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The μ pattern in words

Janine LoBue Tiefenbruck and Jeffrey Remmel

In this paper, we study the distribution of the number of occur-
rences of the simplest frame pattern, called the μ pattern, in words.
Given a word w = w1 . . . wn ∈ {1, . . . , k}n, we say that a pair
〈wi, wj〉 matches the μ pattern if i < j, wi < wj , and there is no
i < k < j such that wi ≤ wk ≤ wj . We say that 〈wi, wj〉 is a trivial
μ-match if wi +1 = wj and is a nontrivial μ-match if wi +1 < wj .
The main goal of this paper is to study the joint distribution of
the number of trivial and nontrivial μ-matches in {1, . . . , k}∗.

1. Introduction

A mesh pattern is a particular type of permutation pattern introduced in
[2] by Brändén and Claesson and studied in a series of papers (e.g. see [5] by
Kitaev and Liese, and references therein). Consider the visual representation
of a permutation as dots on a grid, where the heights of the dots from left
to right are in the same relative order as the entries of the permutation. A
mesh pattern is represented as a diagram of a permutation where some of
the cells determined by the dots are shaded. For example, Figure 1 shows
the diagram of a mesh pattern where the underlying permutation is 312.
We say that a mesh pattern p with underlying permutation π occurs in a
permutation σ if there is a subsequence of σ that is order-isomorphic to π
and, further, the shaded areas determined by p and this subsequence of σ
contain no elements of σ. In other words, σ has an occurrence of π in the
classical sense, plus satisfies additional restrictions given by the positions of
the shaded cells.

An example of a permutation that matches the mesh pattern p given in
Figure 1 is σ = 6741325. In Figure 2, one can see that the subsequence 735
matches p.

A particular class of mesh patterns is boxed patterns introduced in [1] by
Avgustinovich, Kitaev, and Valyuzhenich, who later suggested calling this
type of pattern frame patterns. In these patterns, all but the boundary cells
are shaded. The simplest frame pattern, which is called the μ pattern, has
underlying permutation 12 and is defined as follows. Let Sn denote the set
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Figure 1: A mesh pattern with underlying permutation 312.

Figure 2: The permutation 6741325 matches the pattern in Figure 1.

Figure 3: The frame pattern μ.

of all permutations of {1, . . . , n}. Given σ = σ1σ2 . . . σn ∈ Sn, we say that

a pair 〈σi, σj〉 matches the μ pattern or is a μ-match in σ if i < j, σi < σj ,

and there is no i < k < j such that σi < σk < σj . The μ pattern is shown

in Figure 3 using the notation of [2]. Graphically, a μ-match is a pair of

increasing dots such that there are no dots within the rectangle created by

the original dots.

Analogously, we can define the μ′ pattern to be the frame pattern with

underlying permutation 21. That is, we say that the pair 〈σi, σj〉matches the

μ′ pattern or is a μ′-match in σ if i < j, σi > σj , and there is no i < k < j

such that σi > σk > σj . For example, if σ = 6741325 as in Figure 4, then

the μ-matches in σ are

〈6, 7〉, 〈4, 5〉, 〈1, 3〉, 〈1, 2〉, 〈3, 5〉, 〈2, 5〉
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Figure 4: The graph of the permutation 6741325 with the occurrence 〈3, 5〉
highlighted.

and the μ′-matches in σ are

〈6, 4〉, 〈6, 5〉, 〈7, 4〉, 〈7, 5〉, 〈4, 1〉, 〈4, 3〉, 〈3, 2〉.

The μ-match 〈3, 5〉 in the permutation σ = 6741325 is highlighted in Fig-
ure 4; in particular, there are no dots within the shaded rectangle.

We let Nμ(σ) (respectively, Nμ′(σ)) denote the number of μ-matches
(respectively, μ′-matches) in σ. The reverse of σ = σ1 . . . σn ∈ Sn, σ

r, is the
permutation σnσn−1 . . . σ1, and the complement of σ, σc, is the permutation
(n + 1 − σ1)(n + 1 − σ2) . . . (n + 1 − σn). It is easy to see that Nμ(σ) =
Nμ′(σr) = Nμ′(σc) and thus, since the reverse and complement are trivial
bijections from Sn to itself, studying the distribution of μ-matches in Sn is
equivalent to studying the distribution of μ′-matches in Sn.

Avgustinovich, Kitaev, and Valyuzhenich [1] first studied the avoidance
of frame patterns including μ and μ′ in permutations in the symmetric group
Sn. The distribution of μ-matches has also been studied in another setting,
namely, Jones, Kitaev, and Remmel [4] studied cycle-occurrences of the μ
pattern in the cycle structure of permutations.

In this paper, we shall study the distribution of μ-matches in words.
For any positive integer k, we let [k] = {1, . . . , k}. We let [k]∗ denote the
set of all words over the alphabet [k]. We let ε denote the empty word and
we say ε has length 0. If u = u1 . . . us and v = v1 . . . vt are words in [k]∗,
we let uv = u1 . . . usv1 . . . vt denote the concatenation of u and v. We say
that a word u = u1 . . . uj is a prefix of w if j ≥ 1 and there is a word
v such that uv = w, we say that v = v1 . . . vj is a suffix of w if j ≥ 1
and there is a word u such that uv = w, and we say that f = f1 . . . fj is
a factor of w if j ≥ 1 and there are words u and v such that ufv = w.
We let NR([k]) denote the set of all words w ∈ [k]∗ such that w has no
repeated letters, i.e., such that w has no factor of the form ii for i ∈ [k].
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Now suppose that n ≥ 1 and w = w1 . . . wn ∈ [k]n. Then we let |w| = n
denote the length of w. We say that a pair 〈wi, wj〉 is a μ-match in w if
i < j, wi < wj , and there is no i < k < j such that wi ≤ wk ≤ wj . We say
that 〈wi, wj〉 is a trivial μ-match if wi + 1 = wj and is a nontrivial μ-match
if wi+1 < wj . We then let trivμ(w) denote the number of trivial μ-matches
in w and ntrivμ(w) denote the number of nontrivial μ-matches in w. For
example, if w = 123121242416, then trivμ(w) = 5 since w has three 〈1, 2〉-
matches, one 〈2, 3〉-match, and one 〈3, 4〉-match. Also, ntrivμ(w) = 4 as w
has one 〈1, 6〉-match, two 〈2, 4〉-matches, and one 〈4, 6〉-match. Similarly, we
say that a pair 〈wi, wj〉 is a μ′-match in w if i < j, wi > wj , and there is no
i < k < j such that wi ≥ wk ≥ wj . We say that 〈wi, wj〉 is a trivial μ′-match
if wi = wj + 1 and is a nontrivial μ′-match if wi > wj + 1. As was the case
with permutations, the correspondence that sends w = w1 . . . wn ∈ [k]n to its
reverse wr = wn . . . w1 or to its complement wc = (k+1−w1) . . . (k+1−wn)
shows that the problem of studying μ-matches in words is equivalent to the
problem of studying μ′-matches in words.

The main goal of this paper is to study the generating functions

A(k)
μ (p, q, t) = 1 +

∑
n≥1

A(k)
n,μ(p, q)t

n and(1)

NR(k)
μ (p, q, t) = 1 +

∑
n≥1

NR(k)
n,μ(p, q)t

n(2)

where

A(k)
n,μ(p, q) =

∑
w∈[k]n

qtrivμ(w)pntrivμ(w) and(3)

NR(k)
n,μ(p, q) =

∑
w∈NR([k]),|w|=n

qtrivμ(w)pntrivμ(w).(4)

Given a word w ∈ [k]∗, we can write w = wj1
1 wj2

2 . . . wjs
s where w1 . . . ws has

no repeated letters. In such a situation, we say that w1 . . . ws is the contrac-
tion of w and write cont(w) = w1 . . . ws. For example, if
w = 112221123333222444, then cont(w) = 1212324. It is easy to see that for
any w ∈ [k]∗, trivμ(w) = trivμ(cont(w)) and ntrivμ(w) = ntrivμ(cont(w)).
Moreover, if w1 . . . ws ∈ NR([k]) and n ≥ s, then the number of u ∈ [k]n

such that cont(u) = w equals the number of solutions to j1 + · · · + js = n
where each ji ≥ 1 which is

(
n−1
s−1

)
. Thus it follows that for all n ≥ 1,

A(k)
n,μ(p, q) =

n∑
s=1

(
n− 1

s− 1

)
NR(k)

s,μ(p, q) and
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A(k)
μ (p, q, t) = NR(k)

μ (p, q,
t

1− t
).

For this reason, we shall focus on computing the generating functions

NR
(k)
μ (p, q, t) for the rest of this paper.
It will be useful to consider some refinements of the generating functions

NR
(k)
μ (p, q, t) depending on the prefix or suffix of the words. That is, given

any non-empty words u, v ∈ NR([k]), we let

NRu,(k)
μ (p, q, t) =

∑
n≥|u|

NRu,(k)
n,μ (p, q)tn,(5)

NR(k),v
μ (p, q, t) =

∑
n≥|v|

NR(k),v
n,μ (p, q)tn, and(6)

NRu,(k),v
μ (p, q, t) =

∑
n≥|u|+|v|

NRu,(k),v
n,μ (p, q)tn,(7)

where

NRu,(k)
n,μ (p, q) =

∑
w∈u([k]n−|u|),w∈NR([k])

qtrivμ(w)pntrivμ(w),(8)

NR(k),v
n,μ (p, q) =

∑
w∈([k]n−|v|)v,w∈NR([k])

qtrivμ(w)pntrivμ(w), and(9)

NRu,(k),v
n,μ (p, q) =

∑
w∈u([k]n−|u|−|v|)v,w∈NR([k])

qtrivμ(w)pntrivμ(w).(10)

Note if i, j ∈ [k], then 〈i, j〉 is a trivial (nontrivial) μ-match if and only if
its reverse complement 〈k+1− j, k+1− i〉 is a trivial (nontrivial) μ-match.
It follows that the map that sends any word w = w1 . . . wn to its reverse
complement (k + 1− wn) . . . (k + 1− w1) shows that for any i, j ∈ [k],

NRi,(k)
μ (p, q, t) = NR(k),k+1−i

μ (p, q, t) and

NRi,(k),j
μ (p, q, t) = NRk+1−j,(k),k+1−i

μ (p, q, t).

