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Juggling card sequences
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Juggling patterns can be described by a sequence of cards which
keep track of the relative order of the balls at each step. This inter-
pretation has many algebraic and combinatorial properties, with
connections to Stirling numbers, Dyck paths, Narayana numbers,
boson normal ordering, arc-labeled digraphs, and more. Some of
these connections are investigated with a particular focus on enu-
merating juggling patterns satisfying certain ordering constraints,
including where the number of crossings is fixed.
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1. Introduction

It is traditional for mathematically-inclined jugglers to represent various
juggling patterns by sequences T = (t1, t2, . . . , tn) where the ti are natu-
ral numbers. The connection to juggling being that at time i, the object
(which we will assume is a ball) is thrown so that it comes down ti time
units later at time i + ti. The usual convention is that the sequence T is
repeated indefinitely, i.e., it is periodic, so that the expanded pattern is
actually (. . . , t1, t2, . . . , tn, t1, t2, . . . , tn, . . .).

A sequence T is said to be a juggling sequence, or siteswap sequence,
provided that it never happens that two balls come down at the same time.
For example, (3, 4, 5) is a juggling sequence while (3, 5, 4) is not. It is known
[5] that a necessary and sufficient condition for T to be a juggling sequence
is that all the quantities i+ ti (mod n) are distinct. For a juggling sequence
T = (t1, t2, . . . , tn), its period is defined to be n. A well known property is
that the number of balls b needed to perform T is the average b = 1

n

∑n
i=1 ti.

It is also known that the number of juggling sequences with period n and
at most b balls is bn (cf. [4, 5]; our convention assumes that we will always
catch and then immediatly throw something at every step, or in other words
there are no 0 throws).
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There is an alternative way to represent periodic juggling patterns, a
variation of which was first introduced by Ehrenborg and Readdy [9]. For this
method, certain cards are used to indicate the relative ordering of the balls
(with respect to when they will land) as the juggling pattern is executed.
One might call the first representation “time” sequences for representing
juggling patterns while the second representation might be called “order”
sequences for representing these same patterns.

In this paper, we will explore various algebraic and combinatorial prop-
erties associated with these order sequences. It will turn out that there are
a number of unexpected connections with a wide variety of combinatorial
structures. In the remainder of this section we will introduce these juggling
card sequences, and then in the ensuing sections will count the number of
juggling card sequences that induce a given ordering, count the number of
juggling card sequences that do not change the ordering and have a fixed
number of crossings, and look at the probability that the induced ordering
consists of a single cycle.

1.1. Juggling card sequences

We will represent juggling patterns by the use of juggling cards. Sequences
of these juggling cards will describe the behaviors of the balls being juggled.
In particular, the set of juggling cards produce the juggling diagram of the
pattern.

Throughout the paper, we will let b denote the number of balls that
are available to be juggled. We will also have available to us a collection
of cards C that can be used. In the setting when at each time step one
ball is caught and then immediately thrown, we can represent these by
C1, C2, . . . , Cb where Ci indicates that the bottom ball in the ordering has
now dropped into our hand and we now throw it so that relative to the other
balls it will now be the i-th ball to land. Visually we draw the cards so that
there are b levels on each side of the card (numbered 1,2,. . . ,b from bottom
to top) and b tracks connecting the levels on the left to the levels on the
right by the following: level 1 connects to level i; level j connects to level
j − 1 for 2 ≤ j ≤ i; level j connects to level j for i+ 1 ≤ j ≤ b. An example
of the cards when b = 4 is shown in Figure 1.

As we juggle the b balls, 1, 2, . . . , b, move along the track on the cards.
For each card Ci the relative ordering of the balls changes and corresponds
to a permutation πCi

. Written in cycle form this permutation is πCi
=

(i i−1 . . . 2 1). In particular, a ball starting on level j on the left of card
Ci will be on level πCi

(j) on the right of card Ci.
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Figure 1: Cards for b = 4.

A sequence of cards, A, written by concatenation, i.e., Ci1Ci2 . . . Cin ,
is a juggling card sequence of length n. The n cards of A are laid out in
order so that the levels match up. The balls now move from the left of the
sequence of cards to the right of the sequence of cards with their relative
ordering changing as they move. The resulting final change in the ordering
of the balls is a permutation denoted πA, i.e., a ball starting on level i will
end on πA(i). We note that πA = πCi1

πCi2
· · ·πCin

. We will also associate

with juggling card sequence A the arrangement [π−1
A (1), π−1

A (2), . . . , π−1
A (b)],

which corresponds to the resulting ordering of the balls on the right of the
diagram when read from bottom to top.

As an example, in Figure 2 we look at A = C3C3C2C4C3C4C3C2C2

(note we allow ourselves the ability to repeat cards as often as desired).
For this juggling card sequence we have πA = (1 2 4 3) and corresponding
arrangement [3, 1, 4, 2]. We have also marked the ball being thrown at each
stage under the card for reference.

Figure 2: A juggling card sequence A; below each card we mark the ball
thrown.

From the juggling card sequence we can recover the siteswap sequence
by letting ti be the number of cards traversed starting at the bottom of the
ith card until we return to the bottom of some other card. For example, the
siteswap pattern in Figure 2 is (3, 4, 2, 5, 3, 10, 5, 2, 2).

We can also increase the number of balls caught and then thrown at one
time, which is known as multiplex juggling. In the more general setting we
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will denote the cards CS where S = (s1, s2, . . . , sk) is an ordered subset of
[b]. Each card still has levels 1, 2, . . . , b and now for 1 ≤ j ≤ k the ball at
level i goes to level si and the remaining balls then fill the available levels
in a way that preserves their order. As an example, the cards C2,5 and C5,2

are shown in Figure 3 for b = 5.

Figure 3: The cards C2,5 and C5,2 for b = 5.

As before we can combine these together to form juggling card sequences
A which induce permutations πA and corresponding arrangements. An ex-
ample of a juggling card sequence composed of cards CS with |S| = 2 is
shown in Figure 4 which has corresponding arrangement [3, 4, 2, 5, 1]. We
note that it is also possible to form juggling card sequences which have
differing sizes of |S|.

Figure 4: A juggling card sequence A; below each card we mark the balls
thrown.

2. Juggling card sequences with given arrangement

In this section we will consider the problem of enumerating juggling card
sequences of length n using cards drawn from a collection of cards C with
the final arrangement corresponding to the permutation σ. We will denote
the number of such sequences by JS(σ, n, C). This will be dependent on the
following parameter.
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Definition 1. Let σ be a permutation of 1, 2, . . . , b. Then L(σ) is the largest
� such that σ(b − � + 1) < · · · < σ(b− 1) < σ(b). Alternatively, L(σ) is the
largest � so that b − � + 1, . . . , b − 1, b appear in increasing order in the
arrangement for σ.

As an example, the final arrangement in Figure 2 has L(σ) = 2 and the
final arrangement in Figure 4 has L(σ) = 3.

The key idea for our approach will be that with information about what
balls are thrown we can “work backwards”. In particular, we have the fol-
lowing.

Proposition 1. Given a single card, if we know the ordering of balls on the
right hand side of the card and we know which balls are thrown, then we can
determine the card CS and the ordering of the balls on the left hand side of
the card.

