
Journal of Combinatorics

Volume 10, Number 2, 291–325, 2019

The combinatorics of weighted vector compositions

Steffen Eger

A vector composition of a vector � is a matrixA whose rows sum to
�. We define a weighted vector composition as a vector composition
in which the column values of A may appear in different colors.
We study vector compositions from different viewpoints: (1) We
show how they are related to sums of random vectors and (2) how
they allow to derive formulas for partial derivatives of composite
functions. (3) We study congruence properties of the number of
weighted vector compositions, for fixed and arbitrary number of
parts, many of which are analogous to those of ordinary binomial
coefficients and related quantities. Via the Central Limit Theorem
and their multivariate generating functions, (4) we also investi-
gate the asymptotic behavior of several special cases of numbers of
weighted vector compositions. Finally, (5) we conjecture an exten-
sion of a primality criterion due to Mann and Shanks [28] in the
context of weighted vector compositions.

Keywords and phrases: Vector composition, weighted composition,
sum of random variables, partial derivatives, congruences.

1. Introduction

An integer composition (ordered partition) of a nonnegative integer n is a
tuple (π1, . . . , πk) of nonnegative integers whose sum is n. The πi’s are called
the parts of the composition. For fixed number k of parts, the number of f -
weighted integer compositions—also called f -colored integer compositions in
the literature—in which each part size s may occur in f(s) different colors,
is given by the extended binomial coefficient

(
k
n

)
f
[12].

We generalize here the notion of weighted integer compositions to
weighted vector compositions. For a vector � ∈ N

N , for N ≥ 1, a vector
composition [4] of � with k parts is a matrix A = [m1, . . . ,mk] ∈ N

N×k

such that m1+ · · ·+mk = �. We call a vector composition f -weighted, for a
function f : NN → N, when each part of ‘size’ m may occur in one of f(m)
different colors in the composition. For example, for N = 2 and f :

f
(
(1, 1)

)
= 2, f

(
(1, 0)

)
= 1, f

(
(0, 1)

)
= 1
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and f(x) = 0 for all other x ∈ N
2, there are seven distinct f -weighted vector

compositions of � = (1, 2), namely:

[(
0
1

)(
1
1

)]
,

[(
1
1

)(
0
1

)]
,

[(
0
1

)(
1
1

)♦]
,

[(
1
1

)♦(
0
1

)]
,

[(
0
1

)(
0
1

)(
1
0

)]
,

[(
0
1

)(
1
0

)(
0
1

)]
,

[(
1
0

)(
0
1

)(
0
1

)]

where ♦ distinguishes between the two values of (1, 1). For fixed num-

ber k ≥ 0 of parts, we denote the number of distinct f -weighted vec-

tor compositions of � ∈ N
N by

(
k
�

)
f
. Moreover, the number cf (�) of f -

weighted vector compositions with arbitrarily many parts is then given by

cf (�) =
∑

k≥0

(
k
�

)
f
.

The number of f -weighted vector compositions with k parts may be

represented as (
k

�

)
f

=
∑

m1+···+mk=�

f(m1) · · · f(mk).(1)

When the function f takes values in R (or even in a commutative ring),

then the RHS of Eq. (4) gives the total weight of all vector compositions of

� with k parts, where we define the weight of a composition [m1, . . . ,mk] as

f(m1) · · · f(mk).

We study f -weighted vector compositions from several viewpoints. Sec-

tion 2 relates weighted vector compositions to sums of random vectors. Sec-

tion 3 introduces basic identities for
(
k
�

)
f
which will be used in follow-up

results. Section 4 derives a formula for partial derivatives of composite func-

tions using these identities. Our formula generalizes the famous formula of

Faà di Bruno (see [26]) for the higher order derivatives of a composite func-

tion. Section 5 gives divisibility properties of
(
k
�

)
f
and in Section 6, we derive

congruences and identities for sums of
(
k
�

)
f
, including cf (�). Our results in

these two sections generalize corresponding results from [17, 41] for weighted

integer compositions, and others for ordinary binomial coefficients. We also

generalize here the notion of so-called s-color compositions in which a part

of size s may occur in s different colors in a composition [2]. We discuss

asymptotics of weighted vector compositions in Section 7 and the primality

criterion of Mann and Shanks [28] in the context of weighted vector compo-

sitions in Section 8.
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In the rest of this work, we use the following notation and definitions.

We write vectors and matrices in bold font (x, �, . . .) to distinguish them

from ‘scalars’ (k, n, . . .). We write vectors as row vectors ((x, y, z), . . .). We

write the components of a vector x as x1, x2, . . . and similarly for matrices.

We use the standard notation,
(
k
n

)
, for ordinary binomial coefficients, which

are a special case of our setup. They are retrieved when N = 1 and f(x) is

the indicator function on {0, 1}, that is, f(x) = 1 for x ∈ {0, 1} and f(x) = 0

for all other x.

We let N = {0, 1, 2, . . .} be the set of nonnegative integers. Let k ≥
0, N ≥ 1 and let � ∈ N

N . Let 0 = 0N = (0, . . . , 0) ∈ N
N and let 1 = 1N =

(1, . . . , 1) ∈ N
N . Let

S(�) = {s ∈ N
N | s �= 0, 0 ≤ sj ≤ �j , j = 1, . . . , N}

be the set of all non-zero part sizes in N
N ‘bounded from above’ by �, and

let S0(�) = S(�) ∪ {0}. Let the elements in S(�) or S0(�) be enumerated as

s1, s2, . . .. We denote by P(S0(�))(�; k) = P(�; k) the set

P(�; k) = {
(
r1, r2, . . .

)
| ri ≥ 0,

∑
i≥1

ri = k,
∑
i≥1

risi = �}

of vector partitions (unordered compositions) of � with k parts, including

part size 0. Here, r1, r2, . . . are the multiplicities of the part sizes s1, s2, . . ..

We similarly define P(S(�))(�; k) as the set of vector partitions of � with

k parts, excluding 0. We write P(S0(�))(�) = P(�) for the set of vector

partitions, part size 0 included, of � with arbitrary number of parts:

P(�) = {
(
r1, r2, . . .

)
| ri ≥ 0,

∑
i≥1

risi = �}

and analogously for P(S(�))(�).1 For a scalar a and a vector b, we write a|b,
when a|bi for all components bi of b.

Background: Weighted vector compositions generalize the concept of

vector compositions introduced in Andrews [4]. In fact, vector composi-

tions are f -weighted vector compositions for which f = fS0
is the indicator

function on S0 = N
N − {0N}. For the same fS0

, Munarini et al. [31] in-

troduce matrix compositions. These are matrices whose entries sum to a

1When it is clear from context whether 0 is included or not, we may also write
P(�) for both P(S(�))(�) and P(S0(�))(�), and similarly for related quantities.
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positive integer n and whose columns are non-zero. We find that the num-
ber c(N)(n) of matrix compositions of n for matrices with N rows satisfies
c(N)(n) =

∑
�1+···+�N=n cfS0

(�1, . . . , �N ).
Vector compositions are also closely related to lattice path combina-

torics [44]. Lattice paths are paths from the origin 0N to some point � =
(�1, . . . , �N ) ∈ N

N where each step lies in some set S. In our case, each
coordinate of each step s ∈ S is nonnegative. Vector compositions also gen-
eralize the concept of alignments considered in computational biology and
computational linguistics [20]. For example, the number of (standard) align-
ments of N sequences of lengths � = (�1, . . . , �N ) is given by cfS1

(�), where
fS1

is the indicator function on S1 = {(s1, . . . , sN ) | si ∈ {0, 1}} − {0N}.
When fS is the indicator function on more ‘complex’ S ⊆ N

N , cfS counts
“many-to-many” alignments [16].

Weighted integer compositions, that is, the case when N = 1, go back
to [29] and [46, 47]. Recently, they have attracted attention in the form of
so-called s-color compositions, for which f is specified as identity function,
that is, f(s) = s [2, 21, 32, 39, 41]. More general f have been considered
in [1, 7, 12, 15, 17, 25, 40], to name just a few. Results on standard integer
compositions, i.e., where f is the indicator function on N− {0} or a subset
thereof, are found in [23].