The computation of NR
(k)
μ (p, q, t) is relatively simple for small k. For

example, when k = 2, then there are no nontrivial μ-matches and the only
trivial μ-matches are consecutive. In such a case, it is easy to see that

1. the words of the form (12)n contribute 1
1−qt2 to NR

(2)
μ (p, q, t),

2. the words of the form 2(12)n contribute t
1−qt2 to NR

(2)
μ (p, q, t),
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3. the words of the form (12)n1 contribute t
1−qt2 to NR

(2)
μ (p, q, t), and

4. the words of the form 2(12)n1 contribute t2

1−qt2 to NR
(2)
μ (p, q, t).

Thus

NR(2)
μ (p, q, t) =

1 + 2t+ t2

1− qt2
.

When k = 3, then the only nontrivial μ-matches are consecutive occur-
rences of 13. Indeed, in any word w ∈ NR([k]), only factors of the form iuj
where i + 1 < j and u does not contain any letters s such that i ≤ s ≤ j
correspond to nontrivial μ-matches. Thus for k = 3, we can only have a
nontrivial μ-match when i = 1, j = 3, and u = ε. In this case, we shall

show that one can compute NR
(3)
μ (p, q, t) by showing that the functions

NR
ij,(3)
μ (p, q, t) satisfy some simple recursions for i �= j ∈ [3]. That is, by

knowledge of the first two letters of a word, we can classify all μ-matches
involving the first letter of the word, then remove it recursively. The prob-
lem with this approach is that it does not generalize. When k ≥ 4, there
are words for which knowledge of the first two letters and, in fact, no finite
initial segment is enough to classify all μ-matches involving the first letter.
For example, if k = 4, then for words of the form w = 2(14)s, one can always
extend w by adding a 3 at the end to ensure that the initial 2 is involved
in a trivial μ-match. Similarly if k ≥ 5 and v = 2(15)s, then one can always
extend w by adding a 3 at the end to ensure that the initial 2 is involved in
a trivial μ-match or by adding a 4 at the end to ensure that the initial 2 is
involved in a nontrivial μ-match. Thus it is impossible to determine whether
there is a 〈2, 3〉-match or a 〈2, 4〉-match by knowledge of the first t letters of
a word for any finite t.

Thus we will develop an alternative method to compute NR
(k)
μ (p, q, t)

that uses a weighted automaton with Ck states where Ck = 1
k+1

(
2k
k

)
is the

kth Catalan number. This method is useful in that it gives an algorithm

for finding NR
(k)
μ (p, q, t) that works even when it is not straightforward to

write down recursions, as with k ≥ 4. The use of automata and the transfer
matrix method to find the generating function for the number of occurrences
of a pattern in a class of words, or to find the generating function for the
number of words that avoid a pattern in class of words, has a long history.
See chapter seven of [3] for the history of this method and details of the
technique.

The outline of this paper is as follows. In Section 2, we shall show how

the functions NR
ij,(3)
μ (p, q, t) satisfy certain simple recursions allowing us

to find NR
(3)
μ (p, q, t) and then describe some of the problems of extending
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this method to find NR
(k)
μ (p, q, t) for k ≥ 4. In Section 3, we shall describe

our automaton method for computing NR
(3)
μ (p, q, t) and give the results for

k = 4 and k = 5. Finally, in Section 5, we shall look at the problem of

computing generating functions for the distribution of consecutive trivial

and nontrivial μ-matches in words. In fact, we will show how to compute

the generating function

CNR(k)
μ (x1, . . . , xk−1, t) = 1 +

∑
n≥1

tn
∑

w∈NR([k]),|w|=n

k−1∏
j=1

x
jrise(w)
j

where for any word w = w1 . . . wn and 1 ≤ j ≤ k − 1, jrise(w) = |{i :

wi+1 − wi = j}|. In particular, this will allow us to give a closed form

expression for NR
(k)
μ (0, q, t) for all k.

2. A recursive approach for k = 3, 4

In this section, we shall first give a straightforward method for finding

the generating function NR
(3)
μ (p, q, t) by showing that the functions of the

form NR
ij,(3)
μ (p, q, t) satisfy simple recursions. Then we shall describe the

difficulties of extending this method to compute the generating functions

NR
(k)
μ (p, q, t) for k ≥ 4.

Case 1. NR
12,(3)
μ (p, q, t).

Any word that starts with 12 is either the word 12 or starts with 121 or 123.

All such words have a trivial 〈1, 2〉-match between w1 and w2, and further,

w1 cannot be involved in any other μ-matches. Thus, by paring off w1, it

follows that

NR12,(3)
μ (p, q, t) = qt2 + qtNR21,(3)

μ (p, q, t) + qtNR23,(3)
μ (p, q, t).

Case 2. NR
13,(3)
μ (p, q, t).

Any word that starts with 13 is either the word 13 or starts with 131 or 132.

All such words have a nontrivial 〈1, 3〉-match between w1 and w2. Further-
more, in words that start 131, w1 cannot be involved in any other μ-matches

because w3 = w1. In words that start 132, a trivial 〈1, 2〉-match also exists,

and w1 can be involved in no additional μ-matches. Thus it follows that

NR13,(3)
μ (p, q, t) = pt2 + ptNR31,(3)

μ (p, q, t) + pqtNR32,(3)
μ (p, q, t).



386 Janine LoBue Tiefenbruck and Jeffrey Remmel

This type of reasoning can be used in all the other cases of NR
ij,(3)
μ (p, q, t),

for i �= j ∈ [3]. Rather than giving a detailed reasoning in each case, we shall
just list the resulting equations.

NR21,(3)
μ (p, q, t) = t2 + tNR12,(3)

μ (p, q, t) + qtNR13,(3)
μ (p, q, t),

NR23,(3)
μ (p, q, t) = qt2 + qtNR31,(3)

μ (p, q, t) + qtNR32,(3)
μ (p, q, t),

NR31,(3)
μ (p, q, t) = t2 + tNR12,(3)

μ (p, q, t) + tNR13,(3)
μ (p, q, t), and

NR32,(3)
μ (p, q, t) = t2 + tNR21,(3)

μ (p, q, t) + tNR23,(3)
μ (p, q, t).

Putting these equations together, we obtain the following matrix equa-
tion.

(11)

⎡
⎢⎢⎢⎢⎢⎢⎣

−qt2

−pt2

−t2

−qt2

−t2

−t2

⎤
⎥⎥⎥⎥⎥⎥⎦
= M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NR
12,(3)
μ (p, q, t)

NR
13,(3)
μ (p, q, t)

NR
21,(3)
μ (p, q, t)

NR
23,(3)
μ (p, q, t)

NR
31,(3)
μ (p, q, t)

NR
32,(3)
μ (p, q, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 qt qt 0 0
0 −1 0 0 pt pqt
t qt −1 0 0 0
0 0 0 −1 qt qt
t t 0 0 −1 0
0 0 t t 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Thus if we multiply both sides of (11) by M−1, we can can solve for

the vector on the right whose components are NR
ij,(3)
μ (p, q, t) for i �= j ∈

[3]. This gives a refinement of NR
(3)
μ (p, q, t) by the first two letters of a

word. One can obtain the generating function NR
(3)
μ (p, q, t) by taking 1 +

3t +
∑

i �=j∈[3]NR
ij,(3)
μ (p, q, t) to account for words of length less than two

in addition to those counted in the cases above. We have carried out this
computation in Mathematica and found that

(12) NR(3)
μ (p, q, t) =

(1 + t)2(1 + t− p(q − 1)2t3)

1− 2qt2 − q2t3 − pt2(1 + q2t+ 2q(q − 1)t2)
.

While this approach seems straightforward enough in this case, it does
not generalize well. One problem that exists in the cases where k ≥ 4 is that
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there are words for which no finite initial segment is enough to classify all

μ-matches involving the first letter.

As an example of the kind of analysis involved, consider the case

NR
21,(4)
μ (p, q, t). Words that start with 21 are either the word 21, which

contributes a factor of t2 to NR
21,(4)
μ (p, q, t), or they begin with 212, 213,

or 214. Words that begin with 212 and 213 contribute tNR
12,(4)
μ (p, q, t) and

qtNR
13,(4)
μ (p, q, t), respectively, by accounting for all μ-matches involving

the first letter and then removing it. Words that begin with 214 are more

complicated to count, because the weight depends on whether or not there

is a 3 that appears later in the word. To determine the contribution of such

words to NR
21,(4)
μ (p, q, t), we must consider several cases. We classify each

word starting with 214 by the first occurrence of a 2 or 3, so that each word

starting with 214 falls into exactly one of the cases below.

Case 1. 214{14}∗.
The first three letters of such a word contribute p2t3 as 〈2, 4〉 and 〈1, 4〉
are nontrivial μ-matches. Since the pair 14 is then repeated zero or more

times, and each occurrence contributes a factor of pt2, the contribution to

NR
21,(4)
μ (p, q, t) of the words in this case is

(13)
p2t3

1− pt2
.

Case 2. 214{14}∗1.
By the exact same reasoning as the previous case, this case contributes a

factor of

(14)
p2t4

1− pt2
.

Since there is an additional last letter that is not involved in any μ-matches,

the power of t is one greater than in Case 1.

Case 3. 214{14}∗2 . . ..
For a word of this form, we will remove all the underlined letters so that we

can give its contribution in terms of NR
12,(4)
μ (p, q, t). In order to do that, of

course, we must account for all μ-matches involving the underlined letters.

The first letter is involved in a 〈2, 4〉-match so it contributes a factor of pt.

The second underlined letter is involved in a 〈1, 4〉-match so it contributes

an additional pt. Each 14 pair contributes a factor of pt2 as before, so that
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the contributions of the words in this case is

(15)
p2t2

1− pt2
NR12,(4)

μ (p, q, t).

