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Graham’s Tree Reconstruction Conjecture and a
Waring-Type problem on partitions
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∗
, Bill Kay, and Anton Swifton

Suppose G is a tree. Graham’s “Tree Reconstruction Conjecture”
states that G is uniquely determined by the integer sequence |G|,
|L(G)|, |L(L(G))|, |L(L(L(G)))|, . . ., where L(H) denotes the line
graph of the graph H. Little is known about this question apart
from a few simple observations. We show that the number of trees
on n vertices which can be distinguished by their associated integer

sequences is eΩ((logn)3/2). The proof strategy involves constructing
a large collection of caterpillar graphs using partitions arising from
the Prouhet-Tarry-Escott problem.

1. Introduction

A conjecture of R. L. Graham (see, e.g., [2]), often referred to as the “Tree
Reconstruction Conjecture”, states that, if G is a tree, then G is uniquely
determined by the sequence of sizes of its iterated line graphs. To make this
statement precise, we start with a few definitions. All graphs are taken to
be simple and undirected; a tree is an acyclic, connected graph. Given a
graph G = (V,E), define the line graph L(G) to be a graph with vertex set
E, and for distinct e, f ∈ E we have {e, f} ∈ E(L(G)) iff e ∩ f �= ∅, i.e., e
and f are incident in G. We denote the jth-iterated line graph by L(j)(G).
L(0)(G) = G and L(j+1)(G) = L(L(j)(G)) for j ≥ 0.

Definition 1. The Graham sequence of a graph G is the sequence of sizes of
its iterated line graphs |L(0)(G)|, |L(1)(G)|, |L(2)(G)|, . . .
Conjecture 1 (Graham). For each sequence of natural numbers a0, a1,
a2, . . ., all the conditions |L(j)(G)| = aj for j ≥ 0 are satisfied by at most
one tree G.

If G and H are two graphs, we say that they are Graham equivalent if
|L(j)(G)| = |L(j)(H)| for all j ≥ 0. The corresponding equivalence classes
we call Graham classes. We can reformulate Conjecture 1 as follows:
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Conjecture 2. For each n ≥ 1, the number of Graham classes of trees on n

vertices equals the number of isomorphism classes of trees on n vertices.

As shown by Otter ([3]), the number of isomorphism classes of trees on n

vertices is Θ̃(αn), where α = 2.955765 . . ., i.e., approximately 3n. Our main

result is a lower bound on the number of Graham classes of trees that is

superpolynomial, although substantially subexponential.

Theorem 1. The number of Graham classes of trees on n vertices is

eΩ((logn)3/2)

In order to describe the method of proof, we need a few (mostly stan-

dard) definitions. A path of length n, denoted Pn, is a tree on the vertex

set {v0, . . . , vn} with an edge between vj and vj+1 for each j, 0 ≤ j < n.

A pendant vertex in a graph G is a vertex of degree one. A caterpillar is a

graph obtained from a path by attaching pendant vertices to some of the

path vertices. The path from which a caterpillar is built is its spine, the

vertices on the path of degree greater than two are joints, and the pendant

vertices attached to the path are legs.

The proof proceeds as follows. We construct a collection of caterpillars

{Gj} on n vertices with distinct Graham sequences. To ensure that the Gra-

ham sequences differ, we choose the degrees d1, . . ., dt of specially selected

joints to be a particular class of partitions associated with the Prouhet-

Tarry-Escott problem, and leave the rest of the vertices legless. We show

that for each k there exists a degree k polynomial fk such that, for some

constant Cn,k,t depending on n, k, and t,

(1) |L(k)(Gj)| = Cn,k,t +

t∑
i=1

fk(di),

where {di} is the degree sequence of the joints of Gj .

We will also need to bound from above the ratio of the largest coef-

ficient in the relevant polynomial to its lead coefficient. Much of the work

consists of obtaining such bounds; it should be noted, however, that we make

little attempt to optimize the resulting expressions other than to simplify

exposition.

Finally, we construct a sufficient number of partitions (d1, . . . , dt) such

that caterpillars constructed in correspondence to these partitions have the

same number of vertices, while their Graham sequences are different.
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2. From caterpillars to polynomials

Given a sequence of positive integers d = (d1, . . . , dt) and m > 0 define

cat(d1, . . . , dt;m) to be a caterpillar graph whose spine is a path of length (t+

1)m−2 on the vertex set v1, ..., vm(t+1)−1, with di legs attached to vertex vim
for 1 ≤ i ≤ t. We call d the joint degree sequence of cat(d1, . . . , dt;m). We will
eventually define the aforementioned Gi as a modified cat(d1, . . . , dt;m) with

suitably chosen parameters. Write S(d; a, b) for a star with “central vertex”

of degree d to which two disjoint paths are appended at their endvertices:

one of length a and one of length b. (See Figure 1.)

Figure 1: An S(5; 3, 7). Alternatively, a cat(5, 0; 4).

Definition 2. For X ⊆ V (G) define the i-th antishadow of X as

Xi(X) = V (L(i)(G)) \ V (L(i)(G−X))

Intuitively, antishadow is the set of vertices in the ith line graph affected

by the vertices in X and their edges. The following propositions regarding

antishadows will allow us to break down the kth line graph of a caterpillar

cat(d1, . . . , dt;m) into a union of line graphs of stars.