Proof. Suppose that i1, i2, . . . , i� are the balls, in that order, which are
thrown. Then the card is CS where S = (s1, s2, . . . , s�) and sj is the lo-
cation of ball ij in the ordering of the balls (i.e., where the ball ij moved).
The ordering of the left hand side starts i1, i2, . . . , i� and the remaining balls
are then determined by noting that their ordering must be preserved.

2.1. Throwing one ball at a time

We now work through the case when one ball at a time is caught and then
immediately thrown.

Theorem 2. Let b be the number of balls and C = {C1, . . . , Cb}. Then

JS(σ, n, C) =
b∑

k=b−L(σ)

{
n

k

}
,

where
{
n
k

}
denotes the Stirling numbers of the second kind.

Proof. We establish a bijection between the partitions of [n] into k nonempty
subsets [n] = X1 ∪ X2 ∪ · · · ∪ Xk where b − L(σ) ≤ k ≤ b and juggling
card sequences of length n using cards from C with the final arrangement
corresponding to σ. Because such partitions are counted by the Stirling
numbers of the second kind, the result will then follow.

Starting with a partition we first reindex the sets so that the minimal
elements are in increasing order, i.e., minXi < minXj for i < j. We now
place n blank cards, mark the final arrangement corresponding to σ on the
right of the final card, and then under the i-th card we write j if and only
if i ∈ Xj .
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We interpret the labeling under the cards as the ball that is thrown at
that card, in particular we will have that k of the balls are thrown. We can
now apply Proposition 1 iteratively from the right hand side to the left hand
side to determine the cards in the juggling card sequence, where we update
our ordering as we move from right to left.

We claim that the final ordering that we will end up with on the left
hand side is [1, 2, . . . , b] so that this is a juggling card sequence which should
be counted. Looking at the proof of the proposition we see that at each
step the only ball which changes position in the ordering is the ball which
is thrown, and in that case the ball was thrown from the bottom of the
ordering. We now have two observations to make:

• For the k balls that will be thrown they will move into the first k slots
in the ordering, and by the assumption of our indexing we have that
the first k balls are ordered, i.e., for 1 ≤ i < j ≤ k the first occurrence
when going from left to right of i is before the first occurrence of j so
that i will move below j.

• The remaining balls will not have their relative ordering change. How-
ever, by our assumption on k we have that k + 1, . . . , b are already in
the proper ordering.

This establishes the map from partitions to juggling card sequences. To
go in the other direction, we take a juggling card sequence of length n using
our cards from C, write down which ball is thrown under each card, and
then form our sets for the partition by letting Xi be the location of the
cards where ball i is thrown. Because σ(b−L(σ)) > σ(b−L(σ)+ 1) it must
be that at some time that the ball b − L(σ) was thrown and therefore the
number of sets in our partition is at least b − L(σ). This finishes the other
side of the bijection and the proof.

For the partition of [9] = {1, 4, 9} ∪ {2, 6} ∪ {3, 5, 8} ∪ {7} with final
arrangement [3, 1, 4, 2] the juggling card sequence which will be formed is
the one given in Figure 2.

2.2. Throwing m ≥ 2 balls at a time

The proof readily generalizes to the setting where we catch and then immedi-
ately throw m balls at a time. What we need to do is to find the appropriate
way to generalize the Stirling numbers of the second kind.

Definition 2. Given n and k let X = {x1, x2, . . . , xk}. Then
{
n
k

}
m

is the
number of ways, up to relabeling the xi, to form Y1, Y2, . . . , Yn so that Yj =
(xj1 , . . . , xjm) is an ordered subset of X and each xi is in at least one Yj .
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We note that
{
n
k

}
1
=

{
n
k

}
. This can be seen by observing that each Yi is

a single entry and then we form our partition by grouping the indices of the
Yi which agree. We now show that this gives the appropriate generalization.

Theorem 3. Let b be the number of balls and C be the collection of all cards
for which m balls are thrown. Then

JS(σ, n, C) =
b∑

k=b−L(σ)

{
n

k

}
m

.

Proof. Suppose we are given Y1, . . . , Yn with Yj = (xj1 , . . . , xjm) an ordered
subset of {x1, . . . , xk}. Then we first concatenate the Yj together and re-
move all but the first occurrence of each xi leaving us with a list Y ′. By
our assumptions we have that Y ′ consists of x1, . . . , xk in some order. For
Y1, . . . , Yn, we now replace x1, . . . , xk by 1, . . . , k by replacing xi with j if
xi is in the j-th position of Y ′. (This process is equivalent to the reindexing
carried out in the special case when one ball is thrown at a time.)

We now have Y1, . . . , Yn with each consisting of m distinct numbers
drawn from {1, . . . , k} with the property that if i < j then i appears before
j (i.e., in the sense that if the first occurrence of i is in Yp and the first
occurrence of j is in Yq and then either p < q or p = q and i appears in
the list before j in Yp). We now put down n blank cards, write down the
arrangement corresponding to σ on the right side of the last card and write
Yi under the ith card for all i. The remainder of the proof then proceeds as
before, i.e., we can now work from right to left and determine the card used
at each stage by Proposition 1. The resulting process gives a valid juggling
sequence because the initial arrangement will have the first k balls in order
(by our work on reindexing) and the final balls inherit their order, which by
assumption were already in the correct order.

The map in the other direction is carried out as before, i.e., given a
juggling card sequence under each card we write the balls which are thrown
and use these to form Y1, . . . , Yn which contribute to the count of

{
n
k

}
m

for
some appropriate k.

The value
{
n
k

}
2
is found by counting sets of ordered pairs. In particular,

this counts the number of multi-digraphs with n labeled edges and k vertices.
This leads to a bijection between these digraphs and juggling sequences for
a given σ, provided k ≥ b− L(σ). As an example consider the edge-labeled
directed graph shown in Figure 5.

Using the edge labeling we can now form the sets so that Y1 = (x3, x5),
Y2 = (x1, x3), Y3 = (x2, x1), Y4 = (x5, x2), Y5 = (x1, x4) and Y6 = (x3, x4).
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Figure 5: An edge labeled multi-digraph.

We now need to label the xi with 1, 2, 3, 4, 5 so that the first occurrences of
each number (ball) is increasing. To do this we first concatenate these lists
together to form the following (i.e., the occurrences in order of all of the xi):

(x3, x5, x1, x3, x2, x1, x5, x2, x1, x4, x3, x4)

From here we look at first occurrences of each xi which is found by removing
all but the first occurrence of each symbol which gives us the following list.

Y ′ = (x3, x5, x1, x2, x4)

Therefore to make sure we have the first occurrences in the proper order,
we replace x3, x5, x1, x2, x4 by 1, 2, 3, 4, 5 respectively. If we now set the final
arrangement to be [4, 5, 2, 1, 3] then we get the corresponding juggling card
sequence shown in Figure 6.

Figure 6: The juggling card sequence corresponding to the digraph from
Figure 5 and final arrangement [4, 5, 2, 1, 3].

This bijection gives us the following.

Theorem 4. Let σ be a permutation of 1, 2, . . . , b and b − L(σ) ≤ k ≤ b.
Then there is a bijection between edge-labeled (multi-)digraphs without loops
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which have n arcs on k vertices and juggling card sequences A of length n
where two balls are caught and thrown at a time, a total of k balls are thrown,
and satisfying πA = σ.