2. Relation to multivariate random variables

Let X1, X2, . . . be i.i.d. discrete random vectors with common distribution
function f(x) = P [X = x], for x ∈ N

N . Then the distribution of the sum
X1 +X2 + · · ·+Xk is given by

P [X1 + · · ·+Xk = �] =
∑

m1+···+mk=�

P [X1 = m1] · · ·P [Xk = mk]

=
∑

m1+···+mk=�

f(m1) · · · f(mk) =

(
k

�

)
f

.

Let f be the discrete uniform measure on some S ⊆ N
N . Then

P [X1 + · · ·+Xk = �] =

(
1

|S|

)k (k
�

)
gS

where gS is the indicator function on S. Thus
(
k
�

)
gS

= |S|kP [X1+ · · ·+Xk =

�]. Moreover, P [X1+ · · ·+Xk = �] may be approximated by the multivariate
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normal distribution according to the multivariate Central Limit Theorem
(CLT). That is, for large k, P [X1 + · · · +Xk = �] can be approximated by
the density

(2π)−N/2|Σk|−1/2 exp

(
−1

2
(�− μk)

ᵀΣ−1
k (�− μk)

)

where μk = kμ and Σk = kΣ are the mean vector and covariance matrix of
X1 + · · ·+Xk, respectively. Here, μ is the mean vector of each Xi and Σ is
the covariance matrix among the components of Xi, where |Σ| denotes its
determinant. The approximation holds for large k.

Example 2.1. Let S =
∏N

j=1{0, 1, . . . , νj}, for integers νj > 0. Let Xi

be uniformly distributed on S, for all i = 1, . . . , k. We have μ = E[Xi] =
(ν1/2, . . . , νN/2). Since the components of Xi are independent of each other

and since the variance of each component j of Xi is given by (νj+1)2−1
12

(variance of uniform distributed random variable on {0, . . . , νj}), we find
that

|Σ| =
N∏
j=1

(νj + 1)2 − 1

12
.

This leads to the approximation

(
k

kμ

)
gS

∼

(∏
j νj + 1

)k
(2π)N/2k

√
|Σ|

.

When N = 1 and ν1 = 1 we obtain the well-known approximation 2k+1√
2πk

for

the central binomial coefficient
(

k
k/2

)
.

Example 2.2. Let S = {(0, 1), (1, 0), (1, 1)}. Let Xi = (x, y) be uniformly
distributed on S. We have

P [x = 0] =
1

3
, P [x = 1] =

2

3
, P [xy = 0] =

2

3
, P [xy = 1] =

1

3
.

Therefore, Cov(x, y) = E[xy]−E[x]E[y] = 1/3− (2/3)2 = 3/9− 4/9 = −1
9 .

Moreover, Var(x) = 2
9 and thus

Σ =

(
2
9 −1

9
−1

9
2
9

)
, μ =

(
2
3
2
3

)
.
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Hence: (
k

kμ

)
gS

∼ 3k

2πk
√

1
27

=
3k+1

2πk
√

1
3

For example, we have (
15

(10, 10)

)
gS

= 756, 756,

while the approximation formula yields 791,096.70 . . ., which amounts to a
relative error of less than 5%. Analogously,(

18

(12, 12)

)
gS

= 17, 153, 136,

while the approximation formula yields 17,799,675.85 . . ., which amounts to
a relative error of less than 4%.

The idea of deriving asymptotics of coefficients via the CLT, that under-
lies our above approximations, has been developed in different works such
as [14, 49]; see [30] for a survey. While such results can also be obtained via
singularity or saddle point analysis methods using the generating function
for

(
k
�

)
f
in our case [18, 36], using the CLT with suitably defined random

variables is an alternative that may guarantee additional desirable properties
such as uniform convergence [33].

3. Basic identities

In the sequel, we write xs for xs11 · · ·xsNN where x = (x1, . . . , xN ) and s =
(s1, . . . , sN ).

For k ≥ 0 and �1, . . . , �N ≥ 0 and f : NN → R, consider the coefficient
of x� = x�11 · · ·x�NN of the power series F in the variables x1, . . . , xN , where:

F (x; k) =
(∑
s∈NN

f(s)xs
)k

,(2)

and denote it by [x�]F (x; k). Our first theorem states that [x�]F (x; k) de-
notes the combinatorial object we are investigating in this work, the number
of f -weighted vector compositions of � (with a fixed number, k, of parts).
Therefore, F (x; k) is the generating function for

(
k
�

)
f
.
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Theorem 3.1. We have that [x�]F (x; k) =
(
k
�

)
f
.

Proof. Collecting terms in (2), we see that [x�]F (x; k) is given as∑
m1+···+mk=�

f(m1) · · · f(mk),(3)

where the sum is over all nonnegative vector solutions to m1+ · · ·+mk = �.
Using (1) proves the theorem.

Next, we list four identities for
(
k
�

)
f
which we will make use of in the

proofs of (divisibility) properties of the number of vector compositions later
on.

Theorem 3.2. Let k ≥ 0 and � ∈ N
N . Then, the following hold:(

k

�

)
f

=
∑

(r1,r2,...)∈P(�;k)

(
k

r1, r2, . . .

)∏
si

f(si)
ri(4)

(
k

�

)
f

=
∑

q1+···+qr=�

(
k1
q1

)
f

· · ·
(
kr
qr

)
f

(5)

�

(
k

�

)
f

=
k

i

∑
s∈NN

s

(
i

s

)
f

(
k − i

�− s

)
f

(6)

(
k

�

)
f

=
∑
i∈N

f(m)i
(
k

i

)(
k − i

�−mi

)
f|f(m)=0

(7)

In (4),
(

k
r1,r2,...

)
= k!

r1!r2!··· denote the multinomial coefficients. In (5), which we
will call Vandermonde convolution, the sum is over all solutions q1, . . . ,qr,
qi ∈ N

N , of q1 + · · · + qr = �, and the relationship holds for any fixed
composition (k1, . . . , kr) of k, for r ≥ 1. In (6), i is an integer satisfying 0 <
i ≤ k. In (7), m ∈ N

N and by f|f(m)=0 we denote the function g : NN → N

for which g(s) = f(s), for all s �= m, and g(m) = 0.

Proof. (4) follows from rewriting the sum in (3) as a summation over vec-
tor partitions rather than over vector compositions and then adjusting the
factors in the sum. (5) follows because each vector composition of � with
k parts can be subdivided into a fixed number r of ‘subcompositions’ with
k1, . . . , kr parts. These represent weighted vector compositions of vectors
qi with ki parts and the subcompositions are independent of each other,
given that the qi’s sum to �. In view of our previous discussions, we prove
(6) for sums of random vectors. For 0 < i ≤ k, let Ti denote the partial
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sum X1 + · · ·+Xi of i.i.d. random vectors X1, . . . , Xi, . . . , Xk. Consider the
conditional expectation E[Ti |Tk = n], for which the relation

E[Ti |Tk = �] =
�

k
i,

holds, by independent and identical distribution of X1, . . . , Xk. Moreover,
by definition of conditional expectation, we have that

E[Ti |Tk = �] =
∑
s∈NN

s
P [Ti = s, Tk = �]

P [Tk = �]
=
∑
s∈NN

s
P [Ti = s] · P [Tk−i = �− s]

P [Tk = �]
.

Combining the two identities for E[Ti |Tk = n] and rearranging yields (6).
To prove (7), let m ∈ N

N . The part value m may occur i = 0, . . . , k times
in a vector composition of � with k parts. When it occurs exactly i times we
are left with a composition of �−mi into k − i parts in which m does not
occur anymore. The factor

(
k
i

)
distributes the i parts with value m among

k parts and the i parts may be colored independently into f(m) colors.

Remark 3.3. Note the following important special case of (5) which results
when we let r = 2 and k1 = 1 and k2 = k − 1,(

k

�

)
f

=
∑
s∈NN

f(s)

(
k − 1

�− s

)
f

,

which establishes that the quantities
(
k
�

)
f
may be perceived of as generating

a “Pascal triangle”-like array in which entries in row k are weighted sums of
the entries in row k−1. However, note that the entries � in rows k themselves
lie in an N -dimensional space.

We also note the following special cases of
(
k
�

)
f
.