Case 4. 214{14}∗3 . . ..
This is the same as the previous case except the first letter is now involved
in a trivial 〈2, 3〉-match that introduces an additional q, and the word that
remains after we remove letters begins with 13. Thus the contribution of the
words in this case is

(16)
qp2t2

1− pt2
NR13,(4)

μ (p, q, t).

Case 5. 214{14}∗12 . . ..
As with Case 3, we remove the underlined letters. The first three letters
contribute a factor of p2t3, and each 14 factor contributes pt2. Thus the
contribution of the words in this case is

(17)
p2t3

1− pt2
NR12,(4)

μ (p, q, t).

Case 6. 214{14}∗13 . . ..
These words are just like the words of Case 5 except there is an extra factor
of q coming from the 〈2, 3〉 match. Thus the contribution of the words in
this case is

(18)
qp2t3

1− pt2
NR13,(4)

μ (p, q, t).

Putting (13), (14), (15), (16), (17), and (18) together with our initial
observations, we obtain the following equation.

NR21,(4)
μ (p, q, t)

= t2 +
p2t3(1 + t)

1− pt2
+ (t+

p2t2(1 + t)

1− pt2
)NR12,(4)

μ (p, q, t)+

(qt+
qp2t2(1 + t)

1− pt2
)NR13,(4)

μ (p, q, t).

We were able to complete a case-by-case analysis in this way for the
case k = 4. However, even in the case k = 5, this type of analysis seemed
too complex to be feasible. Even if it were feasible to perform this kind of
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case-by-case analysis for larger k, there is another problem with this method,
namely that it relies upon being able to invert a large symbolic matrix whose
entries are rational functions in p, q, and t. If we classify words by the first
two letters, as above, this means there are k(k − 1) possibilities for w1w2

and so the matrix M that must be inverted is a square matrix of dimension
k(k − 1). Using more than the first two letters might make the equations
easier to write down, but then the matrix would be too large to invert. We
describe an alternative approach in the next section.

3. A weighted automaton approach

In this section, we describe an alternative way of computing the generating

functions NR
(k)
μ (p, q, t) using state transition diagrams or finite automata.

For the case k = 3, we will compare this method to the one used in the
previous section and show that it is preferable because it is more easily
generalized to larger k. While it also involves inverting a large matrix, the
main benefit is that there is an algorithm for determining the entries of this
matrix, so it does not involve any complicated casework as with the method
of the previous section.

Given a word w = w1 . . . wn in NR([k]), we say that there is a potential
〈i, j〉-match in w if there is an 〈i, j〉-match in w′ = wj that is not present in
w. In other words, w has a potential 〈i, j〉-match in w if adding a j to the
end of w would create an 〈i, j〉-match. Given a word w = w1 . . . wn with a
potential 〈i, j〉-match and an extension of w, w′ = wwn+1, we say that wn+1

completes the 〈i, j〉-match if wn+1 = j, kills the 〈i, j〉-match if i < wn+1 < j,
and does not change the status of the 〈i, j〉-match if wn+1 > j or wn+1 ≤ i.

To each word w = w1 . . . wn in NR([k]), we associate a state matrix Mw

which is a 0, 1-valued k × k matrix. If w = ε, then Mw = 0k×k. If w �= ε,
then
(i) Mw(i, j) = 0 if i ≥ j,
(ii) Mw(i, j) = 1 if i < j and there is a potential 〈i, j〉-match in w, and
(iii) Mw(i, j) = 0 otherwise.

It is easy to see that Mw is an upper triangular matrix with 0’s on the
diagonal. Note that several different words may have the same state matrix.
For example, if k = 4,

M134 = M2134 =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,
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since the only potential μ-match in either 134 or 2134 is a 〈1, 2〉-match.
Next we present a simple algorithm for obtaining the state matrix Mw

for a word w = w1w2 . . . wn. Let w(0) = ε and w(�) = w1 . . . w� for � ∈
{1, 2, . . . , n}. We will create a sequence of matrices Mw(0) ,Mw(1) ,Mw(2) , . . . ,
Mw(n) resulting in our desired state matrix Mw = Mw(n) . Set Mw(0) = 0k×k

and for � = 1, 2, . . . , n, if the addition of the letter w� to w(�−1) creates a
potential 〈i, j〉-match, set Mw(�)(i, j) = 1. Similarly, if it kills or completes
any potential 〈i, j〉-match, set Mw(�)(i, j) = 0. The state matrix Mw is sim-
ply Mw(n) because it has 1’s exactly in the positions (i, j) where w has a
potential 〈i, j〉-match. For example, the computation of M134 would produce
the following sequence of matrices⎡

⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ 1→

⎡
⎢⎢⎣
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ 13→

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ 134→

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

The next lemma gives some properties of this algorithm.

Lemma 1. Let w = w1 . . . wn be a word in NR([k]) and � ∈ {1, 2, . . . , n}.

(a) Row w� of Mw(�) has all 1’s to the right of the main diagonal. For
i < w�, row i of Mw(�) has 0’s in column w� and to the right. For
i > w�, row i of Mw(�) is the same as row i of Mw(�−1).

(b) To the right of the main diagonal, each row of the matrix Mw(�) is
some number of 1’s followed by some number of 0’s.

(c) In each row, the leftmost entry that changes from a 1 in Mw(�−1) to a 0
in Mw(�) indicates a μ-match that has been completed by the addition
of the letter w�.

(d) The matrix Mw(�) completely determines the last letter w� of all asso-
ciated nonempty words.

Proof. (a) After reading w�, row w� of Mw(�) has all 1’s to the right of the
main diagonal because if j > w�, then every 〈w�, j〉 is a potential μ-
match. For i < w�, row i has 0’s in column w� and to the right because
w� completes any potential 〈i, w�〉-match and kills any potential 〈i, j〉-
match for j > w�. For i > w�, row i does not change because the
addition of the letter w� does not change the status of any potential
μ-matches of the form 〈i, j〉.

(b) By part (a), reading a letter w� can do one of three things to any row of
the matrix, to the right of the main diagonal: set it to all 1’s, set it to
all 0’s to the right of a certain column, or not change it. The only time
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matrix entries are set to 0, it is the case that all other matrix entries
in the same row and to the right are also set to 0. Therefore each row,
to the right of the main diagonal, is a sequence of 1’s followed by a
sequence of 0’s.

(c) Suppose that for some i < w�, Mw(�−1)(i, w�) = 1. This means there is
a potential 〈i, w�〉-match in w(�−1) that is completed by the addition
of the letter w�, making Mw(�)(i, w�) = 0. Since i < w�, apply part (a)
to conclude that in row i, Mw(�) has 0’s in column w� and to the right.
That is, the entry in position (i, w�) of Mw(�−1) is the leftmost entry in
row i to change from a 1 to a 0.
Now suppose that for some i < w�, Mw(�−1)(i, w�) = 0. Then by part
(b), since each row to the right of the main diagonal is a sequence of
1’s followed by a sequence of 0’s, we can conclude that every entry to
the right of column w� in Mw(�−1) is a 0. By part (a), only the entries to
the right of column w� in row i are set to 0, for i < w�. This says that
if i < w� and Mw(�−1)(i, w�) = 0, then nothing in row i changes from a
1 to a 0. In this case, no 〈i, w�〉-match is completed by the addition of
the letter w�.
In row w�, nothing changes from a 1 to a 0, since part (a) says that row
w� of Mw(�) has all 1’s to the right of the main diagonal. In any row
i > w�, no entries change, according to part (a). Thus, in each row,
the leftmost entry that changes from a 1 in Mw(�−1) to a 0 in Mw(�)

indicates a μ-match that has been completed by the addition of the
letter w�.

(d) By part (a), if w� is the last letter of a word, then row w� of Mw(�)

contains all 1’s to the right of the main diagonal, which we will call
a full row. Further, if row i of Mw(�) is a full row, this means all the
letters after the last occurrence i in w(�) are less than i. Otherwise,
there would be some zeros in row i. Thus if Mw(�) has at least one
full row, say in rows i1 < i2 < · · · < ij , then the last letters of w are
ij · · · i2i1. Also, if the matrix has no full rows, the associated nonempty
words w must end in w� = k, the largest letter in the alphabet, because
ending in any other letter would create a full row. Thus, it is easy to
determine the last letter w� from the matrix Mw(�) , that is, w� equals
the index of the first full row or k if no full rows exist.

We use these state matrices Mw to make a state transition diagram,
or a weighted directed graph G = (V,E). The vertex set is the set of all
possible state matrices V = {Mw : w ∈ NR([k])} and there is an edge from
Mw to Mw′ if w′ = wwn+1. Also include a separate vertex for the empty
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Figure 5: The state diagram for the case k = 3.

word. Lemma 1 part (d) says that all nonempty words associated with a

given vertex of the graph G end in the same letter. This means our edge

set is well-defined and each vertex has k − 1 outgoing edges because any of

k−1 letters could be appended to the end of the word without a consecutive

repeat. The vertex for the empty word will have k outgoing edges because

any of {1, 2, . . . , k} can be appended to ε. To procedurally find all the vertices

to which a given vertex Mw should point, for each possible wn+1 �= wn ∈ [k],

find the state matrix Mwwn+1
using Lemma 1 part (a). That is, when adding

a letter wn+1, set row wn+1 to be all 1’s to the right of the main diagonal.

For i < wn+1, set row i to have 0’s in column wn+1 and to the right. For

i > wn+1, leave row i unchanged.

Assign to each edge in the graph a weight that represents the change

in weight from w to wwn+1. Since each additional letter introduces a t into

the generating function NR
(k)
μ (p, q, t), each edge will be weighted with at

least a t. Further, if adding wi completes a μ-match, then the edge weight

would also reflect that by including p’s, q’s, or both. For example, the edge

between M13 and M134 would be weighted qt since the last 4 completes a

trivial 〈3, 4〉-match. Part (c) of Lemma 1 determines the edge weight in a

simple way. Start each edge with a weight of t. In going from Mw to Mwwn+1
,

note the leftmost position in each row where a matrix entry changes from a 1

to a 0. For each such position on the superdiagonal, multiply the edge weight

by q for completing a trivial μ-match, and for each such position elsewhere,

multiply the edge weight by p for completing a nontrivial μ-match.