We note that the numbers
{
n
k

}
m

have appeared recently in the literature
in connection with the so-called boson normal ordering problem arising in
statistical physics [2, 13]. The sequence

{
n
k

}
2
is A078739 in the OEIS [16].

For general m it has been observed [7] that
{
n
k

}
m

is the number of ways
to properly color the graph nKm using exactly k colors, i.e., each Yi is the
coloring on the i-th copy of Km, and by definition all k colors must be used.

If we denote the falling factorial xm = x(x−1)(x−2) · · · (x−m+1), then
the ordinary Stirling numbers

{
n
k

}
act as connection coefficients between xn

and xn by means of the formula (e.g., see [10])

xn =

n∑
k=1

{
n

k

}
xk.

In particular, they satisfy the recurrence:{
n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
,

and have the explicit representation

{
n

k

}
=

(−1)k

k!

k∑
i=1

(−1)i
(
k

i

)
in.

The
{
n
k

}
m

satisfy analogs of these three relationships. Namely, as connection
coefficients

(xm)n =

mn∑
k=m

{
n

k

}
m

xk,

satisfying a recurrence

{
n+ 1

k

}
m

=

m∑
i=0

(
k + i−m

i

)
mi

{
n

k + i−m

}
m

,

and with the explicit representation

{
n

k

}
m

=
(−1)k

k!

k∑
i=m

(−1)i
(
k

i

)
(im)n.
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2.3. Throwing different numbers of balls at different times

We have restricted our analysis to the case when our collection of cards all
catch and then throw the same number of balls. We can relax this restriction

and allow ourselves to catch and throw differing number of balls at each step.

For example, we could insist that at the i-th step that mi balls are thrown.

Under the card in the i-th position we place a sequence Yi, where we

have Yi = (yi,1, yi,2, . . . , yi,mi
). We then concatenate the labels as before to

give a mapping from the yi,j to [k] to give a compatible ball assignment to

the card positions. Then we work from right to left and recover the unique
juggling card sequence which corresponds to this collection of ordered sets.

A variation of the preceding arguments show that the number of such card

sequences is equal to the number of k-colorings of ∪n
i=1Kmi

.

A much more complete analysis of this problem with connections to gen-

eralized Stirling numbers and the boson normal ordering problem appears

in [8]. A good survey of this problem also can be found in [12, Ch. 10].

3. Preserving ordering while throwing

In the preceding section when we threw multiple balls at one time, we did

not worry about preserving the ordering of the balls which were thrown. The

goal of this section is to add the extra condition that the relative order of
the thrown balls is preserved, e.g., for m = 2 our set of cards will be the set

of
(
b
2

)
cards given by {Ci,j : 1 ≤ i < j ≤ b}. We will see that this situation

is more complicated than the one in the preceding section.

To begin the analysis, we start with a 2-cover of the set [n]. This is a

collection of k (not necessarily distinct) subsets Si of [n] with the property

that each element j of [n] occurs in exactly two of the Si. We can represent
a 2-cover by a k × n matrix M where for 1 ≤ i ≤ k, 1 ≤ j ≤ n, we

have M(i, j) = 1 if j ∈ Si, and M(i, j) = 0 otherwise. For each set Si we

will associate a virtual ball xi. For 1 ≤ j ≤ n, we define the 2-element set
Bj = {xi : j ∈ Si}. In other words, xi ∈ Bj if and only if M(i, j) = 1. The

interpretation is that at time j, the two virtual balls xi ∈ Bj will be the

balls that are thrown at that time.

We now produce the (unique) mapping between the actual balls and the

virtual balls xi. To do this, we define a partial order on the xi as follows:

xu is less than xv, written as xu ≺ xv, if among all the Bi �= {xu, xv}, xu
occurs before xv (i.e., with a lower indexed Bi). If there are no such Bi, we

say that xu and xv are equivalent.
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As an example, a 2-cover of [7] with five subsets is given by the following
matrix.

M =

⎛
⎜⎜⎜⎜⎝

B1 B2 B3 B4 B5 B6 B7

x1 1 0 1 0 0 0 1
x2 0 1 0 0 1 0 0
x3 1 0 0 1 0 1 0
x4 0 1 0 0 1 0 0
x5 0 0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎠

We have labeled the rows of M with the xi and the columns with the Bj .
Thus, we see that x2 and x4 are equivalent, so that the partial order on the
xi is

x1 ≺ x3 ≺ x2 ≡ x4 ≺ x5.

If in the current arrangement we have that u is below v, then v cannot be
thrown before u (though it might possibly be at the same time). Therefore
the partial order on the xi determines how the balls are positioned relative
to one another. The partial order doesn’t specify anything about the relative
order of equivalent xi but because such pairs are always thrown together,
their relative order never changes during the process of traversing all the
cards in the sequence.

Figure 7: A card sequence for the matrix M .

In Figure 7 we show the sequence generated by the 2-cover from M ,
where we assume the finishing arrangement of the xi is from bottom to
top x4, x1, x5, x3, x2. This choice was arbitrary, except that the initial and
terminal orders of the equivalent pair x2 and x4 must be the same, since
there is a unique initial sequence which can have the xi in Bj being thrown
at time j, namely, the sequence that is consistent with the partial order ≺ on
the xi. To determine the appropriate cards needed for the required throwing
patterns it is simply a matter of starting at the right hand side and choosing
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the cards sequentially which achieve the required throws. In Figure 7, we
have also have indicated the corresponding cards Ci,j which accomplish the
indicated throws.

If we make the identification x1 → 1, x3 → 2, x4 → 3, x2 → 4, x5 → 5,
then we have the picture shown in Figure 8.

Figure 8: A card sequence for the matrix M using actual balls.

We can achieve any permutation σ of the balls {1, 2, 3, 4, 5} starting in
increasing order provided only that σ(2) is below σ(4).

For general n and k, given a 2-cover of [n] with k sets S1, . . . , Sk, there
is an induced partial order on the sets (or what we called virtual balls). For
any terminal permutation σ which preserves the relative order of equivalent
balls, there is a unique sequence of cards which achieves this permutation.

As pointed out in [6], there is a direct correspondence between 2-covers
of [n] with k subsets and multigraphs G(n, k) having k vertices and n labeled
edges. In the case of graphs, the vertices of G will be {x1, x2, . . . , xk}. We
insert the edge {xr, xs} with label i if the i-th column of M has 1’s in
rows r and s. The number of vertices of such an edge-labeled multigraph
corresponds to the number of balls which are thrown. These are enumerated
by the numbers of vertices and labeled edges in [11] (see also A098233 in
the OEIS [16]). We illustrate this connection in Figure 9 where we show the
three edge-labeled multigraphs on two edges and the corresponding card
sequences which generate the identity permutation.

In the special case that the desired permutation πA = σ = id, the
identity permutation, then any 2-cover can generate this permutation. This
gives the following result (which should be compared with Theorem 4).

Theorem 5. Let b be the number of balls. Then there is a bijection between
edge-labeled (multi-)graphs without loops which have n edges on b vertices
and juggling card sequences A of length n where two balls are caught and
thrown at a time and the relative ordering of the thrown balls is preserved,
where all b of the balls are thrown, and satisfying πA = id.
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Figure 9: Edge-labeled multigraphs with two edges, and the corresponding
card sequences.

The asymptotic behavior of the number of 2-covers of an n-set, denoted

Cov(n), has been studied in [6]. In particular, it is shown there that

Cov(n) ∼ B2n2
−n exp

(
−1

2
log

(
2n

log n

))

where B2n is the well-known Bell number (see [14]).

