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Diffusion on graphs is eventually periodic

Jason Long and Bhargav Narayanan

We study a variant of the chip-firing game called diffusion. In dif-
fusion on a graph, each vertex of the graph is initially labelled with
an integer interpreted as the number of chips at that vertex, and
at each subsequent step, each vertex simultaneously fires one chip
to each of its neighbours with fewer chips. Since this firing rule
may result in negative labels, diffusion, unlike the parallel chip-
firing game, is not obviously periodic. In 2016, Duffy, Lidbetter,
Messinger and Nowakowski nevertheless conjectured that diffusion
is always eventually periodic, and moreover, that the process even-
tually has period either 1 or 2. Here, we establish this conjecture.

1. Introduction

In this paper, we will be be concerned with ‘chip-firing’ games. Given a graph
G with piles of chips at each vertex, in the traditional chip-firing game, one
plays by repeatedly choosing a vertex that has at least as many chips as
its degree, and then ‘firing’ this vertex by moving a chip from the vertex
to each of its neighbours. This one-player game was introduced by Björner,
Lovász and Shor [3], and the study of dynamics of the chip-firing game and
its variants has since grown rapidly, due both to its inherent appeal and the
many connections to other areas of mathematics; see [4, 8, 7, 9, 1] for some
examples of recent developments, and the survey of Merino [10] for more
background.

Here, we will primarily be interested in a variant of the traditional chip-
firing game introduced by Duffy, Lidbetter, Messinger and Nowakowski [5]
called diffusion. In diffusion on a finite graph G, each vertex of G is ini-
tially labelled with an integer interpreted as the number of chips at that
vertex, and at each subsequent step, each vertex simultaneously fires one
chip to each of its neighbours with fewer chips. In contrast to the parallel
chip-firing game [2] where every vertex that has at least as many chips as
its degree simultaneously fires a chip to each of its neighbours, note that the
firing rule in diffusion may result in negative labels even when the initial
labels are all positive integers. It is therefore not clear a-priori if diffusion
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is bounded, and consequently, if it must exhibit periodic behaviour. Hence,
it is natural to ask if diffusion, on any graph, and from any initial config-
uration, is always eventually periodic (and we urge the reader to pause at
this juncture and consider this problem before proceeding further). Duffy,
Lidbetter, Messinger and Nowakowski [5] raised this precise problem and
conjectured, motivated by overwhelming numerical evidence, that diffusion
is always eventually periodic with period either 1 or 2; our goal here is to
prove this gorgeous conjecture.

A more formal description of diffusion, which is a cellular automaton
on a finite graph, is as follows. Let G be an n-vertex graph on the vertex
set [n] = {1, 2, . . . , n}. At time t = 0, each vertex v ∈ [n] is assigned an
initial integer label wv(0). We then update these labels at discrete time
steps according to the following rule: at time t ≥ 0, for a vertex v ∈ [n], if
Av(t) is the number of neighbours u of v with wu(t) > wv(t), and Bv(t) is
the number of neighbours u of v with wu(t) < wv(t), then we set

wv(t+ 1) = wv(t) +Av(t)−Bv(t).

For each t ≥ 0, let wG(t) ∈ Z
n denote the vector (w1(t), w2(t), . . . , wn(t)).

In this language, the diffusion process on G from the initial configuration
wG(0) ∈ Z

n is eventually periodic if the sequence (wG(t))t≥0 is eventually pe-
riodic. We shall establish the following, thereby settling the aforementioned
conjecture due to Duffy, Lidbetter, Messinger and Nowakowski [5].

Theorem 1.1. Diffusion on any graph, and from any initial configuration,
is eventually periodic with period either 1 or 2; in other words, for any
n-vertex graph G and any initial configuration wG(0) ∈ Z

n, the sequence
(wG(t))t≥0 is eventually periodic with period either 1 or 2.

This short note is organised as follows. We prove Theorem 1.1 in Sec-
tion 2, and we conclude in Section 3 with a discussion of some open problems.