Lemma 3.4. For all k ∈ N,x ∈ N
N , we have that:(

k

0

)
f

= f(0)k,(
1

x

)
f

= f(x),

(
0

x

)
f

=

{
1, if x = 0;

0, otherwise.
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4. Combinatorics of partial derivatives

The formula of Faà di Bruno (1825–1888) describes the higher-order deriva-
tives of a composite function G◦F as a combinatorial sum of the derivatives
of the individual functions G and F . Hardy [22] generalizes this formula
to partial derivatives, arguing that treating variables in the derivatives as
distinct is more natural. We provide an alternative derivation of the partial
derivative formula which is based on interpreting G ◦ F as the generating
function for weighted vector compositions. As a consequence, the formulas
for partial derivatives of composite functions follow effortlessly from different
identities for weighted vector compositions.

For two power series G : R → R and F : R
N → R with G(z) =∑

n≥0 gnz
n and F (z) =

∑
s∈NN fsz

s, we first ask for the power series repre-
sentation of G ◦ F . We find that

[zs](G ◦ F )(z) = [zs]
∑
n≥0

gn
(∑
s∈NN

fsz
s
)n

=
∑
n≥0

gn[z
s]
(∑
s∈NN

fsz
s
)n

=
∑
n≥0

gn

(
n

s

)
f

by Theorem 3.1. Hence, using (1), we obtain

(G ◦ F )(z) =
∑
s∈NN

zs

⎛
⎝∑

n≥0

gn

(
n

s

)
f

⎞
⎠

=
∑
s∈NN

zs

⎛
⎝∑

n≥0

gn
∑

π∈C(s;n)
fm1

· · · fmn

⎞
⎠

=
∑
s∈NN

zs

⎛
⎝∑

n≥0

∑
π∈C(s;n)

gnfm1
· · · fmn

⎞
⎠

=
∑
s∈NN

zs

⎛
⎝ ∑

π∈C(s)
g|π|fπ

⎞
⎠

(8)

where we let C(s;n) stand for {π = (m1, . . . ,mn) |mi ∈ N
N ,
∑n

i=1mi = s}
(vector compositions of s with fixed number n of parts) and C(s) analogously
represents the class of vector compositions of s with arbitrary number of
parts. Moreover, we use the abbreviation fπ = fm1

· · · fmn
and |π| denotes
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the number of parts in π. Note that the above representation generalizes
the analogous representation derived in Vignat and Wakhare [48] to the
multivariate case.

Since

1

�!

∂||�||H(0)

∂z�
= [z�]H(z),

for any power series H(z), we immediately have several Faà di Bruno like
representations of partial derivatives. Here, we write ∂z� for ∂z�11 · · · ∂z�NN ,
||�|| for �1 + · · ·+ �N and �! for �1! · · · �N !.

Theorem 4.1. Let G ◦F : RN → R, with F : RN → R and G : R → R. Let
� = (�1, . . . , �N ) ∈ N

N and assume that G and F have a sufficient number
of derivatives. Then

∂||�||(G ◦ F )(x)

∂z�

=
∑

π=(m1,m2,...)∈C(�)

�!

|π|!m1!m2! · · ·
G(|π|)(F (x))

∏
i

∂||mi||F (x)

∂zmi

Note that in the theorem, terms ∂||mi||F (x)
∂zmi

with mi = 0 drop, so we can
perceive of the sum as being over non-zero parts mi.

Alternative representations of the partial derivative can be derived by
considering different identities for

(
n
s

)
f
. For example, using (4), we obtain

Theorem 4.2 below. Still other representations follow analogously from con-
sidering further identities of

(
n
s

)
f
, e.g., (7), plugged into the representation

of (G ◦ F )(z) in (8) above.

Theorem 4.2. Let G ◦F : RN → R, with F : RN → R and G : R → R. Let
� = (�1, . . . , �N ) ∈ N

N and assume that G and F have a sufficient number
of derivatives. Then

∂||�||(G ◦ F )(x)

∂z�
=

∑
(r1,r2,...)∈P(S(�))(�)

�!

r1!r2! · · ·
G(r)(F (x))

∏
i

(
1

si!

∂||si||F (x)

∂zsi

)ri

where r = r1 + r2 + · · · .
Example 4.3. Let � = (1, 2). Then S(�) = {(0, 1), (1, 0), (1, 1), (1, 2), (0, 2)}.
Moreover,

P(S(�))(�) = {(0, 0, 0, 1, 0), (1, 0, 1, 0, 0), (0, 1, 0, 0, 1), (2, 1, 0, 0, 0)}.
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Therefore, according to Theorem 4.2

∂3(G ◦ F )

∂x∂y2
= 2

(
G′(F (x))

1

2

∂3F (x)

∂x∂y2
+G′′(F (x))

∂F (x)

∂y

∂2F (x)

∂x∂y

+ G′′(F (x))
∂F (x)

∂x

1

2

∂2F (x)

∂y2
+

1

2
G′′′(F (x))

(∂F (x)

∂y

)2∂F (x)

∂x

)
.

We now show that Theorem 4.1 (or equivalently Theorem 4.2) gen-
eralizes the main formula derived in [22]. Recall that a set partition of
[n] = {1, . . . , n} is a set of disjoint, non-empty subsets of [n] whose union is
[n].

Lemma 4.4. There is a bijection between the set of all vector partitions
(unordered compositions) of the vector (1, . . . , 1)︸ ︷︷ ︸

n times

into k non-zero parts and

the set of all set partitions of [n] into k parts.

The proof of the lemma is straightforward. We can assign each set par-
tition a = {a1, . . . , ak} (where ai ⊆ [n], ai �= ∅,

⋃
i ai = [n], ai ∩ aj = ∅) the

vector partition b1 + · · · + bk where bi is a vector whose entries are 1 for
all indices in ai and zero otherwise (and vice versa). Due to the properties
of a, b1 + · · ·+ bk yields (1, . . . , 1).

Further, since the parts of each vector partition of 1 = (1, . . . , 1) into k
non-zero parts are all distinct, we also have that |C(1; k)| = k!|P(1; k)|.

To derive the main result in [22], we now let � in Theorem 4.1 be 1 =
(1, . . . , 1) (each of N variables occurs exactly once). Then ||�|| = N and
�! = 1 and mi! = 1. Thus,2

∂N (G ◦ F )(x)

∂z1
=

∑
π=(m1,m2,...)∈C(1)

1

|π|!G
(|π|)(F (x))

∂||m1||F (x)

∂zm1

∂||m2||F (x)

∂zm2
· · ·

=
∑

π=(m1,m2,...)∈P(1)

G(|π|)(F (x))
∂||m1||F (x)

∂zm1

∂||m2||F (x)

∂zm2
· · ·

Interpreting the last quantity as a sum over set partitions, using Lemma 4.4,
with the mi as subsets of [N ] yields the formula (5) in [22].

Correspondingly, our representation in Theorem 4.2 is the direct ana-
logue of the representation in [22] based on ‘multiset partitions’ (Corollary
to Propositions 1 and 2 in [22] combined with Proposition 4 therein).

2In the equation, we perceive of P(�) as directly containing unordered vectors,
rather than multiplicities as in our original definition.
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There has been some debate on the combinatorial nature of higher-order

derivatives. While they may (thus) be perceived of as set partitions [22, 26],

Yang [50] finds that they are “essentially integer partitions”. Noting the

relationships and equivalences between these concepts and based on our

derivations, we may also claim that partial derivatives of composite functions

are essentially vector compositions!

5. Congruences for
(
k

�

)
f

Theorem 5.1 (Parity of
(
k
�

)
f
). Let k ≥ 0 and let � ∈ N

N . Then

(
k

�

)
f

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (mod 2), if k is even and

� has at least one

odd entry;(k/2
�/2

)
f

(mod 2), if k is even and

� has only even entries;∑
{s | �−s has only even entries} f(s)

(�k/2�
�−s

2

)
if k is odd.

Proof. We distinguish three cases.

• Case 1: Let k be even and let one entry of � be odd. Consider (6) in

Theorem 3.1 with i = 1. If k is even, the right-hand side vector is even

in each entry. Thus, if � is odd in one entry,
(
k
�

)
f
must be even.

