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Hook length formulas for partially colored labeled
forests

Francesca Camagni and Fabrizio Caselli

Motivated by the study of the invariant theory of some finite
groups, we introduce and study the notion of partially colored la-
beled forest. A flag-major index is defined on these forests and we
study the distribution of this statistic on all partially colored la-
beled forests and on linear extensions of a fixed partially colored
labeled forest. The main results that we obtain are formulas for
such distributions which have a very simple factorization form and
generalize and unify several known results present in the literature.

Keywords and phrases: Complex reflection groups, flag-major index,
invariant algebras.

Introduction

In the early 1900s Percy MacMahon [14] introduced and studied the greater
index of a permutation of a totally ordered set, and probably his most
known result on it is that it is equidistributed with the inversion number.
Apparently because of the military degree of MacMahon the greater index
was later renamed and is now widely known as major index. In the last
thirty years, this index has been generalized in two directions which are of
interest in this work.

In 1989 Björner andWachs [6] generalized the major index defining a new
statistic on labeled forests (i.e. partially ordered sets whose Hasse diagram
is a rooted forest) in a very natural way. They presented in particular two
q-hook length formulas: one for the distribution of the major index over
permutations which correspond to linear extensions of a labeled forest, and
the other for the distribution of the new statistic over all labelings of a fixed
forest. These results have recently been extended to “signed-labeled” forests
by Chen, Gao and Guo [10].

In the early 2000s, Adin and Roichman [2] generalized the major index to
the case of colored permutation groups G(r, n), which are wreath products
of the form Zr � Sn, where Zr is the cyclic group of order r. They called this
new statistic the flag-major index because of a specific algebraic property
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that it satisfies and showed, in particular, that it is equidistributed with
the length function for the classical Weyl group of type B (i.e. in the case
r = 2). In 2004 Biagioli and the second author [4] defined an analogous
statistic for the Weyl groups of type D and in 2007 Bagno and Biagioli [3]
extended the definition of the flag-major index for complex reflection groups
G(r, p, n), which are normal subgroups of G(r, n) of index p. Finally, in 2011
the second author [8] introduced a new family of groups G(r, p, q, n), which
are concrete examples of a more general class of groups called projective
reflection groups, and that can be described as quotients of G(r, p, n) modulo
the cyclic scalar subgroup Cq. He extended the notion of flag-major index to
these groups and showed how the combinatorics, and in particular the flag-
major index, of a group G(r, p, q, n) can be used to describe certain aspects
of the representation theory of the “dual” group G(r, q, p, n), providing a
unified description of many of the main results appearing in [2, 1, 4, 5].

In this work we give new definitions of labelings of a forest, which gen-
eralize the standard type in [6] and the signed type in [10] (strictly speaking
the specialization of our definitions and results to the signed type does not
coincide with those given in [10] but one can easily show that they are equiv-
alent in the most relevant cases). A first natural generalization is to consider
labels which are colored integers. We generalize the major index defined in
[6] introducing the flag-major index of a colored labeled forest. This allows us
to generalize in a natural way the two hook-length formulas recalled above.
As particular cases of them, we recover some known results for the distribu-
tion of the flag-major index on projective reflection groups G∗ = G(r, n)/Cp

[8] and on sets of cosets representatives for some special subgroups of G∗ [9].
Motivated by the study of invariant and coinvariant algebras of some groups
related to the projective reflection groups G(r, p, q, n) in §2 and the above
mentioned study of the distribution of the flag-major index on sets of cosets
representatives, we have been naturally led to consider a more general class
of labelings that we call partially colored labelings (and also equivalence
classes of such labelings) in order to provide a general statement (Theorem
4.4), which is our main result and includes as special cases all the above
mentioned results.

This paper is structured as follows. In §1 we collect some notations and
preliminaries for the necessary background. In §2 we study invariant and
coinvariant algebras of some finite groups in order to have deeper motivations
to introduce and study the notion of partially colored labeling in §3. In §4 we
make a further generalization considering orbits of partially colored labelings
under the action of a specific cyclic group. We define also the flag-major
index for these labelings and we present an analogue of the q-hook length
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formula over all linear extensions of a colored labeled forests. Finally, in §5
we give a generalized version of the second q-hook length formula of Björner
and Wachs.

1. Notation and preliminaries

1.1. Some notations

We let Z be the set of integer numbers and N be the set of non-negative
integers. For a, b ∈ Z, a ≤ b, we let [a, b] := {a, a + 1, . . . , b}. For n ∈ N,
n �= 0, we let also [n] := [1, n]. If q is an indeterminate, we let

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1

be the q-analogue of n, and [n]q! := [1]q[2]q · · · [n]q. We let

Pn := {f = (f1, f2, . . . , fn) ∈ Nn : f1 ≥ f2 ≥ · · · ≥ fn}

be the set of partitions of length at most n, and |f | := f1 + f2 + · · ·+ fn be
the size of f .

Let Sn be the symmetric group on n letters. A permutation σ ∈ Sn will
be denoted by σ = [σ1, σ2, . . . , σn], where σi = σ(i) for i ∈ [n]. We denote
the descent set of σ by

Des(σ) := {i ∈ [n− 1] : σi > σi+1},

and the major index of σ by

maj(σ) :=
∑

i∈Des(σ)

i.

If r ∈ N, we let Zr := Z/rZ. If p|r and a ∈ Zr, when no confusion arises,
we will usually still denote by a the projection of a on Zp, including the case
r = 0, i.e. the case when a is a genuine integer. The following convention
will be very useful in this paper: if r, r′ ∈ N, p|r, r′, a ∈ Zr and b ∈ Zr′ we
write “a = b ∈ Zp” to mean that the projections of a and b in Zp coincide.
Moreover, if a ∈ Zr we let resp(a) be the smallest non-negative representative
of a in Zp, and for a, b ∈ Zr we write a ≺p b if resp(a) < resp(b).

A r-colored integer is a pair (i, a), denoted also ia, where i ∈ N \ {0}
and a ∈ Zr. We define its absolute value to be |ia| := i, and its color to be
c(ia) := a.

Finally, we denote by ζr the primitive r-th root of the unity e2πi/r.
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1.2. Complex reflection groups and G(r, p, n)

Let V be a complex vector space of finite dimension. An element r ∈ GL(V )
is called a pseudo-reflection if it has finite order and its fixed point space
is of codimension 1. A finite subgroup W ⊆ GL(V ) is a (finite) complex
reflection group if it is generated by pseudo-reflections.

In this paper we deal with the infinite family of complex reflection groups
G(r, p, n), where r, p, n are positive integers with p | r, that we are going to
describe.

When r = p = 1, the group G(1, 1, n) is the symmetric group Sn, the
group of the n× n permutation matrices.

When p = 1, the group G(r, n) := G(r, 1, n) is the wreath product Zr �Sn,
also called generalized symmetric group, or group of colored permutations.
G(r, n) consists of all n× n matrices satisfying the following conditions:

• the entries are either 0 or r-th roots of unity;
• there is exactly one non-zero entry in every row and every column.

If p divides r, then G(r, p, n) is the subgroup of G(r, n) given by the matrices
such that:

• the product of the non-zero entries is a r/p-th root of unity.

For our exposition it is more convenient to consider wreath products not
as groups of complex matrices but as groups of colored permutations. So we
recall the following alternative notation.

Notation 1. If g ∈ G(r, n), we write g = [σc1
1 , σc2

2 , . . . , σcn
n ] if the non-zero

entry in the i-th row of g is ζcir and appears in the σi-th column.

In this notation we reinterpret G(r, n) as the group of permutations g
of the set of r-colored integers ia, where i ∈ [n] and a ∈ Zr, such that
if g(i0) = jb then g(ia) = ja+b. In fact the element g = [σc1

1 , σc2
2 , . . . , σcn

n ]
represents the unique such permutation such that gi := g(i0) = σci

i . If
g = [σc1

1 , σc2
2 , . . . , σcn

n ] ∈ G(r, n), we let |g| := σ ∈ Sn and we denote by

col(g) :=

n∑
i=1

ci ∈ Zr

the color weight of g. In this notation we have that

G(r, p, n) := {g ∈ G(r, n) : col(g) = 0 ∈ Zp}.

Note that G(r, p, n) is a normal subgroup of G(r, n) of index p, as it is the
kernel of the surjective map G(r, n) → Zp given by g 
→ col(g).
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Example 1. If r = 2, the group G(2, n) is the Weyl group Bn. In this
case one usually reinterprets 2-colored integers as signed integers, i.e. for
any positive integer i, we write i instead of i0 and −i instead of i1, so that
the group Bn is called the group of signed permutations. For example, the
element β = [20, 41, 30, 50, 10] ∈ G(2, 5) becomes β = [2, −4, 3, 5, 1].

Example 2. If r = p = 2, the group G(2, 2, n) is the Weyl group Dn, also
known as the group of even-signed permutations. In fact Dn is the subgroup
of Bn consisting of signed permutations with an even number of minus signs,
or equivalently of 2-colored permutations in which the color 1 appears an
even number of times:

Dn := {g ∈ Bn : neg(g) = 0 ∈ Z2} = {g ∈ Bn : col(g) = 0 ∈ Z2},

where neg(g) = |{i ∈ [n] : g(i) < 0}|. For example, γ = [2, −4, 3, −5, 1] =
[20, 41, 30, 51, 10] ∈ G(2, 2, 5).