For example, the state diagram associated with k = 3 is given in Figure 5,

where the state labeled 0 represents the empty word and the other states

represent words with a given state matrix Mw, according to the following

table.
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State 1 2 3 4 5

Mw

⎡
⎣0 1 1
0 0 0
0 0 0

⎤
⎦

⎡
⎣0 0 0
0 0 1
0 0 0

⎤
⎦

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣0 1 1
0 0 1
0 0 0

⎤
⎦

Next, we use the state transition diagram to find the generating func-

tion NR
(k)
μ (p, q, t). Label the states of the diagram, excluding the state for

the empty word, with 1, 2, . . . , N where N = N(k) is the number of state

matrices. Label the state for the empty word with 0, as in Figure 5. For

i ∈ {0, 1, . . . , N}, let

S
(k)
i (p, q, t) =

∑
w in state i

qtrivμ(w)pntrivμ(w)t|w|.

Since the empty word is the only word in state 0, it is easy to see that

S
(k)
0 (p, q, t) = 1 for all k. Also, since each word w ∈ NR([k]) is in exactly

one state, it follows that

(19) NR(k)
μ (p, q, t) =

N∑
i=0

S
(k)
i (p, q, t) = 1 +

N∑
i=1

S
(k)
i (p, q, t).

For each i ∈ {1, 2, . . . , N}, let In(i) be the set of states j ∈ {0, 1, . . . , N}
such that there is an edge from state j to state i with edge weight ej→i. For

each i ∈ {1, 2, . . . , N}, we have the equation

(20) S
(k)
i (p, q, t) =

∑
j∈In(i)

S
(k)
j (p, q, t)ej→i

that says all words in state i come from adding a letter to a word in some

state j. The edge weight ej→i accounts for increases in length and number

of μ-matches from adding this letter. Using the fact that S
(k)
0 (p, q, t) = 1,

this gives a system of N linear equations in variables S
(k)
i (p, q, t) for i ∈

{1, 2, . . . , N}. Solving this system involves inverting a square N ×N matrix.

By (19), we can easily compute the generating function NR
(k)
μ (p, q, t) from

such a solution.

For example, in the case k = 3 with the states labeled as in Figure 5,
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the system of linear equations from (20) gives

(21)

⎡
⎢⎢⎢⎢⎣
−t
−t
−t
0
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 0 t t 0
qt −1 t qt qt
0 qt −1 0 0
pt 0 0 −1 pqt
0 t 0 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

S
(3)
1 (p, q, t)

S
(3)
2 (p, q, t)

S
(3)
3 (p, q, t)

S
(3)
4 (p, q, t)

S
(3)
5 (p, q, t)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Call the left-hand side vector T3, the matrix M3, and the right-hand side
vector S3, and let 1(5) be the 1× 5 row vector of all 1’s. Then by (19),

NR(3)
μ (p, q, t) = 1 + 1(5)S3 = 1 + 1(5)M−1

3 T3.

In the case k = 3, one can use Mathematica to invert M3 and compute

NR
(3)
μ (p, q, t) directly. For larger k, however, we can take a shortcut using

determinants and minors that eliminates the need to compute the full matrix
inverse. Note that for any k, the right-hand side vector Sk will have ith

component S
(k)
i , for i = 1, 2, . . . , N(k). Also, the left-hand side vector Tk will

have entries which are all −t or 0, and so we can label the states 1 through
N(k) so that the first component of T (k) is a −t. Now, take the system of
equations that results from our original system Tk = MkSk by subtracting
the first equation from any other equation which has a −t on the left-hand
side. This results in an equivalent system of equations Tk = MkSk with the
same solution Sk but now Tk is a column vector with first component −t
and all other components 0.

Since Mk arises from Mk by subtracting the first row from some other
rows, an operation which preserves the determinant, we have det(Mk) =
det(Mk).

Recall that

(
Mk

)−1
=

1

det
(
Mk

)
⎡
⎢⎢⎢⎣
C1,1 . . . Ck,1

C1,2 . . . Ck,2
... · · ·

...

C1,k . . . Ck,k

⎤
⎥⎥⎥⎦

where Ci,j is (i, j)th cofactor of Mk.

It follows from equation (19) that

NR(k)
μ (p, q, t) = 1 + 1(N(k))M−1

k Tk
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= 1 + 1(N(k))
(
Mk

)−1
Tk

= 1 +
1

det
(
Mk

)1(N(k))

⎡
⎢⎢⎢⎣
C1,1 . . . Ck,1

C1,2 . . . Ck,2
... · · ·

...

C1,k . . . Ck,k

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
−t
0
...
0

⎤
⎥⎥⎥⎦

= 1 +
−t

∑k
j=1C1,j

det
(
Mk

)
= 1 +

−t
∑k

j=1C1,j

det (Mk)
,(22)

which Mathematica can compute for k ≤ 5. When k = 3, we obtain

NR(3)
μ (p, q, t) =

(1 + t)2(1 + t− p(q − 1)2t3)

1− 2qt2 − q2t3 − pt2(1 + q2t+ 2q(q − 1)t2)
,

which is the same generating function found in (12). When k = 4, we obtain

NR(4)
μ (p, q, t) =

P4(x, y, t)

Q4(x, y, t)

where

P4(x, y, t) = (1 + t)2×(
1 + 2t+ (1− 2x− y)t2+(
−4x− 6y + 6xy − 2x2y + 2y2 − 2xy2

)
t3+(

−y(4 + y)− x3y
(
3 + y + y2

)
+ x2

(
1 + 5y + y2

)
+

x
(
−2 + 3y + y2 + y3

))
t4+(

2x2 + 8xy − 4x2y + 6y2 − 26xy2 + 28x2y2−
8x3y2 − 4y3 + 4xy3 + 6x2y3 − 6x3y3

)
t5+(

y2(6 + y) + x4y
(
4− 2y − 3y2

)
− x3y

(
8− 6y + y2 + y3

)
−

3xy
(
−2 + 4y + 3y2 + y3

)
+ x2

(
1− y + 2y2 + 12y3 + 4y4

))
t6−

2y
(
x5y2 − (−1 + y)y2 + 2xy

(
1− 6y + 2y2

)
+ x3

(
1 + 9y − 11y2 − 2y3

)
+

x2
(
1− 8y + 21y2 − 2y3

)
+ x4

(
−1− 3y + y3

))
t7+

y
(
−4y2 + x6(−1 + y)y2 + xy

(
−6 + 19y + 2y2

)
−

x2
(
2−10y + 13y2 + 2y3

)
−x5

(
1− 2y + y2 + 6y3

)
−
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x3
(
1+16y2+6y3

)
+ x4

(
3− 6y + 16y2 + 11y3

))
t8+

2(−1 + x)xy2
(
2x(1− 6y)y + x3(2− 5y)y+

x4(−1 + y)y + 3y2 + x2
(
−1 + 11y2

))
t9+

(−1 + x)y2
(
x5(−1 + y)y − y2 + xy(−2 + 7y)+

x2
(
−1 + 7y − 15y2

)
+ x4

(
1 + y − 4y2

)
+ x3

(
−2− y + 10y2

))
t10

)
and

Q4(x, y, z) = 1 + (−5x− 4y)t2 − 2(x(1 + y)(x+ y))t3+(
8x2 − x3 + 18xy − 4x2y − 3x3y + 6y2 − 4xy2 − x3y2 − x3y3

)
t4+

2x
(
7xy(1 + y) + 2y2(1 + y)− 2x2

(
−1 + y + 2y2 + y3

))
t5+(

8x(−3 + y)y2 − 4y3 + x4
(
2 + 4y − 2y2

)
+

x2y
(
−24 + 29y + 2y2 + y3

)
− x3

(
5− 9y + 3y2 + 3y3

))
t6+

2x
(
−y3(1 + y) + 2xy2

(
−5− 4y + y2

)
+

x3
(
−1 + 5y + 2y2

)
+ x2y

(
−9 + y + 8y2

))
t7+(

2x(7− 2y)y3 + y4 + x6y4 + x2y2
(
25− 40y + 4y2

)
+

x3y
(
12− 35y + 14y2 − 5y3

)
−

x5
(
1 + y − 2y2 + y3 + 3y4

)
+ x4

(
1− 6y + 6y2 + 8y3 + 5y4

))
t8+

2x2y
(
2x4y3 + 4y2(1 + y)− 3xy

(
−3 + y + 4y2

)
−

x3
(
2− y + y2 + 6y3

)
+ x2

(
3− 7y + 2y2 + 10y3

))
t9+

xy
(
−3y3 + 6x5y3 + 2xy2(−5 + 8y)− 3x2y

(
3− 10y + 9y2

)
−

x4
(
−1 + 2y + 5y2 + 18y3

)
+ x3

(
−2 + 11y − 10y2 + 25y3

))
t10+

2x3y2
(
2x3y2 − 2y(1 + y) + x2

(
2− 3y − 7y2

)
+ x

(
−2 + 4y + 8y2

))
t11+

x2y2
(
x+ y − 3xy + x2y

)2
t12.

When k = 5, we are able to compute NR
(5)
μ (p, q, t) despite not being able

to do so with the method of Section 2. In this case, NR
(5)
μ (p, q, t) = P5(p,q,t)

Q5(p,q,t)

where P5(x, y, t) and Q5(p, q, t) are degree 36 polynomials in t. We shall not
give the polynomials P5(p, q, t) and Q5(p, q, t) here because they would take
several pages to even write down.

We end this section with a rather unexpected result about the size N(k)
of the square matrix Mk, or the number of state matrices.

Theorem 2. The number of state matrices N(k) is the kth Catalan number
Ck.
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Proof. Since N(k) is the number of state matrices for nonempty words over
[k], let Nj(k) be the number of state matrices for words over [k] ending in j.
Then clearly

(23) N(k) =

k∑
j=1

Nj(k).