• Case 2: Let k be even and � be even in each entry. Consider the Van-

dermonde convolution in the case of r = 2 and k1 = k2 = k/2. Then,(
k

�

)
f

=
∑

a+b=�

(
k/2

a

)
f

(
k/2

b

)
f

.

All pairs (a,b) for which a �= b occur exactly twice, so their sum

contributes nothing modulo 2. The only term that does not occur

twice is a = b, for which a = �/2. Hence,

(
k

�

)
f

≡
(
k/2

�/2

)2

f

≡
(
k/2

�/2

)
f

(mod 2).

• Case 3: Let k be odd. Then k − 1 is even. Thus, the Vandermonde



Combinatorics of vector compositions 303

convolution with k1 = 1, r = 2 implies(
k

�

)
f

=
∑
s∈NN

f(s)

(
k − 1

�− s

)
f

≡
∑

{s | �−s has only even entries}
f(s)

(�k/2�
�−s
2

)
(mod 2),

where we use Case 1 and Case 2 in the last congruence.

Example 5.2. Let f((0, 1, 0)) = 3 and let f(s) = 1 for all s ∈ {(1, 0, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. Let f(s) = 0 for all other s. Then,

by Theorem 5.1,(
21

(20, 19, 18)

)
f

≡ f((0, 1, 0))

(
10

(10, 9, 9)

)
f

≡ 0 (mod 2).

In fact,
(

21
(20,19,18)

)
f
= 7,301,700. In contrast,

(
19

(3, 16, 2)

)
f

≡
(

9

(1, 8, 1)

)
f

≡
(

4

(0, 4, 0)

)
f

≡
(

2

(0, 2, 0)

)
f

≡
(

1

(0, 1, 0)

)
f

≡ 1 (mod 2).

Indeed,
(

19
(3,16,2)

)
f
= 8,356,358,620,683.

Theorem 5.3. Let p be prime, � ∈ N
N . Then

(
p

�

)
f

≡
{
f(m) (mod p), if � = mp for some m;

0 (mod p), else.

We sketch three proofs of Theorem 5.3, a combinatorial proof and two

proof sketches based on identities in Theorem 3.2. The first proof uses the

following lemma (see [3]).

Lemma 5.4. Let S be a finite set, let p be prime, and suppose g : S → S

has the property that gp(x) = x for any x in S, where gp is the p-fold

composition of g. Then |S| ≡ |F | (mod p), where F is the set of fixed points

of g.
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Proof of Theorem 5.3, 1. Let g, a map from the set of f -weighted vector
compositions of � with p parts to itself, be the operation that shifts all parts
one to the right, modulo p. In other words, g maps (denoting colors by
superscripts) [mα1

1 ,mα2

2 , . . . ,m
αp−1

p−1 ,m
αp
p ] to

[mαp
p ,mα1

1 ,mα2

2 , . . . ,m
αp−1

p−1 ].

Of course, applying g p times yields the original vector composition, that is,
gp(x) = x for all x. We may thus apply Lemma 5.4. If � allows a representa-
tion � = pm for some suitable m, g has exactly f(m) fixed points, namely,
all compositions [m1, . . . ,m1]︸ ︷︷ ︸

p times

to [mf(m), . . . ,mf(m)]︸ ︷︷ ︸
p times

. Otherwise, if � has no

such representation, g has no fixed points. This proves the theorem.

Proof of Theorem 5.3, 2. We apply (7) in Theorem 3.2. Since for the or-
dinary binomial coefficients, the relation

(
p
n

)
≡ 0 (mod p) holds for all

1 ≤ n ≤ p− 1 and
(
p
0

)
=
(
p
p

)
= 1, we have

(
p

�

)
f

≡
(
p

�

)
f|f(m)=0

+ f(m)p
(

0

�−mp

)
f|f(m)=0

≡
(
p

�

)
f|f(m)=0

+ f(m)

(
0

�−mp

)
f|f(m)=0

(mod p),

for any m and where the last congruence is due to Fermat’s little theorem.
Therefore, if � = mp for somem, then

(
p
�

)
f
≡
(
p
�

)
f|f(m)=0

+f(m) (mod p) and

otherwise
(
p
�

)
f
≡
(
p
�

)
f|f(m)=0

(mod p) for any m. Now, the theorem follows

inductively.

Proof of Theorem 5.3, 3. We use (4) in Theorem 3.2 in conjunction with
the following property of multinomial coefficients (see, e.g., [38]):(

k

k1, k2, . . .

)
≡ 0 (mod

k

gcd (k1, k2, . . .)
).(9)

Since the multiplicities r1, r2, . . . for
(
p
�

)
f
in (4) satisfy r1 + r2 + · · · = p, we

have d = gcd (r1, r2, . . .) ∈ {1, p}, since otherwise p was composite. More-
over, d = p if and only if exactly one of the ri equals p and all the other
are zero. Hence, whenever � �= pm, for any m, then d = 1 for all (r1, r2, . . .)
in the summation, for otherwise, the condition r1s1 + r2s2 + · · · = � would
imply that psi = �, a contradiction. Therefore,

(
p
�

)
f

≡ 0 (mod p) since
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all terms in the summation in (4) are congruent to zero modulo p by (9).
Consider now the case � = pm for some m. Then, m ∈ S(�), that is,

m = si for some i. Again, the only terms in the summation that con-
tribute modulo p are those for which d = p. Thus, there is exactly one term
that contributes, namely, (r1, r2, . . . , ri, . . .) = (0, 0, . . . , p, . . .). Therefore,(
p
�

)
f
≡
(

p
0,...,0,p,0,...

)
f(m)p ≡ f(m) (mod p).

We call the next congruence Babbage’s congruence, since Charles Bab-
bage was apparently the first to assert the respective congruence in the case

of ordinary binomial coefficients [5].

Theorem 5.5 (Babbage’s congruence). Let p be prime, let n be a nonneg-
ative integer, and let m ∈ N

N . Then(
np

mp

)
f

≡
(
n

m

)
g

(mod p2),

whereby g is defined as g(x) =
(
p
xp

)
f
, for all x.

Proof. By the Vandermonde convolution, we have(
np

mp

)
f

=
∑

k1+···+kn=mp

(
p

k1

)
f

· · ·
(

p

kn

)
f

(10)

Now, by Theorem 5.3, p divides
(
p
x

)
f
whenever x is not of the form x = rp.

Hence, modulo p2, the only terms that contribute to the sum are those for
which at least n − 1 ki’s are of the form ki = rip. Since the ki’s must sum
to mp, this implies that all ki’s are of the form ki = rip, for i = 1, . . . , n.

Hence, modulo p2, (10) becomes

∑
r1+···+rn=m

n∏
i=1

(
p

rip

)
f

=
∑

r1+···+rn=m

n∏
i=1

g(ri),

The last sum is precisely
(
n
m

)
g
.

Example 5.6. Let f be the indicator function on the set {(1, 0), (0, 1), (1, 1),
(2, 1), (1, 2)}. Let p = 3, n = 2, and m = (1, 2). Enumeration shows that(

6

(3, 6)

)
f

= 170.
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Moreover,
(

2
(1,2)

)
g
can be determined by looking at the compositions of (1, 2)

in two parts, which are (1, 2) = (0, 1) + (1, 1) = (1, 1) + (0, 1). We have
g((1, 1)) =

(
3

(3,3)

)
f
= 13 and g((0, 1)) =

(
3

(0,3)

)
f
= 1. Hence,

(
2

(1,2)

)
g
= 26 ≡

8 ≡
(

6
(3,6)

)
f
(mod 32), as predicted.

Since g(m) ≡ f(m) (mod p), by Theorem 5.3, we have the following
theorem.

Theorem 5.7. Let p be prime, let n be a nonnegative integer, and let
m ∈ N

N . Then (
np

mp

)
f

≡
(
n

m

)
f

(mod p).

We use Theorem 5.7 to prove a stronger version of Theorem 5.3, namely:

Theorem 5.8. Let p be prime and let m ≥ 1, � ∈ N
N . Then

(
pm

�

)
f

≡
{
f(m) (mod p), if � = pmm for some m;

0 (mod p), else.