Proposition 2. Let v = {w1, w2} ∈ V (L(i+1)(G)) and X ⊆ V (G). Then

v ∈ Xi+1(X) iff either w1 ∈ Xi(X) or w2 ∈ Xi(X) (or both).

Proof. v ∈ Xi+1(X) = V (L(i+1)(G)) \ V (L(i+1)(G − X)) if and only if

v ∈ V (L(i+1)(G)) = E(L(i)(G) and v �∈ V (L(i+1)(G−X)) = E(L(i)(G−X)).

Since v = {w1, w2}, this is equivalent to w1, w2 ∈ V (L(i)(G)) and either w1 �∈
V (L(i)(G −X)) or w2 �∈ V (L(i)(G−X)). Equivalently, either w1 ∈ Xi(X)

or w2 ∈ Xi(X).

Proposition 3. If u, v ∈ L(i+1)(G) are connected by a path of length at most

q, and u = {u1, u2}, v = {v1, v2}, then up and vs are connected by a path in

L(i)(G) of length at most q + 1 for p, s = 1, 2.
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Proof. Let u = w0, . . . , wn = v be the shortest path connecting u and

v. Due to the assumption of the proposition, n ≤ q. Since for any j =

1, . . . , n, wj−1 and wj are connected by an edge, the corresponding edges

in L(i)(G) have a common vertex: wj−1 ∩ wj = tj−1. All vertices tj are

different, otherwise, if ti = tj , j > i, then the edges wi and wj+1 are inci-

dent, and the original path is not the shortest one. Since all tj are differ-

ent, t0, u, t1, w1, t2, . . . , tn, wn, tn+1 is a path in L(i)(G). This implies that

d(t0, tn+1) ≤ n + 1 ≤ q + 1. Since u = {t0, t1} = {u1, u2} and v = wn =

{tn−1, tn} = {v1, v2}, we have produced a path from up to vs of length at

most q + 1 for p, s = 1, 2.

Corollary 4. If X,Y ⊆ V (G) and d(Xi(X),Xi(Y )) ≥ q + 1, then

d(Xi+1(X),Xi+1(Y )) ≥ q.

Corollary 5. If d(X,Y ) > m, then Xm(X) ∩Xm(Y ) = ∅.
Proposition 6. If Xm(X) ∩ Xm(Y ) = ∅, then Xm(X ∪ Y ) = Xm(X) ∪
Xm(Y ).

Proof. We proceed by induction. The base case is trivial. AssumeXm−1(X∪
Y ) = Xm−1(X)∪Xm−1(Y ) and Xm(X)∩Xm(Y ) = ∅. Then v = {w, u} ∈
Xm(X∪Y ) iff (without loss of generality) w ∈ Xm−1(X∪Y ) = Xm−1(X)∪
Xm−1(Y ) ⇔ either w ∈ Xm−1(X) or w ∈ Xm−1(Y ) ⇔ either v ∈ Xm(X)

or v ∈ Xm(Y ) ⇔ v ∈ Xm(X) ∪Xm(Y ).

Now we can compute the number of vertices in the iterated line graph

of a caterpillar by considering simple pieces.

Lemma 7. Let m > k. Then

|L(k)(cat(d1, . . . , dt;m))| = (t− 1)(k −m) +

t∑
j=1

|L(k)(S(dj ;m,m))|.

Proof. Let D1, . . . , Dt be the sets of pendant vertices, where each Di is a

maximal set of pendant vertices attached to the same spine vertex. Then

|Dj | = dj , j = 1, . . . , t, and let D = ∪t
j=1Dj . If G = cat(d1, . . . , dt), then

V (L(k)(G)) = V (L(k)(G)) \ V (L(k)(G−D)) ∪ V (L(k)(G−D))

= Xk(D) ∪ V (L(k)(G−D))

= ∪t
j=0Xk(Dj) ∪ V (L(k)(P(t+1)m−1))
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Also, Xk(Dj) = V (L(k)(S(dj ,m,m))) \ V (L(k)(P2m), and therefore the fol-
lowing holds:

|L(k)(cat(d1, . . . , dt;m))| = |L(k)(P(t+1)m−1)|

+

t∑
j=1

(
|L(k)(S(dj ;m,m))| − |L(k)(P2m)|

)
= (t+ 1)m− 1− k − t(2m− k)

+

t∑
j=1

|L(k)(S(dj ;m,m))|

= (t− 1)(k −m)− 1 +

t∑
j=1

|L(k)(S(dj ;m,m))|.

We will use this to choose suitable values for the joint degree sequence
of each Gi so that each joint degree sequence sums to the same value and
making the Gi have the same size. To this end, (d1, . . . , dt) can be thought of
as a partition of some integer n. The number of elements t is the same for all
partitions; this is necessary to make spines of all caterpillars that have the
same length. For the ith such partition we can define Gi = cat(d1, . . . , dt;m).
We will only consider the line graphs up to the mth iteration, so the or-
der of dj does not matter. For any permutation π, Graham sequences of
cat(π(d1), . . . , π(dt);m) and cat(d1, . . . , dt;m) are the same up to the mth

element, but the caterpillars can be different. In some sense, this is a de-
viation from the spirit of Graham’s conjecture, since the claim is that ev-
ery single tree produces a different sequence. Our constraints produce large
classes of caterpillars indistinguishable by the first m terms of their Graham
sequences. Nonetheless, this constraint is essential for our argument since
analyzing iterated line graphs past the point where the legs at different
joints interact is prohibitively difficult.