2. Proof of the main result

Our proof of Theorem 1.1 hinges on the definition of an integer-valued po-
tential function. We shall show that this potential is bounded below, and
also that this potential is non-increasing with time; finally, we shall also
show that once our potential function stops decreasing (and is consequently
constant for the rest of all time), the diffusion process must subsequently
become periodic with period either 1 or 2. Of course, once we write down
the appropriate potential, the rest of the argument is quite straightforward;
finding the right definition is hence the crux of the matter.
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Proof of Theorem 1.1. In diffusion on an n-vertex graph G on [n] from an

initial configuration wG(0) ∈ Z
n, we define the potential P (t) of the diffusion

process at time t by

P (t) =

n∑
v=1

wv(t)wv(t+ 1).

Let us note two somewhat unexpected features of this potential. First, it is

slightly surprising that our potential at a time t depends on the labels of the

vertices at both times t and t + 1. Second, and perhaps more surprisingly,

this potential does not appear to take into direct account the structure of

the underlying graph, in the sense that the potential merely involves a sum

over the vertex set, and completely ignores the edge set!

We first observe that our potential function is bounded below.

Lemma 2.1. For all t ≥ 0, we have P (t) ≥ −n(n− 1)2/4.

Proof. This follows immediately from the observation that |wv(t + 1) −
wv(t)| ≤ n − 1 for each v ∈ [n]; therefore, for each v ∈ [n], we have

wv(t)wv(t+ 1) ≥ −(n− 1)2/4, and the claim follows.

To show that our potential function is non-increasing with time, we shall

assign some labels to the edges of G at each time t ≥ 0. Roughly speaking,

at each time t ≥ 0, we label each edge of G according to the directions in

which chips are passed along that edge in the next two steps. More precisely,

at a time t ≥ 0, an edge uv of G with 1 ≤ u < v ≤ n gets assigned

the label (xuv(t), yuv(t)) as follows: we set xuv(t) = sgn(wu(t) − wv(t)) and

yuv(t) = sgn(wu(t + 1) − wv(t + 1)), where sgn(m) is equal to either −1, 0

or 1 respectively according to whether m < 0, m = 0 or m > 0. We now

observe the following.

Lemma 2.2. For all t ≥ 0, we have P (t + 1) ≤ P (t); furthermore, if any

edge of G is labelled either (1, 1), (−1,−1), (0, 1) or (0,−1) at time t, then

P (t+ 1) < P (t).

Proof. Observe that

P (t+ 1)− P (t) =

n∑
v=1

wv(t+ 1)(wv(t+ 2)− wv(t)).
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With the convention that (xuv(t), yuv(t)) = (0, 0) whenever uv is not an edge
of G, we have

wv(t+ 2) = wv(t) +
∑
u�=v

sgn(v − u)(xuv(t) + yuv(t)).

Consequently, it follows that

P (t+ 1)− P (t) =

n∑
v=1

wv(t+ 1)

⎛
⎝∑

u�=v

sgn(v − u)(xuv(t) + yuv(t))

⎞
⎠

=
∑
u<v

(xuv(t) + yuv(t))(wv(t+ 1)− wu(t+ 1)).

Consider the contribution (xuv(t)+yuv(t))(wv(t+1)−wu(t+1)) from a pair
of vertices u, v ∈ [n] with u < v to the above sum. Clearly, this contribution
is zero if xuv(t)+yuv(t) = 0. Now, suppose that xuv(t)+yuv(t) �= 0; of course,
this is only possible when uv is in fact an edge of G. If xuv(t) + yuv(t) > 0,
then yuv(t) ≥ 0 and this implies that wv(t + 1) − wu(t + 1) ≤ 0, and if
xuv(t)+ yuv(t) < 0, then yuv(t) ≤ 0 and this implies that wv(t+1)−wu(t+
1) ≥ 0. Therefore, each term in the above sum is at most zero, and so
P (t+ 1) ≤ P (t), proving the first claim.

Now, if any edge uv is labelled with one of the four labels (1, 1), (−1,−1),
(0, 1) or (0,−1) at time t, then we see that the corresponding term (xuv(t)+
yuv(t))(wv(t + 1) − wu(t + 1)) is negative. For example, if xuv(t) = 0 and
yuv(t) = 1, then we have xuv(t) + yuv(t) = 1 and wv(t+ 1)− wu(t+ 1) < 0;
the three other cases are similarly easy to handle, and this establishes the
second claim.

