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Rational noncrossing partitions for all coprime pairs

Michelle Bodnar

For coprime positive integers a < b, Armstrong, Rhoades, and
Williams (2013) defined a set NC(a, b) of rational noncrossing par-
titions, a subset of the ordinary noncrossing partitions of {1, . . . , b−
1}. Bodnar and Rhoades (2015) confirmed their conjecture that
NC(a, b) is closed under rotation and proved an instance of the
cyclic sieving phenomenon for this rotation action. We give a defi-
nition of NC(a, b) which works for all coprime a and b and prove
closure under rotation and cyclic sieving in this more general set-
ting. We also generalize noncrossing parking functions to all co-
prime a and b, and provide a character formula for the action of
Sa × Zb−1 on ParkNC(a, b).

1. Introduction

Let W be a Weyl group with root lattice Q, degrees d1, d2, . . . , d�, and Cox-
eter number h = d�. Then W acts on the “finite torus” Q/(h+ 1)Q. Cosets
in Q/(h+ 1)Q give a model for parking functions attached to W [3]. It has
been shown by Haiman [7] that the number of orbits of this action is given
by

Cat(W ) :=
∏
i

h+ di
di

,

which has come to be known as the Coxeter-Catalan number of W . More
generally, if p is a positive integer which is coprime to the Coxeter number
h, Haiman [7] showed that the number of orbits in the action of W on Q/pQ
is

Cat(W,p) =
∏
i

p+ di − 1

di
.

This number has come to be known as the rational Catalan number of W
at parameter p.

On the level of Weyl groups the Catalan and Fuss-Catalan objects, ob-
tained by taking p = h+ 1 and mh+ 1 respectively, have been defined and
studied [1]. When W = Sa is the symmetric group, we have
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Cat(Sa, a+ 1) =
1

a+ 1

(
2a

a

)
= Cat(a)

where Cat(a) is the classical Catalan number, famously counting noncrossing
partitions, Dyck paths, well-paired parentheses, as well as hundreds of other
combinatorial objects. Furthermore, we have

Cat(Sa, ka+ 1) =
1

ka+ a+ 1

(
ka+ a+ 1

a

)
= Cat(k)(a)

where Cat(k)(a) is the Fuss-Catalan number, counting generalizations of
Catalan objects such as noncrossing partitions whose block sizes are all
divisible by k. However, it wasn’t until 2013 that Armstrong et al. [4, 2]
undertook a systematic study of type A rational Catalan combinatorics.

For coprime positive integers a and b, the rational Catalan number is

Cat(Sa, b) =
1

a+ b

(
a+ b

a, b

)
= Cat(a, b).

Observe that Cat(n, n + 1) = Cat(n), so that rational Catalan numbers
are indeed a generalization of the classical Catalan numbers. The program
of rational Catalan combinatorics seeks to generalize Catalan objects such
as Dyck paths, the associahedron, noncrossing perfect matchings, and non-
crossing partitions (each counted by the classical Catalan numbers) to the
rational setting. For instance, Cat(a, b) counts the number of a, b-Dyck paths,
NE-lattice paths from the origin to (b, a) staying above the line y = a

bx.
For coprime parameters a < b, Armstrong et al. [4] defined the a, b-

noncrossing partitions, NC(a, b), to be a subset of the collection of noncross-
ing partitions of [b − 1] arising from a laser construction involving rational
Dyck paths. A characterization of these rational noncrossing partitions was
given in [6], where it was shown that NC(a, b) is closed under dihedral sym-
metries and that the action of rotation on NC(a, b) exhibits a cyclic sieving
phenomenon. Additionally, a model for a, b-noncrossing parking functions
was given which carries an Sa × Zb−1 action, and a character formula was
stated and proved. However, this rational generalization and others rely on
the fact that a < b.

It is of intrinsic combinatorial interest to see whether such results hold
in the case where a > b. Moreover, this seems reasonable as Haiman’s for-
mula holds for any coprime pair a, b. Furthermore, we are motivated by the
favorable representation theoretic properties of the rational Cherednik alge-
bra attached to the symmetric group Sa at parameter b/a. Such properties
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persist even when a > b. It is thus desirable to remove the condition a < b
and define rational noncrossing partitions for all coprime pairs (a, b). This
paper provides the first type A combinatorial model for rational Catalan
objects defined for all coprime a and b, along with proofs of generalizations
of many of the results known for the a < b case.