Next we have to analyze the terms in the sum in Lemma 7.

Definition 3. For any j and any S ⊆ V (L(j)(G)), define the shadow X(S)
recursively as follows.

X(S) =

{
S if S ⊆ V (G)
X(

⋃
s∈S

s) otherwise

Note that X(v) ⊆ V (G) for any v ∈ V (L(m)(G)) and any m ≥ 0.
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Lemma 8. For any graph H and m ≥ 0, |X(v)| ≤ m + 1 for all v ∈
V (L(m)(H)).

Proof. Let X0(v) = {v},Xj+1(v) = ∪w∈Xj(v)w. Then Xm(v) = X(v).

Induction shows that Xj(v) induces a connected subgraph in L(m−j)(H)
for any j. To begin with, note that the statement is true for one vertex in
X0(v); assume that it is true for Xj−1(v). For any u1, u2 ∈ Xj(v) there
are w1, w2 ∈ Xj−1(v), u1 ∈ w1, u2 ∈ w2. Since w1 and w2 are connected
by a path in Xj−1(v), u1 and u2 are connected by a path in Xj(v) due to
Proposition 3 and the fact that Xj−1(v) ⊆ L(Xj(v)).

Induction on j also yields that |Xj(v)| ≤ j+1 for all j. This is immediate
for X0(v). Assume it is true for Xj−1(v). Since all edges of the subgraph
induced by Xj(v) are vertices of Xj−1(v), Xj(v) is a connected graph
with no more than j edges, and therefore can not have more than j + 1
vertices.

Lemma 9. If m > k, then |L(k)(S(d;m,m))| = fk(d) is a polynomial of
degree k.

Proof. We enumerate each isomorphism type of connected subgraphs of
S(d;m,m) containing the central vertex as {Hj}j∈J . Denote the weight of a
graph H by wt(H) = |{v ∈ V (L(k)(H)) : X(v) = V (H)}|, i.e., the number
of vertices in L(k)(H) that “involve” all vertices of H. Then we have:

(2) |L(k)(S(d;m,m))| = |L(k)(P2m+1)|+
∑
j∈J

wt(Hj)Bj .

where

Bj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d if Hj
∼= S(1; 0, 0)(

d+2
2

)
if Hj

∼= S(2; 0, 0)(
d+2
a

)
if Hj

∼= S(a; 0, 0) for some a ≥ 1

2
(
d+1
a

)
if Hj

∼= S(a; b, 0) for some a ≥ 2, b ≥ 2

2
(
d
a

)
if Hj

∼= S(a; b, c) for some a ≥ 1, b ≥ 2, c ≥ 2, b �= c(
d
a

)
if Hj

∼= S(a; b, b) for some a ≥ 1, b ≥ 2.

Note that the Hj all have the form S(a; b, c) for some a, b, c ≥ 0, such that
a + b + c + 1 ≤ k + 1 (due to Lemma 8), and wt(Hj) depends only on Hj ,
but not on d. Each Bj is a polynomial in d of degree at most k. Degree k is
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achieved only when a = k, b = 0, c = 0, and the lead coefficient in this case
is 1.

Lemma 7 combined with (2) provides a count of the vertices of L(m)(G)
and proves the equality (1).

We use this fact to construct a large collection of caterpillars {Gi}i∈I
with the same number of vertices n such that, whenever i �= j, there is such
k < m that |L(k)(Gi)| �= |L(k)(Gj)|. The cardinality of I is a lower bound
for the number of Graham classes of trees with n vertices.

We will need an upper bound on the size of the largest coefficient, and
a lower bound on the size of the lead coefficient. The rest of this section is
dedicated to obtaining these bounds.

Lemma 10. If G is a d-regular graph, then L(k)(G) is (2kd−2k+1+2)-regular.

Proof. We proceed by induction. The base case is almost immediate: Given
an edge e ∈ E(G), its end-vertices each have degree d. Therefore e is incident
to d − 1 + d − 1 = 2d − 2 edges f in G, whence the degree of each vertex
in L(G) is 2d − 2. Since 2d − 2 = 21d − 22 + 2, we are done. Now, suppose
that L(k)(G) is (2kd − (2k+1 − 2))-regular. By the base case, L(k+1)(G) is
(2 · 2kd− 2 · 2k+1 + 4− 2)-regular. However,

2 · 2kd− 2 · 2k+1 + 4− 2 = 2k+1d− 2k+2 + 2.

Lemma 11. For all k and n, |L(k)(Kn)| ≤ nk+12k
2

.

Proof. For any j, by Lemma 10, |L(j)(Kn)| = 1
2(2

j−1(n − 1) −
2j + 2)|L(j−1)(Kn)|. Therefore,

|L(k)(Kn)| = |Kn|
k∏

j=1

2j−1((n− 1)− 2) + 2

2
= n

k∏
j=1

(2j−2(n− 3) + 1)

≤ n

k∏
j=1

2j−2n < nk+12k
2

.

Corollary 12. For k ≥ 1 and d ≥ 3, |L(k)(S(d; a, b))| < (d+ a+ b)k2k
2

.