Proof. Let � = pmm. Using Theorem 5.7 twice, we find for m = 2(
p2

p2m

)
f

≡
(

p

pm

)
f

≡ f(m) (mod p).

Using this, we find that:(
p3

p3m

)
f

≡
(

p2

p2m

)
f

≡ f(m) (mod p),

and so on for any m.

Consider now the case � �= pmm for any m. We use (7) from Theorem
3.2 together with the fact that

(
pm

n

)
≡ 0 (mod p) when 0 < n < pm and ≡ 1

(mod p) whenever n = 1, pm. From this, it follows that(
pm

�

)
f

≡
(
pm

�

)
f |f(m)=0

(mod p),

for any m. We can successively set all arguments of f to zero and note that
hence

(
pm

�

)
f
≡ 0 (mod p).
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Now, we consider the case when � in
(
np
�

)
f
is not of the form mp for

any m.

Theorem 5.9. Let p be prime and let n be a nonnegative integer. Let �

not be of the form � = pm, for any m. Then(
np

�

)
f

≡ n ·
∑

{k∈S(�) | p�k,�−k=xp}

(
p

k

)
f

(
n− 1

x

)
g

(mod p2),

where g is as defined in Theorem 5.5.

Proof. By the Vandermonde convolution, (5), we find that(
np

�

)
f

=
∑

k1+···+kn=�

(
p

k1

)
f

· · ·
(

p

kn

)
f

=
∑

k∈S(�)

(
p

k

)
f

∑
k2+···+kn=�−k

(
p

k2

)
f

· · ·
(

p

kn

)
f

.

As in the proof of Theorem 5.9, at least n − 1 factors
(
p
kj

)
f
must be such

that kj = rjp. Not all n factors can be of the form rjp, since otherwise

k1 + · · · + kn = p(r1 + · · · + rn) = �, a contradiction. Hence, exactly n − 1

factors must be of the form rjp, and therefore,(
np

�

)
f

≡ n
∑

k∈S(�),k�=rp

(
p

k

)
f

∑
r2p+···+rnp=�−k

(
p

r2p

)
f

· · ·
(

p

rnp

)
f

= n
∑

k∈S(�),p�k

(
p

k

)
f

∑
r2p+···+rnp=�−k

g(r2) · · · g(rn) (mod p2).

Now, the equation p(r2+· · ·+rn) = �−k has solutions if and only if p | �−k,

that is, when there exists x such that �− k = xp.

Example 5.10. Let n = 4, p = 3 and � = (2, 3). In this situation, the

only suitable k in the previous theorem is k = (2, 3) to which corresponds

x = (0, 0). The theorem thus implies that(
12

(2, 3)

)
f

≡ 4 ·
(

3

(2, 3)

)
f

·
(

3

(0, 0)

)
g

(mod p2).
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Let f(s) = s1 + s2 + 1 for all s ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} and f(s) =

0 otherwise. Then
(

3
(0,0)

)
g
= 1 since g((0, 0)) =

(
3

(0,0)

)
f

= 1. Moreover,(
3

(2,3)

)
f
= 54. Therefore

4 ·
(

3

(2, 3)

)
f

·
(

3

(0, 0)

)
g

≡ 0 (mod 9).

Indeed, (
12

(2, 3)

)
f

= 407, 880 = 45, 320 · 9.

Theorem 5.11. Let k ≥ 0, � ∈ N
N . Let di = gcd(k, �i) and let ti = k

di
.

Then (
k

�

)
f

≡ 0 (mod ti)

for all i = 1, . . . , N . Equivalently,(
k

�

)
f

≡ 0 (mod M).

Here, M is the number M = pm1

1 · · · pmR

R , where the ti have prime factoriza-

tion ti = p
(ai)1
1 · · · p(ai)R

R and where mj = maxi (ai)j , for all j = 1, . . . , R.

Proof. From (6), with i = 1, write

�

(
k

�

)
f

= k
∑
s

sf(s)

(
k − 1

�− s

)
f︸ ︷︷ ︸

=:m∈NN

.

Now, for any 1 ≤ i ≤ N , consider this equation at component i, dividing by

di = gcd(k, �i):

�i
di

(
k

�

)
f

=
k

di
mi.

Since gcd(k/di, �i/di) = 1, this means that k
di

|
(
k
�

)
f
for all i = 1, . . . , N .
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Example 5.12. Let f be the indicator function on the set {(1, 0), (0, 1),
(1, 1), (1, 2), (2, 1), (0, 0)}. Enumeration shows that(

12

(9, 8)

)
f

= 44, 742, 060

We have t1 = 12/3 = 4 and t2 = 12/4 = 3. Hence 4 · 3 divides
(

12
(9,8)

)
f
, and

indeed, 44,742,060 = 12 · 3,728,505.
Theorem 5.13. Let p be prime, n ≥ 1 arbitrary. Then,

(
pn

p1

)
f

≡
n∑

k=1

∑
(r1,r2,...)∈P(1;k)

(pn)!

(pr1)!(pr2)! · · · (p(n− k))!
·

f(0)p(n−k)h(s1)h(s2) · · · (mod pn),

where h(s) =

{
f(s)p, if s ∈ U ;

0, else;
for U = {x �= 0 ∈ N

N |xi ∈ {0, 1}}.

In the theorem, note that (pn)!
(pr1)!(pr2)!···(p(n−k))! =

(pn)!
(p!)k(p(n−k))! . Also note

that the limit of the summation for k is (more adequately described as)
min{n,N}.

Proof. From (4),
(
pn
p1

)
f
can be written as

(
pn

p1

)
f

=
∑

r1+r2+···=pn,∑
si∈S(p1) risi=p1

(
pn

r1, r2, . . .

) ∏
si∈S(p1)

f(si)
ri .(11)

For a term in the sum, either d = gcd(r1, r2, . . .) = 1 or d = p, since
otherwise, if 1 < d < p, then, d ·

∑
si∈S(p1)

ri
d si = p1, whence p is composite,

a contradiction. Those terms on the RHS of (11) for which d = 1 contribute
nothing to the sum modulo pn, by (9), so they can be ignored. But, from
the equation

∑
si∈S(p1) risi = p1, the case d = p happens precisely when:

• there are k unit vectors s1, . . . , sk ∈ U , for 1 ≤ k ≤ n, each of whose
associated multiplicity is p, as well as the zero vector 0, whose multi-
plicity is p(n− k), such that s1 + · · ·+ sk + 0 = 1.

Example 5.14. When N = 1, then U = {1}. Hence,
(
pn
p

)
f

≡(
pn
p

)
f(0)p(n−1)f(1)p (mod pn) because only the term k = 1 leads to a valid
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solution, since 1 cannot be the sum of two or more elements from U . When
N = 2, then U = {(0, 1), (1, 0), (1, 1)} and the relevant terms are k = 1, 2.
The formula becomes(

pn

p(1, 1)

)
f

≡
(
pn

p

)
f((0, 0))p(n−1)f((1, 1))p

+
(pn)!

(p!)2(p(n− 2))!
f((0, 0))p(n−2)f((0, 1))pf((1, 0))p (mod pn).

Recall that the ordinary binomial coefficients satisfy Lucas’ theorem,
namely, (

k

n

)
≡
∏(

ki
ni

)
(mod p),

whenever k =
∑

kip
i and n =

∑
nip

i with 0 ≤ ni, ki < p. Bollinger and
Burchard [8] generalize this to extended binomial coefficients. We further
generalize to weighted vector compositions.

Theorem 5.15 (Lucas’ theorem). Let p be prime and let k =
∑r

j=0 kjp
j ,

where 0 ≤ kj < p for j = 0, . . . , r. Let � ∈ N
N . Then(

k

�

)
f

≡
∑

(m0,...,mr)

r∏
i=0

(
ki
mi

)
f

(mod p),

whereby the sum is over all (m0, . . . ,mr) that satisfym0+m1p+· · ·+mrp
r =

�.