The rest of the paper is organized as follows: Section 2 begins with back-
ground information on rational Dyck paths and noncrossing partitions. In
Section 3, we give an interpretation of a, b-Dyck paths in terms of pairs of
labeled noncrossing partitions which generalizes the laser construction in-
troduced in [4] and prove some basic properties of NC(a, b). In Section 4,
we show that NC(a, b) is closed under a suitable rotation action. We then
provide a notion of block rank and show that block rank commutes with
rotation. We also provide a characterization of when a given labeled pair
of noncrossing partitions is an element of NC(a, b) and show that this set
is closed under a suitable reflection action. Section 5 introduces d-modified
rank sequences and goes through a series of lemmas which ultimately allow
us to count the number of elements in NC(a, b) which are invariant under
d-fold rotation. In Section 6, we prove various refinements of cyclic sieving
results for NC(a, b). A step in this direction has already been made by Thiel
in [14] where cyclic sieving was shown in the case (a, b) = (n+1, n) by con-
sidering objects called noncrossing (1, 2)-configurations. We will revisit this
construction and give a bijection between our n+1, n-noncrossing partitions
and these (1, 2) configurations. In Section 7, we generalize a, b-noncrossing
parking functions, ParkNC(a, b), to all coprime a and b and prove a character
formula for the action of Sa×Zb−1 on ParkNC(a, b). Finally, Section 8 offers
a possible direction for future research.

2. Background

2.1. Rational Dyck paths

Let a and b be coprime positive integers. An a, b-Dyck path D is a lattice
path in Z2 consisting of unit length north and east steps which starts at
(0, 0), ends at (b, a), and stays above the line y = a

bx. By coprimality, the
path will never touch this line. For example, consider the 7,4-Dyck path
NNNENENNENE shown in Figure 1. The a, b-Dyck paths are counted
by the rational Catalan number Cat(a, b) = 1

a+b

(
a+b
a

)
. A vertical run of D is

a maximal contiguous sequence of north steps. The 7,4-Dyck path shown in
Figure 1 has 4 vertical runs of lengths 3, 1, 2, and 1, respectively. Note: it is
possible for a vertical run to have length 0. A valley of D is a lattice point



368 Michelle Bodnar

Figure 1: 7,4-Dyck Path NNNENENNENE with the line y = 7
4x.

p on D such that p is immediately preceded by an east step and succeeded
by a north step. Figure 1 has three valley points. When (a, b) = (n, n+ 1),
rational Dyck paths are equivalent to classical Dyck paths, NE-lattice paths
from (0, 0) to (n, n) which stay weakly above the line y = x, and are counted
by the classical Catalan numbers.

2.2. Noncrossing partitions

A set partition π of [n] := {1, 2, . . . , n} is noncrossing if its blocks do not
cross when drawn on a disk whose boundary is labeled clockwise with the
number 1, 2, . . ., n. Equivalently, π is noncrossing if there do not exist
a < b < c < d such that a and c are in the same block B, and b and d are in
the same block B′ �= B. Let NC(n) denote the set of noncrossing partitions
of [n]. Such partitions are counted by the classical Catalan numbers

Cat(n) =
1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
= |NC(n)|.

The rotation operator rot acts on the set NC(n) by the permutation

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
.

A labeled noncrossing partition is a noncrossing partition with a nonnegative
integer called a label attached to each block. When we apply rot to a labeled
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noncrossing partition the elements of each block shift as in the unlabeled
case, and blocks maintain their labels throughout the rotation.