Proof. Since |L(S(d; a, b))| = d + a + b, we have L(S(d; a, b)) ⊆ Kd+a+b.
Therefore, L(k)(S(d; a, b)) ⊆ L(k−1)(Kd+a+b), and

|L(k)(S(d; a, b))| ≤ |L(k−1)(Kd+a+b)| ≤ (d+ a+ b)k2(k−1)2 ≤ (d+ a+ b)k2k
2

.
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We now need an upper bound on the number of terms present in expres-
sion (2). Recall that the Hj range over isomorphism classes of graphs which
occur in the shadow of nodes in the kth iterated line graph. We have shown
that these graphs have at most k + 1 vertices.

Given a polynomial f , we refer to the coefficient of f which is the largest
in absolute value as the “maximum coefficient”. If f is degree k, we refer to
the coefficient of xk as the “lead coefficient”.

Theorem 13. An upper bound on the maximum coefficient of fk is 26k
2

for
k ≥ 2.

Proof. Let the maximum coefficient of fk be C. Going back to expression
(2), we see that

C ≤ |J | ·max
j∈J

wt(Hj) · max
j∈J ,�∈N

[d�]Bj .

To bound the first factor, we count the isomorphism classes of graphs on
≤ k+1 vertices (by Lemma 8) which can be embedded into S(d;m,m) and
contain the central vertex. Suppose Hj = S(a; b, c); then |Hj | = a+b+c+1.
Therefore, an upper bound for the number of elements of J is the number
of nonnegative integer solutions to a+ b+ c+ 1 ≤ k+ 1, i.e., the number of
nonnegative integer solutions to a+ b+ c+ d = k. This is easily seen to be(
k+3
3

)
.

To bound the second factor, we employ Corollary 12. In particular, writ-
ing Hj = S(dj ; aj , bj),

max
j∈J

wt(Hj) = max
j∈J

wt(S(dj ; aj , bj))

< max
j∈J

(dj + aj + bj)
k2k

2

≤ (k + 1)k2k
2

by Lemma 8.

To bound the third factor, we refer to the definition of Bj , which states
that all Bj have the form K

(
n
t

)
= K 1

t!n(n−1) . . . (n−t+1) =
∑t

j=0 s(t, j)n
j ,

where s(t, j) are signed Stirling numbers of the first kind and K is a constant
which can be either 1 or 2. Since |s(t, j)| can be alternatively defined as the
number of permutations of [t] with j cycles, these numbers are always smaller
than t!, and, therefore, the coefficients of Bj , considered as a polynomial in
d, are bounded by 2. Note that n can be either d, d + 1, or d + 2. In each
case, the bound is clear. Putting the pieces together, we see that
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C ≤
(
k + 3

3

)
· (k + 1)k2k

2 · 2

≤ 1

6
(k + 3)3(k + 1)k2k

2+1

< (k + 3)k+32k
2+1

= 2(k+3) log(k+3)+k2+1

≤ 2(k+1)(k+3)+k2+1

≤ 2k
2+4k+3+k2+1

= 22k
2+4k+4

≤ 26k
2

.

Corollary 14. If d ≥ k, then an upper bound on the ratio of the maximum

coefficient to the lead coefficient of fk(d) is

26k
2

k!

Proof. All Bj have either the form 2
(
d
a

)
or

(
d
a

)
. The lead coefficient of Bj

is nonzero only if a = k, which is possible if d ≥ k and Hj
∼= S(a; 0, 0).

In this case the coefficient is 1/k! or 2/k!. By (2) and the fact that wt(Hj)

is a positive integer, all contributions to the lead coefficient of fk(d) are

nonnegative and at least 1/k!, so the lead coefficient of fk(d) is as well.

3. Sums of powers of parts

For a finite sequence of integers A = {ai}ni=1, let Sr(A) =
∑n

i=1 a
r
i , and for

t ∈ Z let A + t = {ai + t}ni=1. For any function f let f(A) =
∑n

i=0 f(ai).

The product of two sequences will be interpreted as concatenation, i.e. if

A = {ai}ni=1 and B = {bi}mi=1, then AB = (a1, . . . , an, b1, . . . , bm).

Define two parametric families of sequences Tj and Tj as follows.

1. T0 = ∅
2. Tj = (0, . . . , 2j − 1) \Tj

3. Tj+1 = Tj

(
Tj + 2j

)
In other words, Tj and Tj are subsequences of (0, . . . , 2j − 1), and the

parity of the sum of any of these numbers’ binary digits determines to which

sequence it belongs. If the sum is odd, the number belongs to Tj , and if it

is even, the number belongs to Tj . Both sequences are increasing.



478 Joshua Cooper et al.

It has been known since 1851 ([4]) that

(3) Sr(Tk) = Sr(Tk)

when k > r, i.e., the pair (Tk,Tk) provides a solution to the degree-r
Prouhet-Tarry-Escott problem (q.v. [1]). We will need an extended version
of this equality.

Lemma 15. For any k, r such that k > r and any t ∈ R

Sr(Tk + t)− Sr(Tk + t) = 0.

Proof.

Sr(Tk + t)− Sr(Tk + t) =
∑
x∈Tk

(x+ t)r −
∑
x∈Tk

(x+ t)r

=
∑
x∈Tk

r∑
i=0

(
r

i

)
xitr−i −

∑
x∈Tk

r∑
i=0

(
r

i

)
xitr−i

=

r∑
i=0

(
r

i

)
tr−i

⎛⎝ ∑
x∈Tk

xi −
∑
x∈Tk

xi

⎞⎠
=

r∑
i=0

(
r

i

)
tr−i

(
Si(Tk)− Si(Tk)

)
= 0

When k ≥ r, the conclusion of Lemma 15 is no longer true.

