En → c as n → ∞. That is, we
may write En = c − o(1) and In = Tn + c + o(1) and so

(54) Tn = In − c − o(1) = n ln(n) − n + 1 − c − o(1)

(55) Sn = Tn +
1
2

ln(n) = n ln(n) − n +
1
2

ln(n) + 1 − c − o(1)

Taking exponentials of both sides we find

(56) n! ∼ nne−n√ne1−c

where the constant e1−c lies between
√

e and e. This method does not give
the actual value of the constant which, as we have seen, is

√
2π.

5. Notes on asymptotics

Current Day Annotation Notes for students.
Lets start with the Taylor Series

(57) ln(1 − ε) = −ε − ε2

2
− ε3

3
· · ·

valid for |ε| < 1 though we will only be interested in ε small positive. This
is too much information so we cut it down in a variety of ways:

(58) ln(1 − ε) ∼ −ε when ε = o(1)

and with error terms

(59) ln(1 − ε) = −ε + O(ε2)
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(60) ln(1 − ε) = −ε − ε2

2
+ O(ε3)

(61) ln(1 − ε) = −ε − ε2

2
− ε3

3
+ O(ε4)

These will suffice for our purposes.
Now lets examine the asymptotics of

(n
k

)
when n, k → ∞. We write:

(62)

(
n

k

)
=

(n)k

k!
∼ nkek

√
2kπ

kk
A

where we set

(63) A :=
(n)k

nk
=

k−1∏
i=0

(
1 − i

n

)

So if we get A we get the binomial coefficient. It is more convenient to work
with

(64) B := lnA =
k−1∑
i=0

ln
(

1 − i

n

)

For k = o(n) we have

(65) B ∼
k−1∑
i=0

− i

n
∼ − k2

2n

and thus we can write

(66) A = e−
k2

2n
(1+o(1))

This does not give the full asymptotics of A as the 1+o(1) is in the exponent.
We go further as follows:

(67) B =
k−1∑
i=0

− i

n
+ O(i2n−2) = − k2

2n
+ O(k3n−2)

So if k = o(n2/3), B = − k2

2n + o(1) and we have the asymptotic formula

(68) A = e−
k2

2n (1 + o(1))
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In particular:

(69) If k = o(n1/2) then A ∼ 1

(70) If k ∼ cn1/2 then A ∼ e−
c2

2

If k = o(n3/4) we go to the next approximation:

(71) B =
k−1∑
i=0

− i

n
− i2

2n2
+ O(i3n−3) = − k2

2n
− k3

6n2
+ O(k4n−3)

and the error term is o(1) so that we have the asymptotic formula

(72) A = e−
k2

2n e−
k3

6n2 (1 + o(1))

In particular

(73) If k ∼ cn2/3 then A ∼ e−
k2

2n e−
c3

6

BTW, the inequality

(74) ln(1 − ε) < −ε or, equivalently 1 − ε < e−ε

is valid for all ε ∈ (0, 1) and can be pretty handy.

6. Summing over primes ≤ n

317 is a prime, not because we think so, or because our minds are shaped
in one way rather than another, but because it is so, because mathematical
reality is built that way. – G.H. Hardy

Current Day Annotation Notes for students.
Let f(x) be some reasonable (e.g.: f(x) = x−1 or f(x) =

√
x) function

on the positive integers. Here we see how to asymptotically (as n → ∞)
evaluate

∑
p≤n f(p), where the sum is restricted to primes p ≤ n. As usual,

we let π(x) denote the number of primes ≤ x. We shall use the Prime
Number Theorem

π(x) ∼ x

ln x
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The key is the following identity:

∑
p≤n

f(p) =
n∑

x=2

f(x)(π(x)−π(x−1)) = f(n)π(n)+
n−1∑
x=2

π(x)(f(x)−f(x+1))

Let’s look at the particular (and important) case
∑

p≤n
1
p . So f(x) = 1

x . The
first term f(n)π(n) ∼ 1

n
n

ln n = o(1), which we shall soon see is negligible.
The second term

n−1∑
x=2

π(x)(f(x) − f(x + 1)) ∼
n−1∑
x=2

x

ln x

1
x(x + 1)

∼
n−1∑
x=2

1
x ln x

= ln ln n + O(1)

Thus ∑
p≤n

1
p

= ln lnn + O(1) + o(1) = ln lnn + O(1)

Let’s take another example:
∑

p≤n p2, so f(x) = x2. Here the first term
n2π(n) ∼ n3

ln n which we shall soon see is not negligible. The second term

n−1∑
x=2

π(x)(f(x) − f(x + 1)) ∼
n−1∑
x=2

x

ln x
(−2x) ∼ −2

3
n3

ln n

The last sum is not immediate. Take, say, A = n ln−1 n and split the sum
into 2 ≤ x < A and A ≤ x ≤ n − 1. We bound the first part from above by
ignoring the denominator lnx, so it is ≤ ∑A