3. Construction and properties of NC(a, b)

3.1. Rational pairs of noncrossing partitions

A simple bijection maps classical Dyck paths to noncrossing partitions. The
same map, when a < b, sends a, b-Dyck paths to a, b-noncrossing partitions
[6]. We’ll now define a more general version of this map, π, that makes sense
for any a, b-Dyck path and use this map to define rational a, b-noncrossing
partitions for any coprime a and b. Let D be an a, b-Dyck path and label
the east ends of the nonterminal east steps of D from left to right with the
numbers 1, 2, . . . , b− 1. Let p be the label of a lattice point at the bottom of
a north step of D. The laser �(p) is the line segment of slope a

b which fires
northeast from p and stops the next time it intersects D. By coprimality,
�(p) terminates on the interior of an east step of D. For instance, consider
the 10,7-Dyck path shown on the left in Figure 2. We have that �(3) hits
D on the interior of the east step whose west endpoint is labeled 5. We
define the laser set �(D) to be the set of pairs (i, j) such that D contains
a laser starting at label i and which terminates on an east step with west
x-coordinate j. For the Dyck path in Figure 2 we have

�(D) = {(1, 1), (2, 6), (3, 5), (4, 5), (6, 6)}.

Define a pair of labeled noncrossing partitions π(D) = (P,Q) as follows:
fire lasers from all labeled points which are also at the bottom of a north
step. We define the partition P by the visibility relation

i ∼
P
j if and only if the labels i and j are not separated by laser fire.

We make the convention that the label i lies stricly below �(i). Label each
block of P by the length of the vertical run immediately preceding the
minimal element of the block. We will refer to this as the rank of the block.
Call a vertical run a P -rise if it has length greater than a

b . We will now
describe the creation of the blocks of Q, a genuinely new feature of this
map.

We call a vertical run a Q-rise if it has length which is less than a
b ,

including zero. In the special case where a < b, there can only be Q-rises of
length zero since a/b < 1. In Figure 2, the vertical runs with x-coordinates
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0, 2, 3, and 4 are P -rises and with x-coordinates 1, 5, and 6 are Q-rises. We
define the partition Q by the relation

i ∼
Q
j

if and only if one of the following holds:

1. �(i) and �(j) hit the same east step immediately following a Q-rise
2. (i, j) ∈ �(D)
3. (j, i) ∈ �(D).

We label the blocks of Q as follows: If B is a block of Q and i ∈ B, then we
label B with the number of north steps beneath the west endpoint of the
east step hit by �(i). If i doesn’t fire a laser, then we assign B rank 0. This
is well-defined because different elements of a block of Q always touch or
fire a laser which hits the same east step. As with P , we will call this block
labeling the rank of the block. There will often be blocks of rank 0, which
we will call the trivial blocks of Q. We will refer to blocks of Q whose ranks
are positive as nontrivial blocks. Let π(D) denote the labeled pair (P,Q)
associated to D under this construction.

Figure 2: A 10,7-Dyck path with corresponding pair of labeled noncrossing
partitions.

Figure 2 shows a 10,7-Dyck path with labels and lasers drawn in. The
pair (P,Q) which results, also shown in Figure 2, is as follows:

P = {{1, 2}, {3, 6}, {4}, {5}}
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where each block has rank 2.

Q = {{1}, {2, 6}, {3, 4, 5}}

with block ranks 1, 1, and 0, respectively. In particular, the block {3, 4, 5}
is a trivial block of Q. The ranks are written in smaller font near the lines
indicating the block structure. We will often omit the trivial blocks of Q and
simply write Q = {{1}, {2, 6}}, each with rank 1.

Each north step contributes to the rank of either a P block or a Q block,
but not both. In particular, the length of a P -rise is the rank of a block of
P , and the length of a Q-rise is the rank of a block of Q. This implies that
the sum of the ranks of the P and Q blocks is a. Note that elements in the
same block of Q are necessarily in different blocks of P , since elements in
the same block of Q are always separated by at least one laser.

When a < b, Q contains only blocks of rank 0 and P is the rational
noncrossing partition associated to D as described by the map in [6]. The
ranks of blocks are uniquely determined in this case by the structure of P ,
which is why labeling blocks by rank has not previously been considered.
When a > b, the ranks of a blocks are no longer uniquely determined by the
structure of P and Q. For instance, the 5,3-Dyck paths NNNENNEE and
NNENNNEE both give rise to P = {{1}, {2}} and only trivial Q blocks.
Thus, the rank labels are a necessary feature of the construction of π(D).
Since ranks tell us precise vertical run lengths, the map π is injective. We
are now ready to prove some useful properties of a, b-noncrossing partitions.