1.3. Projective reflection groups and G(r, p, q, n)

Let V be a complex vector space of finite dimension n and Sq(V ) the q-th
symmetric power of V . Let Cq be the cyclic scalar subgroup of GL(V ) of
order q generated by ζqI. Finally, let G be a finite subgroup of GL(Sq(V )).
Then, according to [8], we say that the pair (G, q) is a (finite) projective
reflection group if there exists a finite complex reflection group W ⊂ GL(V )
such that Cq ⊆ W and G = W/Cq.

The infinite family of groups G(r, p, n) gives rise to the following family
of projective reflection groups.

Definition 1. Let r, p, q, n be positive integers such that p | r, q | r and
pq | rn. Then we let

G(r, p, q, n) :=
G(r, p, n)

Cq
,

where Cq is the cyclic group generated by ζqI.

In [7, 8, 9] it has been shown that the combinatorics and the repre-
sentation theory of the two projective reflection groups G(r, p, q, n) and
G(r, q, p, n) are intimately related. This is why it has been natural to let
G(r, p, q, n)∗ = G(r, q, p, n) and call this group the dual group of G(r, p, q, n).

Following our notation, for an element g ∈ G(r, p, q, n) we also write
g = [σc1

1 , σc2
2 , . . . , σcn

n ] to mean that g can be represented by [σc1
1 , σc2

2 , . . . , σcn
n ]

in G(r, p, n).
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Example 3. We have D∗
n = G(2, 1, 2, n) = Bn/ ± id, where id := idBn

is
the identity element of Bn. For example, g = [2, −4, 3, 5, 1] ∈ G(2, 1, 2, 5)
can be represented by g1 = [2, −4, 3, 5, 1] or g2 = [−2, 4, −3, −5, −1] in
G(2, 5).

1.4. Flag-major index on G(r, p, q, n)

Let g = [σc1
1 , σc2

2 , . . . , σcn
n ] ∈ G(r, p, q, n). According to [8], we let

HDes(g) := {i ∈ [n− 1] : ci = ci+1 and σi > σi+1}

be the homogeneous descent set of g (note that, while the colors ci’s depend
on the chosen representative, the condition ci = ci+1 is independent of such
choice),

di(g) := |{j ∈ [i, n− 1] : j ∈ HDes(g)}|
for all i ∈ [n], and

ki(g) :=

{
resr/q (cn) if i = n,

ki+1(g) + resr (ci − ci+1) if i ∈ [n− 1].

Note that the sequence d(g) := (d1(g), d2(g), . . . , dn(g)) is a partition, and
observe that k(g) := (k1(g), k2(g), . . . , kn(g)) can be characterized as the
smallest element in Pn (with respect to the entrywise order) such that

g = [σ
k1(g)
1 , σ

k2(g)
2 , . . . , σkn(g)

n ].

We also let

λi(g) := rdi(g) + ki(g)

for all i ∈ [n], and similarly we note that λ(g) := (λ1(g), λ2(g), . . . , λn(g)) is
a partition such that

(1.1) g = [σ
λ1(g)
1 , σ

λ2(g)
2 , . . . , σλn(g)

n ].

Finally, we define the flag-major index of an element g ∈ G(r, p, q, n) as

fmaj(g) := |λ(g)|.

Note that these definitions do not depend on the choice of the representative
of g in G(r, p, n).
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Example 4. Let g = [22, 73, 63, 45, 81, 17, 53, 32] ∈ G(6, 2, 3, 8). Then
HDes(g) = {2, 5}, d(g) = (2, 2, 1, 1, 1, 0, 0, 0), k(g) = (18, 13, 13, 9, 5, 5, 1, 0),
λ(g) = (30, 25, 19, 15, 11, 5, 1, 0) and fmaj(g) = 106.

All the interest around the fmaj statistic probably originated from the
following result.

Proposition 1.1. ([2], Theorem 4.1) Let t be an indeterminate. We have∑
g∈G(r,n)

tfmaj(g) = [d1]t[d2]t · · · [dn]t,

where di’s are the fundamental degrees of G(r, n) (see §1.5).
This result has been extended to all groups G(r, p, q, n) in [8] and in

particular we have the following fact which is of interest in this paper.

Proposition 1.2. Let G = G(r, p, n) and G∗ = G(r, n)/Cp. Then∑
g∈G∗

tfmaj(g) = [d1]t[d2]t · · · [dn]t,

where di’s are the fundamental degrees of G.

In the rest of this section we let G = G(r, p, n) and G∗ = G(r, n)/Cp.
Inspired by work of Garsia [12] the second author also studied in [9] the
distribution of the flag-major index on sets of cosets representatives for
some special subgroups of G∗, defined as follows. For 1 ≤ k < n, let

(1.2) Ck := {[σ0
1, σ

0
2, . . . , σ

0
k, gk+1, . . . , gn] ∈ G∗ : σ1 < σ2 < · · · < σk}.

We note that the subgroup of G∗ given by

{g ∈ G∗ : g = [g1, g2, . . . , gk, (k + 1)0, . . . , n0]}

is isomorphic to G(r, k) for all k < n. We may observe that Ck contains
exactly p representatives for each (right) coset of G(r, k) in G∗. Then we
have the following distribution which can be seen as a generalization of
Proposition 1.2.

Theorem 1.3. ([9], Theorem 5.5) Let Ck be defined as in (1.2). Then∑
g∈Ck

tfmaj(g−1) = [p]tkr/p [(k + 1)r]t [(k + 2)r]t · · · [(n− 1)r]t [nr/p]t.
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The following is an immediate consequence.

Corollary 1.4. ([9], Corollary 5.6) If p = 1, then Ck is a complete system
of coset representatives for the subgroup G(r, k) and∑

g∈Ck

tfmaj(g−1) = [(k + 1)r]t [(k + 2)r]t · · · [nr]t.

We recall now some further technical results we will use in the present
work.

Lemma 1.5. ([9], Lemma 5.1) There exists a bijection

G∗ × Pn × [0, p− 1] → Nn, (g, λ, h) 
→ f = (f1, f2, . . . , fn),

where fi = λ|g−1(i)|(g) + rλ|g−1(i)| + h r
p for all i ∈ [n]. In this case we say

that f is g-compatible.

Lemma 1.6. ([9], Lemma 5.2) If g ∈ G∗ we let Sg be the set of g-compatible
vectors in Nn. Then

∑
f∈Sg

xf11 · · ·xfnn =
x
λ1(g)
|g1| · · ·xλn(g)

|gn|

(1− xr|g1|) · · · (1− xr|g1| · · ·x
r
|gn−1|)(1− x

r/p
|g1| · · ·x

r/p
|gn|)

.

Lemma 1.7. ([9], Lemma 5.3) If g ∈ G∗ then there exists h ∈ [0, p−1] such
that λi(g) + λ|gi|(g

−1) = h r
p ∈ Zr, for all i ∈ [n].

1.5. Invariants and descent basis

Let V be a complex vector space of finite dimension n andW a finite complex
reflection group. Then W is characterized by the structure of its invariant
ring, in the following sense.

Let S[V ∗] be the symmetric algebra on V ∗, which can be seen as the
algebra of polynomial functions on V . Any finite subgroup W of GL(V )
acts naturally on S[V ∗]. Denote by S[V ∗]W the invariant ring of W . Then
Chevalley [11] and Shephard-Todd [15] proved thatW is a complex reflection
group if and only if S[V ∗]W is generated by (1 and by) n algebraically
independent homogeneous elements, called basic invariants. Although these
polynomials are not uniquely determined, their degrees d1, . . . , dn are basic
numerical invariants of W , and they are called fundamental degrees of W .
Denote by I(W ) the ideal of S[V ∗] generated by the homogeneous elements
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of strictly positive degree in S[V ∗]W . Then we recall that the coinvariant

algebra of W is defined by

R(W ) :=
S[V ∗]

I(W )
.

Since I(W ) is W -invariant, the group W acts naturally on R(W ). We recall

that R(W ) is isomorphic to the left regular representation of W and in

particular that its dimension as a C-vector space is |W |.
In [8] the second author generalized this result to the case of projec-

tive reflection groups. Let Sq[V
∗] be the q-th Veronese subalgebra of S[V ∗],

i.e. the algebra of polynomial functions on V generated by 1 and the ho-

mogeneous polynomial functions of degree q. For the reader’s convenience

we recall some results in the invariant theory of projective reflection groups

which are proved in [8].

Let G be any finite subgroup of graded automorphisms of Sq[V
∗]. Then

(G, q) is a projective reflection group if and only if the invariant algebra

Sq[V
∗]G is generated by (1 and by) n algebraically independent homogeneous

elements.

We denote by I(G) the ideal of Sq[V
∗] generated by homogeneous ele-

ments of positive degree in Sq[V
∗]G. Then the coinvariant algebra of G is

defined by

R(G) :=
Sq[V

∗]

I(G)
.

Let W be the complex reflection group such that G = W/Cq. We recall

that

(1.3) Sq[V
∗]G = S[V ∗]W .