Proposition 16. Sk(Tk)− Sk(Tk) = (−1)k+1k!2(
k

2) for k ≥ 1. Furthermore,∣∣Sr(Tk)− Sr(Tk)
∣∣ ≤ 2k(r+1)

for all r ≥ 0.

Proof. We begin with the first statement, and proceed by induction. For
k = 1,

S1(T1)− S1(T1) = 11 − 01 = 1 = (−1)1+11!2(
1

2).

Suppose the statement is true for k − 1. Then we may write

Sk(Tk)− Sk(Tk) = Sk(Tk−1)− Sk(Tk−1)

+ Sk(2
k−1 +Tk−1)− Sk(2

k−1 +Tk−1)
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= Sk(Tk−1)− Sk(Tk−1) +

k∑
j=0

(
k

j

)
2(k−1)jSk−j(Tk−1)

−
k∑

j=0

(
k − 1

j

)
2kjSk−j(Tk−1)

by the Binomial Theorem. Therefore,

Sk(Tk)−Sk(Tk)=

k∑
j=1

(
k

j

)
2(k−1)jSk−j(Tk−1)−

k∑
j=1

(
k

j

)
2(k−1)jSk−j(Tk−1)

= k2k−1
(
Sk−1(Tk−1)− Sk−1(Tk−1)

)
,

since, by (3), all terms with j > 1 are zero. Applying the inductive hypoth-
esis, we obtain

Sk(Tk)− Sk(Tk) = −k2k−1(−1)k(k − 1)!2(
k−1

2 )

= (−1)k+1k!2(
k

2).

To see the second part of the statement, simply note that there are
fewer than 2k elements of Tk (resp. Tk), each of which is at most 2k. Hence
summing rth powers of the elements of Tk (resp. Tk) is at most 2k(2kr) =
2k(r+1), providing the desired bound.

Before we can prove Theorem 26, we need some results (Corollary 17,
Proposition 21, Corollary 22, and Lemma 24) about arbitrary polynomials.

Corollary 17. For a polynomial f of degree r, let

gk(t) = f(Tk + t)− f(Tk + t).

Then, if k > r, we have gk(t) = 0 for any t ∈ Z. If k ≤ r, then gk(t) is a
polynomial of degree k − r. If C is the lead coefficient of f , and C ′ is the
largest non-lead coefficient of f , then the ratio of the lead coefficient of g

and the sum of the rest of the coefficients is at most 25r2

k!
C
C′

Proof. Suppose f(x) =
∑r

j=0 arx
r. Then

f(Tk + t) =
∑
x∈Tk

f(x+ t) =
∑
x∈Tk

r∑
j=0

aj(x+ t)j =

r∑
j=0

ajSj(Tk + t).
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Similarly,

f(Tk + t) =

r∑
j=0

j∑
i=0

ajSj(Tk + t).

Consider the case k > r. It follows from Lemma 15, that

f(Tk + t)− f(Tk + t) =

r∑
j=0

aj(Sj(Tk + t)− Sj(Tk + t)) = 0

In the case k ≤ r,

f(Tk + t)− f(Tk + t) =

r∑
j=0

j∑
i=0

aj

(
j

i

)
tj−i

⎛⎝ ∑
x∈Tk

xi −
∑
x∈Tk

xi

⎞⎠
=

r∑
j=k

j∑
i=k

aj

(
j

i

)
tj−i

⎛⎝ ∑
x∈Tk

xi −
∑
x∈Tk

xi

⎞⎠
=

r−k∑
q=0

tq
r∑

j=q+k

aj

(
j

q

)⎛⎝ ∑
x∈Tk

xj−q −
∑
x∈Tk

xj−q

⎞⎠ ,

where the second equality follows from the fact that the pair {Tk,Tk} is
a solution to the Prouhet-Tarry-Escott problem of any order i < k. To
complete the proof, we need to show that the coefficient cr−k of tr−k is
nonzero. However,

cr−k =

(
r

k

)⎛⎝ ∑
x∈Tk

xk −
∑
x∈Tk

xk

⎞⎠ ar = (−1)k+1

(
r

k

)
k!2(

k

2)ar �= 0,

by Proposition 16. For the proof of the second part of the Lemma, we note
that the sum of the non-lead coefficients of g is at most the largest non-lead
coefficient of f multiplied by∣∣∣∣∣∣

r−k−1∑
q=0

r∑
j=q+k

(
j

q

)(
Sj−q(Tk)− Sj−q(Tk)

)∣∣∣∣∣∣ ≤
r−k−1∑
q=0

r∑
j=q+k

(
j

q

)
2k(j−q+1)

≤
r−k−1∑
q=0

r∑
j=q+k

jq

q!
2k(j−q+1)
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< r

r−k−1∑
q=0

rq

q!
2k(r−q+1)

< r2k(r+1)
∞∑
q=0

rq

q!

= r2k(r+1)er,

where the first inequality appeals to the second part of Proposition 16.
Therefore, the desired ratio is at most

C

C ′
r2k(r+1)er(
r
k

)
k!2(

k

2)
≤ C

C ′
r2k(r+1)er

k!
≤ C

C ′
2log(r)2k(r+1)4r

k!
≤ 25r

2

k!