Proposition 3.1. Let (P,Q) = π(D) for an a, b Dyck path D. There cannot
exist 1 ≤ i < b − 1 such that i is the maximal element of a block of Q and
i+ 1 is the minimal element of a block of P .

Proof. If i is the maximal element of a block of Q then the lattice point
labeled i in D is at the bottom of a Q-rise, whose the length is less than
a/b. On the other, hand if i+ 1 is also the minimal element of a block of P
then the lattice point labeled i is at the bottom of a P -rise, whose length
must be greater than a/b, a contradiction.

At this point it will be useful to introduce the Kreweras complement
of a noncrossing partition. Let P be a noncrossing partition. The Kreweras
complement, denoted krew(P ), is computed as follows: Begin by drawing
the 2n labels 1, 1′, 2, 2′, . . . , n, n′ clockwise on the boundary of a disk. Next,
draw the blocks on P on the unprimed vertices. Then krew(P ) is the unique
coarsest partition of the primed vertices which introduces no crossings. An
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Figure 3: The partition P = {{1, 3}, {2}, {4}, {5, 6}} is drawn on {1, 2, . . . , 6}
and krew(P ) = {{1, 2}, {3, 4, 6}, {5}} is drawn on the primed vertices.

example is shown in Figure 3. The map krew : NC(n) → NC(n) satisfies
krew2 = rot, so krew is a bijection.

By Lemma 3.2 in [6] we can recover the laser set of an a, b noncrossing
partition, where a < b, from its Kreweras complement. We have a similar
result when we generalize to any coprime a and b:

Lemma 3.2. Let a and b be coprime and (P,Q) = π(D) have corresponding
Dyck path D. If krew(P ) is the Kreweras complement of P then the laser
set �(D) is given by

�(D) = {(i,max(B))|B ∈ krew(P ), i ∈ B, i �= max(B)}
∪ {(max(B),max(B))|B ∈ Q, rank(B) �= 0}

Proof. The first set consists of all lasers which determine blocks of P . The
second set contains those additional lasers, unique to the the case a > b,
which define nontrivial blocks of Q but not P , which are always of the form
(p, p) where p = max(B) for some nontrivial block B ∈ Q.

Lemma 3.3. If (P,Q) = π(D) for an a, b Dyck path D then, when viewed
as unlabeled partitions, we have Q = krew(P ).

Proof. First suppose that i and j are in the same block B of krew(P ) where
i �= j. If neither i nor j is equal to max(B) then by Lemma 3.2 we must
have that (i,max(B)) and (j,max(B)) are both lasers in D. Since �(i) and
�(j) hit the same east step, i and j are in the same block of Q. Now suppose
j = max(B). Then (i, j) is a laser in D. Similarly, if i = max(B) then
(j, i) ∈ �(D). In all cases, i and j are in the same block of Q.

Conversely, suppose i and j are in the same block of Q. Let Bi denote
the block in krew(P ) containing i and Bj denote the block in krew(P )
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containing j. If �(i) and �(j) hit the same step immediately following a Q
rise above label k then (i, k) and (j, k) are both lasers in �(D) with i �= j �= k.
By the characterization of the laser set given in Lemma 3.2, we must have
that k = max(Bi) and k = max(Bj), so Bi = Bj . If (i, j) ∈ �(D) then
j = max(Bi). If (j, i) ∈ �(D) then i = max(Bj). In all cases, i and j are in
the same block of krew(P ). Thus, Q = krew(P ).

Proposition 3.4. Given a Dyck path D, if π(D) = (P,Q) then Q is a
noncrossing partition.

Proof. By the definition of Kreweras complement, Q = krew(P ) is noncross-
ing.