Suppose w is a word ending with j whose associated state matrix is Mw.
Then, by Lemma 1 part (a), row j of Mw has all 1’s to the right of the
main diagonal and for any m ≥ 1, p ≥ 0, Mw has a 0 in row j − m and
column j + p. Since every entry of Mw on the diagonal and in the lower
triangular part is 0 by definition, this leaves a (j − 1) × (j − 1) submatrix
in the upper left corner and a (k− j)× (k− j) submatrix in the lower right
corner with some entries yet undetermined. It is clear that the presence of
letters i ≥ j in the word w has no bearing on the μ-matches in w of the
form 〈a, b〉 with a, b ∈ [j − 1]. Thus, the submatrix in the upper left corner
of Mw is just the state matrix for the word w′ ∈ NR([j − 1]) that comes
from removing all letters i ≥ j in w. Similarly, the presence of letters i ≤ j
in w has no impact on the μ-matches in w involving only the letters in
{j+1, j+2, . . . , k}. Thus the lower right submatrix is just the state matrix
for the word w′′ ∈ NR([k−j]) that comes from removing all letters i ≤ j and
then subtracting j from all the remaining letters. It follows that each word
w ending in j can be decomposed uniquely into the ordered pair (Mw′ ,Mw′′)
from which it is possible to reconstruct Mw. Thus, for each j ∈ [k],

Nj(k) = N(j − 1)N(k − j).

Combining this with equation (23) gives

N(k) =

k∑
j=1

N(j − 1)N(k − j),

which proves that N(k) satisfies the Catalan recurrence. Further, it easy to
see that in the case k = 1, there is only one state matrix, the 1 × 1 zero
matrix, which proves that N(k) is the kth Catalan number.

The state transition method for finding NR
(k)
μ (p, q, t) therefore depends

on being able to invert a Ck×Ck square matrix, as compared to a k(k−1)×
k(k−1) matrix using the case-by-case analysis of the previous section. Even
if we use the shortcut that requires us to only compute the determinant and
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the cofactors from the first row, this becomes difficult as k increases, since
Ck grows rapidly. The advantage of this automaton method is not in the
computation size, but rather the main benefit is that it gives a completely
algorithmic way to set up a system of equations whose solution would lead

to NR
(k)
μ (p, q, t). When compared with the approach of Section 2, whereby

it took a lot of careful analysis to write down this system for k = 4 and
doing so for k = 5 was infeasible, the automaton method is much more
straightforward.

In addition, our automaton method makes it easy to computeNR
(k)
n,μ(p, q)

for any n. Recall the system of linear equations Tk = MkSk, written out in
matrix form for the case k = 3 in (21). Notice that 1(Ck)(−Tk) gives the
sum of the weights of all words of length 1. In other words, 1(Ck)(−Tk) =

NR
(k)
1,μ(p, q)t

1. Next, notice that the adjacency matrix for the graph with-
out state 0 is given by Ak = Mk + I where I is the identity matrix of size
Ck. Since there are no edges leading in to state 0, powers of this smaller

adjacency matrix are sufficient to find NR
(k)
n,μ(p, q)tn. It follows that

NR(k)
n,μ(p, q)t

n = 1(Ck)An−1
k (−Tk),

or

NR(k)
n,μ(p, q) =

1(Ck)An−1
k (−Tk)

tn
.

4. Consecutive μ-matches

In general, it is much easier to study consecutive μ-matches, which are the
topic of this section. Given a word w = w1 . . . wn ∈ [k]n and j ∈ [k − 1], we
let jrise(w) = |{i : wi+1 − wi = j}| and rise(w) = |{i : wi < wi+1}|. In this
section, we shall study the generating function

CNR(k)(x1, . . . , xk−1, t) = 1 +
∑
n≥1

CNR(k)
n (x1, . . . , xk−1)t

n

where

CNR(k)
n (x1, . . . , xk−1) =

∑
w∈NR([k]),|w|=n

k−1∏
j=1

x
jrise(w)
j .

For any 1 ≤ i ≤ k, we let

CNRi,(k)(x1, . . . , xk−1, t) =
∑
n≥1

CNRi,(k)
n (x1, . . . , xk−1)t

n
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where

CNRi,(k)
n (x1, . . . , xk−1) =

∑
w∈i[k]n−1,w∈NR([k])

k−1∏
j=1

x
jrise(w)
j .

Thus

CNR(k)(x1, . . . , xk−1, t) = 1 +

k∑
i=1

CNRi,(k)(x1, . . . , xk−1, t).

First we show that the generating functions CNRi,(k)(x1, . . . , xk−1, t)
satisfy simple recursions. That is, we can classify the words in NR([k]) that
start with s as either (i) the single letter s itself, (ii) sw where w starts
with one of 1, 2, . . . , s − 1, or (iii) sw where w starts with s + j for some
1 ≤ j ≤ k − s. It follows that for s = 1, 2, . . . , k,

CNRs,(k)(x1, . . . , xk−1, t) =t+

(
s−1∑
i=1

tCNRi,(k)(x1, . . . , xk−1, t)

)
+(24)

k−s∑
j=1

xjtCNRs+j,(k)(x1, . . . , xk−1, t),

or, equivalently,

−t =

(
s−1∑
i=1

tCNRi,(k)(x1, . . . , xk−1, t)

)
− CNRs,(k)(x1, . . . , xk−1, t)+(25)

k−s∑
j=1

xjtCNRs+j,(k)(x1, . . . , xk−1, t).

The way in which this relates to the μ-matches discussed in this paper

can be seen by considering the specialization NR
(k)
μ (0, q, t). Setting p = 0 in

(2) and (4) gives

NR(k)
μ (0, q, t) = 1 +

∑
n≥1

NR(k)
n,μ(0, q)t

n,

where

NR(k)
n,μ(0, q) =

∑
w∈NR([k]),|w|=n,ntrivμ(w)=0

qtrivμ(w).
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Similarly, if s ∈ [k], setting p = 0 in (5) and (8) gives a refinement by the

first letter

NRs,(k)
μ (0, q, t) =

∑
n≥1

NRs,(k)
n,μ (0, q)tn,

where

NRs,(k)
n,μ (0, q) =

∑
w∈s[k]n−1,w∈NR([k]),ntrivμ(w)=0

qtrivμ(w).

If we consider, then, only words in NR([k]) that have no nontrivial μ-

matches, it is clear that if such a word contains the letter s, the next letter

must be one of {1, 2, . . . , s, s + 1} to avoid nontrivial μ-matches. Thus, we

can classify the words in NR([k]) starting with s and having no nontrivial

μ-matches as either (i) the single letter s, (ii) sw where w starts with one of

1, 2, . . . , s − 1, or (iii) sw where w starts with s + 1. Note that in case (ii),

the first s is not involved in any trivial μ-matches because from one letter

to the next, we must either decrease or go up by exactly one. This means

there must be another s in w before any s+ 1, so the first s is not involved

in any trivial μ-matches. In case (iii), there is a trivial μ-match between s

and the first letter of w, which is consecutive. Thus, it follows that

(26) NRs,(k)
μ (0, q, t) = t+

(
s−1∑
i=1

tNRi,(k)
μ (0, q, t)

)
+ qtNRs+1,(k)

μ (0, q, t).

Notice that this recursion is the same as in equation (24) if we set x1 = q

and xi = 0 for 1 < i ≤ k − 1. Therefore, for any s ∈ [k],

(27) NRs,(k)
μ (0, q, t) = CNRs,(k)(q, 0, . . . , 0, t),

from which it follows that

(28) NR(k)
μ (0, q, t) = CNR(k)(q, 0, . . . , 0, t).

Thus the generating function CNR(k)(x1, . . . , xk−1, t) can be viewed as a

refinement of the generating function NR
(k)
μ (0, q, t), which explains its rele-

vance to our study of the distribution of μ matches in words.

We have shown that the generating functions CNRi,(k)(x1, . . . , xk−1, t)

satisfy simple recursions. For example, if we write equations (25) down in
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matrix form in the case k = 6, we have

(29)

⎡
⎢⎢⎢⎢⎢⎢⎣

−t
−t
−t
−t
−t
−t

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 x1t x2t x3t x4t x5t
t −1 x1t x2t x3t x4t
t t −1 x1t x2t x3t
t t t −1 x1t x2t
t t t t −1 x1t
t t t t t −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

CNR1,(6)(x, t)

CNR2,(6)(x, t)

CNR3,(6)(x, t)

CNR4,(6)(x, t)

CNR5,(6)(x, t)

CNR6,(6)(x, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

where x = x1, x2, x3, x4, x5.
Thus let T (k) = [Tj,1] be the column vector of length k such that Tj,1 =

−t for all j, N (k) = [Nj,1] be the column vector of length k such that
Nj,1 = CNRj,(k)(x1, . . . , xk−1, t) for all j, and M (k) = ||mi,j || be the k × k
matrix whose entries are equal to t below the diagonal, −1 on the diagonal,
xit on the ith superdiagonal. Then we will have

T (k) = M (k)N (k)

so that

(30) N (k) = (M (k))−1T (k).

Our first result gives an expression for CNR(k)(x1, . . . , xk−1, t) in terms
of the determinant of M (k). That is, we have the following theorem.

Theorem 3.

(31) CNR(k)(x1, . . . , xk−1, t) =
(−1)k(1 + t)k

det(M (k))
.

Proof. First we consider the system of equations that results from the system
of equations (25) by subtracting the first equation from each of the remaining
equations so that we can use a shortcut as in (22). If we do this in the case
of k = 6, then we can write the resulting set of equations in matrix form as⎡
⎢⎢⎢⎢⎣
−t
0
0
0
0
0

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

−1 x1t x2t x3t x4t x5t
1 + t −(1 + x1t) (x1 − x2)t (x2 − x3)t (x3 − x4)t (x4 − x5)t
1 + t t− x1t −(1 + x2t) (x1 − x3)t (x2 − x4)t (x3 − x5)t
1 + t t− x1t t− x2t −(1 + x3)t (x1 − x4)t (x2 − x5)t
1 + t t− x1t t− x2t t− x3t −(1 + x4t) (x1 − x5)t
1 + t t− x1t t− x2t t− x3t t− x4t −(1 + x5)t

⎤
⎥⎥⎥⎥⎦N (6).