C

C ′ .

Theorem 18. If h(x) is a polynomial with lead coefficient at least N in
absolute value, and the sum of absolute values of the rest of the coefficients
is at most M , then h(x) is strictly monotone on the interval (A,∞), where
A = max(1,M/N).

Proof. Let h(x) =
∑d

j=0 ajx
j . Assume that the lead coefficient of h is pos-

itive, ad = N . We show that the first derivative of h(x) is strictly positive
on the interval (A,∞).

h′(x) =
d∑

j=1

jajx
j−1 ≥ dadx

d−1 −
d−1∑
j=1

j|aj |xj−1

≥ dadx
d−1 − (d− 1)xd−2

d−1∑
j=1

|aj |

≥ Ndxd−1 − (d− 1)Mxd−2

> 0,

provided that x > M/N > ((d−1)M)/(Nd) and x > 1. If the lead coefficient
of h is negative, multiply h by (−1) and apply the above argument. h(x) in
this case is decreasing for x > A.

Corollary 19. If m < K, k < K, fm(d) = |L(m)(S(d;K,K))|, and g(t) =
f(Tk + t)− f(Tk + t), then g(t) is monotone for t > 211K

2

.

Proof. Due to Corollary 14, C
C′ < k!26k

2

. Therefore, if N is the lead co-

efficient of g, and M is the sum of the rest of the coefficients, then M
N ≤

k!26k2
25K2

k! ≤ 211K
2

.
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For r ≥ 0, k ≥ 0 and s ≥ t ≥ 0, define the sequence W(k; r, s, t) as
follows.

W(k; r, s, t) = (Tk)
r(Tk)

s

⎛⎝ t∏
j=1

(Tk + j2k)

⎞⎠ (Tk + (t+ 1)2k)

s−t∏
j=1

(Tk + (j + t+ 1)2k)

r∏
j=1

(Tk + (j + s+ 1)2k)

where the empty product is interpreted as the empty sequence. For example
T2 = (1, 2) and T2 = (0, 3), so

W(2; 2, 2, 1) = (0, 3, 0, 3, 1, 2, 1, 2, 4, 7, 9, 10, 12, 15, 17, 18, 21, 22)

Proposition 20. W(k; r, s, t) is a partition of 4k−1((r + s)2 + 5r + 5s+ 3)−
2k−2(2r + 2s+ 1) consisting of 2k−1(2r + 2s+ 1) parts for k ≥ 2.

Proof. It follows from (3) with r = 1 that the sums of the elements of Tk

and Tk are the same and, therefore, are equal to 4k−1−2k−2 = B for k ≥ 2.
Also, it can be proved by induction that, for k ≥ 1, Tk and Tk have the
same number of elements, which is 2k−1. Note that if a number a is added
to the sequence Tk (or Tk), the sum of elements will increase by a2k−1.
Therefore, for k ≥ 2, W(k; r, s, t) is a partition of

rB + sB +

t∑
j=1

(B + 2k−1j2k) + (B + 2k−1(t+ 1)2k)

+

s−t∑
j=1

(B + 2k−1(t+ j + 1)2k) +

r∑
j=1

(B + 2k−1(j + s+ 1)2k)

= B(r + s+ t+ 1 + s− t+ r)

+ 22k−1

⎛⎝ t∑
j=1

j + (t+ 1) +

s−t∑
j=1

(t+ j + 1) +

r∑
j=1

(j + s+ 1)

⎞⎠
= B(2r + 2s+ 1)

+ 22k−1

⎛⎝t+ 1 + (t+ 1)(s− t) + (s+ 1)r +

t∑
j=1

j +

s−t∑
j=1

j +

r∑
j=1

j

⎞⎠
= B(2r + 2s+ 1) + 22k−1

(
(t+ 1)(s− t+ 1) + (s+ 1)r
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+
t(t+ 1)

2
+

(s− t)(s− t+ 1)

2
+

r(r + 1)

2

)
= (4k−1 − 2k−2)(2r + 2s+ 1) + 22k−1(s2/2 + r2/2 + 3r/2 + 3s/2 + rs+ 1)

= 4k−1(2r+2s+1)+4k−1(s2+ r2+3r+3s+2rs+2)− 2k−2(2r+2s+1)

= 4k−1((r + s)2 + 5r + 5s+ 3)− 2k−2(2r + 2s+ 1).

The number of parts in the partition represented by W(k; r, s, t) can be
calculated directly from the definition and the number of parts in Tk and
Tk.

Define Wks
j for 1 ≤ j < (s + 2)(s + 1)/2 to be the j-th element of the

sequence:

W(k; 0, s, 0),W(k; 0, s, 1),W(k; 0, s, 2), . . . ,W(k; 0, s, s),

W(k; 1, s− 1, 0),W(k; 1, s− 1, 1), . . . ,W(k; 1, s− 1, s− 1),

W(k; 2, s− 2, 0),W(k; 2, s− 2, 1), . . . ,W(k; 2, s− 2, s− 2),

...

W(k; s− 1, 1, 0),W(k; s− 1, 1, 1),

W(k; s, 0, 0).

Note that each of these Wks
j is a partition of 4k−1(s2+5s+3)−2k−2(2s+1)

of length 2k−1(2s+ 1).