We say that two noncrossing partitions P1 and P2 of {1, 2, . . . , n} are
mutually noncrossing if there do not exist a < b < c < d such that a and
c are in the same block of Pi and b and d are in the same block of Pj for
i, j ∈ {1, 2} and i �= j. Equivalently, draw the numbers 1 through n on the
boundary of a disk. Then P1 and P2 are mutually noncrossing if when we
draw the boundary of the convex hulls of the blocks of P1 with solid lines
and the convex hulls of the blocks of P2 in dashed lines, no solid line crosses
the interior of a dashed line. Note that solid-dashed intersections at vertices
are permissible. For example, the picture on the left of Figure 4 contains
two noncrossing partitions. One whose blocks are indicated by solid lines,
the other whose blocks are indicated by dashed lines. We see that there are
intersections only at labels. On the other hand, the picture on the right
in Figure 4 shows that if we superimpose a rotated version of the dashed
line partition onto the solid line partition, then the partitions are no longer
mutually noncrossing. In particular, the {1, 4} block of dashed line partition
crosses both the {2, 6} and {3, 5} blocks of the solid line partition.

Figure 4: The pair on the left is mutually noncrossing. The pair on the right
is not.

Proposition 3.5. Given a Dyck path D, if π(D) = (P,Q) then P and Q
are mutually noncrossing.
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Proof. By definition, Q = krew(P ) has no crossings with P .

It now makes sense to define the set NC(a, b) of (a, b) noncrossing par-
titions by

NC(a, b) = {π(D)|D is an a, b-Dyck path}.

4. Rotation, rank sequences, and reflection

4.1. The rotation operator

Next, we will define a rotation operator rot′ on a, b-Dyck paths that com-
mutes with π. In other words, if π(D) = (P,Q), then π(rot′(D)) =
rot−1(π(D)) where rot is the map acting componentwise on P and Q send-
ing i to i+ 1, modulo b− 1, which preserves ranks.

Definition 4.1. Let D = N i1Ej1 · · ·N imEjm be the decomposition of D into
nonempty vertical and horizontal runs. We define the rotation operator rot′

as follows:

1. If m = 1, so that D = NaEb, we set

rot′(D) = NaEb = D.

2. If m, j1 > 1, we set

rot′(D) = N i1Ej1−1N i2Ej2 · · ·N imEjm+1.

3. If m > 1 and j1 = 1, let P = (1, i1) be the westernmost valley of D.
The laser �(P ) fired from P hits D on a horizontal run Ejk for some
2 < k < m. Suppose that �(P ) hits the horizontal run Ejk on step r,
where 1 ≤ r ≤ jk. There are two cases to consider:
If r = 1, we set

rot′(D) = N i2Ej2 · · ·N ik−1Ejk−1N i1EjkN ik+1Ejk+1 · · ·N imEjmN ikE.

If r > 1, we set

rot′(D) = N i2Ej2 · · ·N ikEr−1N i1Ejk−r+1N ik+1Ejk+1 · · ·N imEjm+1.

This definition is consistent with, but more general than, the one given
in Section 3.1 [6]. The r = 1 case in (3) will never occur if a < b but can if
a > b, so this new definition is necessary. The next proposition shows that
rot′ is the path analog of rot−1 on set partitions.
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Figure 5: The Dyck path on the right is the rotated version of the path on
the left.

Proposition 4.2. The operator rot′ defined above gives a well-defined op-
erator on the set of a, b-Dyck paths. Furthermore, for any Dyck path D, if
π(D) = (P,Q), then π(rot′(D)) = rot−1(π(D)).

Proof. First we must check that for any a, b-Dyck path D, rot(D) does in
fact stay above the line y = a

bx. The definition of this rotation operator
differs from the one given in Section 3.1 of [6] for a < b only in the first
case in (3), so that is the only case we need to consider here. It is easiest to
explain what happens visually. In Figure 5, we break the generic Dyck path
at the diagonal slashes into 5 pieces. The segment labeled 1 is the initial
vertical run. Segment 2 is the single east step which follows. Segment 3 is
the portion of the path between segment 2 and the Q-rise preceeding the
east step hit by �(1). Segment 4 is the aforementioned Q-rise. Segment 5
is the remainder of the path. The labeled path on the right shows how the
inverse rotation operator shifts these segments.