It follows that R(G) is the subalgebra of R(W ) generated by the homo-

geneous elements of degree multiple of q. Moreover, we recall that R(G) is

isomorphic to the left regular representation as a G-module and in particular

that its dimension as a C-vector space is |G|.
If we letX := (x1, . . . , xn) be a basis of V

∗, then S[V ∗] and Sq[V
∗] can be

identified respectively with the polynomial algebra C[X] and its subalgebra

Sq[X] generated by 1 and the monomials of degree q.

Observe that G(r, n) acts on C[X] as follows:

[σc1
1 , σc2

2 , . . . , σcn
n ] · P (X) = P

(
ζ
cσ1
r xσ1

, ζ
cσ2
r xσ2

, . . . , ζcσn
r xσn

)
.
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A set of basic invariants under this action is given by

(1.4) ei(x
r
1, . . . , x

r
n), i ∈ [n],

where the ei’s are the elementary symmetric functions. It follows that the
fundamental degrees of G(r, n) are

r, 2r, . . . , nr.

Moreover, dimR
(
G(r, n)

)
= |G(r, n)| = n!rn.

Now, consider the restriction to W = G(r, p, n) of the action of G(r, n)
on C[X]. Then a set of basic invariants is given by

(1.5)

{
ei(x

r
1, . . . , x

r
n) if i ∈ [n− 1]

x
r/p
1 · · ·xr/pn if i = n,

and the fundamental degrees of W are

r, 2r, . . . , (n− 1)r, nr/p.

Moreover, dimR(W ) = |W | = n!rn/p.
Finally, consider the action of G = G(r, p, q, n) on Sq[X]. From (1.3) we

recall that a set of basic invariants is given by (1.5). Moreover,

dimR(G) = |G| = n!rn

pq
= |G∗|.

The following result shows that a basis of the coinvariant algebra of G is
naturally described by its dual group G∗.

Theorem 1.8. ([8], Theorem 5.3) Let G = G(r, p, q, n). Then the set {ag :
g ∈ G∗}, where

ag(X) :=

n∏
i=1

x
λi(g)
|gi|

is a monomial of degree fmaj(g), represents a basis for R(G).

1.6. Labeled forests and q-hook length formulas

According to [6] we consider a finite poset F in which every element is
covered by at most one element, or equivalently such that its Hasse diagram
is a rooted forest with roots on top. For this reason we call also F a forest
and we let V (F ) and E(F ) be the vertex set and the edge set of the Hasse
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diagram of F , respectively, and ≺ the order relation in F . We can also denote
an edge in E(F ) by an ordered pair (x, y) of elements of F such that x is
covered by y. Let

hx := |{a ∈ F : a � x}|
be the hook length of the element x, for each x ∈ F , and

h(x,y) := hx

the hook length of the edge (x, y), for each (x, y) ∈ E(F ). We recall that a
linear extension of F is an indexing x of the vertices of V (F ) = {x1, . . . , xn}
such that xi ≺ xj only if i < j, and we denote by L (F ) the set of linear
extensions of F . Let

W (F ) := {w : V (F ) → [n] s.t. w is a bijection}

be the set of labelings of F .
For w ∈ W (F ) we denote the descent set of w by

Des(w) := {(x, y) ∈ E(F ) : w(x) > w(y)},

the major index of w by

maj(w) =
∑

e∈Des(w)

he,

and the set of linear extensions of w by

L (w) = {σ ∈ Sn : if x ≺ y then σ−1(w(x)) < σ−1(w(y))}.

Equivalently, if x1, x2, . . . , xn is a linear extension of F , then the element
[w(x1), w(x2), . . . , w(xn)] ∈ Sn is a linear extension of w and L (w) is the
set of all such permutations.

Example 5. Let w be the labeling in Figure 1 (where the letters x, y, z
denote the vertices of interest in this example and the numbers 1, 2, 3, 4, 5 the
labels). Then for example we have [3, 2, 5, 4, 1] ∈ L (w). Moreover, Des(w) =
{(x, y), (y, z)} and maj(w) = hx + hy = 1 + 3 = 4.

The distributions of the major index on linear extensions of a fixed
labeling and on all labelings of a fixed forest have very nice factorization
formulas which have been obtained by Björner and Wachs.

Theorem 1.9. ([6], Theorem 1.2) Let F be a finite forest with n elements
and w a labeling of F . Then
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Figure 1: Example of labeling.

∑
σ∈L (w)

qmaj(σ) = qmaj(w) [n]q!∏
x∈F

[hx]q
.

Theorem 1.10. ([6], Theorem 1.3) Let F be a finite forest with n elements

and W (F ) the set of all labelings of F . Then

∑
w∈W (F )

qmaj(w) =
n!∏

x∈F
hx

∏
x∈F

[hx]q.

2. Invariants and coinvariants

In this section we study the structure (such as generators, bases and Hilbert

series/polynomials) of the algebra of invariant polynomials and of the al-

gebra of coinvariant polynomials for some finite groups which are strictly

related to the groups G(r, p, q, n). This algebraic setting will serve as inspira-

tion for the appropriate definitions and as a motivation for the generalization

and unification of all the main results collected in §1.
Let N = (n1, . . . , nk) ∈ Nk and r ∈ N, r > 0. Consider the direct product

G(r,N) := G(r, n1)× · · · ×G(r, nk)

of k groups of r-colored permutations. Let p be a positive divisor of r. By

extending the definitions given in §1, we consider the following two groups

obtained from G(r,N): its subgroup

G := G(r, p,N)

:=
{
(g1, . . . , gk) ∈ G(r,N) :

∑
col(gi) = 0 ∈ Zp

}
,
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and its quotient

H :=
G(r,N)

Cp
,

where Cp is the cyclic subgroup of G(r,N) of order p generated by

([1r/p, 2r/p, . . . , n
r/p
1 ], . . . , [1r/p, 2r/p, . . . , nk

r/p]).

For notational convenience we let Xi := (xi,1, . . . , xi,ni
), where xi,j ’s are

variables, C[Xi] = C[xi,1, . . . , xi,ni
], and

C[X ] = C[xi,j : i ∈ [k], j ∈ [ni]]

be a polynomial ring in n1 + · · · + nk variables. We also let e
(r)
j (Xi) :=

ej(x
r
i,1, . . . , x

r
i,ni

), where ej is the j-th elementary symmetric function. The
groupH is a projective reflection group, since it is the quotient of a reflection
group modulo a cyclic scalar subgroup of order p, while the group G is not
in general. If we denote by

Sp[X ] ⊂ C[X ]

the subalgebra spanned by the homogeneous elements of total degree divis-
ible by p, we have that H acts on Sp[X ] and its invariants coincide with the
invariants of G(r,N), i.e.

Sp[X ]H = C[e
(r)
j (Xi), i ∈ [k], j ∈ [ni]].

Observe that we already knew from §1.5 that the invariant algebra of H is
generated as a C-algebra by n1 + · · ·+ nk algebraically independent homo-
geneous polynomials (together with 1).

Denote by I(H) the ideal of Sp[X ] generated by the homogeneous in-
variants of (strictly) positive degree and let

R(H) =
Sp[X ]

I(H)

be the coinvariant algebra ofH. We define the flag-major index of an element
γ = (g1, . . . , gk) ∈ G(r,N) as

fmaj(γ) :=
∑
i

fmaj(gi).
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We also let in this case

aγ(X ) := ag1(X1) · · · agk(Xk),

and we note that deg aγ = fmaj(γ).

Proposition 2.1. The set {aγ : γ ∈ G} represents a basis for the coinvari-
ant algebra R(H).

Proof. We observe that, since the invariants of H coincide with the invari-
ants of G(r,N) by Eq. (1.3), we have that R(H) is the subalgebra of

R
(
G(r,N)

)
=

C[X ]

I
(
G(r,N)

)
spanned by homogeneous elements of degree divisible by p. As R(G(r,N)) ∼=
R(G(r, n1)) ⊗ · · · ⊗ R(G(r, nk)) we have that the set {aγ : γ ∈ G(r,N)} is
a basis of R(G(r,N)), by Theorem 1.8. Therefore, a basis for R(H) is given
by

{aγ : deg aγ = 0 ∈ Zp} = {aγ : fmaj(γ) = 0 ∈ Zp} = {aγ : γ ∈ G},

as fmaj(g) = col(g) ∈ Zr for all g ∈ G(r, n).

Therefore we have that a basis of R(H) can be naturally described by
elements in G and in particular dimR(H) = |G| = |H|. The next target is
to show a sort of inverse of this result: we will show that a basis of R(G)
can be described using elements in H, although this result is not as neat as
in the case of projective reflection groups.

To study the G-invariant polynomials we need the following technical
result.

Lemma 2.2. Let G be a finite group and V a complex vector space of finite
dimension n. Consider a representation of G on V and suppose that such
representation is monomial, i.e. there exists a basis B = (b1, b2, . . . , bn) of
V such that, for every g ∈ G and i ∈ [n], g(bi) is a scalar multiple of some
basis element bj. Let v = a1b1+ . . .+anbn be an invariant element of V and
suppose that there exists a subgroup H of G and l ∈ [n] such that∑

h∈H
h(bl) = 0.