Proof. We have

∑
�∈NN

(
k

�

)
f

x� =

(∑
s∈NN

f(s)xs

)k

=

r∏
j=0

(∑
s∈NN

f(s)xs

)kjpj

=

r∏
j=0

(∑
s∈NN

(
pj

s

)
f

xs

)kj

≡
r∏

j=0

( ∑
m∈NN

f(m)xpjm

)kj

=

r∏
j=0

( ∑
m∈NN

(
kj
m

)
f

xpjm

)

=
∑
�∈NN

⎛
⎝ ∑

(m0,...,mr)

(
k0
m0

)
f

· · ·
(
kr
mr

)
f

⎞
⎠x� (mod p),
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where the fourth relation (congruence) follows from Theorem 5.8, and the
theorem follows by comparing the coefficients of x�.

Example 5.16. For a similar situation as in Example 5.6, let p = 3 and
k = 5 = 2+1 ·p. Thus, (k0, k1) = (2, 1). For � = (3, 6), the relevant (m0,m1)
such that � = m0 + pm1 are:

(3, 6) = (0, 0) + 3(1, 2) = (0, 3) + 3(1, 1) = (3, 3) + 3(0, 1) = (0, 6) + 3(1, 0).

No other m1 must be looked at, because k1 = 1 and
(
1
x

)
f
= f(x) and the

specified f is zero outside {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}. Hence:(
5

(3, 6)

)
f

≡
(

2

(0, 0)

)
f

·
(

1

(1, 2)

)
f

+

(
2

(0, 3)

)
f

·
(

1

(1, 1)

)
f

+

(
2

(3, 3)

)
f

·
(

1

(0, 1)

)
f

+

(
2

(0, 6)

)
f

·
(

1

(1, 0)

)
f

= 0 · 1 + 0 · 1 + 2 · 1 + 0 · 1 = 2 (mod p),

by Theorem 5.15, which is true, since
(

5
(3,6)

)
f
= 80.

Our final result in this section allows a fast computation of the coeffi-
cients

(
k
�

)
f
modulo a prime p. See Granville [19] for the corresponding result

for the special case of ordinary binomial coefficients.

Theorem 5.17. Let p be prime, k ≥ 0, � ∈ N
N . Then,(

k

�

)
f

≡
∑

m∈NN

(
k1

x−m

)
f

(
k0

�0 +mp

)
f

(mod p),

whereby k = k0 + k1p with 0 ≤ k0 < p, and � = �0 + xp, where each
component � of �0 satisfies 0 ≤ � < p.

Proof. We have( ∑
m∈NN

f(m)xm

)p

≡
∑

m∈NN

f(m)xpm (mod p)

by Theorem 5.3 and therefore, with k = k0 + k1p, for 0 ≤ k0 < p,(∑
s

f(s)xs

)k0+k1p

≡
(∑

t

f(t)xt

)k0
(∑

s

f(s)xps

)�k/p�
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=
∑
t,s

(
k0
t

)
f

(
�k/p�
s

)
f

xps+t (mod p).

Now, since
(
k
�

)
f
is the coefficient of x� of (

∑
s f(s)x

s)k0+k1p, we have

(
k

�

)
f

≡
∑

ps+t=�

(
�k/p�
s

)
f

(
k0
t

)
f

(mod p),

and the theorem follows after re-indexing the summation on the RHS.

Example 5.18. In the situation of Example 5.16, consider p = 3, � =
(3, 6) = (0, 0) + (1, 2) · p and k = 5 = 2 + 1 · p. By Theorem 5.17, we have
hence to consider sums of products of the form(

1

(1, 2)−m

)
f

·
(

2

(0, 0) + pm

)
f

= f((1, 2)−m) ·
(

2

pm

)
f

.

Since f is zero outside of {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}, m ranges over
{(0, 0), (0, 1), (1, 1), (0, 2)} and the summation is the same as in Example
5.16.

For a more challenging example, let p = 7, � = (5, 9) = (5, 2) + (0, 1)p
and k = 8 = 1 + 1 · p. Here, we have to consider sums of products of the
form(

1

(0, 1)−m

)
f

·
(

1

(5, 2) + pm

)
f

= f((0, 1)−m) · f((5, 2) + pm).

Due to the specification of f , the only possible such term (m = (0, 0)) leads
to the sum value of 0. Indeed,

(
8

(5,9)

)
f
= 4368 = 7 · 24 · 39.

6. Congruences and identities for sums of
(
k

�

)
f

In this section, we consider divisibility properties and identities for sums
of
(
k
�

)
f
. First, we focus on the number cf (�) =

∑
k≥0

(
k
�

)
f
of vector com-

positions with arbitrary number of parts. In Theorems 6.8 and 6.10, we
then investigate particular divisibility properties for the total number of all
f -weighted vector compositions of � where � ranges over particular sets L
and where the number of parts is fixed, that is, we evaluate divisibility of∑

�∈L
(
k
�

)
f
. We also generalize the notion of s-color compositions [2] in this

section and derive a corresponding identity.
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At first, we establish that cf (�) satisfies a weighted linear recurrence

where the weights are given by f .

Theorem 6.1. For � ∈ N
N , � �= 0, we have that

cf (�) =
∑

m∈NN

f(m)cf (�−m),

where we define cf (0) = 1 and cf (�) = 0 if any component � of � is smaller

than zero.

Proof. An f -weighted vector composition [m1, . . . ,mk−1,mk] of � ends, in

its last part, with exactly one of the values m = mk ∈ N
N , and m may

be colored in f(m) different colors. Moreover, [m1, . . . ,mk−1] is a vector

composition of �−m.

Before investigating divisibility of cf (�), we detail special cases of cf (�)

that arise for particular f .

Example 6.2. When fD is the indicator function on the set D = {(0, 1),
(1, 0), (1, 1)}, then cfD(�) = cfD(m,n) is the well-known Delannoy sequence

[6], which counts the number of lattice paths from (0, 0) to (m,n) with

steps in D (i.e., east, north, north-east). The underlying lattice paths are

of interest in sequence alignment problems in computational biology and

computational linguistics. They also appear in so-called edit distance prob-

lems [27] in which the minimal number of insertions and deletions is sought

that transforms one sequence into another. Closed-form expressions for the

Delannoy numbers are

cfD(m,n) =

m∑
d=0

2d
(
m

d

)(
n

d

)
=

n∑
d=0

(
n

d

)(
m+ n− d

n

)
.

The weighted Delannoy numbers [37], for which fWD((1, 0)) = a,

fWD((0, 1)) = b and fWD((1, 1)) = c, for integers a, b, c ≥ 1, have closed-form

expression

cfWD
(m,n) = ambn

∑
d≥0

(
m

d

)(
n

d

)(ab+ c

ab

)d
.

When fW is the indicator function on the setW = {(1, 1), (1, 2), (2, 1), (2, 2)},
then cfW (�) = cfW (m,n) are known as Whitney numbers [9]. The diagonals
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are listed as integer sequence A051286. A closed-form expression can be
derived as

cfW (m,n) =
∑
k≥0

(
m− k

k

)(
n− k

k

)
.

The diagonals of cfM , where M = {(1, 1), (1, 2), (2, 1)}, are listed as integer
sequence A098479. The diagonals of cfR , where R = {(x, y) |x ≥ 1, y ≥ 0},
are listed as integer sequence A047781. The diagonals of cfA , where A =
{(x, y, z) | 0 ≤ x, y, z ≤ 1} − {03}, are listed as integer sequence A126086.
They appear in alignment problems of multiple (in this case, three) se-
quences. The case of cfS , for S = N

N − {0}, counts the original vector
compositions considered in [4]. A closed-form expression is given by

cfS(�1, . . . , �N ) =

�1+···+�N∑
k=0

k∑
i=0

(−1)i
(
k

i

) N∏
j=1

(
�j + k − i− 1

�j

)
.

It has been noted that cfS(�, . . . , �) = 2�−1cfU (�, . . . , �), where U = {(s1, . . . ,
sN ) | si ∈ {0, 1}} − {0} [11]. The latter numbers generalize the Delannoy
numbers and admit the closed-form expression [42]

cfU (�1, . . . , �N ) =

�1+···+�N∑
k=max{�1,...,�N}

k∑
i=0

(−1)i
(
k

i

) N∏
j=1

(
k − i

�j

)
.

Next, we generalize the concept of s-color compositions for ordinary
colored compositions, for which the weighting function is f(s) = s for each
part size s, to weighted vector compositions. Of course, there are many
possible extensions of the concept of s-color integer compositions to vector
compositions. The most natural is probably the following:

Definition 6.3. We call an f -weighted vector composition of � an s-color
composition when

f(s) = s1 · · · sN

for all s ∈ N
N .