In general, this will result in matrix equation

T (k) = M (k)N (k)
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where T (k) = [tj,1] is a column vector of length k such that t1,1 = −t and

tj,1 = 0 for j ≥ 2 and M (k) = ||mi,j || is the k × k matrix such that
(i) the elements in row 1 are −1, x1t, . . . , xk−1t, reading from left to right,
and
(ii) for each i > 1, the elements in the ith row are

1 + t, t− x1t, . . . , t− xi−2t,−(1 + xi−1t), (x1 − xi)t, (x2 − xi+1)t, . . . ,

(xk−i − xk−1)t.

It follows that

N (k) =
(
M (k)

)−1
T (k).

Hence, if 1(k) is the row vector of length k consisting of all 1’s, then

CNR(k)(x1, . . . , xk−1, t) = 1 + 1(k)N (k)

= 1 + 1(k)
(
M (k)

)−1
T (k).

Since M (k) arises from M (k) by taking −1 times the first row and adding
it to each of the other rows, we will have

det
(
M (k)

)
= det(M (k)).

Using the formula

(
M (k)

)−1
=

1

det
(
M (k)

)
⎡
⎢⎢⎢⎣
C1,1 . . . Ck,1

C1,2 . . . Ck,2
... · · ·

...

C1,k . . . Ck,k

⎤
⎥⎥⎥⎦

where Ci,j is (i, j)th cofactor of M (k), it follows that

CNR(k)(x1, . . . , xk−1, t) = 1 + 1(k)
(
M (k)

)−1
T (k)

= 1 +
−t

∑k
j=1C1,j

det
(
M (k)

)

=
det

(
M (k)

)
− t

∑k
j=1C1,j

det
(
M (k)

) .
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However, if we expand det(M (k)) about the first row, we see that

det
(
M (k)

)
= (−1)C1,1 +

k∑
j=2

xj−1tC1,j

so that

(32) CNR(k)(x1, . . . , xk−1, t) =
−(1 + t)C1,1 +

∑k
j=2(xj−1t− t)C1,j

det
(
M (k)

) .

Now let U (k) be the matrix that arises from M (k) by replacing the first

row of M (k) by [−(1 + t), x1t− t, x2t− t, . . . xk−1t− t]. For example, in the

case where k = 6,

U (6) =

⎡
⎢⎢⎢⎢⎣
−(1 + t) x1t− t x2t− t x3t− t x4t− t x5t− t
1 + t −(1 + x1t) (x1 − x2)t (x2 − x3)t (x3 − x4)t (x4 − x5)t
1 + t t− x1t −(1 + x2t) (x1 − x3)t (x2 − x4)t (x3 − x5)t
1 + t t− x1t t− x2t −(1 + x3)t (x1 − x4)t (x2 − x5)t
1 + t t− x1t t− x2t t− x3t −(1 + x4t) (x1 − x5)t
1 + t t− x1t t− x2t t− x3t t− x4t −(1 + x5)t

⎤
⎥⎥⎥⎥⎦ .

Computing the determinant of U (k) by expanding about the first row,

we see that

det
(
U (k)

)
= −(1 + t)C1,1 +

k∑
j=2

(xj−1t− t)C1,j ,

so that (32) becomes

CNR(k)(x1, . . . , xk−1, t) =
det

(
U (k)

)
det

(
M (k)

) .

However it is easy to compute det(U (k)). That is, adding the first row of

U (k) to each of the remaining rows will result in a matrix V (k) whose entries

below the diagonal are 0, whose entries on the diagonal are −(1 + t), and

whose entries on the ith superdiagonal are xit− t. For example, in the case
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k = 6,

V (6) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(1 + t) x1t− t x2t− t x3t− t x4t− t x5 − t
0 −(1 + t) x1t− t x2t− t x3t− t x4t− t
0 0 −(1 + t) x1t− t x2t− t x3t− t
0 0 0 −(1 + t) x1t− t x2t− t
0 0 0 0 −(1 + t) x1t− t
0 0 0 0 0 −(1 + t)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Thus

det
(
U (k)

)
= det

(
V (k)

)
= (−(1 + t))k = (−1)k(1 + t)k.

Hence

CNR(k)(x1, . . . , xk−1, t) =
det

(
U (k)

)
det

(
M (k)

) =
(−1)k(1 + t)k

det
(
M (k)

) =
(−1)k(1 + t)k

det
(
M (k)

) .

Next we will show how to get a closed form expression for det(M (k)). We
will start with a simple case that has special relevance, namely, where we set

x1 = q and xi = 0 for i ≥ 2 so that CNR(k)(q, 0, . . . , 0, t) = NR
(k)
μ (0, q, t).

Let M (k)(q) be the matrix that arises from M (k) by setting x1 = q and
xi = 0 for i ≥ 2. For example, in the case k = 6,

M (6)(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 qt 0 0 0 0
t −1 qt 0 0 0
t t −1 qt 0 0
t t t −1 qt 0
t t t t −1 qt
t t t t t −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Theorem 4. For all k ≥ 1,

(33) det(M (k)(q)) = (−1)k +

k−1∑
�=1

(qt)k−�
�∑

s=1

(−1)k−s

(
�

s

)(
k − �− 1

s− 1

)
ts.

Proof. Note that if M (k)(q) = ||mi,j ||i,j=1,...,k, then

det(M (k)(q)) =
∑

σ=σ1...σk∈Sk

sgn(σ)

k∏
i=1

mi,σi
.
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First, note that the only permutations σ that contribute to this sum are
those for which σi ≤ i + 1 for all 1 ≤ i ≤ k. We classify such permutations
according to the set T of rows i such that σi �= i + 1, which is the set
of rows where σ does not pick the element on the superdiagonal. Clearly
any such T must be of the form {t1 < · · · < t�} ⊆ [k] where t� = k.
But in such a case, we know that σ1 = 2, σ2 = 3, . . . , σt1−1 = t1 and
σt1 �= t1 + 1, which means that σt1 = 1. Thus σ must contain the cycle
(1, 2, . . . , t1 − 1, t1). But then σt1+1 = t1 + 2, σt1+2 = t1 + 3, . . . , σt2−1 = t2
and σt2 �= t2 + 1, which means that σt2 = t1 + 1. Thus σ must contain the
cycle (t1 + 1, t1 + 2, . . . , t2 − 1, t2). Continuing on in this way, it is easy to
see that T corresponds to the permutation

σ(T ) =

(1, 2, . . . , t1−1, t1)(t1+1, t1+2, . . . , t2−1, t2) . . . (t�−1+1, t�−1+2, . . . , t�−1, t�).

Note that if t0 = 0, then

sgn(σ(T )) = (−1)
∑�−1

j=0 tj+1−tj−1 = (−1)t�−t0−� = (−1)k−�.

Now a cycle (tj + 1, tj + 2, . . . , tj+1 − 1, tj+1) gives rise to a factor of

(qt)tj+1−tj−1mtj+1,tj+1 in
∏k

i=1mi,σ
(T )
i

. Hence T corresponds to the term

sgn(σ(T ))

k∏
i=1

mi,σ
(T )
i

= (−1)k−�(qt)
∑�−1

j=0 tj+1−tj−1
�−1∏
j=0

mtj+1,tj+1

= (−qt)k−�
�−1∏
j=0

mtj+1,tj+1.

Now mtj+1,tj+1 is equal to t if tj+1 > tj+1 and is equal to −1 if tj+1 = tj+1.
Thus, shifting indices,

�−1∏
j=0

mtj+1,tj+1 =

�∏
j=1

(tχ(tj > tj−1 + 1)− χ(tj = tj−1 + 1))

where for any statement A, χ(A) = 1 if A is true and χ(A) = 0 if A is false.
Thus T = [k] corresponds to the term (−1)k and if |T | = � < k, then T
corresponds to the term (−qt)k−�

∏�
j=1(tχ(tj > tj−1+1)−χ(tj = tj−1+1)).

Hence
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det(M (k)(q)) =

(−1)k+

k−1∑
�=1

(−qt)k−�
∑

{k}⊆{t1<···<t�}⊆[k]

�∏
j=1

(tχ(tj > tj−1+1)−χ(tj = tj−1+1)).

Next consider the term
∑

{k}⊆{t1<···<t�}⊆[k]

∏�
j=1(tχ(tj > tj−1 + 1) −

χ(tj = tj−1 + 1)). Note that choosing a valid set T , that is, one such that

{k} ⊆ T ⊆ [k], is equivalent to choosing a sequence u = (u1, . . . , u�) where

each uj ≥ 0, by setting uj = tj − tj−1 − 1. Since
∑�

j=1 tj − tj−1 − 1 =∑�
j=1 uj = k− �, we can now determine a sequence u by instead choosing a

set S = {i1, . . . , is} ⊆ [�] and a sequence a = (a1, . . . , as) where a1+· · ·+as =

k − � and each ai ≥ 1. We interpret S and A in the following way: set

ui1 = a1, ui2 = a2, . . ., uis = as and set uj = 0 if j ∈ [�]−S. Thus uj > 0, or

equivalently tj > tj−1 + 1, for s values of j, giving a factor of ts. Similarly,

uj = 0, or equivalently tj = tj−1 + 1, for �− s values of j, giving a factor of

(−1)�−s. Since we can choose the set S in any of
(
�
s

)
ways, it follows that

∑
{k}⊆{t1<···<t�}⊆[k]

�∏
j=1

(tχ(tj > tj−1 + 1)− χ(tj = tj−1 + 1)) =

�∑
s=1

(−1)�−sts
(
�

s

)
|{a1 + · · ·+ as = k − � : ai ≥ 1}|.