Then al = 0.
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Proof. Say that two basis elements bi and bj are in the same G-orbit if g(bi)
is a scalar multiple of bj for some g ∈ G. Consider the G-orbit O of the
basis B containing bl and consider the projection vO =

∑
bi∈O aibi of v. The

element vO is still invariant and therefore, by restricting the representation
of G to the vector subspace spanned by the elements in O, we can assume
that the action of G on B is transitive.

Let S be a set of representatives of (left) cosets of H in G, i.e. G =
S ·H =

⊎
s∈S sH, where

⊎
denotes the disjoint union. Then∑

g∈G
g(bl) =

∑
s∈S

∑
h∈H

sh(bl) = 0.

Since the representation is monomial and G is transitive, for any j ∈ [n]
there exists an element g̃ ∈ G such that bj = c g̃(bl) for a suitable c ∈ C. So∑

g∈G
g(bj) =

∑
g∈G

g(c g̃(bl)) =
∑
g∈G

c gg̃(bl) = c
∑
g′∈G

g′(bl) = 0.

Then, since v is invariant,

v =
1

|G|
∑
g∈G

g(v) =
1

|G|
∑
g∈G

∑
i

aig(bi) =
1

|G|
∑
i

ai
∑
g∈G

g(bi) = 0,

completing the proof.

The following result provides a precise description of the G-invariant
polynomials.

Proposition 2.3. Let d = r/p. The invariant ring of G(r, p,N) is generated

as a C-algebra by (1 and by) the homogeneous polynomials e
(r)
j (Xi), i ∈ [k],

j ∈ [ni], and

e
(d)
N (X ) := e(d)n1

(X1) · · · e(d)nk
(Xk) =

∏
i,j

xdi,j .

Proof. It is a simple verification that all polynomials e
(r)
j (Xi) and e

(d)
N (X )

are G-invariant, so that we only have to show that if P is a G-invariant

polynomial then P can be expressed as a polynomial in the e
(r)
j (Xi) and

e
(d)
N (X ). We can clearly assume that P is homogeneous (since otherwise we
can consider its homogeneous components) and proceed by induction on

degP , the case degP = 0 being trivial. If e
(d)
N (X ) divides P , the result
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easily follows by induction. If e
(d)
N (X ) does not divide P , then if we expand

P as a linear combination of monomials

P =
∑
M

cMM,

there exists a monomial M0 =
∏

x
di,j

i,j with a pair (i0, j0) such that 0 ≤
di0,j0 < d. Suppose cM0

�= 0. We first show that di0,j0 = 0. In fact, consider
the element γ = (γ1, . . . , γk) ∈ G given by

γi(j) =

{
jp if (i, j) = (i0, j0)

j otherwise,

for all i ∈ [k] and j ∈ [ni]. If di0,j0 �= 0 we have γ(M0) = ζ
pdi0,j0
r M0 �= M0

and therefore, letting H = 〈γ〉 we have

∑
h∈H

h(M0) =

r/p∑
s=1

ζ
psdi0,j0
r M0 = 0.

Hence, by Lemma 2.2, we have cM0
= 0 which contradicts our assumption

and therefore di0,j0 = 0.
Now suppose that there exists a pair (i1, j1) such that r � di1,j1 . We first

claim that there exists a such that (ap−1)di1,j1 �= 0 ∈ Zr. In fact, if d � di1,j1
and (p− 1)di1,j1 = 0 ∈ Zr then (2p− 1)di1,j1 = pdi1,j1 �= 0 ∈ Zr. If d | di1,j1
then (p− 1)di1,j1 = −di1,j1 �= 0 ∈ Zr by the choice of (i1, j1).

Choose such element a and consider the element γ := (γ1, . . . , γk) ∈ G
given by

γi(j) =

⎧⎪⎨⎪⎩
j1 if (i, j) = (i0, j0)

jap−1 if (i, j) = (i1, j1)

j otherwise,

for all i ∈ [k] and j ∈ [ni].
If we let s := (ap − 1)di1,j1 �= 0 ∈ Zr we have that γ(M0) = ζsrM0.

Moreover, the subgroup 〈γ〉 has order r as γi0(j0) = j10 and we have

r−1∑
m=0

γm(M0) =
( r−1∑

m=0

ζms
r

)
M0 = 0,

since r � s. Then, by Lemma 2.2, we have cM0
= 0.
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Now we observe that, since the action of G preserves the set of exponents
of any monomialM , we can assume that every monomialM with cM �= 0 has
an exponent < d. So we can repeat the above argument to every monomial
M with cM �= 0 and conclude that all variables appear in P with exponents
divisible by r. In particular, if γ = (γ1, . . . , γk) ∈ G(r,N) then γ(P ) =
(|γ1|, . . . , |γk|)(P ) = P as, clearly, (|γ1|, . . . , |γk|) ∈ G. It follows that P is

also G(r,N)-invariant and in particular it is a polynomial in the e
(r)
j (Xi),

i ∈ [k], j ∈ [ni].

Now we note that, since

Inv
(
G(r,N)

)
⊂ Inv(G),

then R(G) is a quotient of R(G(r,N)). More precisely, by Proposition 2.3,
we have

R(G) =
R
(
G(r,N)

)
(e

(d)
N (X ))

,

where (e
(d)
N (X )) is the ideal generated by e

(d)
N (X ) in R(G(r,N)).

For γ ∈ G(r,N) we let γi ∈ G(r, ni) be its i-th coordinate, so that
γ = (γ1, . . . , γk).

Proposition 2.4. Let d = r/p. We have:

• The set

{aγ(X ) : γ ∈ G(r,N) is such that c((γi)n) �r d for all i ∈ [k]}

is a basis for the ideal (e
(d)
N (X )) in R(G(r,N)),

• The set

{aγ(X ) : γ ∈ G(r,N) is such that c((γi)n) ≺r d for some i ∈ [k]}

is a basis for R(G).

Proof. We make the following claim.
Let P ∈ C[X] be a polynomial such that xd1 · · ·xdn divides P . Then P

admits the following expansion in R(G(r, n)):

P =
∑
g∈Ω

ηgag,

where ηg ∈ C and Ω := {g ∈ G(r, n) : c(gn) �r d}.
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Since P is divisible by xd1 · · ·xdn we can write P = Qxd1 · · ·xdn. We can
expand the polynomial Q in R(G(r, n)) with respect to the basis {ag : g ∈
G(r, n)} and obtain the following expression for P :

P =
∑

g∈G(r,n)

ηgagx
d
1 · · ·xdn ∈ R(G(r, n)).

The result will follow if we can show that, for all g ∈ G(r, n), either
agx

d
1 · · ·xdn = 0 ∈ R(G(r, n)) or agx

d
1 · · ·xdn = ag′ , for some g′ ∈ Ω. In fact,

let g = [σc1
1 , . . . , σcn

n ]. Then if cn �r r− d all the exponents in the monomial
ag are at least r−d and so xr1 · · ·xrn | agxd1 · · ·xdn, therefore agxd1 · · ·xdn = 0 ∈
R(G(r, n)). Otherwise, if cn ≺r r − d we consider the element g′ ∈ G(r, n)
given by

g′ = [σc1+d
1 , . . . , σcn+d

n ].

It is clear that g′ ∈ Ω and a simple verification shows that λi(g
′) =

λi(g) + d for all i ∈ [n] and therefore ag′ = agx
d
1 · · ·xdn. Now the first part of

the statement is a straightforward consequence of the claim and the second
part of the statement is an immediate consequence of the first, together with

the fact that R(G(r, p,N)) = R(G(r,N))/(e
(d)
N (X )) and Theorem 1.8.

We can finally describe the desired basis of R(G) in terms of the ele-
ments of the group H, a result which can be seen as the “dual” version of
Proposition 2.1. For δ ∈ H, let Πδ be the set of lifts γ = (γ1, . . . , γn) of δ in
G(r,N) such that c((γi)ni

) ≺r d for some i ∈ [k].

Corollary 2.5. It follows from Proposition 2.4 that the set

{aγ : δ ∈ H, γ ∈ Πδ}

is a basis for R(G).

So we have that the group H can still be taken as an indexing set for a
basis of the coinvariant algebra R(G) though the elements δ ∈ H must be
considered with multiplicity given by |Πδ|. And in some sense we may say
that the cardinalities of the sets Πδ measure a defect for G from being a
projective reflection group.

The description of the coinvariant algebras for the groups G and H
that we have obtained serves as a motivation and inspiring example in the
development of a theory of “partially colored labeled forests” which is the
main subject of this paper. As an application we will also be able to describe
the Hilbert polynomial of the coinvariant algebras of G and H explicitly.
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3. Linear extensions of partially colored forest labelings

Let F be a finite forest with n vertices (see §1.6). The following is a natural
generalization of a labeling of F .

Definition 2. A r-colored labeling of F is a pair w = (σ, c) where σ is a
bijection σ : V (F ) → [n] and c is a map c : V (F ) → Zr. We denote by

Wr(F ) the set of all r-colored labelings of F .

A r-colored labeling w = (σ, c) of F can be thought as the assignement
of the colored label wx := σcx

x to each vertex x ∈ V (F ). As customary, we
also identify a colored integer i0 with the integer i for each i ∈ [n], and vice

versa. Then, for w ∈ Wr(F ) we define the set of linear extensions of w as

L (w) :=
{
g ∈ G(r, n) : c(g−1(wx)) = 0 for all x ∈ V (F ), and

if x, y ∈ V (F ) are such that x ≺ y, then g−1(wx) < g−1(wy)
}
.