Counting the number of juggling card sequences which generate permu-

tations other than the identity is more complicated.

In the more general case of throwing m ≥ 3 balls, we want to consider

m-covers of the set [n]. An m-cover of [n] is a collection of k (not necessarily

distinct) subsets Si of [n] with the property that each element j of [n] occurs

in exactly m of the Si. As before, we can represent the m-cover by a k × n

matrix M where for 1 ≤ i ≤ k, 1 ≤ j ≤ n, M(i, j) = 1 if j ∈ Si, and

M(i, j) = 0 otherwise.

The same analysis holds in this case of general m as in the case of m = 2.

Namely, for each subset Si in the m-cover, we can associate a virtual ball

xi. Then we can use the sets Bj corresponding to the columns of M to

induce a partial order ≺ on the xi. As before, any permutation σ on [k]

which respects the order of equivalent elements can be achieved by a unique

sequence of cards. In the case that σ is the identity permutation, then any

m-cover of [n] is able to generate this permutation with an appropriate

sequence of cards. In this case the number of such juggling card sequences
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is the number of hyperedge-labeled multi-hypergraphs (similar to the edge-
labeled multigraphs for the case m = 2).

4. Juggling card sequences with minimal crossings

We now return to throwing a single ball at a time. Any juggling card se-
quence of n cards will produce a valid siteswap sequence which has period
n. However most such siteswap sequences will result in having the balls be
permuted amongst themselves after n throws. So one natural family to focus
on are those which satisfy πA = id, i.e., after n throws the same balls are in
the same position to repeat.

Suppose now we follow the balls as they traverse the cards of some
sequence A. Then when a card Ck is used, we see that the path of the
thrown ball has k−1 “crossings” in that card, i.e., locations where the tracks
intersect. For a sequence A = Ci1Ci2 . . . Cin , the total number of crossings is
Cr(A) =

∑
(ik − 1). In the case when a juggling card sequence has b balls,

uses the card Cb, and has πA = id, then the number of crossings satisfies
Cr(A) ≥ b(b− 1). To see this we note that every ball must be thrown (i.e.,
we throw something up to track b which moves b down and so we must
eventually have a throw that returns b to the top). In particular, the paths
of each pair of balls i and j, with i �= j, must cross at least twice.

We will say a juggling card sequence A is a minimal crossing juggling
card sequence if the sequence has b balls, uses the card Cb, has πA = id, and
Cr(A) = b(b−1). The goal of this section is to count the number of minimal
crossing juggling card sequences. In the process we will give a structure
result that can give a bijective relationship with Dyck paths.

4.1. Bijection with Dyck paths

Dyck paths are one of many well known combinatorial objects that are con-
nected with the Catalan numbers. Many of these objects can be decomposed
into two smaller (possibly empty) objects with the same properties; and we
start by showing that this is the case with minimal crossing juggling card
sequences.

Lemma 6. Given a minimal crossing juggling card sequence A with b balls
using n cards, there is a unique pair of minimal crossing juggling card se-
quences (B,C) so that B uses k balls and m cards and C uses b−k balls and
n−m− 1 cards (with the possibility that B or C might be empty). Further,
given any such pair of minimal crossing juggling card sequences (B,C), the
minimal crossing juggling card sequence A can be determined.
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Proof. The first card of A will throw the ball up to some level k + 1 and
will thus cross paths with balls 2, . . . , k + 1. By the time that the first ball
is thrown the second time, the first ball will have had to cross paths with
balls 2, . . . , k + 1 a second time. Because each pair of balls can only cross
twice it must be that the ball 1 will never again cross with balls 2, . . . , k+1.
In particular, we will never throw balls 2, . . . , k + 1 after we throw ball 1
the second time. From this we conclude that all the crossings between balls
2, . . . , k + 1 will occur between the first two throws of ball 1 and that the
relative ordering of balls 2, . . . , k + 1 will be set when we get to the second
throw of ball 1.

So between the first two throws of ball 1, if we ignore balls 1, k+2, . . . , b
then we have a juggling card sequence for k balls with k(k − 1) crossings
with the final arrangement corresponding to the identity.

If we now ignore balls 2, . . . , k + 1 from the second throw of ball 1 until
the end then we must again have all of the (b−k)(b−k−1) crossings among
the remaining balls with the final arrangement corresponding to the identity.

We can now conclude that every juggling card sequence that we want to
count can be broken into the following three parts:

• The first card which throws ball 1 to height k + 1.
• The set of cards between the first two occurrences of the throw of ball
1; a juggling card sequence with m cards and k balls having k(k − 1)
crossings and corresponding to the identity arrangement. We denote
this minimal crossing juggling card sequence by B.

• The set of cards from the second time ball 1 is thrown to the end; a
juggling card sequence with n − m − 1 cards and b − k balls having
(b−k)(b−k−1) crossings and corresponding the identity arrangement.
We denote this minimal crossing juggling card sequence by C.

The first card can be found by knowing the number of balls used in
B, so therefore we only need to know B and C. Further, given the above
information, we can reconstruct the juggling card sequence for A. Namely,
we have the first card. For the next set of cards as determined by B, we
initially add balls 1, k+2, . . . , b on top of the balls 2, . . . , k+1 and then we
continue with the same cards as before except for the last time each ball is
thrown we increase the height of the throw to move above 1, k+2, . . . , b, i.e.,
the card Ct will be replaced by Ct+b−k. For the last set of cards as determined
by C, we do the same process where we initially add balls 2, . . . , k on the
top and then we continue with the same cards as before except for last time
each ball k+ 2, . . . , b is thrown we increase the height of the throw to move
above 2, . . . , k + 1, i.e., the card Ct will be replaced by Ct+k.
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To help illustrate the correspondence used in Lemma 6 in Figure 10
we give two juggling card sequences with minimal crossings, one for 2 balls
and 3 cards and the other for 3 balls and 4 cards. In Figure 11 we give
the corresponding juggling card sequence; to help emphasize the structure
we shade the portion of the balls which move in unison according to the
construction in the lemma in the parts coming from B and C.

Figure 10: Two minimal crossing juggling card sequences.

Figure 11: The result of combining the two sequences in Figure 10.

Let us suppose that we indicate the preceding correspondence in the
following way, if B and C are the minimal crossing juggling card sequences
that generate the minimal crossing juggling card sequence A then we write
this as A = (B)C. So that the example from Figures 10 and 11 would be
written as

C3C5C1C5C2C5C2C5 = (C2C1C2)C2C3C2C3.

Now we simply apply this convention recursively to each minimal crossing
juggling card sequence, following the rule that if one part is empty we do
not write anything. So (∗) would be a juggling card sequence where ball 1
does not return until the last card, ()∗ would be a juggling card sequence
where the first card is C1, and () corresponds to the unique minimal juggling
card sequence consisting of a single card, C1. If we now carry this out on
the above example we get the following:

C3C5C1C5C2C5C2C5 = (C2C1C2)C2C3C2C3

= ((C1C1))(C1)C2C2
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= ((()C1))(())(C1)

= ((()()))(())(())

This leads naturally to Dyck paths by associating “(” with an up and to the
right step and “)” with a down and to the right step, which in our example
gives the Dyck path shown in Figure 12. This process can be reversed (work-
ing from right to left and inside to outside), giving us a bijection between
these minimal crossing juggling card sequences and Dyck paths.