Proposition 21. For any polynomial f , let g(t) = f(Tk + t) − f(Tk + t).
Then

f(W(k; r, s, t+ 1))− f(W(k; r, s, t)) = g((t+ 2)2k)− g((t+ 1)2k)

In addition, for r ≤ s− 1,

f(W(k; r + 1, s− 1, 0))− f(W(k; r, s, s)) = g(2k)− g(0)

Proof. For any polynomial f , note that there will be some cancellation in
the difference f(W(k; r, s, t+ 1))− f(W(k; r, s, t)) because W(k; r, s, t+ 1)
and W(k; r, s, t) share a common prefix of (Tk)

r(Tk)
s, and a common suffix

of
∏r

j=1(Tk + (j + s + 1)2k). We focus now on the remaining terms. The
middle terms of W(k; r, s, t) are of the form:⎛⎝ t∏

j=1

(Tk + j2k)

⎞⎠ (Tk + (t+ 1)2k)

s−t∏
j=1

(Tk + (j + t+ 1)2k)
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= (Tk + 2k)(Tk + 2 · 2k) . . . (Tk + t2k)

(Tk + (t+ 1)2k)(Tk + (t+ 2)2k) . . . (Tk + (s+ 1)2k).

The middle terms of W(k; r, s, t+ 1) are of the form:⎛⎝t+1∏
j=1

(Tk + j2k)

⎞⎠ (Tk + (t+ 2)2k)

s−(t+1)∏
j=1

(Tk + (j + (t+ 1) + 1)2k)

= (Tk + 2k)(Tk + 2 · 2k) . . . (Tk + (t+ 1)2k)

(Tk + (t+ 2)2k)(Tk + (t+ 3)2k) . . . (Tk + (s+ 1)2k).

Again, many terms cancel. In particular, we have:

f(W(k; r, s, t+ 1))− f(W(k; r, s, t))

= f(Tk + (t+ 1)2k) + f(Tk + (t+ 2)2k)

− f(Tk + (t+ 1)2k)− f(Tk + (t+ 2)2k)

= gk((t+ 2)2k)− gk((t+ 1)2k).

This verifies the first part of the proposition.
The second part follows from an application of Corollary 17, and the

observation that:

W(k; r + 1, s− r − 1, 0) = (Tk)
r+1(Tk)

s−r−1(Tk + 2k)

s−r−1∏
j=1

(Tk + (j + 1)2k)

r+1∏
j=1

(Tk + (j + s− r)2k)

and

W(k; r, s− r, s− r) = (Tk)
r(Tk)

s−r

⎛⎝s−r∏
j=1

(Tk + j2k)

⎞⎠
(Tk + (s− r + 1)2k)

r∏
j=1

(Tk + (j + s− r + 1)2k).

Hence we have

f(W(k; r, s− r − 1, 0))− f(W(k; r, s− r, s− r))

= f(Tk)− f(Tk) + f(Tk + 2k)− f(Tk + 2k)
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= gk(2
k)− gk(0)

which completes the proof, after substituting s− r for s.

Since the polynomials fk that constitute the formula for the size of the
kth iterated line graph are increasing only after a certain point, it will be
useful to analyze f with its variable shifted by an additive constant.

Corollary 22. For any polynomial f , let g(t) = f(Tk + t)− f(Tk + t). Then

f(W(k; r, s, t+1)+A)−f(W(k; r, s, t)+A) = g((t+2)2k+A)−g((t+1)2k+A)

In addition, for r ≤ s− 1,

f(W(k; r + 1, s− 1, 0) +A)− f(W(k; r, s, s) +A) = g(2k +A)− g(A)

Proof. The proof is identical to that of Proposition (21).

Theorem 23. If h(x) is a polynomial with lead coefficient at least N in
absolute value, and the sum of absolute values of the rest of the coefficients
is at most M , then h(x) is strictly monotone on the interval (A,∞), where
A = max(1,M/N).

Proof. Let h(x) =
∑d

j=0 ajx
j . Assume that the lead coefficient of h is pos-

itive, ad = N . We show that the first derivative of h(x) is strictly positive
on the interval (A,∞).

h′(x) =
d∑

j=1

jajx
j−1 ≥ dadx

d−1 −
d−1∑
j=1

j|aj |xj−1

≥ dadx
d−1 − (d− 1)xd−2

d−1∑
j=1

|aj |

≥ Ndxd−1 − (d− 1)Mxd−2

> 0,

provided that x > M/N > ((d−1)M)/(Nd) and x > 1. If the lead coefficient
of h is negative, multiply h by −1 and apply the above argument. h(x) in
this case is decreasing for x > A.

Lemma 24. Consider any polynomial f of degree r, and let A be as in the
statement of Theorem 23. If r ≥ k, then the sequence f(Wks

j +A) is strictly

monotone in j for 1 ≤ j ≤ (s+2)(s+1)
2 and any s ≥ 1, k ≥ 2. If r < k, then

this sequence is constant for any A.
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Proof. Let g(t) = f(Tk + t) − f(Tk + t). Consider the case r ≥ k. Since g
is a polynomial, there is an A so that g(x) is strictly monotone for x > A.
Consider the case when g(x) is increasing. The decreasing case is similar.
For any j, Wks

j is of the form W(k;u, s − u, t) for some s ≥ u ≥ 0 and
s− u ≥ t ≥ 0. We have two cases.