But it is well known that the number of solutions to a1 + · · · + as = k − �

where ai are positive integers is the composition number
(
k−�−1
s−1

)
. Thus

det(M (k)(q)) = (−1)k +

k−1∑
�=1

(−qt)k−�
�∑

s=1

(−1)�−sts
(
�

s

)(
k − �− 1

s− 1

)

= (−1)k +

k−1∑
�=1

(qt)k−�
�∑

s=1

(−1)k−s

(
�

s

)(
k − �− 1

s− 1

)
ts,

which is what we wanted to prove.

We then have the following corollary
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Corollary 5. For all k ≥ 2,

(34) NR(k)
μ (0, q, t) =

(1 + t)k

1 +

k−1∑
�=1

(qt)k−�
�∑

s=1

(−1)s
(
�

s

)(
k − �− 1

s− 1

)
ts

.

We can apply the same technique to compute det(M (k)) in general. First

let P (k) be the matrix that arises from M (k) by adding −1 times column i

to column i− 1 for i = 2, . . . , k. For example, in the case where k = 6, M (6)

is given in equation (29) and

P (6) =

⎡
⎢⎢⎢⎢⎣
−(1 + x1t) (x1 − x2)t (x2 − x3)t (x3 − x4)t (x4 − x5)t x5t

t+ 1 −(1 + x1t) (x1 − x2)t (x2 − x3)t (x3 − x4)t x4t
0 t+ 1 −(1 + x1t) (x1 − x2)t (x2 − x3)t x3t
0 0 t+ 1 −(1 + x1t) (x1 − x2)t x2t
0 0 0 t+ 1 −(1 + x1t) x1t
0 0 0 0 t+ 1 −1

⎤
⎥⎥⎥⎥⎦ .

It is easy to see that P (k) is a matrix whose entries in the last column are

xk−1t, xk−2t, . . . , x1t,−1, reading from top to bottom and whose remaining

entries are equal to

(a) −(1 + x1t) on the diagonal,

(b) t+ 1 on the subdiagonal,

(c) 0 below the subdiagonal, and

(d) (xi − xi+1)t on the ith superdiagonal.

Now let R(k) denote the transpose of P (k) and V (k−1) denote the (k − 1)×
(k−1) matrix which results from R(k) by removing the last row and column.

For example,

R(6) =

⎡
⎢⎢⎢⎢⎣
−(1 + x1t) t+ 1 0 0 0 0
(x1 − x2)t −(1 + x1t) t+ 1 0 0 0
(x2 − x3)t (x1 − x2)t −(1 + x1t) t+ 1 0 0
(x3 − x4)t (x2 − x3)t (x1 − x2)t −(1 + x1t) t+ 1 0
(x4 − x5)t (x3 − x4)t (x2 − x3)t (x1 − x2)t −(1 + x1t) t+ 1

x5t x4t x3t x2t x1t −1

⎤
⎥⎥⎥⎥⎦

and

V (5) =

⎡
⎢⎢⎢⎢⎣
−(1 + x1t) t+ 1 0 0 0
(x1 − x2)t −(1 + x1t) t+ 1 0 0
(x2 − x3)t (x1 − x2)t −(1 + x1t) t+ 1 0
(x3 − x4)t (x2 − x3)t (x1 − x2)t −(1 + x1t) t+ 1
(x4 − x5)t (x3 − x4)t (x2 − x3)t (x1 − x2)t −(1 + x1t)

⎤
⎥⎥⎥⎥⎦ .
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If one expands the determinant of R(k) about the last row, then it is

easy to see that

det
(
M (k)

)
= det

(
R(k)

)(35)

= − det
(
V (k−1)

)
+

k−1∑
i=1

(−1)2k−ixit(1 + t)i det
(
V (k−i−1)

)

where by convention we set det(V (0)) = 1. Thus to complete our formula for

det(M (k)), we need only find a formula for det(V (k)). But V (k) = ||vi,j || has
a form similar to the matrix M (k)(q) in that it is a matrix whose diagonal

entries are constant, whose superdiagonal entries are constant, and whose

entries above the superdiagonal are 0. That is,

det
(
V (k)

)
=

∑
σ=σ1...σk∈Sk

sgn(σ)

k∏
i=1

vi,σi

and we classify the permutations σ according to the set T of rows i such that

σi �= i+1 which is the set of rows where σ does not pick the element on the

superdiagonal. Again, any such T must be of the form {t1 < · · · < t�} ⊆ [k]

where t� = k, and by the same reasoning as before, T corresponds to the

permutation

σ(T ) =

(1, 2, . . . , t1−1, t1)(t1+1, t1+2, . . . , t2−1, t2) . . . (t�−1+1, t�−1+2, . . . , t�−1, t�).

Thus

sgn(σ(T ))

k∏
i=1

vi,σ(T )
i

=

(−1)k−�(1 + t)
∑�−1

j=0 tj+1−tj−1
�−1∏
j=0

vtj+1,tj+1 = (−(1 + t))k−�
�∏

j=1

vtj ,tj−1+1.

In this case, T = [k] corresponds to the term (−1)k(1+x1t)
k and if |T | = � <
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k, then T corresponds to the term (−1)k−�(1 + t)k−�
∏�

j=1 vtj ,tj−1+1. Hence

det
(
V (k)

)
=

(36)

(−1)k(1 + x1t)
k +

k−1∑
�=1

(−1)k−�(1 + t)k−�
∑

{k}⊆{t1<···<t�}⊆[k]

�∏
j=1

vtj ,tj−1+1.

Next consider the term
∑

{k}⊆{t1<···<t�}⊆[k]

∏�
j=1 vtj ,tj−1+1. Choosing a

set T is equivalent to choosing a sequence u = (u1, . . . , u�) where each uj ≥ 0,

by setting uj = tj − tj−1 − 1. Since
∑�

j=1 tj − tj−1 − 1 =
∑�

j=1 uj = k − �,
we can instead choose a set S = {i1, . . . , is} ⊆ [�] and a sequence a =
(a1, . . . , as) where a1+ · · ·+as = k− � and each ai ≥ 1. By setting ui1 = a1,
ui2 = a2, . . ., uis = as and uj = 0 if j ∈ [�]−S, we determine the sequence u
(and in turn the set T ) by this choice of S and a. Note that if uj = 0, then
uj corresponds to a diagonal term vtj ,tj−1+1 = −(1 + x1t) and if uj = m
where m > 0, then uj corresponds to a term on the mth subdiagonal which

is (xm−xm+1)t. Since there are
(
�
s

)
ways to choose the set S, it follows that

∑
{k}⊆{t1<···<t�}⊆[k]

�−1∏
j=1

vtj+1,tj+1 =

�∑
s=1

(−(1 + x1t))
�−s

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)t.

Substituting this in (36) gives

det(V (k)) = (−1)k(1 + x1t)
k+

k−1∑
�=1

(−1)k−�(1 + t)k−�
�∑

s=1

(−(1 + x1t))
�−s

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)t.

Hence we have the following result.

Theorem 6. For all k ≥ 2,

det
(
M (k)

)
= − det

(
V (k−1)

)
+

k−1∑
i=1

xit(−(1 + t))i det
(
V (k−i−1)

)
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where det(V (0)) = 1 and for k ≥ 1,

det(V (k)) = (−1)k(1 + x1t)
k+

k−1∑
�=1

(1 + t)k−�
�∑

s=1

(−1)k−s(1 + x1t)
�−sts

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1).

The only factor in the formula for det(V (k)) which is not explicit is the

term
∑

a1+···+as=k−�

0<ai<k

∏s
i=1(xai

− xai+1). We let

(37) B(m, s, x1, . . . , xk) =
∑

a1+···+as=m

0<ai<k

s∏
i=1

(xai
− xai+1).

Then the function B(m, s, x1, . . . , xk) has the following properties:

1. B(m, s, x1, . . . , xk) = 0 if m < s or m > s(k − 1),

2. B(s, s, x1, . . . , xk) = (x1−x2)
s and B(s(k−1), s, x1, . . . , xk) = (xk−1−

xk)
s,

3. B(m, 1, x1, . . . , xk) is equal to xm−xm+1 if 1 ≤ m ≤ k−1 and is equal

to 0 otherwise, and

4. B(m, s, x1, . . . , xk) =
∑k−1

i=1 (xi−xi+1)B(m−i, s−1, x1, . . . , xk) if s ≥ 2.

We end this paper by giving a number of simple cases where we have

been able to specialize our formulas to obtain explicit formulas for det(V (k))

and det(M (k)).

Case 1. Suppose that 1 ≤ j ≤ k and xi = p for i ≤ j and xi = 0 for i > j.

We shall denote this specialization of B(m, s, x1, . . . , xk), V
(k),M (k), and

CNR(k)(x1, . . . , xk−1, t) by Bpj0k−j (m, s), V
(k)
pj0k−j , M

(k)
pj0k−j−1 , and

CNR
(k)
pj0k−j−1(p, t), respectively. In this case, the only factor of the form

(xai
− xai+1) that is not zero is (xj − xj+1), which is equal to p so that

Bpj0k−j (m, s) =

⎛
⎜⎝ ∑

a1+···+as=m

ai=j

s∏
i=1

p

⎞
⎟⎠ = psχ(m = js).
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It follows that

�∑
s=1

(−1)k−s(1 + x1t)
�−sts

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)

gives a contribution if and and only if sj = k − � and s ≤ �. Thus we must
have s ≤ k − sj or, equivalently, s ≤ 
 k

j+1�. Hence

k−1∑
�=1

(1 + t)k−�
�∑

s=1

(−1)k−s(1 + x1t)
�−sts

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)

becomes

	 k

j+1

∑

s=1

(−1)k−s(1 + t)sj(1 + pt)k−s(j+1)(pt)s
(
k − sj

s

)
.

Thus

(38) det
(
V

(k)
pj0k−j

)
=

(−1)k

⎛
⎝(1 + pt)k +

	 k

j+1

∑

s=1

(−1)s(1 + t)sj(1 + pt)k−s(j+1)(pt)s
(
k − sj

s

)⎞⎠
and

det
(
M

(k)
pj0k−j−1

)
=(39)

− det
(
V

(k−1)
pj0k−j−1

)
+

j∑
i=1

pt(−(1 + t))i det
(
V

(k−i−1)
pj0k−i−j−1

)
.