Figure 12: The Dyck path for the juggling sequence in Figure 11.

Careful analysis of the bijection shows that a juggling card sequence with
b balls and n cards will produce a Dyck path from (0, 0) to (2n, 0) which
has n + 1 − b peaks. This latter statistic on Dyck paths is counted by the
Narayana numbers (see A001263 in [16]), establishing the following theorem
(a generating function proof of which will be given later in this section).

Theorem 7. The number of minimal crossing juggling card sequences with
b balls and n cards is

f(n, b) =
1

b

(
n− 1

b− 1

)(
n

b− 1

)
=

1

n

(
n

b

)(
n

b− 1

)
,

the Narayana numbers.

4.2. Non-crossing partitions

An alternative way to establish Theorem 7 is to note that the Narayana
numbers are the number of ways to partition [n] into b disjoint nonempty
sets which are non-crossing, i.e., so that there are no α < β < γ < δ so that
α, γ ∈ Si and β, δ ∈ Sj (e.g., see [15]). The sets Si, formed by the locations
of when the i-th ball is thrown, form such a non-crossing partition (i.e., if
such α < β < γ < δ exist then balls i and j intersect at least three times,
which is impossible). One then checks that using the same construction as
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in Theorem 2 that we can go from a non-crossing partition to one of the
juggling card sequences we are counting establishing the bijection.

The important observation to make here, and which we will rely on
moving forward, is that if we know the ordering of the balls at the left and
right ends and we know the order in which the balls are thrown, then we
can uniquely determine the cards.

4.3. Counting using generating functions

We will now give another proof of Theorem 7 which will employ the use
of generating functions. We focus on looking at the ball throwing patterns
P = 〈b1, b2, . . . , bn〉 which list the balls thrown at each step. Given that the
minimal crossing juggling card sequences will have each of the b balls thrown
we have that P is a partition of [n] into b nonempty sets which are ordered
by smallest element.

We will find it convenient to consider a shorthand notation for a pattern
P , namely, P ∗ = 〈d1, d2, . . . , dr〉 where each dk denotes a block of dk’s of
length at least one, and adjacent dk’s are distinct (note that repeated dk’s
correspond to use of the card C1). So if P = 〈1, 1, 1, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 4〉
then the reduced pattern is P ∗ = 〈1, 2, 1, 3, 2, 4〉. As noted before, in the
patterns that we are interested in counting, each pair of balls cross exactly
twice and so there cannot be an occurrence of 〈. . . , a, . . . , b, . . . , a, . . . , b, . . .〉
in P ∗.

Proof of Theorem 7. We now define the following generating functions:

Fb(y)=
∑

n≥1 f(b, n)y
n,

F (x, y)=
∑

b,n≥1 f(b, n)x
byn =

∑
b,n≥1 Fb(y)x

n.

For b = 1, we have f(1, n) = 1 for all n, since the only possible juggling
card sequence consists of n identical cards C1. Thus,

F1(y) = y + y2 + y3 + · · · = y

1− y
.

Let us consider the only possible reduced pattern P ∗ = 〈1, 2, 1〉 of ball
throwing patterns for b = 2. The notation 1 indicates that this block of 1’s
may be empty. Thus,

F2(y) =
y

1− y
F1(y)

1

1− y
=

y2

(1− y)3
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where the fraction 1
1−y allows for the possibility that the second block of 1’s

may be empty (i.e., this is 1 + F1(y)).
For b = 3, there are two possibilities for the reduced pattern P ∗. The

first is that P ∗ = 〈1, C, 1〉 where C consists of 2’s and 3’s (and both must
occur). The second is that P ∗ = 〈1, 2, 1, 3, 1〉. Thus, we have

F3(y) =
y

1− y
F2(y)

1

1− y
+

y

1− y
F1(y)

y

1− y
F1(y)

1

1− y
=

y3(y + 1)

(1− y)5
.

Now consider the case for a general b ≥ 3. Here, we can also partition
the possibilities for P ∗ into two cases. On one hand, we can have P ∗ = 〈1, C〉
where C is a pattern using all b − 1 of the balls {2, 3, . . . , b}. The number
of possible reduced patterns in this case is y

1−yFb−1(y). On the other hand,
there may be additional 1’s which occur after the first block of 1’s. In this
case P ∗ has the form 〈1, C1, C2〉 where C1 uses i > 0 balls (not including
1), and C2 begins with a 1 and uses j > 0 balls (including 1). Note this
decomposition is the same that was given in Lemma 6. Since C1 ∪ C2 = [b]
then i + j = b. In this case the number of possible patterns is given by the
following expression: ∑

0<i<b
i+j=b

y

1− y
Fi(y)Fj(y)

Therefore we have,

Fb(y) =
y

1− y
Fb−1(y) +

∑
0<i<b
i+j=b

y

1− y
Fi(y)Fj(y)

Multiplying both sides by xb and summing over b ≥ 2, we obtain

F (x, y)− xF1(y) =
∑
b≥2

Fb(y)x
b

=
y

1− y

∑
b≥2

xbFb−1(y) +
y

1− y

∑
b≥2

∑
0<i<b,
i+j=b

xiFi(y)x
jFj(y)

=
y

1− y
(xF (x, y) +

(
F (x, y)

)2
)

In other words,

(1) y
(
F (x, y)

)2
= (1− y − xy)F (x, y)− xy.
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Solving this for F (x, y), we get

F (x, y) =
1

2y

(
1− y − xy −

√
(1− y − xy)2 − 4xy2

)
=

1

2y

(
1− y − xy −

√
(1 + y − xy)2 − 4y

)

=
1

2y

(
1− y − xy − (1 + y − xy)

√
1− 4y

(1 + y − xy)2

)

=
1

2y

(
1− y − xy − (1 + y − xy)

+ (1 + y − xy)
∑
k≥1

(2k − 2)!

22k−1k!(k − 1)!

(4y)k

(1 + y − xy)2k

)

=
1

2y

⎛
⎝−2y + 4y

∑
k≥0

(2k)!

22k+1(k + 1)!k!

(4y)k

(1 + y − xy)2k+1

⎞
⎠

= −1 +
∑
k≥0

1

k + 1

(
2k

k

)
yk

∑
j≥0

(
2k + j

j

)
yj(x− 1)j .

Extracting the coefficient of xbyn, we obtain

f(b, n) =
∑
k≥0

1

k + 1

(
2k

k

)(
n+ k

n− k

)(
n− k

b

)
(−1)n−b−k.

It remains to check that the right-hand side reduces to 1
b

(
n

b−1

)(
n−1
b−1

)
. Rewrit-

ing the right hand side, we obtain

f(b, n) =
1

b

(
n− 1

b− 1

)∑
k≥0

(
n+ k

k + 1

)(
n− b

k

)
(−1)n−b−k.

Thus, our proof will be complete if we can show

∑
k≥0

(−1)n−b−k

(
n+ k

k + 1

)(
n− b

k

)
=

(
n

b− 1

)
.

However, this follows at once by identifying the coefficients of xb in the
expressions

1

(1− x)n
(1− x)n−b = (1− x)−b.
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Knowing that

F (x, y) =
∑
b≥1

∑
n≥b

1

b

(
n

b− 1

)(
n− 1

b− 1

)
xbyn,

we can substitute into (1) and identify the coefficients of xbyn to obtain the

following interesting binomial coefficient identity.