Since segment 3 stays above a laser fired in D, segment 3 in rot′(D)
must stay above the line y = a

bx. Since the segment 4 is a Q-rise in D,
we know that the segment 4 of rot′(D) has length at most �a/b	, so the
segments 4 and 2 of rot′(D) stay above the line y = a

bx. Since segment 5
stays above the line in D, it is clear that it stays above the line in rot′(D)
as well. Finally, since segment 1 is a single vertical run, it cannot cross the
line. Thus, the path rot′(D) stays above the line y = a

bx so it is a valid
Dyck path. Next we need to argue that π(rot′(D)) = rot−1(π(D)). To do
this, we simply consider how the lasers change from D to rot′(D).



376 Michelle Bodnar

1. The lasers fired from points in segment 5 of D are identical to the
lasers fired in segment 5 of rot′(D), shifted one unit west.

2. The lasers fired within segment 3 which hit just west of a label s in D
hit just left of the label s− 1 in rot′(D).

3. The laser from the point labeled 1 in D is replaced by the laser fired
from the end of segment 3 in rot′(D), so the rotated block includes
b− 1 instead in the rotation as desired.

4. Let t be the label at the base of segment 4 in D. Then t and 1 are
in the same block of Q in π(D). In rot′(D), this laser is fired from
t − 1, and as described in (3) it hits the terminal east step. Since
segment 4 is translated to be the vertical run immediately preceding
the terminal east step, the laser fired from b − 1 in rot′(D) also hits
the terminal east step, so t− 1 and b− 1 are in the same block of Q in
π(rot′(D)), completing the proof that the blocks of π(rot′(D)) rotate
as desired.

It now makes sense to define rot(D) = rot′−1(D). In other words,
rot(D) is such that π(rot(D)) = (rot(P ), rot(Q)).

Given an a, b-Dyck path D, one can obtain a b, a-Dyck path τ(D) by
applying the transposition operator τ which reflects a path about the line
y = −x, then shifts it such that its southern-most point is at the origin.
One might hope that transposition would commute with rotation in the
sense that τ(rot(D)) = rot(τ(D)); however, this is not the case, which can
be seen immediately from an example. Let D = NNNNENENNE. If we
first transpose, we obtain the path NEENENEEEE which corresponds
to the partition A = {{1, 2}, {3, 6}, {4, 5}}. However, if we first rotate D,
then transpose, we obtain the partition B = {{1, 6}, {2, 3}, {4, 5}}, which is
not obtainable from A via any rotation. Since the relevant information of
a noncrossing partition is read off from the vertical runs of its associated
Dyck path rather than the horizontal runs, which are not preserved under
rotation, this is not surprising.

4.2. Rank sequences

Let D be a Dyck path such that π(D) is the labeled pair of noncrossing
partitions (P,Q). If B is a block of P , we define rankDP (B) to be the length
of the vertical run preceding min(B) in D. If B is a block of Q, we define
rankDQ(B) to be the length of the vertical run above max(B) in D. Since the
underlying Dyck path D is almost always clear from context, we will often
simply write rankP (B) and rankQ(B). Given an a, b-Dyck path D such that
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π(D) = (P,Q) ∈ NC(a, b), we define the associated P and Q rank sequences,
denoted SP and SQ as follows:

SP := (p1, p2, . . . , pb−1)

where

pi =

{
rankP (B) if i = min(B) for some B ∈ P

0 otherwise.

SQ := (q1, q2, . . . , qb−1)

where

qi =

{
rankQ(B) if i = max(B) for some B ∈ Q

0 otherwise.

To solidify the connection to Dyck paths, observe that given (P,Q) ∈
NC(a, b) we have π−1(P,Q) = D where

D = Np1ENmax(p2,q1)E · · ·Nmax(pb−1,qb−2)EN qb−1E.

More generally, we will simply define the rank sequence of (P,Q) to be the
sequence given by

R(P,Q) := (p1,max(p2, q1), · · · ,max(pb−1, qb−2), qb−1).

This is precisely the sequence of vertical run lenghts of the Dyck path which
gives rise to (P,Q). For example, consider the path and corresponding par-
titions shown in Figure 6:

Figure 6: A 10,7-Dyck path with corresponding labeled partitions.
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We have SP = (3, 0, 2, 3, 0, 0), SQ = (0, 0, 0, 0, 1, 1), and R(P,Q) =
(3, 0, 2, 3, 0, 1, 1).