Here we interpret V
(k−i−1)
pj0k−i−j−1 as the matrix where we are setting xi = p

for i ≤ j and xi = 0 for i ≥ j + 1. By Theorem 3, CNR
(k)
pj0k−j−1(p, t) =

(−1)k(1+t)k

det(M
(k)

pj0k−j−1 )
.

In this case CNR
(k)
pj0k−j−1(p, t) is the generating function of prise(w)t|w|

over all words w = w1 . . . wn ∈ NR([k]) such that any rise wiwi+1 must

have wi+1 − wi ≤ j. Thus CNR
(k)
pk−1(p, t) is just the generating function of
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prise(w)t|w| over all words, and CNR
(k)
p0k−2(p, t) = NR

(k)
μ (0, p, t) is covered by

Corollary 5.

Here are a few examples of the formulas for CNR
(k)
pj0k−j−1(p, t) for small

values of k and j.

CNR
(4)

p20
(p, t) =

(1 + t)4

1− pt2(5 + 2t)− p2t3(4 + t)− p3t4

CNR
(4)

p3
(p, t) =

(1 + t)4

1− pt2(6 + 4t+ t2)− p2t3(4 + t)− p3t4

CNR
(5)

p202
(p, t) =

(1 + t)5

1− pt2(7 + 3t)− p2t3(8 + t− t2)− p3t4(5 + t)− p4t5

CNR
(5)

p30
(p, t) =

(1 + t)5

1− pt2(9 + 7t+ 2t2)− p2t3(10 + 5t+ t2)− p3t4(5 + t)− p4t5

CNR
(5)

p4
(p, t) =

(1 + t)5

1− pt2(10 + 10t+ 5t2 + t3)− 3p2t3(10 + 5t+ t2)− p3t4(5 + t)− p4t5

Case 2. Suppose that 2 ≤ j ≤ k and xi = 0 for i < j and xi = p for i ≥ j.

We shall denote this specialization of B(m, s, x1, . . . , xk), V
(k), M (k),

and CNR(k)(x1, . . . , xk−1, t) by B0j−1pk−j+1(m, s), V
(k)
0j−1pk−j+1 ,M

(k)
0j−1pk−j , and

CNR
(k)
0j−1pk−j (p, t), respectively. In this case, the only factor of the form

(xai
− xai+1) that is not zero is (xj−1 − xj), which is equal to −p so that

B0j−1pk−j+1(m, s) =

⎛
⎜⎝ ∑

a1+···+as=m

ai=j−1

s∏
i=1

(−p)

⎞
⎟⎠ = (−p)sχ(m = (j − 1)s).

It follows that

�∑
s=1

(−1)k−s(1 + x1t)
�−sts

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)

gives a contribution if and and only if s(j − 1) = k − � and s ≤ �. Thus we

must have s ≤ k − s(j − 1) or, equivalently, s ≤ 
k/j�. Hence

k−1∑
�=1

(1 + t)k−�
�∑

s=1

(−1)k−s(1 + x1t)
�−sts

(
�

s

) ∑
a1+···+as=k−�

0<ai<k

s∏
i=1

(xai
− xai+1)
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becomes
	k/j
∑
s=1

(−1)k(1 + t)s(j−1)

(
k − s(j − 1)

s

)
(pt)s.

Thus

det
(
V

(k)
0j−1pk−j+1

)
=(40)

(−1)k

⎛
⎝1 +

	k/j
∑
s=1

(1 + t)s(j−1)

(
k − s(j − 1)

s

)
(pt)s

⎞
⎠

and

det
(
M

(k)
0j−1pk−j

)
=(41)

− det
(
V

(k−1)
0j−1pk−j

)
+

k−1∑
i=j

pt(−(1 + t))i det
(
V

(k−i−1)
0j−1pk−i−j

)
.

Here we interpret V
(k−i−1)
0j−1pk−i−j as the matrix where we are setting xi = 0 for

i < j and xi = p for i ≥ j.

In this case CNR
(k)
0j−1pk−j (p, t) =

(−1)k(1+t)k

det(M (k)

0j−1pk−j )
is the generating function

of prise(w)t|w| over all words w = w1 . . . wn ∈ NR[k] such that any rise wiwi+1

must have wi+1 − wi ≥ j.

One case is very simple, namely, we claim that

CNR
(k)
0k−2p(p, t) =

(1 + t)k

1− pt2(1 + t)k−2
.

In fact, there is a simple combinatorial proof of this fact. That is, in this
case, the only rises that are allowed are 1k. Now if w has � occurrences of
1k and no other rises, then w = w01kw11k . . . 1kw�−11kw� where w0 is a
decreasing word over {2, . . . , k}, wi is a decreasing word over {2, . . . , k − 1}
for i ∈ {1, . . . , �− 1}, and w� is a decreasing word over {1, . . . , k− 1}. Thus,
w0 gives rise to a factor of (1 + t)k−1, each wi for i ∈ {1, . . . , � − 1} gives
rise to a factor of (1 + t)k−2, and w� gives rise to a factor of (1 + t)k−1.
Hence the generating function for p(k−1)rise(w)t|w| over all words w such that
(k − 1)rise(w) = � is

((1 + t)k−1)2((1 + t)k−2)�−1(pt2)� = (1 + t)k(pt2(1 + t)k−2)�.
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Also, the generating function for for p(k−1)rise(w)t|w| over all words w such

that (k − 1)rise(w) = 0 is clearly (1 + t)k since they are just all decreasing

words. It follows that

CNR
(k)
0k−2p(p, t) = (1 + t)k +

∑
�≥1

(1 + t)k
(
pt2(1 + t)k−2

)�

=
(1 + t)k

1− pt2(1 + t)k−2
.

Here are some examples of CNR
(k)
0j−1pk−j (p, t) for small values of k and j.

CNR
(4)
0p2(p, t) =

(1 + t)4

1− pt2(3 + 4t+ t2)

CNR
(5)
0p3(p, t) =

(1 + t)5

1− pt2(6 + 10t+ 5t2 + t3)− p2t3(1 + t)2

CNR
(5)
02p2(p, t) =

(1 + t)5

1− pt2(1 + t)2(3 + t)

CNR
(6)
0p4(p, t) =

(1 + t)6

1− pt2(10 + 20t+ 15t2 + t4)− p2t3(1 + t)2(4 + t)

CNR
(6)
02p3(p, t) =

(1 + t)6

1− pt2(1 + t)2(6 + 4t+ t2)

CNR
(6)
03p2(p, t) =

(1 + t)6

1− pt2(1 + t)3(3 + t)

Case 3. Suppose that for 2 ≤ j ≤ k − 1, we set xj = p and xi = 0 for all

i �= j.

We shall denote this specialization of B(m, s, x1, . . . , xk), V
(k), M (k),

and CNR(k)(x1, . . . , xk, t) by B0j−1p0k−j (m, s), V
(k)
0j−1p0k−j , M

(k)
0j−1p0k−j−1 , and

CNR
(k)
0j−1p0k−j−1(p, t), respectively.

Then it is easy to see that

∑
a1+···+as=m

0<ai<k

s∏
i=1

(xai
− xai+1)

equals 0 unless ai ∈ {j−1, j} for all i and s(j−1) ≤ m ≤ sj, or, equivalently,

�m/j
 ≤ s ≤ 
m/(j−1)�. If s(j−1) ≤ m ≤ sj, then we must havem−s(j−1)



The μ pattern in words 415

of the ai’s equal to j and we can choose such i’s in
(

s
m−s(j−1)

)
ways. It follows

that in this case,

B0j−1p0k−j (m, s) =
∑

a1+···+as=m

ai∈{j−1,j}

s∏
i=1

(pχ(ai = j)− pχ(ai = j − 1))

= (−1)sj−m

(
s

m− s(j − 1)

)
ps

if s(j − 1) ≤ m ≤ sj and is equal to 0 otherwise. Thus

det
(
V

(k)

0j−1p0k−j

)
=

(−1)k+

(−1)k
k−1∑
�=1

(1 + t)k−�

min(�,�(k−�)/(j−1)�)∑
s=�(k−�)/j�

(−1)k−s(tp)s
(
�

s

)
(−1)sj−(k−�)

(
s

k − �− s(j − 1)

)
=

(−1)k +

k−1∑
�=1

(1 + t)k−�

min(�,�(k−�)/(j−1)�)∑
s=�(k−�)/j�

(−1)�−s(j−1)

(
�

s

)(
s

k − �− s(j − 1)

)
(tp)s

and

det
(
M

(k)
0j−1p0k−j−1

)
=(42)

− det
(
V

(k−1)
0j−1p0k−j−1

)
+ (−1)jpt(1 + t)j det

(
V

(k−j−1)
0j−1p0k−2j−1

)
.

Here we interpret V
(k−j−1)
0j−1p0k−2j−1 as the matrix where we are setting xj = p

and xi = 0 for all i �= j.
In this case

CNR
(k)
0j−1p0k−j−1(p, t) =

(−1)k(1 + t)k

det
(
M

(k)
0j−1p0k−j−1

)

is the generating function of prise(w)t|w| over all words w = w1 . . . wn ∈ NR[k]
such that any rise wiwi+1 must have wi+1−wi = j. Here are some values of

CNR
(k)
0j−1p0k−j−1(p, t) for small k and j.

CNR
(4)
0p0(p, t) =

(1 + t)4

1− pt2(2 + 2t)

CNR
(5)
0p02(p, t) =

(1 + t)5

1− pt2(3 + 3t)− p2t3(1 + t)2
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CNR
(5)
02p0(p, t) =

(1 + t)5

1− 2pt2(1 + t)2

CNR
(6)
0p03(p, t) =

(1 + t)6

1− pt2(4 + 4t)− p2t3(2− t)(1 + t)2

CNR
(6)
02p02(p, t) =

(1 + t)6

1− 3pt2(1 + t)2

CNR
(6)
03p0(p, t) =

(1 + t)6

1− 2pt2(1 + t)3
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