Case 1. Wks
j+1 is of the form W(k;u, s−u, t+1) (corresponding to a change

within a row in the array). In this case, Corollary 22 tells us that f(Wks
j+1+

A)−f(Wks
j +A) = g((t+2)2k+A)−g((t+1)2k+A) > 0, since (t+2)2k+A >

(t+ 1)2k +A.

Case 2. Wks
j+1 is of the form W(k;u + 1, s − u − 1, 0) (corresponding to a

transition down one row in the array). Corollary 22 tells us that f(Wks
j+1 +

A2k)− f(Wks
j +A2k) = g(2k +A)− g(0 +A) > 0.

The case when r < k follows from the same considerations and the fact
that g(t) = 0 for all t, which follows from Corollary 17.

We now specialize the results of Corollary 17, Proposition 21, Corol-
lary 22, and Lemma 24 to polynomials which are the size of some iterated
line graphs.

Corollary 25. If m < K, k < K, fm(d) = |L(m)(S(d;K,K))|, and g(t) =
fm(Tk + t)− fm(Tk + t), then g(t) is monotone for t > 211K

2

.

Proof. Let C be the lead coefficient of fm, and C ′ its largest non-lead coeffi-
cient. Due to Corollary 14, C

C′ < k!26k
2

. Therefore, if N is the lead coefficient
of g, and M is the sum of the absolute values of the rest of the coefficients,

then M
N ≤ k!26k2

25K2

k! ≤ 211K
2

.

We are now ready to prove Theorem 26.

Theorem 26. For each K > 0 and for some constant C, there exists an
N0 ≤ 2CK2

such that for any N ≥ N0, there are Ω(NK−1) distinct Graham
classes of trees on N vertices.

Proof. For each 2 ≤ k ≤ K, there exists such number Ak that the sequence
{fk(W ks

j +Ak)} is strictly monotone (without loss of generality assume that
it is increasing) in j. If A = max2≤k≤K Ak, then, due to Lemma 24 and
Corollary 25, A < 211K

2

. We write λks
j = Wks

j + A. Observe that λks
j 


4k−1(s2 + 5s + 3) − 2k−2(2s + 1)(1 − 2A) = nks for 2 ≤ k ≤ K and for

1 ≤ j ≤ (s+2)(s+1)
2 . In particular, when k is held constant, nks = O(s2).

Let ΛKs denote the collection of partitions of the form
∏K

i=2 λ
is
ji

for

all possible choices of indices ji. In other words, ΛKs is the collection of
partitions which are concatenations of precisely one λis

j for each 2 ≤ i ≤ K.
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Observe that every element of ΛKs is a partition of
∑K

k=2 nks = N . In
particular, each element of ΛK forms an ordered partition of the same N ,
which (when K is constant) is O(s2). When s is constant, N = O(2CK2

) for
some constant C.

There are exactly NK−1 elements in the family ΛKs, so if we can prove
that for any distinct λ1, λ2 ∈ ΛKs the caterpillars cat(λ1;K) and cat(λ2;K)
produce different Graham sequences, then Theorem 26 is proved. Due to
Corollary 22, this is equivalent to gk(λ1) �= gk(λ2) for some k ≤ K.

For λ ∈ ΛKs denote the sequence (f2(λ), . . . , fK(λ)) as F (λ). We need
to prove that for any λ1, λ2 ∈ ΛKs, λ1 �= λ2 the sequences F (λ1) and F (λ2)

are different. Let λi = λKs
jKi

λ
(K−1)s
j(K−1)i

. . . λ3s
j3i
λ2s
j2i

for i = 1, 2. It can be proved

by induction that if there is such k that λks
jk1

�= λks
jk2

then fk(λ1) �= fk(λ2).
The base case for the induction is k = K. It follows from Lemma 24 that
fK(λKs

jK1
) �= fK(λKs

jK2
) and for any i ≤ K, fK(λis

ji1
) = fK(λis

ji2
). Therefore,

fK(λ1) �= fK(λ2).
Assume Theorem 26 is proved for k = K, . . . , p + 1. This covers all

cases when λks
jk1

�= λks
jk2

for k = K, . . . , p + 1, therefore we can assume that

λks
jk1

= λks
jk2

for these k, and λps
jp1

�= λps
jp2

. Then

fp(λ1)− fp(λ2) =

K∑
k=p+1

(fp(λ
ks
jk1

)− fp(λ
ks
jk2

)) + fp(λ
ps
jp1

)− fp(λ
ps
jp2

)

+

p−1∑
k=2

(fp(λ
ks
jk1

)− fp(λ
ks
jk2

)) = fp(λ
ps
jp1

)− fp(λ
ps
jp2

) �= 0,

where the first summand is equal to 0 due to the inductive assumption, and
the second due to Lemma 24.

Note that we take k ≥ 2 because the size of the first line graph of a tree
is completely determined by the size of the tree.

Corollary 27. For any N there are eΩ((logN)3/2) Graham classes of trees on
N vertices.

Proof. Due to Theorem 26, for any K there exists N = O(2CK2

) so that
there are Ω(NK−1) distinct Graham classes of trees onN vertices. Therefore,
there are Ω(NΩ(log(N)1/2)) = eΩ((logN)3/2) distinct Graham classes of trees on
N vertices.
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