Note that this definition generalizes the one in §1.6, since the element
[w(x1), w(x2), . . . , w(xn)] ∈ G(r, n) is a linear extension of w if x1, x2, . . . , xn
is a linear extension of F and then L (w), as defined above, is the set of all
such colored permutations.

If x ∈ V (F ) and x is not a root, we let p(x) be the unique element that

covers x in the forest. For each x ∈ F we let

zx(w) :=

{
resr (cx) if x is a root of F,

resr
(
cx − cp(x)

)
otherwise

and we define the homogeneous descent set of w as

HDes(w) := {(x, y) ∈ E(F ) : cx = cy and σx > σy}.

Finally we define the flag-major index of w as

fmaj(w) :=
∑

e∈E(F )

rχe(w)he +
∑

v∈V (F )

zv(w)hv,

where

χe(w) :=

{
1 if e ∈ HDes(w),

0 otherwise.
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Figure 2: Example of 3-colored labeling.

Example 6. Let w be the 3-colored labeling in Figure 2. Then the ele-
ment [10, 22, 32, 51, 41] ∈ G(3, 5) is a linear extension of w. We also have
HDes(w) = {(x, y)} and so fmaj(w) = 3 · 3+ (1 · 4+ 1 · 1+ 2 · 1+ 2 · 1) = 18.

Remark 3.1. Note that if r = 1 then a 1-colored labeling w ∈ W1(F ) can be
thought as a standard labeling in W (F ). Then we have HDes(w) = Des(w)
and fmaj(w) = maj(w). Moreover, if F is a linear tree (i.e. a totally ordered
set {x1, x2, . . . , xn} in which xi ≺ xi+1 for i ∈ [n−1]) we note that a r-colored
labeling w of F can be thought as the unique linear extension g ∈ G(r, n)
of w. And in this case we have fmaj(w) = fmaj(g).

Now we can give a generalized version of Theorem 1.9, which we can
recover from the following result when r = 1:

Theorem 3.2. Let F be a finite forest with n elements and w a r-colored
labeling of F . Then

∑
g∈L (w)

qfmaj(g) = qfmaj(w) [d1]q[d2]q · · · [dn]q∏
x∈F

[hxr]q
,

where di = ri, i = 1, . . . , n are the fundamental degrees of G(r, n).

As we are planning to further generalize this result, we postpone its
proof to a more general case (see Proof of Theorem 3.3).

Starting from Theorem 3.2 and partly inspired by Corollary 1.4, we can
introduce a new notion of labeling that will allow us to generalize and unify
these results.

Definition 3. We define the set Pr(F ) of r-partial labelings of F as the
set of triples w = (σ, ι, j) such that:

• σ is a bijection σ : V (F ) → [n];
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• ι is a map ι : V (F ) → N such that ιx := ι(x) is a divisor of r for all
x ∈ V (F ) and x ≺ y implies ιx | ιy;

• j is a map j : V (F ) →
⋃

m>0
Zm such that jx := j(x) ∈ Zιx for all

x ∈ V (F ).

It is clear that a colored labeling can be interpreted as a partial labeling
with ιx = r for all x ∈ V (F ). A partial labeling w = (σ, ι, j) assigns to each
vertex x ∈ V (F ) the partial label wx := σιx,jx

x : the color of a label is not
uniquely determined modulo r, but only modulo a divisor of r. In this sense
such partial label can sometimes be interpreted as the set of r/ιx distinct
r-colored integers: {

σjx
x , σjx+ιx

x , σjx+2ιx
x , . . .

}
.

For w = (σ, ι, j) ∈ Pr(F ) we define the set of linear extensions of w as

L (w) := {g ∈ G(r, n) : c(g−1(σx)) = −jx ∈ Zιx for all x ∈ V (F ), and

if x, y ∈ V (F ) are such that x ≺ y then |g−1(σx)| < |g−1(σy)|}

and for each x ∈ V (F ) we let

zx(w) :=

{
resιx (jx) if x is a root of F,

resιx
(
jx − jp(x)

)
otherwise.

Finally we let

HDes(w) := {(x, y) ∈ E(F ) : jx = jy ∈ Zιx and σx > σy}

be the homogeneous descent set of w and we define the flag-major index of
w as

fmaj(w) :=
∑

e∈E(F )

ιeχe(w)he +
∑

v∈V (F )

zv(w)hv,

where

ι(x,y) := ιx for each (x, y) ∈ E(F ) and χe(w) :=

{
1 if e ∈ HDes(w),

0 otherwise.

Example 7. Let w be the 6-partial labeling in Figure 3. Then the element
[3a, 4b, 20, 14, 52] ∈ L (w) for all a ∈ {1, 4} and b ∈ {1, 3, 5}. Moreover,
HDes(w) = {(x, y)} and fmaj(w) = 3 · 1 + (2 · 4 + 2 · 3 + 1 · 1) = 18.

The following result is the natural generalization of Theorem 3.2 to this
context.
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Figure 3: Example of 6-partial labeling.

Theorem 3.3. Let F be a finite forest with n elements and w a r-partial
labeling of F . Then∑

g∈L (w)

qfmaj(g) = qfmaj(w) [d1]q[d2]q · · · [dn]q∏
x∈F

[hxιx]q
,

where di = ri, i = 1, . . . , n are the fundamental degrees of G(r, n).

Before proving Theorem 3.3 we need some further preliminary results.
Let w = (σ, ι, j) be a r-partial labeling of F and let

Aw =
{
f ∈ Nn : fσx

= jx ∈ Zιx for all x ∈ V (F ), fσx
≥ fσy

for each

(x, y) ∈ E(F ), and fσx
= fσy

only if jx = jy ∈ Zιx and σx < σy
}
.

The next result gives an alternative description of the set Aw.

Proposition 3.4. Let w be a r-partial labeling of F and f ∈ Nn. Then
f ∈ Aw if and only if f is g-compatible for some g ∈ L (w).

Proof. Let g ∈ G(r, n) be such that f is g-compatible, i.e. there exists λ ∈
Pn such that

(3.1) fi = λ|g−1(i)|(g) + rλ|g−1(i)|

for all i ∈ [n]. We make two claims.

i) If x ∈ V (F ), then c(g−1(σx)) = −jx ∈ Zιx if and only if fσx
= jx ∈ Zιx .

In fact we have

fσx
= jx ∈ Zιx ⇔ λ|g−1(σx)|(g) = jx ∈ Zιx (by the g-compatibility),

⇔ λσx
(g−1) = −jx ∈ Zιx (by Lemma 1.7),
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⇔ c(g−1(σx)) = −jx ∈ Zιx (by Eq. (1.1)).

ii) If (x, y) ∈ E(F ), then |g−1(σx)| < |g−1(σy)| if and only if fσx
≥ fσy

and equality fσx
= fσy

holds only if σx < σy.

Let us prove ii).
⇐) If fσx

> fσy
then |g−1(σx)| < |g−1(σy)| by Eq. (3.1) since λ(g)

and λ are both partitions. If fσx
= fσy

with σx < σy then λ|g−1(σx)|(g) =
λ|g−1(σy)|(g). Now we make an easy observation that follows from the defini-
tion of the partition λ(g): if h, k are such that λh(g) = λk(g) then |g(h)| <
|g(k)| if and only if h < k. Applying this observation to h = |g−1(σx)| and
k = |g−1(σy)| we conclude that |g−1(σx)| < |g−1(σy)|.

⇒) If |g−1(σx)| < |g−1(σy)| then fσx
≥ fσy

since λ(g) and λ are both par-
titions, by Eq. (3.1). Moreover, if fσx

= fσy
then necessarily λ|g−1(σx)|(g) =

λ|g−1(σy)|(g) and by the same observation above it follows that σx < σy.
By i) and ii) to complete the proof we only have to show that if f is

g-compatible, g ∈ L (w) and fσx
= fσy

then jx = jy ∈ Zιx . But this follows
easily since by i) we have fσx

= jx ∈ Zιx and fσy
= jy ∈ Zιy .

For x ∈ F we let Fx = {a ∈ F : a � x} be the filter at x, which is a
chain, and Ex = {(y, z) ∈ E(F ) : y ∈ Fx} be the set of edges of Fx.

If w = (σ, ι, j) is a fixed r-partial labeling of F and m : V (F ) → N, we
let f [m] ∈ Nn be given by

f [m]σx
:=

∑
y∈Fx

(zy(w) + ιymy) +
∑
e∈Ex

ιeχe(w)

and

Bw =
{
f [m] : m ∈ NV (F )

}
.

Proposition 3.5. For all w ∈ Pr(F ) we have Aw = Bw.

Proof. We first show that Bw ⊆ Aw, so let f ∈ Bw. We show by reverse
induction on ≺ that for all x ∈ V (F ) we have fσx

= jx ∈ Zιx , fσx
≥ fσy

for
each (x, y) ∈ E(F ), and fσx

= fσy
only if jx = jy ∈ Zιx and σx < σy. If x

is a root we have fσx
= zx(w) ∈ Zιx and the result is clear. Otherwise, by

definition, fσx
= fσy

+
(
zx(w) + ιxmx + ιxχ(x,y)(w)

)
, where y = p(x). Then

our claim follows immediately from the definition of zx(w). It follows that
f ∈ Aw.