We may now finish the proof as follows. By Lemma 2.1, we see that our
potential P (t) is bounded below for all t ≥ 0, and by Lemma 2.2, we see
that P (t) is non-increasing with t. Since P (t) is integer-valued, there exists
some finite time T (depending on our graph G and the initial configuration
wG(0)) such that P (t) is constant for all t ≥ T . It further follows from
Lemma 2.2 that at each time t ≥ T , the label of each edge belongs to the
set {(1,−1), (−1, 1), (0, 0), (1, 0), (−1, 0)}.

We claim that there exists a time T ′ ≥ T at which the label of each
edge belongs to the set {(1,−1), (−1, 1), (0, 0)}. To see this, we first note
that if an edge has labels (i, j) and (k, l) at times t and t + 1, then j = k.
Furthermore, we also know that an edge cannot be labelled either (1, 1),
(−1,−1), (0, 1) or (0,−1) at any time t ≥ T . Consequently, we deduce that
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1. if an edge is labelled either (1, 0), (−1, 0) or (0, 0) at some time t ≥ T ,
then it must be labelled (0, 0) at time t+1, and consequently, it must
be labelled (0, 0) at each time t′ ≥ t+ 1.

2. if an edge is labelled (−1, 1) at some time t ≥ T , then it must be
labelled either (1,−1) or (1, 0) at time t+ 1, and

3. if an edge is labelled (1,−1) at some time t ≥ T , then it must be
labelled either (−1, 1) or (−1, 0) at time t+ 1.

If an edge is labelled either (1, 0), (−1, 0) or (0, 0) at time T , then it is
labelled (0, 0) at each time t ≥ T + 1. If an edge is labelled either (1,−1)
or (−1, 1) at time T , then there are two possibilities: either the label of this
edges alternates between (1,−1) and (−1, 1) for the rest of all time, or the
label of this edge changes to either (1, 0) or (−1, 0) at some time t ≥ T + 1,
and is then labelled (0, 0) at each time t′ ≥ t+ 1. Since G has finitely many
edges, it is now clear that there exists a time T ′ ≥ T at which the label of
each edge belongs to the set {(1,−1), (−1, 1), (0, 0)}.

Finally, note that if the label of each edge belongs to {(1,−1), (−1, 1),
(0, 0)} at some time t, then we must have wG(t) = wG(t + 2); indeed, at
that time one of two things happens across each edge: either there is no
transfer of chips across the edge in question in either of the next two steps,
or a chip travels back and forth across the edge in question in the next two
steps. Consequently, we have wG(t + 2) = wG(t) for all t ≥ T ′, proving the
result.

3. Conclusion

It is natural to ask if Theorem 1.1 holds under more general conditions.
First, we remark that our proof runs essentially as described even when the
underlying graph G is allowed to contain parallel edges (so that each vertex
fires one chip along each edge to each of its neighbours with fewer chips), and
when the initial configuration wG(0) is a vector of real numbers rather than
integers. To deal with real-valued labels, one requires a small additional
observation, which is that while the potential is no longer integer-valued,
it can only attain finitely many distinct values between the lower bound
given by Lemma 2.1 and its initial value. Next, while it is easy to see that
diffusion on an infinite graph need not be periodic, it would be good to
decide whether one can say anything interesting in the case of, say, infinite
graphs of bounded degree. Concretely, it would be interesting to decide
which infinite graphs of bounded degree have the property that diffusion
from an initial configuration where the vertex labels are uniformly bounded
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results in a process where the vertex labels remain bounded for all time; the
integer lattices present perhaps the most interesting special case, and while
we would expect these graphs to possess the aforementioned property, it is
worth pointing out, as observed by Erde [6], that the infinite 4-regular tree,
somewhat surprisingly, does not possess the property in question.

Duffy, Lidbetter, Messinger and Nowakowski [5] raise various other ques-
tions about diffusion that are not addressed here, and we conclude by men-
tioning a problem in a similar vein. Note that the dynamics of diffusion
are unchanged if we initially add a fixed number of chips to each vertex.
Since we have shown that diffusion is eventually periodic (and consequently
bounded), it would be interesting to decide if, for each n ∈ N, there exists
an integer f(n) ≥ 0 with the property that in diffusion on any n-vertex
graph where each initial vertex label is at least f(n), all the vertex labels
are non-negative at all subsequent times. A star on n vertices shows that
f(n), if it exists, must grow at least linearly in n; it is conceivable that this
is the truth.
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