Corollary 8. We have

∑
1≤i≤b−1
1≤j≤n−2

1

i(b− i)

(
j

i− 1

)(
j − 1

i− 1

)(
n− 1− j

b− i− 1

)(
n− 2− j

b− i− 1

)

=
2

b

(
n− 1

b− 2

)(
n− 2

b− 1

)
.

5. Juggling card sequences with b(b − 1) + 2 crossings

In the preceding section we looked at minimal crossing juggling card se-

quences. In this section we want to look at the ones which are almost mini-

mal, in the sense that we will increase the number of crossings to b(b−1)+2.

We will focus on the analysis of the ball throwing patterns.

Since each pair of balls cross at least twice and will always cross an even

number of times, then it must be the case that there is a special pair of

balls, call then α and β with α < β, which cross four times. Therefore the

ball throwing pattern contains the pattern 〈. . . , α, . . . , β, . . . , α, . . . , β, . . .〉.
It is possible that there might be additional copies of the α’s and β’s so that

this problem is not equivalent to counting the number of partitions with

one crossing, for which it has been shown (see [1, 3]) that the number of

partitions of [n] into b sets which have exactly one crossing is
(

n
b−2

)(
n−5
b−3

)
.

Nevertheless, we will see that the answers are similar and in this section we

will establish the following.

Theorem 9. The number of juggling card sequences A with b balls, using n

cards one of which is Cb, having πA = id and Cr(A) = b(b− 1) + 2 is

g(b, n) =

(
n

b+ 2

)(
n

b− 2

)
.



528 Steve Butler et al.

5.1. Structural result

To help establish Theorem 9 it will be useful to understand the structure of
these ball throwing patterns.

Lemma 10. A ball throwing pattern, P , of length n using b balls with two
additional crossings can be decomposed into four ball throwing patterns with
no additional crossings, P0, P1, P2, P3 where Pi has length mi ≥ 1 using
ci ≥ 1 balls, m0+m2+m2+m3 = n, c0+ c1+ c2+ c3 = b+2, and a choice
of the location of an entry, i1, in P0.

Proof. The crossings between α and β will happen in four of the cards for
the juggling card sequence, and using the ball throwing pattern we can
determine precisely where this will happen. Namely, we know that since
α < β then α must at some first point be thrown higher than β which will
occur at the last occurrence of α before the first occurrence of β (i.e., the
last time we throw α before we see β); suppose this happens at i1. Then the
next crossing happens at the last occurrence of β before the first occurrence
of α after i1; suppose this happens at i2. Then the next crossing happens
at the last occurrence of α before the first occurrence of β after i2; suppose
this happens at i3. Finally the last crossing happens at the last occurrence
of β before the first occurrence of α after i3; suppose this happens at i4. In
particular we have the following (where some of the “. . .” might be empty):

Ball throwing pattern: 〈. . . ,α, . . . ,β , . . . ,α, . . . ,β , . . .〉
Location of crossings: i1 i2 i3 i4

Note that there might be additional occurrences of α and β in the ball
throwing pattern, so far we have focused only on the location of the crossings.

We now split the ball throwing pattern into four subpatterns Pi as fol-
lows:

• P1 consists of the entries of P between i1 + 1 and i2 (inclusive).
• P2 consists of the entries of P between i2 + 1 and i3 (inclusive).
• P3 consists of the entries of P between i3 + 1 and i4 (inclusive).
• P0 consists of the remaining entries of P , namely up to i1 and after

i4 + 1.

Note that no subpattern contains both α and β (by construction), and
therefore each one of these subpatterns (by proper relabeling, i.e., so that
the first occurrences of the balls in order are 1, 2, . . .) give ball throwing pat-
terns with no additional crossings. So we have decomposed the ball throwing
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pattern into four patterns with no additional crossings, by construction the
sum of the lengths of the subpatterns is n. We further have the following
which gives information about the number of balls in the subpatterns.

Claim. No ball other than α and β occurs in two of the Pi.

To see this suppose that a ball γ occurred both in P1 and P2. Then it
must be the case that our pattern P contains 〈. . . , γ . . . , β, . . . , γ〉. But this
is impossible, because between the two occurrences of γ in the pattern γ
had to go above β (one crossing) and then β had to go above γ (a second
crossing) and so there are no more available crossings for β and γ to interact.
However we know that the ordering on both ends is the identity and so there
must be another crossing at some point either before or after the γ’s to put
them in the correct order at both ends giving us a third crossing which
is impossible (since other than the pair α and β, each pair crosses exactly
twice). The same argument works for each other pair of intervals.

Therefore we can conclude that α appears in P0 and P2, β appears in P1

and P3 and each other ball appears in exactly one of the Pi. Letting ci denote
the number of balls in each Pi we can conclude that c0+ c1+ c2+ c3 = b+2.
Finally we note that the decomposition for P involved splitting the interval
for P0 at some point, for which there are m0 places we could have chosen
(i.e., i1 is something from 1, 2, . . . ,m0).

To finish the bijection we now show how to take patterns P0, P1, P2, P3

with no additional crossings with lengths m0 +m1 +m2 +m3 = n, number
of balls c0+ c1+ c2+ c3 = b+2, and a choice 1 ≤ i1 ≤ m0 to form a pattern
P with two additional crossings. We start by first labeling the balls so that
they are all distinct among all the Pi and no balls are yet labeled α and β
and carry out the following three steps:

1. Whichever ball is thrown in position i1 in P0 we relabel that ball α in
all its occurrences in P0. Whichever ball is thrown in position m1 in
P1 we relabel that ball β in all its occurrences in P1. Whichever ball is
thrown in position m2 in P2 we relabel that ball α in all its occurrences
in P2. Whichever ball is thrown in position m3 in P3 we relabel that
ball β in all its occurrences in P3. (Note that we now have b different
labels in use.)

2. Form a ball throwing pattern by concatenating, in order, the first i1
entries from P0, all of P1, all of P2, all of P3, and the remaining m− i1
entries from P0.

3. Relabel the balls so that the first occurrences of the balls in order are
1, 2, . . ..



530 Steve Butler et al.

This produces a ball throwing pattern which has b(b − 1) + 2 crossings

(i.e., since α and β will cross four times and no other pair of balls can

have more than two crossings). Further, applying the preceding decomposi-

tion argument we can precisely recover P0, P1, P2, P3 and our choice of i1,

establishing the bijection.

5.2. Using generating functions

As in the preceding section, we can define a generating function for what we

are trying to count,

G(x, y) =
∑

b≥2,n≥4

g(b, n)xbyn.

We are now ready to establish Theorem 9

Proof of Theorem 9. From Lemma 10 we know that the ball throwing pat-

terns we want to count can be decomposed into four ball throwing patterns

with no crossings and where there is a choice of where to make a split on

the first pattern. Therefore we have

(2) g(b, n) =
∑

ci,mi≥1
c0+c1+c2+c3=b+2
m0+m1+m2+m3=n

m0f(c0,m0)f(c1,m1)f(c2,m2)f(c3,m3).

We recall the generating function for the ball throwing patterns with no

crossings (i.e., for minimal crossing juggling sequences),

F (x, y) =
∑
b,n≥1

f(b, n)xbyn =
1− y − xy −

√
(1− y − xy)2 − 4xy2

2y
,

and note that

y
∂

∂y

(
F (x, y)

)
=

∑
b,n≥1

nf(b, n)xbyn.