Now we show that Aw ⊆ Bw so let f ∈ Aw. If u is a root then fσu
= ju ∈

Ziu , so there exists mu ∈ N such that fσu
= resιu (ju) + ιumu = zu + ιumu.

Let x be an element covered by u. Then there exists mx ∈ N such that
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fσx
= fσu

+ resιx (jx − ju) + ιxχ(x,u) + ιxmx = fσu
+ zx + ιxχ(x,u) + ιxmx.

We note that fσx
= jx ∈ Zx. We obtain the result extending this argument

to every x ∈ F .

Now we are ready to complete the proof of the main result of this section:

Proof of Theorem 3.3. We follow a general idea that goes back at least to
Garsia and Gessel [13] and we compute the formal power series

∑
f∈A q|f |

in two different ways. In the first computation we use Lemma 1.6 (for p = 1)
and Proposition 3.4 and we have

∑
f∈A

q|f | =
∑

g∈L (w)

qλ1(g) · · · qλn(g)

(1− qr) · · · (1− qnr)
=

∑
g∈L (w) q

fmaj(g)

(1− qr)(1− q2r) · · · (1− qnr)
.

In the second computation we use Proposition 3.5: using the same notations,
for all m ∈ NV (F ) we have

|f [m]| =
∑
x∈F

f [m]σx
=

∑
v∈V (F )

(zv + ιvmv)hv +
∑

e∈E(F )

ιeχehe =

=fmaj(w) +
∑
x∈F

ιxmxhx

and then∑
f [m]∈Bw

q|f [m]| =
∑

m∈NV (F )

qfmaj(w)+
∑

x ιxmxhx = qfmaj(w) 1∏
x∈V (F )

(1− qιxhx)
.

Therefore ∑
g∈L (w)

qfmaj(g) = qfmaj(w) (1− qr)(1− q2r) · · · (1− qnr)∏
x∈F

(1− qιxhx)
.

To complete this section we show that some of the results appearing in
§1 can be seen as particular cases of Theorem 3.3.

Remark 3.6. Consider the poset Vn = {x1, x2, . . . , xn} with no order re-
lation between any two distinct elements. The Hasse diagram of this poset
is a forest consisting of n disjoint vertices. Consider now the r-partial la-
beling w = (σ, ι, j) ∈ Pr(Vn) such that σ(xs) = s, ιxs

= 1 and jxs
= 0

for all s ∈ [n]. Then fmaj(w) = 0 and L (w) = G(r, n). Therefore in this
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Figure 4: Tn,k poset.

case Theorem 3.3 reduces to the distribution of fmaj on the group G(r, n)
(Proposition 1.1):∑

g∈L (w)

qfmaj(g) =
∑

g∈G(r,n)

qfmaj(g) = [r]q[2r]q · · · [nr]q.

Remark 3.7. Let 1 ≤ k < n and consider the poset Tn,k = {x1, x2, . . . , xn}
with the ordering given by xs ≺ xt if and only if s < t ≤ k. The Hasse
diagram of Tn,k is a forest consisting of a linear tree of length k and n − k
disjoint vertices (see Figure 4). Consider now the r-partial labeling w =
(σ, ι, j) ∈ Pr(Tn,k) such that σ(xs) = s for all s ∈ [n],

ιxs
=

{
r if s ∈ [k]

1 otherwise,

and jxs
= 0 for all s ∈ [n]. We observe that the hook lengths are hxs

= s for
s ∈ [k] and hxs

= 1 otherwise, that fmaj(w) = 0 and L (w) = {g ∈ G(r, n) :
c(g−1(i)) = 0 if i ∈ [k] and g−1(10) < g−1(20) < · · · < g−1(k0)}. We finally
note that if g ∈ L (w) then g−1 ∈ Ck, where Ck is the same set defined in
(1.2) when p = 1. Then in this case Theorem 3.3 reduces to Corollary 1.4:∑

g∈L (w)

qfmaj(g) =
∑
g∈Ck

qfmaj(g−1) = [(k + 1)r]q[(k + 2)r]q · · · [nr]q.

4. (r, p)-partial labelings

Inspired by the theory of projective reflection groups and the study of in-
variant and coinvariant algebras in §2 we are naturally lead to consider the
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Figure 5: Example of (6, 3)-colored labeling.

following generalization of a partial labeling of a forest. So let F be a finite

forest with n vertices and Wr(F ) be the set of all colored labelings of F . Let

Cp be a cyclic group of order p generated by an element δ and consider the

action of Cp on the set Wr(F ) defined by

δ.(σ, c) = (σ, c′),

where c′x = cx +
r
p , for all x ∈ V (F ).

Definition 4. A (r, p)-colored labeling of F is an orbit of Wr(F ) under the

action of Cp; the set of all (r, p)-colored labelings of F is denoted by

Wr,p(F ) := Wr(F )/Cp.

See an example in Figure 5.

The action of Cp = 〈δ〉 can also be extended to the set Pr(F ) of all

partial labelings by

δ.(σ, ι, j) = (σ, ι, j′)

where j′x = jx +
r
p , for all x ∈ V (F ).

Definition 5. A (r, p)-partial labeling of F is an orbit of Pr(F ) under the

action of Cp; the set of all (r, p)-partial labelings of F is denoted by

Pr,p(F ) := Pr(F )/Cp.

See an example of an orbit consisting of three partial labelings in Figure 6.

A Cp-orbit in Wr(F ) always consists of exactly p elements, but it is

not always the case for partial labelings. The following lemma is useful to

determine the cardinality of these orbits:



Hook length formulas for partially colored labeled forests 619

Figure 6: Example of (24, 3)-partial labeling.

Lemma 4.1. Let F be a forest and v1, v2, . . . , vl its roots. Let w = (σ, ι, j) ∈
Pr(F ) and consider the action of Cp on Pr(F ) defined as above. Then the

orbit of w contains p/d distinct elements, where

(4.1) d := gcd

(
r

lcm(ι1, ι2, . . . , ιl)
, p

)
,

and ιt denotes ιvt
, for t ∈ [l].

Proof. We consider first the case in which F is a tree and then the case of

a general forest. So let F be a tree and v be its root. In this case we have

to show that the orbit of w contains exactly p/d distinct elements, where

d = gcd(r/ιv, p).

For this it is enough to show that the number of distinct residue classes in

Zιv of the form jv + kr/p, for k ∈ [p], is p/d. In other words, we have to

show that the order of r/p in Zιv is p/d. And in fact such order is

ιv
gcd (r/p, ιv)

=
ιv p

gcd(r, ιv p)
=

p

gcd(r/ιv, p)
=

p

d
.

Now let F be any forest with connected components T1, T2, . . . , Tl and

roots v1, v2, . . . , vl. It follows from the previous discussion that the orbit of

w contains exactly

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
elements, where dt = gcd(r/ιt, p) and ιt = ιvt

, for t ∈ [l].

Therefore we have to show that

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
=

p

d
,



620 Francesca Camagni and Fabrizio Caselli

Figure 7: Examples of (30, 6)-partial labelings.

where p/dt is the order of r/p in Zιt .
Let π be any prime number that divides p. Let a and b be positive

integers and c a non-negative integer, c ≤ a, such that πa ‖ p, πb ‖ r and
πc ‖ d, where the symbol ‖ means “exactly divides”.

If c < a we have

πc ‖ r

lcm(ι1, ι2, . . . , ιl)
,

so there exists t ∈ [l] such that πb−c | ιt. Then πc ‖ dt and πa−c | p/dt. So

πa−c | lcm
(

p

d1
,
p

d2
, . . . ,

p

dl

)
.

If a = c we have

πa | r

lcm(ι1, ι2, . . . , ιl)

and so there exists t ∈ [l] such that πb−a+1 � ιt. It follows that πa | ds and
therefore π � lcm(p/d1, . . . , p/dl).

By repeating the same argument for each prime in the factorization of
p, we have

p

d
| lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
.

The result follows, since d | dt for all t ∈ [l], and so we have

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
| p
d
.

Example 8. Let w be the labeling in Figure 7 (left). Note that

d = gcd

(
30

lcm(3, 6)
, 6

)
= gcd(5, 6) = 1,
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and in fact one can easily check that the orbit of such partial labeling con-
tains 6 elements, while the orbit of the labeling in Figure 7 (right) contains
2 elements only, as in this case

d = gcd

(
30

lcm(5, 10)
, 6

)
= gcd(3, 6) = 3.

For w = (σ, ι, j) ∈ Pr(F ), we denote by [w] the corresponding class in
Pr,p(F ). We extend the map j to the set of edges of F by

j(x,y) := jx − jy ∈ Zιx

and we observe that this map depends on the class [w] of w only. Then, for
[w] ∈ Pr,p(F ) we define the set of linear extensions of [w] as

L ([w]) :=
{
g ∈ G∗ : ∀ g̃ lift of g in G(r, n), ∃ w̃ lift of [w] in Pr(F ),

w̃ = (σ, ι, j), s.t. c(g̃ −1(σx)) = −jx ∈ Zιx for all x ∈ V (F ), and

if x, y ∈ V (F ) are such that x ≺ y, then |g−1(σx)| < |g−1(σy)|
}
.