2 (−2x2) = O(A3) = o(n3 ln−1 n)
while in the range of the second part the denominator lnx ∼ ln n so that
the sum is asymptotic to ln−1 n

∑n−1
A (−2x2) ∼ −2

3n3 ln−1 n. Altogether∑
p≤n p2 ∼ 1

3n3 ln−1 n.
This method is actually far more general. Let S be an infinite set of

positive integers and let πS(n) be the number of y ∈ S with 1 ≤ y ≤ n.
Let f(n) be some reasonable function on the positive integers. The general
problem is to find the asymptotics (as n → ∞) of

∑
x≤n,x∈S

f(x)

When 1 �∈ S (otherwise add the term f(1)) the precise formula is

∑
x≤n,x∈S

f(x) = f(n)πS(n) +
n−1∑
x=2

πS(x)(f(x) − f(x + 1))
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Frequently, an asymptotic formula for πS(n) and the estimate f(x)−f(x+1)
by −f ′(x) will yield the desired asymptotics.

7. Paul Erdős

To me, it does not seem unlikely that on some shelf of the universe there lies
a total book. I pray the unknown gods that some man – even if only one man,
and though it have been thousands of years ago! – may have examined and
read it. If honor and wisdom and happiness are not for me, let them be for
others. May heaven exist, though my place be in hell. Let me be outraged and
annihilated, but may Thy enormous Library be justified, for one instant, in
one being. – from The Library of Babel by Jorge Luis Borges

Current Day Annotation Reprinted with the kind permission of the János
Bolyai Society, this piece originally appeared in a volume commemorating
Paul Erdős’ eightieth birthday. Erdős was, is, and will be the center of my
mathematical life, as he is for so many others.

FOR THE CLASS OF ’68

The search for truth is more precious than its possession. – Einstein

Paul’s memory for dates always amazes. “It was in the Journal of the Lon-
don Math Society, 1949,” he’ll say, and there it will be. For one anecdote
though I too recall the date, April 1970, as my firstborn had a fetal role.
Paul was the principal lecturer at a meeting of the New York Academy of
Sciences. He and his nonagenarian mother had a suite at a New York ho-
tel. When my bride MaryAnn and I arrived, there was already a goodsized
group of mathematicians hard at work. Paul’s mother, diligently learning her
fourth language, English, took MaryAnn into the other room and I joined
the mathematical conversation. Or rather, conversations, as the ten of us
formed three distinct subgroups in (if memory serves) Number Theory, Set
Theory, and Combinatorics. Three discussions were occuring simultaneously,
conjectures and theorems were flying thick and fast. Paul was at the apex
of this trialogue, leading and contributing to all groups at once. It was, one
well recalls, a heady moment for a budding young Combinatorialist. We’d
been at this for perhaps half an hour and I confess to having forgotten the
ladies in the other room. But Paul had not. He suddenly turned and called
to his mother in rapid Hungarian. In her conversation with MaryAnn there
was some problem with her English and Paul was explaining the correct
usage. It appears there was yet a fourth simultaneous conversation.
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Those were tumultuous times. In my land the Vietnam war enraged:
Amerika the villain. The revolution of 1989 arrived in Eastern Europe but
history slipped for a generation, our generation. French youth had the gall
to try to change the world. “Do your own thing” was the admonition that
resonated so powerfully. Resist Authority. Nonconformity was the supreme
virtue. This was the backdrop for our first collaborations with Uncle Paul.
But while others spoke constantly of it, nonconformity was always Paul’s
modus operandi. He had no job; he worked constantly. He had no home;
the world was his home. Possessions were a nuisance, money a bore. Paul
lived, lives, on a web of trust, travelling ceaselessly from Center to Center
spreading his mathematical pollen. “Prove and Conjecture!” was, and is, his
constant refrain.

Were we, in those halcyon days, students of Uncle Paul. I think the
word inadequate and inaccurate. Better to say that we were disciples of
Paul Erdős. We (and the list is long indeed) had energy and talent. Paul,
through his actions and his theorems and his conjectures and every fibre of
his being, showed us the Temple of Mathematics. The Pages of the Book
were there, we had only to open them. Did there, for every k, r > 0, exist
a graph G which when r-edge colored necessarily yielded a monochromatic
Kk and yet had clique number merely k itself? We had no doubts – the
answer was either Yes or No. The answer was in The Book. Pure thought,
our thought, would allow its reading.

With maturity we’ve learned that The Book did not open at random.
Paul was showing us the way. The conjectures were structured, the Pages
were forming Sections and Chapters. Now its custodianship passes to us.
“Future Directions of X Theory” are our choice to make. Can we give to our
students the passion that Paul gave to us. Paul is a unique point, imitation
will necessarily fall short. We can give our ε, it is an effort well worth making.

Now Paul: let Ai ⊂ {1, . . . , n2/2}, 1 ≤ i ≤ m, be random n-sets. With
m = cn22n, in your Acta Math. Hungarica paper in 1964, Property B almost
surely failed. Suppose instead m < c1n

22n, c1 small. Can you show . . .

April 1993
New York
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