If we now multiply both sides of (2) by xbyn and then sum we have the

following

G(x, y) =
∑

b≥2,n≥4

g(b, n)xbyn
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=
∑

b≥2,n≥4

( ∑
1≤ci,mi∑
ci=b+2∑
mi=n

m0f(c0,m0)f(c1,m1)f(c2,m2)f(c3,m3)

)
xbyn

=
1

x2

∑
b≥2,n≥4

∑
1≤ci,mi∑
ci=b+2∑
mi=n

(
m0f(c0,m0)x

c0ym0 × f(c1,m1)x
c1ym1

×f(c2,m2)x
c2ym2 × f(c3,m3)x

c3ym3
)

=
1

x2

(
y
∂

∂y

(
F (x, y)

))
× F (x, y)× F (x, y)× F (x, y)

= y
∂

∂y

((
F (x, y)

)4
4x2

)
.

Taking the known expression for F (x, y) and letting z = 1− y − xy we

have

(
F (x, y)

)4
4x2

=
8z4 − 32xy2z2 + 16x2y4 − (8z3 − 16xy2z)

√
z2 − 4xy2

64x2y4
,

Further we have

√
z2 − 4xy2 = z

√
1− 4xy2

z2

= z − z
∑
k≥1

(2k − 2)!

22k−1k!(k − 1)!

(4xy2)k

z2k

= z − 2xy2

z
− z

∑
k≥2

(2k − 2)!

22k−1k!(k − 1)!

(4xy2)k

z2k

= z − 2xy2

z
− 2

∑
k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xk+2y2k+4

z2k+3
.

Substituting this in and simplifying we have

(
F (x, y)

)4
4x2

=
1

4
(z2 − 2xy2)

∑
k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xky2k

z2k+2

=
1

4

∑
k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xky2k

z2k
− 1

2

∑
k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xk+1y2k+2

z2k+2
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=
1

4
+

1

2

∑
k≥2

(2k)!(k − 1)

k!(k + 2)!

xky2k

z2k
,

where in going to the last line we pull off the first term on the first summand
and shift the second summand and then combine noting we can drop the
k = 1 case. We also have

1

z2k
=

1(
1− y(x+ 1)

)2k =
∑
j≥0

(
2k − 1 + j

j

)
yj(x+ 1)j .

Substituting this we now have

(
F (x, y)

)4
4x2

=
1

4
+

1

2

∑
j≥0
k≥2

(2k)!(k − 1)

k!(k + 2)!

(
2k − 1 + j

j

)
xk(x+ 1)jy2k+j .

Finally, we can recover G(x, y) since what remains is to take the derivative
with respect to y and then multiply by y, which is equivalent to bringing
down the power of y. After simplifying, we can conclude

G(x, y) =
1

2

∑
j≥0
k≥2

(2k)!(k − 1)(2k + j)

k!(k + 2)!

(
2k − 1 + j

j

)
xk(x+ 1)jy2k+j

=
∑
j≥0
k≥2

(
2k + j

k + 2, k − 2, j

)
xk(x+ 1)jy2k+j

=
∑
n≥4
k≥2

(
n

k + 2, k − 2, n− 2k

)
xk(x+ 1)n−2kyn,

where
(

a
b,c,d

)
is the multinomial coefficient a!

b!c!d! and in going to the last line
we make the substitution j → n− 2k.

We can now get the coefficient of xbyn, which is done by using the bino-
mial theorem and summing over possible k. In particular we can conclude

g(b, n) =
∑
k

(
n

k + 2, k − 2, n− 2k

)(
n− 2k

b− k

)

=
∑
k

(
n

k + 2, k − 2, b− k, n− b− k

)
.
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By the special case a = 2 of Proposition 11 (given below) this is equal to(
n

b+2

)(
n

b−2

)
, finishing the proof.

Proposition 11.
∑
k

(
n

k + a, k − a, b− k, n− b− k

)
=

(
n

b+ a

)(
n

b− a

)
.

Proof. We count the number of ways to select two sets A and B from n

elements, with |A| = b+ a and |B| = b− a. This is clearly equal to the right

hand side, so it remains to show how the left hand side equals this as well.

We begin by noting that we can rewrite the multinomial coefficient as a

product of binomial coefficients in the following way,

∑
k

(
n

k + a, k − a, b− k, n− b− k

)
=

∑
k

(
n

b+ k

)(
b+ k

2k

)(
2k

k + a

)
.

We now choose our sets in the following way: First we pick b + k elements

which will correspond to A∪B, then among those b+ k elements we choose

the 2k elements which will belong to precisely one of the sets, finally among

the 2k elements which will belong to exactly one set we choose k+a of them

for A and the remaining k − a go to B. Summing over all possibilities for k

now gives the desired count.

5.3. Higher crossing numbers

The next natural step in our problem is to ask for the enumeration of se-

quences A with larger values of Cr(A). One approach to this problem would

be to further simplify the types of juggling card sequences we are count-

ing. Let us call a juggling card sequence A primitive if it does not use the

“trivial” card C1, i.e., the card which generates the identity permutation.

Such a card does not contribute to the number of crossings Cr(A) of A. We

note that counting these primitive juggling card sequences is equivalent to

counting the reduced ball throwing patterns which do not end in 1.

Let us denote by Pd(n, b) the number of primitive juggling card sequences

A with n cards using Cb with π(A) = id and Cr(A) = b(b − 1) + d, and

let Qd(n, b) denote the number of such sequences which are not necessarily

primitive. Since crossings occur in pairs, d must be even. Then

Qd(n, b) =

n∑
k=1

(
n

k

)
Pd(k, b).
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Table 1: Data for P4(n, b)

P4(n, b) b=2 b=3 b=4 b=5 b=6 b=7 b=8

n=6 1 3
n=7 2·7 3·7
n=8 22·3 24·7 22·3·7
n=9 22·32·5 22·3·72 23·32·7
n=10 2·32·5 25·32·5 2·3·5·7·11 2·32·5·7
n=11 33·5·11 24·33·5·11 25·3·7·11 2·32·7·11
n = 12 2·52·11 ∗∗∗ ∗∗∗ ∗∗∗

P4(n, b) b=6 b=7 b=8 b=9

n=12 2·32·5·11·13 22·32·5·11·17 23·3·7·112 22·32·7·11
n=13 2·5·7·11·13 22·33·5·11·13 22·32·11·13·23 22·3·11·13·29
n=14 3·7·11·13 5·7·11·13·19 23·32·5·7·11·13 23·32·5·7·11·13

The hope would be that Pd(n, b) could be simpler in some sense thanQd(n, b)

and would therefore be easier to recognize. It turns out that if we write

n = b+ t then it is not hard to show that

P0(n, b) =
1

t+ 1

(
b− 2

t

)(
b+ t

t

)

and

P2(n, b) =

(
b+ t

2t

)(
2t

t− 2

)
.

In Table 1 we give data (in factored form) for P4(n, b) for small values of n

and b.

The fact that there are many small factors suggest that P4(n, b) could

be made up of binomial coefficients in some way. However, the presence of

occasional “large” factors makes it difficult to guess what the expressions

might actually be (for example, P4(14, 10) = 3·7·11·13·37). Nevertheless,

computations suggested that P4(n, b) is given by the following expression:

P4(n, b) =
(bn− b− 8)

2(b+ 4)

(
n

b+ 3

)(
n

b− 2

)
.