Example 9. Let w be the labeling in Figure 7 (right). Then for example
the element g = [54, 311, 126, 41, 219, 627] ∈ G(30, 6, 6)∗ is a linear extension
of [w].

For [w] ∈ Pr,p(F ) we let

HDes([w]) := {(x, y) ∈ E(F ) : j(x,y) = 0 ∈ Zιx and σx > σy}

be the homogeneous descent set of [w] and finally we define the flag-major
index of [w] as the multiset

Fmaj([w]) :=

{{ ∑
e∈E(F )

ιeχe([w])he+
∑

v∈V (F )

zv(w̃)hv,

for each w̃ lift of [w] in Pr(F )

}}

where

χe([w]) :=

{
1 if e ∈ HDes([w]),

0 otherwise.
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Remark 4.2. Let w = (σ, ι, j) ∈ Pr(F ) and let d be defined as in (4.1).

Then |Fmaj([w])| = p/d.

Example 10. Let w be the labeling in Figure 7 (left). Then the flag-major

index of w is the multiset:

Fmaj(w) =
{{
(2 · 1 + 3 · 1) + (2 · res3(2 + 5k) + 4 · res6(1 + 5k) + 3 · 2),
k = 0, 1, . . . , 5

}}
=

{{
19, 13, 31, 31, 25, 19

}}
.

Let w be the labeling in Figure 7 (right). Then the flag-major index of w is

the multiset:

Fmaj(w) =
{{
(5 · 1 + 2 · 1) + (2 · res5(2 + 5k) + 4 · res10(1 + 5k) + 3 · 5),
k = 0, 1

}}
=

{{
30, 50

}}
.

For [w] ∈ Pr,p(F ) with w = (σ, ι, j), let

A[w] =
{
f ∈ Nn : ∃ w̃ = (σ, ι, j′) ∈ [w] s.t. fσx

= j′x ∈ Zιx

for all x ∈ V (F ), fσx
≥ fσy

for each (x, y) ∈ E(F ), and

fσx
= fσy

only if j(x,y) = 0 ∈ Zιx and σx < σy
}
.

Proposition 4.3. Let [w] be a (r, p)-partial labeling of F and f ∈ Nn. Then

f ∈ A[w] if and only if f is g-compatible for some g ∈ L ([w]).

Proof. Let f ∈ Nn and g ∈ G(r, p, n)∗ be such that f is g-compatible, i.e.

there exist λ ∈ Pn and h ∈ [0, p− 1] such that

fi = λ|g−1(i)|(g) + rλ|g−1(i)| + h
r

p

for all i ∈ [n]. We make the following claim: for any g̃ lift of g in G(r, n)

there exists w̃ = (σ, ι, j′) lift of [w] in Pr(F ) such that

c(g̃ −1(σx)) = −j′x ∈ Zιx

for all x ∈ V (F ) if and only if there exists ŵ = (σ, ι, j′′) lift of [w] in Pr(F )

such that fσx
= j′′x ∈ Zιx . This is a consequence of the following facts.

• There exists k ∈ [0, p− 1] such that fσx
= λ|g−1(σx)|(g)+ kr/p ∈ Zr for

all x ∈ V (F ), since f is g-compatible;
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• if g̃ is a lift of g in G(r, n) then there exists l ∈ [0, p− 1] such that

g̃
(
|g−1(σx)|

)
= σx

λ|g−1(σx)|(g)+lr/p

by Eq. (1.1), and therefore

c(g̃ −1(σx)) = −λ|g−1(σx)|(g)− lr/p ∈ Zr;

• there exists h ∈ [0, p− 1] such that λ|g−1(σx)|(g) = −λσx
(g−1)+hr/p ∈

Zr by Lemma 1.7.

The rest of this proof is analogous to the proof of Proposition 3.4 and is
therefore omitted.

Now we are ready to give a generalization of Theorem 3.2 to (r, p)-partial
labelings:

Theorem 4.4. Let F be a finite forest with n elements and [w] a (r, p)-
partial labeling of F . Then∑

g∈L ([w])

qfmaj(g) =
∑

s∈Fmaj([w])

qs
[d1]q[d2]q · · · [dn]q∏

x∈F
[hxιx]q

,

where di = ri if i < n and dn = rn/p are the fundamental degrees of
G(r, p, n).

Proof. The strategy of this proof is the same as in the proof of Theorem 3.3
and so we present only a sketch of it.

We observe that from the definition of A[w] and Proposition 3.5 we have
that A[w] is the (disjoint) union of the sets Bw̃ as w̃ varies in the orbit [w].
Computing the series ∑

f∈A[w]

q|f |

in two different ways using Proposition 4.3 and using the observation above,
the result follows.

Also in this case some known results described in §1 can be obtained as
special cases of Theorem 4.4.

Remark 4.5. Consider the poset Vn = {x1, x2, . . . , xn} with no order rela-
tion between any two distinct elements. The Hasse diagram of this poset is
a forest consisting of n disjoint vertices. Consider now the (r, p)-partial la-
beling [w] of Vn such that w(xs) = s1,0 for all s ∈ [n]. Then Fmaj([w]) = {0}
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and L ([w]) = G(r, p, n)∗. Therefore in this case Theorem 4.4 reduces to the

distribution of fmaj on the group G(r, p, n)∗ (Proposition 1.2).

Remark 4.6. Let 1 ≤ k < n and consider the poset Tn,k = {x1, x2, . . . , xn}
with the ordering given by xs ≺ xt if and only if s < t ≤ k (see again Figure

4). Consider now the (r, p)-partial labeling [w] of Tn,k with w = (σ, ι, j) given

by σ(xs) = s for all s ∈ [n],

ιxs
=

{
r if s ∈ [k]

1 otherwise,

and jxs
= 0 for all s ∈ [n]. Then hxs

= s for s ∈ [k] and hxs
= 1 oth-

erwise, Fmaj([w]) = {0, kr/p, 2kr/p, . . . , (p − 1)kr/p} and L ([w]) = {g ∈
G(r, p, n)∗ : ∃h ∈ {0, 1, . . . , p− 1} s.t. c(g̃ −1(s)) = hr/p for each g̃ lift of g

in G(r, n), s ∈ [k] and |g−1(1)| < |g−1(2)| < · · · < |g−1(k)|}. We finally note

that if g ∈ L ([w]) then g−1 ∈ Ck, where Ck is the same set defined in (1.2).

Then in this case Theorem 4.4 reduces to Theorem 1.3.

5. q-counting colored labelings

Let F be a finite forest with n vertices (see §1.6). In this section we generalize

the result in Theorem 1.10 by q-counting the set of all partial labelings of a

fixed forest F using the fmaj statistic. We recall from [6] that, for any fixed

σ ∈ Sn, there are

n!∏
x∈F

hx

labelings w of F such that σ is a linear extension of w, since there is a

bijection between the set {w ∈ W (F ) : σ ∈ L (w)} and the set L (F ) of

linear extensions of F (see §1.6). An analogous argument also applies to any

element g ∈ G(r, n).

For g ∈ G(r, n) we let

W (g) := {w ∈ Wr(F ) : g ∈ L (w)}

Lemma 5.1. For g ∈ G(r, n), x ∈ L (F ) and u ∈ Wr(F ), the maps φ :

W (g) → L (F ) and ψ : L (F ) → L (u), given by

φ(w)i = w−1(gi)
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and

ψ(x)i = u(xi)

are both bijections. In particular,

|W (g)| = |L (u)| = n!∏
x∈V (F )

hx
.

Proof. All the statements are simple verifications based on the definitions of
the involved sets. We prove only one of the corresponding statements, namely
that if w ∈ W (g) then φ(w) ∈ L (F ), and we leave the rest of the proof to the
reader. So assume that φ(w)i ≺ φ(w)j and we show that i < j. By definition
of φ we have w−1(gi) ≺ w−1(gj). Letting x = w−1(gi) and y = w−1(gj)
we have x ≺ y. But since g ∈ L (w) this implies g−1(wx) < g−1(wy), i.e.
i < j.

Theorem 5.2. Let F be a finite forest with n elements and Wr(F ) the set
of all r-colored labelings of F . Then∑

w∈Wr(F )

qfmaj(w) =
n!∏

x∈F
hx

∏
x∈F

[hxr]q.

Remark 5.3. We recall from the Introduction that for r = 2 an equivalent
result was given in [10, Theorem 2.3] by Chen, Gao and Guo.

Proof. We consider the double sum∑
w∈Wr(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation we use
Theorem 3.2 and we have∑

w∈Wr(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Wr(F )

qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈F

[hxr]q

=
[r]q[2r]q · · · [nr]q∏

x∈F
[hxr]q

∑
w∈Wr(F )

qfmaj(w).

In the second computation we exchange the order of summations and use
Lemma 5.1 and Proposition 1.1. We have
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∑
w∈Wr(F )

∑
g∈L (w)

qfmaj(g) =
∑

g∈G(r,n)

∑
w∈W (g)

qfmaj(g)

= |L (F )|
∑

g∈G(r,n)

qfmaj(g)

=
n!∏

x∈F
hx

[r]q[2r]q · · · [nr]q.