This definition inherently captures an independent labeling of the vector
components s1, . . . , sN into s1 colors (for component 1),. . ., sN colors (for
component N). It is well-known that ordinary s-color compositions [2] are
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closely related to “1-2-color compositions”, that is, integer compositions that
only have part sizes in {1, 2}; see, e.g., Shapcott [41]. The next theorem
generalizes this relationship.

Theorem 6.4. Let fprod(s) = s1 · · · sN for all s ∈ N
N and let g be the

indicator function on S = {(s1, . . . , sN ) | si ∈ {1, 2}}. Then

cfprod
(�1) = cg((2�− 1)1).

for all � > 0.

Proof sketch. Let (s1, . . . , sN )1, . . . , (s1, . . . , sN )s1···sN be the s1 · · · sN col-
orations of part size (s1, . . . , sN ). We bijectively re-write them to individ-
ual components (s11, . . . , s

1
N ), . . . , (ss11 , . . . , ssNN ). Now, when we have a sum

sr+tq = �1 (and similarly for more than two terms) this reads in components⎛
⎜⎝sr11

...
srNN

⎞
⎟⎠+

⎛
⎜⎝ tq11

...
tqNN

⎞
⎟⎠ =

⎛
⎜⎝�
...
�

⎞
⎟⎠

where r1, . . . , rN and q1, . . . , qN denote the bijective re-writings. Consider
this equation in each row, srii + tqii = �. Encode the integer composition
(srii , t

qi
i ) of � into the “cross-and-dash representation” of Shapcott [41] in

which crosses separate parts and a part value of size π with color 1 ≤ c ≤ π
is denoted by π− 1 dashes and one cross in position c. Then, as in Shapcott
[41], Proposition 2, let crosses stand for 1s and dashes for 2s. This proves the
bijection between fprod-weighted compositions and g-weighted compositions.

The table below illustrates the s-color compositions of (3, 3) (into two
parts) and the uniquely corresponding g-weighted compositions (into four
parts). The table omits the further eight cases corresponding to (1, 1)+(2, 2)
and (1, 2) + (2, 1).

Example 6.5. The number of fprod-weighted vector compositions of (�, �)
are given by the integer sequence

1, 5, 26, 153, 931, 5794, 36631, 234205, . . .

for � = 1, 2, 3, . . .. The number of g-weighted vector compositions of (�, �)
are given by integer sequence A051286

1, 2, 5, 11, 26, 63, 153, 376, 931, 2317, 5794, 14545, 36631, 92512, 234205, . . .
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s-color cross-and-dash 1-2 compositions(
21

21

)
+

(
11

11

) (
×−××
×−××

) (
1 2 1 1
1 2 1 1

)
(
21

22

)
+

(
11

11

) (
×−××
−×××

) (
1 2 1 1
2 1 1 1

)
(
22

21

)
+

(
11

11

) (
−×××
×−××

) (
2 1 1 1
1 2 1 1

)
(
22

22

)
+

(
11

11

) (
−×××
−×××

) (
2 1 1 1
2 1 1 1

)
(
21

11

)
+

(
11

21

) (
×−××
×××−

) (
1 2 1 1
1 1 1 2

)
(
22

11

)
+

(
11

21

) (
−×××
×××−

) (
2 1 1 1
1 1 1 2

)
(
21

11

)
+

(
11

22

) (
×−××
××−×

) (
1 2 1 1
1 1 2 1

)
(
22

11

)
+

(
11

22

) (
−×××
××−×

) (
2 1 1 1
1 1 2 1

)

When f is arbitrary but zero almost everywhere, that is, f(x) �= 0 for

only finitely many x, then cf (�) satisfies a linear recurrence by Theorem

6.1. When N = 1, that is, vectors � are one-dimensional, then cf satisfies

an m-th order linear recurrence of the form

cf (n+m) = f(1)cf (n+m− 1) + · · ·+ f(m)cf (n)

in this situation.

For such sequences, Somer [43] specifies varying congruence relation-

ships, one of which translates to the following result in our context.

Theorem 6.6 ([17], Theorem 27). Let p be a prime and let b a nonnegative

integer. Let f : N → N be zero almost everywhere, i.e., f(x) = 0 for all

x > m for some positive m. Then

cf (n+mpb) ≡f(1)cf (n+ (m− 1)pb) + f(2)cf (n+ (m− 2)pb) + · · ·
+ f(m)cf (n) (mod p).

However, when N > 1, these results are not applicable. One possibility

would be to project vectors in N
N onto N via a bijection τ : N → N

N and

then define new quantities c̃f

c̃f (n) = cf (τ(n))
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for which the findings of [43] and others might be applicable. The problem

with such a specification is that the bijection does not lead, in general, to

fixed order linear recurrences because τ can map different n, n′ to ‘arbitrary’

points in N
N , so that e.g. c̃f (100) may be a function of c̃f (90) and c̃f (80),

but c̃f (1000) may be a function of c̃f (543) and c̃f (389).

Another result, for N = 2, is the following. Consider the weighted Delan-

noy numbers for which fWD((1, 0)) = a, fWD((0, 1)) = b and fWD((1, 1)) = c

as above. Razpet [37] shows that these numbers satisfy a ‘Lucas property’.

Theorem 6.7 ([37], Theorem 2). Let p be prime, n ≥ 1, and let integers

ak, bk satisfy

0 ≤ ak, bk < p, for all k = 0, 1, . . . , n.

Then

cfWD
(anp

n + · · ·+ a1p+ a0 , bnp
n + · · ·+ b1p+ b0)

≡cfWD
(an, bn) · · · cfWD

(a1, b1)cfWD
(a0, b0) (mod p).

Finally, we consider the number of f -weighted vector compositions, with

fixed number of parts, of all vectors � in some particular sets L. Introduce

the following notation:[
k

r

]
m,f

=
∑

{�∈NN | �=Am+r, for some A∈D(N)}

(
k

�

)
f

,

where D(N) is the set of N ×N diagonal matrices with nonnegative integer

entries. Note that
[
k
r

]
m,f

generalizes the binomial sum notation (cf. [45]).

By the Vandermonde convolution,
[
k
r

]
m,f

satisfies

[
k

r

]
m,f

=
∑

{�∈NN | �=Am+r, for some A∈D(N)}

(
k

�

)
f

=
∑

A∈D(N)

(
k

Am+ r

)
f

=
∑

A∈D(N)

∑
s∈NN

f(s)

(
k − 1

Am+ r− s

)
f

=
∑
s∈NN

f(s)
∑

A∈D(N)

(
k − 1

Am+ r− s

)
f

=
∑
s∈NN

f(s)

[
k − 1

r− s

]
m,f

.

(12)



318 Steffen Eger

Our first theorem in this context goes back to J. W. L. Glaisher, and its

proof is inspired by the corresponding proof for binomial sums due to Sun

(cf. [45], and references therein).

Theorem 6.8. Let m = (m1, . . . ,mN ) ∈ N
N . For any prime p ≡

1 (mod mi), for all i = 1, . . . , N , and any k ≥ 1, r ∈ N
N ,[

k + p− 1

r

]
m,f

≡
[
k

r

]
m,f

(mod p).

Proof. For k = 1,[
p

r

]
m,f

=
∑

{�∈NN | �=Am+r}

(
p

�

)
f

≡
∑

{�∈NN | �=Am+r=pq, for some q}

(
p

�

)
f

(mod p).

by Theorem 5.3. Now, in components, the equation Am + r = pq means

that aiimi+ ri = pqi. Since p ≡ 1 (mod mi), we have qi ≡ ri (mod mi), i.e.,

qi = cimi + ri. In vector notation this means q = Cm + r for the diagonal

matrix C with entries Cii = ci. Therefore,[
p

r

]
m,f

≡
∑

{q∈NN |q=Cm+r}

(
p

pq

)
f

≡
∑

{q∈NN |q=Cm+r}

(
1

q

)
(mod p)

using Theorem 5.7. The RHS is
[
1
r

]
m,f

. For k > 1, the result follows by

induction using (12).