This has been confirmed by one of the authors (Cummings), but we do not

give a proof of this result here. We don’t even have a guess as to what the

expressions are for P2k when k ≥ 3!
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6. Final arrangements consisting of a single cycle

Suppose that we draw cards at random from the set {C1, C2, . . . , Cb} with
replacement to form a juggling card sequence A. We can then ask for the
probability that πA has some particular property. For example, what is the
probability that it is equal to some given permutation, such as the identity,
or that the permutation consists of a single cycle. The first question can be
answered using Theorem 2. The answer for the second question is especially
nice. We state the result as follows.

Theorem 12. The probability that a random sequence A of n cards taken
from the set of juggling sequence cards {C1, C2, . . . , Cb} has πA consisting of
a single cycle is 1/b. In particular, this is independent of n.

The following proof is due to Richard Stong [17]. We start with the
following two basic lemmas.

Lemma 13. The probability a random permutation σ of [b] has L(σ) ≥ k is
1/k! for 1 ≤ k ≤ b.

Proof. Select a k-element subset {a0 > a1 > · · · > ak−1} from [b]. Define
the permutation ρ by first setting ρ(b− i) = ai for 0 ≤ i ≤ k − 1. There are
exactly (b−k)! ways to complete ρ so that it is a permutation of [b]. Clearly,
L(σ) ≥ k and there are

(
b
k

)
(b − k) = b!/k! choices for ρ (and any ρ with

L(ρ) = k must be formed this way). Thus, the probability that a random ρ
has L(ρ) ≥ k is 1/k! as claimed.

We note here that the number of permutations of [b] that consist of a
single cycle is (b− 1)!.

Lemma 14. The probability that a random permutation σ of [b] which con-
sists of a single cycle has L(σ) ≥ k is 1/k! for 1 ≤ k ≤ b− 1.

Proof. The proof is similar to that of Lemma 13. In this case we choose k
elements {a0 > a1 > · · · > ak−1} from [b − 1] and map ρ(b − i) to ai for
0 ≤ i ≤ k − 1 as before. The reason that we don’t allow a0 = b is that if
ρ(b) = a0 = b then ρ would have a fixed point and so, could not be a single
cycle. Now the question is how to complete the definition of ρ so that it
becomes a single cycle. This is actually quite easy. We have the beginning of
b−k chains, namely, b → a0, b−1 → a1, . . . , b−k+1 → ak−1, together with
the remaining single points not included in the points listed so far. It is just
a matter of piecing these fragments together to form a single cycle. The fact
that some of the ai might be equal to some of the b−j causes no problem. It
is easy to see that there are just (b− k− 1)! ways to complete the definition
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of ρ so that it becomes a single cycle with L(ρ) ≥ k, and furthermore all
such ρ can be constructed this way. Since

(
b−1
k

)
(b − k − 1)! = (b − 1)!/k!,

and there are (b − 1)! permutations of [b] that are cycles of length b, this
completes the proof of Lemma 14.

Proof of Theorem 12. Partition the set of b! permutations of [b] into b dis-
joint classes Xk, for 1 ≤ k ≤ b. Namely, σ ∈ Xk if and only if L(σ) = k. By
Lemma 13, |Xk| = b!

(
1
k!−

1
(k+1)!

)
for 1 ≤ k ≤ b−1, while |Xb| = 1. Similarly,

we can partition the set of (b− 1)! permutations which are b-cycles into dis-
joint sets Yk, for 1 ≤ k ≤ b − 1, where σ ∈ Yk if and only if L(σ) = k. By
Lemma 14, |Yk| = (b − 1)!

(
1
k! −

1
(k+1)!

)
for 1 ≤ k ≤ b − 2, while |Yb−1| = 1.

Note that L(σ) ≥ b− 1 if and only if σ ∈ Xb−1 ∪Xb.
Now by Theorem 2, each σ ∈ Xk accounts for exactly

∑b
k=b−L(σ)

{
n
k

}
different card sequences A with πA = σ, and the same is true for each σ ∈ Yk,
where 1 ≤ k ≤ b−2. Furthermore, |Xk| = b|Yk| for these k. In addition, each
σ ∈ Xb−1 ∪ Xb and each σ ∈ Yb−1 accounts for exactly

∑b
k=1

{
n
k

}
different

card sequences A with πA = σ. Thus, since |Xb−1∪Xb| = b!
(b−1)! = b = b|Yb−1|

then it follows that the number of card sequences accounted for by all σ
(which is bn) is exactly b times the number accounted for by the σ which are
b-cycles. In other words, the probability that a random sequence of n cards
generates a permutation which is a b-cycle is just 1/b, independent of n.

It turns out that the analog of Theorem 12 holds for cards where m balls
are thrown.

Theorem 15. The probability that a random sequence A of length n using
cards where m balls are thrown at a time has πA equal to a b-cycle is 1/b.
In particular, this is independent of n.

The proof follows the same lines as the proof of Theorem 12 and will be
omitted. The basic point is that in this case each σ with L(σ) = k accounts
for exactly

∑b
k=b−L(σ)

{
n
k

}
m

sequences of m-cards with πA = σ. Note that it
is not obvious that Theorem 15 even holds for n = 1.

The surprising thing is that these results apply for all n and is not tied
to a limiting process. Indeed, in the limit this is a special case of a much
more general group theoretic principle that we prove now.

Theorem 16. Let G be a finite group, let S = {g1, . . . , gk} be a generating
set of G, and let P = {p1, . . . , pk} be a corresponding set of non-zero proba-
bilities summing to 1. Consider the Markov chain on G where at each stage
the current element is multiplied by a random g ∈ S chosen with probability
given by P. Then the stationary distribution of this process is the uniform
distribution, independent of the group structure or P.
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Proof. For simplicity we will assume that our walk begins at the identity
element. Consider the formal sum D =

∑
gi∈S pigi. The probability distri-

bution of the random walk after n steps is then given by the formal sum
Dn. Let F =

∑
g∈G qgg be the stationary distribution of this Markov chain.

Then we have that F acts as a fixed point, i.e., DF = F .
Let h be a group element whose probability qh in the stationary distri-

bution is maximum, i.e., qh ≥ qg for all g ∈ G. Applying this after equating
the h coefficients on each side of DF = F gives

qh =

k∑
i=1

piqg−1
i h ≤

k∑
i=1

piqh = qh,

which can only hold if each qg−1
i h = qh. Now, for each i, apply this same

argument by choosing g−1
i h as the maximum element instead of h. Since

{g−1
i : i ∈ [k]} is also a generating set of G, by continuing in this way we see

that qg = qh for all g ∈ G, completing the proof.

Thus in the case of Sn, the probability of having � distinct cycles after
choosing n random juggling cards tends to

[
b
�

]
/b! as n tends to infinity,

where
[
b
�

]
indicates the Stirling number of the first kind, i.e., the number of

ways to decompose {1, . . . , b} into � disjoint cycles. Indeed, we note without
proof that it converges to this quite rapidly. By following the lines of the
proof of Theorem 12, only in the “end cases” where L(σ) is within � of b
does the proportion not equal precisely

[
b
�

]
/b!.
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