Therefore we conclude that

[r]q[2r]q · · · [nr]q∏
x∈F

[hxr]q

∑
w∈Wr(F )

qfmaj(w) =
n!∏

x∈F
hx

[r]q[2r]q · · · [nr]q

and we are done.

If we consider the analogous result for (r, p)-colored labelings, we do not
obtain anything new. A more interesting result shows up if we consider (r, p)-
colored labelings with a multiplicity motivated by the study of coinvariant
algebras in §2; this multiplicity will be determined by the possible coloring
of its lifts in Wr(F ). More precisely, we let W̃r,p(F ) be the set of labelings in
Wr(F ) where some root receives a label with color in {0, 1, . . . , rp − 1}.
Theorem 5.4. Let F be a forest with k connected components F1, . . . , Fk of
cardinality n1, . . . , nk, respectively, and R = {ρ1, . . . , ρk} be the set of roots
of F . Then∑
w∈W̃r,p(F )

qfmaj(w) =
n!∏
hx

∏
x/∈R

[hxr]q
∏
x∈R

[hxr/p]q
∑

∅�=I⊆[k]

(−1)|I|−1
∏
i/∈I

[p]qnir/p .

Proof. We first assume that k = 1. In this case we have that the set W̃r,p(F )
is a set of orbit representatives of Wr,p(F ) and the other elements in the
same orbit are obtained by adding a multiple of r

p to the color of all its
labels. From this observation one can deduce that∑

w∈Wr(F )

qfmaj(w) =
∑

w∈W̃r,p(F )

qfmaj(w)(1 + qn
r

p + · · ·+ q(p−1)n r

p )

and so, by Theorem 5.2, we have∑
w∈W̃r,p(F )

qfmaj(w) =
1

[p]qnr/p

· n!∏
x∈F

hx

∏
x∈F

[hxr]q =
n!∏

x∈F
hx

∏
x/∈R

[hxr]q · [nr/p]q.
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In the general case one can split the sum over all labelings in W̃r,p(F ) ac-
cording to the set of roots which receive a label colored in {0, 1, . . . , rp − 1}
and then use a standard inclusion-exclusion argument to show that∑

w∈W̃r,p(F )

qfmaj(w) =

=

(
n

n1, . . . , nk

) ∑
∅�=I⊆[k]

(−1)|I|−1
∏
i∈I

∑
w∈W̃r,p(Fi)

qfmaj(w)
∏
i/∈I

∑
w∈Wr(Fi)

qfmaj(w)

=

(
n

n1, . . . , nk

) ∑
∅�=I⊆[k]

(−1)|I|−1
∏
i∈I

ni!∏
x∈Fi

hx

∏
x∈Fi\{ρi}

[hxr]q · [nir/p]q·

·
∏
i/∈I

ni!∏
x∈Fi

hx

∏
x∈Fi

[hxr]q

=
n!∏
hx

∏
x/∈R

[hxr]q
∏
x∈R

[hxr/p]q
∑

∅�=I⊆[k]

(−1)|I|−1
∏
i/∈I

[p]qnir/p .

Corollary 5.5. Let G(r, p,N) be the group studied in §2 and R(G(r, p,N))
its coinvariant algebra. Then

HilbR(G(r,p,N))(q) =

k∏
i=1

ni−1∏
j=1

[jr]q

k∏
i=1

[nir/p]q
∑

∅�=I⊆[k]

(−1)|I|−1
∏
i/∈I

[p]qnir/p .

Proof. This follows easily from Theorem 5.4 in the special case where F is
the union of k disjoint linear trees of cardinality n1, . . . , nk respectively.

One can observe that in the special case where k = 1 Corollary 5.5
reduces to the well-known fact that the Hilbert series of the coinvariant
algebra of G(r, p, n) is

n−1∏
j=1

[jr]q[rn/p]q.

We conclude our work by showing how one can generalize Theorem 5.2
to the context of partial labelings of a fixed forest F . Let x1, x2, . . . , xn be
a linear extension of F . We fix a map ι : V (F ) → N such that ιk := ι(xk)
is a positive divisor of r for k = 1, 2, . . . , n, and ιj is a divisor of ιk if xj is
covered by xk in the forest F . We let

Pr,ι(F ) := {w ∈ Pr(F ) : w = (σ, ι, j) for some σ and j}.
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Let Wι(g) := {w ∈ Pr,ι(F ) : g ∈ L (w)}. The next result is analogous to
Lemma 5.1 and therefore we omit its proof.

Lemma 5.6. Let g ∈ G(r, n). Then there exists a bijection φ : Wι(g) →
L (F ).

Theorem 5.7. Let F be a finite forest with n elements and Pr,ι(F ) the set
of all r-partial labelings of F associated to ι. Then∑

w∈Pr,ι(F )

qfmaj(w) =
n!∏

x∈F
hx

∏
x∈F

[hxιx]q.

Proof. We consider the double sum∑
w∈Pr,ι(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation by Theorem
3.3 we have∑

w∈Pr,ι(F )

∑
g∈L (w)

qfmaj(g) =
[r]q[2r]q · · · [nr]q∏

x∈F
[hxιx]q

∑
w∈Pr,ι(F )

qfmaj(w).

In the second computation we use Lemma 5.6 and Proposition 1.1 and we
have ∑

w∈Pr,ι(F )

∑
g∈L (w)

qfmaj(g) =
∑

g∈G(r,n)

∑
w∈Wi(g)

qfmaj(g)

= |Wi(g)|
∑

g∈G(r,n)

qfmaj(g)

=
n!∏

x∈F
hx

[r]q[2r]q · · · [nr]q.

References

[1] Adin, R. M., Brenti, F. and Roichman, Y. (2005). Descent represen-
tations and multivariate statistics. Trans. American Math. Soc. 357
3051–3082. MR2135735

[2] Adin, R. M. and Roichman, Y. (2001). The flag major index and
group actions on polynomial rings. European J. Combin. 22 431–446.
MR1829737

http://www.ams.org/mathscinet-getitem?mr=2135735
http://www.ams.org/mathscinet-getitem?mr=1829737


Hook length formulas for partially colored labeled forests 629

[3] Bagno, E. and Biagioli, R. (2007). Colored-descent representations

of complex reflection groups G(r, p, n). Israel J. Math. 160 317–347.

MR2342500

[4] Biagioli, R. and Caselli, F. (2004). Invariant algebras and major in-

dices for classical Weyl groups. Proc. London Math. Soc. 88 603–631.

MR2044051

[5] Biagioli, R. and Caselli, F. (2004). A descent basis for the coinvariant

algebra of type D. J. Algebra 275 517–539. MR2052623

[6] Björner, A. and Wachs, M. (1989). q-hook length formulas for forests.

J. Combin. Theory Ser. A 52 165–187. MR1022316

[7] Caselli, F. (2010). Involutory reflection groups and their models. J. Al-

gebra 324 370–393. MR2651341

[8] Caselli, F. (2011). Projective reflection groups. Israel J. Math. 185 155–

187. MR2837132

[9] Caselli, F. (2012). Signed Mahonians on some trees and parabolic quo-

tients. J. Combin. Theory Ser. A 119 1447–1460. MR2925936

[10] Chen, W. Y. C., Gao, O. X. Q. and Guo, P. L. (2013). q-hook length

formulas for signed labeled forests. Adv. in Appl. Math. 51 563–582.

MR3118545

[11] Chevalley, C. (1955). Invariants of finite groups generated by reflections.

American J. Math. 77 778–782. MR0072877

[12] Garsia, A. M. (2010). Permutation q-enumeration with the Schur row

adder. Pure Math. Appl. 21 233–248. MR2810534

[13] Garsia, A. M. and Gessel, I. (1979). Permutation statistics and parti-

tions. Adv. in Math. 31 288–305. MR0532836

[14] MacMahon, P. A. (1960). Combinatory Analysis. Chelsea Publishing

Co., New York. (Originally published in 2 volumes by Cambridge Univ.

Press, 1915-1916). MR0141605

[15] Shephard, G. C. and Todd, J. A. (1954). Finite unitary reflection

groups. Canadian J. Math. 6 274–304. MR0059914

http://www.ams.org/mathscinet-getitem?mr=2342500
http://www.ams.org/mathscinet-getitem?mr=2044051
http://www.ams.org/mathscinet-getitem?mr=2052623
http://www.ams.org/mathscinet-getitem?mr=1022316
http://www.ams.org/mathscinet-getitem?mr=2651341
http://www.ams.org/mathscinet-getitem?mr=2837132
http://www.ams.org/mathscinet-getitem?mr=2925936
http://www.ams.org/mathscinet-getitem?mr=3118545
http://www.ams.org/mathscinet-getitem?mr=0072877
http://www.ams.org/mathscinet-getitem?mr=2810534
http://www.ams.org/mathscinet-getitem?mr=0532836
http://www.ams.org/mathscinet-getitem?mr=0141605
http://www.ams.org/mathscinet-getitem?mr=0059914


630 Francesca Camagni and Fabrizio Caselli

Francesca Camagni

Dipartimento di matematica
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