Example 6.9. Let f be the indicator function on the set {(0, 1), (1, 1),
(1, 1)}. Let p = 5, k = 2, m = (4, 1) and r = (1, 0). To evaluate

[
k
r

]
m,f

, we

consider all matrices A ∈ D(2) and all corresponding sums Am + r. Since

it is impossible to write m1 = 4 (or larger) as the sum of k = 2 numbers in

{0, 1}, a11 must be zero. The only suitable matrices are then

A0 =

(
0 0
0 1

)
, A1 =

(
0 0
0 2

)
.

The corresponding values Am+ r are

�0 = (1, 1), �1 = (1, 2).

We easily find that
(
k
�0

)
f
=
(
k
�1

)
f
= 2 and therefore

[
k
r

]
m,f

= 4. Similarly,

for
[
k+p−1

r

]
m,f

, we have to evaluate matrices
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An,0 =

(
0 0
0 n

)
, and, An,1 =

(
1 0
0 n

)
.

and correspondingly (
6

(1, n)

)
f

, and,

(
6

(5, n)

)
f

for n = 0, . . . , 6. Summing up yields
[
k+p−1

r

]
m,f

= 204, which is indeed ≡ 4

(mod 5).

Theorem 6.10. Let f(s) = 0 for almost all s ∈ N
N . Consider

[
k
0

]
1,f

, the

row sum in row k ≥ 0, or, equivalently, the total number of f -weighted
vector compositions with k parts. Let M =

∑
s∈NN f(s). Then[

k

0

]
1,f

= Mk.

for all k > 0. This implies the congruences[
k

0

]
1,f

≡ M (mod 2), and,

[
k

0

]
1,f

≡ Ma0+···+ar (mod p),

for any prime p by Fermat’s little theorem, where k = a0 + · · ·+ arp
r, with

0 ≤ ai < p for all i = 0, . . . , r.

Proof. Consider the equation (
∑

s∈NN f(s)xs)k =
∑

�∈NN

(
k
�

)
f
x�. Plug in

x = 1 ∈ N
N .

Remark 6.11. Note that the previous theorem generalizes the fact that
the number of odd entries in row k in Pascal’s triangle is a multiple of 2.

Example 6.12. When f is the indicator function on {(0, 1), (1, 1), (1, 1)}
then M = 3 and so the row sum in row k > 0 is 3k and thus always odd. To
illustrate, for k = 1, we have

(
k

(0,1)

)
f
=
(

k
(1,1)

)
f
=
(

k
(1,1)

)
f
= 1, so their sum

is 3. For k = 2, we have to consider all � = (x, y) with x, y ≤ 2. We find for
all � such that

(
2
�

)
f
is non-zero:

(
k

(1, 1)

)
f

= 2,

(
k

(2, 0)

)
f

=

(
k

(0, 2)

)
f

= 1,

(
k

(1, 2)

)
f

=

(
k

(2, 1)

)
f

= 2,(
k

(2, 2)

)
f

= 1.

Hence, their sum is indeed 9.
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7. Asymptotics of cf(�)

We can find asymptotics of cf (�) by looking at its multivariate generating
function

F (x) =
∑
�∈NN

cf (�)x
� =

∑
k≥0

(∑
s∈NN

f(s)xs

)k

=
1

1−
∑

s∈NN f(s)xs
.

While methods for determining the asymptotic growth of the coefficients
of a generating function in one variable are well-established [18], methods
for generating functions of several variables are less ubiquitous. However,
[35] and [34] discuss such cases. Particularly simple results obtain when
J(x) := 1−

∑
s∈NN f(s)xs is symmetric in x.

For instance, [35] discuss the case when f is the indicator function on
{(1, 0), (0, 1), (1, 1)}, so that J(x, y) = 1−x−y−xy. They determine the set
of “critical points”, that is, the points (x0, y0) that satisfy J(x0, y0) = 0 and

x0
∂J(x0,y0)

∂x = y0
∂J(x0,y0)

∂x in the positive orthant. They find that (x0, y0) =

(L − 1, L − 1), where L =
√
2 is the only solution, from which follows the

asymptotic

cf (�, �) ∼ x−�
0 y−�

0

√
1

L(2− L)22π�

using their Theorems 3.2 and 3.3. More general cases such as when f is the
indicator function on {x �= 0 ∈ N

N |xi ∈ {0, 1}} or on {x ∈ N
N |xi ∈ {1, 2}}

can be solved analogously, but require more work to find the critical points
and the implied asymptotics.

Theorem 7.1 ([20], Theorem 2). Let f be the indicator function on S =
{(s1, . . . , sN ) | si ∈ {0, 1}} − {0}. Then

cf (�, . . . , �) ∼ (21/N − 1)−N� 1

(21/N − 1)2(N2−1)/2N
√

N(π�)N−1
.

Theorem 7.2 ([15], Theorem 4). Let f be the indicator function on S =

{(s1, . . . , sN ) | si ∈ {1, 2}}. Moreover, let φ =
√
5−1
2 and let A = −φN−1(1 +

φ)N−1(1 + 2φ). Define h = N
(

φ
1+3φ+2φ2

)N−1
and b0 =

1

−φA
√

(2π)N−1h
. Then

cf (�, . . . , �) ∼ φ−�Nb0�
(1−N)/2.
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Example 7.3. For the f in the last theorem, the number cf (9, 9, 9) equals
17,899 while the approximation formula has 18,955.30 . . ., which amounts to
a relative error of less than 6%.

Note that cf in the last theorem is closely related to cfprod
by Theorem

6.4, which immediately yields another asymptotic formula.

8. Prime criteria

Mann and Shanks’ [28] prime criterion states that an integer q is prime if
and only if m divides the adjusted binomial coefficients

(
m

q−2m

)
for all m

with 0 ≤ 2m ≤ q. This criterion can be extended to f -weighted integer
compositions (N = 1) when f takes on the value 1 for all elements inside
the ‘unit sphere’, that is, 0 and 1 [13, 15]. For N ≥ 1, it is tempting to
conjecture as follows.

Conjecture 8.1. Let f(x) = 1 for all x ∈ U0 = {s ∈ N
N | si ∈ {0, 1}}.

Then, an integer q > 1 is prime if and only if m divides
(

m
q1−2m1

)
f
for all

integers m with 0 ≤ 2m ≤ q.

If q is prime, then indeed
(

m
q1−2m1

)
f
≡ 0 (mod m) for all integers m

with 0 ≤ 2m ≤ q. This is a simple consequence of Theorem 5.11. Con-
versely, when q is not prime, then q is odd or even. When q is even, m = q/2
does not divide

(
m

q1−2m1

)
f
=
(
m
0

)
f
= f(0)q/2 = 1. However, when q is odd,

the situation is more difficult. Mann and Shanks choose m = (q−p)/2 = pn,
for a prime divisor p of q and a suitable n. This choice is appropriate for
N = 1 and the stated requirements on f . However, already for N = 2, we
find a counter-example to this choice (when f is the indicator function on
{(0, 0), (0, 1), (1, 0), (1, 1)}). Namely, when q = 55, then p = 5 is a prime di-

visor of q and we have m = pn where n = 5. Then
(
pn
p1

)
f
≡
(
pn
p

)
+ (pn)!

(p!)2(p(n−2))!

(mod pn) by Theorem 5.13 and Example 5.14. Numerical evaluation shows
that this sum is ≡ 5 + 20 ≡ 0 (mod pn). However, while this choice is not
suitable, there are others for q = 55 (namely m = 20, 22). We leave Conjec-
ture 8.1 as an open problem.

9. Conclusion

Many extensions of our results are conceivable. We have shown that the ba-
sis for weighted vector compositions are sums of independent and identically
distributed random vectors. Other types of compositions can be investigated
in which part sizes are correlated [10]. The basis for this class of compositions
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would be sums of dependent random vectors. Many approximations both for
dependent and independent sums of random variables are known, e.g., [24].
How do these translate to approximation results for weighted compositions?
Finally, we have generalized weighted integer compositions to weighted vec-
tor compositions. One could further generalize to weighted matrix compo-
sitions or general weighted tensor compositions, that is, compositions of
arbitrary multidimensional arrays.
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