Proposition 4.3. Let a and b be coprime, D be an a, b-Dyck path, and
π(D) = (P,Q) ∈ NC(a, b). If B is a block of P , then

rankDP (B) = rank
rot(D)
rot(P )(rot(B)).

If B is a block of Q, then

rankDQ(B) = rank
rot(D)
rot(Q)(rot(B)).

Proof. It will suffice to consider instead the inverse rotation operator rot′

defined for a, b-Dyck paths. This operator preserves vertical run lengths and
the underlying block structure of both P and Q. Preservation of rank is clear
unless B contains 1, since rot′ just subtracts 1 from every index modulo
b − 1. If B is in P and contains 1, then by definition of rot′, we translate
the entire initial vertical run sequence so it immediately precedes the next
element in B, after rot′ is applied, so the rank is preserved. If B is in Q and
contains 1, then the Q-rise preceding the maximal element in B is translated
to the vertical run preceding the terminal east step in the path. Thus, the

rankDQ(B) = rank
rot(D)
rot(Q)(B

′) where B′ is the block in rot(Q) coming from

rot(D) which contains b − 1. By Proposition 4.2, we have B = B′, so the
rank is again preserved.

Now we show how block ranks respect cardinality under the operation of
merging blocks. In the case where a < b, there are no nontrivial Q blocks and
merging P blocks of (P,Q) ∈ NC(a, b) always yields another a, b-noncrossing
partition. When a > b, the merging of blocks of P results in the splitting of
blocks of Q, and we need to be careful about how we assign ranks to these
split blocks. This is made precise in the following proposition. An example
follows the end of the proof, which will help clarify the merging operation
defined below.

Lemma 4.4. Let a and b be coprime positive integers and D be an a, b-
Dyck path such that π(D) = (P,Q) ∈ NC(a, b), and B and B′ be two blocks
of P . Let P ′ be the result of replacing B and B′ in P by B ∪ B′. If P ′

is a noncrossing partition, then (P ′, Q′) ∈ NC(a, b) where Q′ = krew(P ′)
and rankP ′(B ∪ B′) = rankP (B) + rankP (B

′). For any block C ′ ∈ Q′, if
max(C ′) = max(C) for some C ∈ Q, then rankQ′(C ′) = rankQ(C). Other-
wise rankQ′(C ′) = 0.
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Proof. Without loss of generality assume min(B) < min(B′). The Dyck path
operation which merges B and B′ consists of removing the vertical run of
length rank(B′) atop min(B′) − 1 and adding rank(B′) north steps to the
vertical run atop min(B)− 1. We will now verify that this indeed gives the
desired result. Let D′ denote the Dyck path which results from applying
this operation to D. The only lasers �(p) which are potentially affected by
this operation are those such that min(B) − 1 ≤ p ≤ min(B′) − 1. For
now, assume p �= min(B) − 1. If �(p) hits west of min(B′) − 1 in D then
it is unchanged in D′, so we need only consider the case where it hits east
of min(B′) − 1. Observe that the horizontal distance from �(min(B′) − 1)
and �(P ) is at most 1. To see this, suppose it were greater than 1. Then
there would exist a label q > max(B′) such that �(min(B′) − 1) hits D
west of q and �(p) hits D east of q. Let B′′ be the block containing q. Then
min(B′) ≤ min(B′′) < max(B′) < q ≤ max(B′′) which contradicts the fact
that P is noncrossing. This implies that in D′, all such lasers hit the east
step hit by �(min(B′) − 1). Each of these lasers is translated vertically by
rank(B′) units, so the block structure and ranks of other blocks of P remain
unchanged.

Now consider the case where p = min(B) − 1. If �(p) hits D east of
�(min(B′)−1) then �(p) is the same laser in D and D′. Since �(min(B′)−1)
disappears, all labels of B′ become visible to labels of B, so the blocks
union and the ranks sum, as desired. Now suppose �(p) hits D west of
�(min(B′) − 1). Let C denote the block containing min(B′) − 1. Then we
must have min(C) ≤ min(B)−1 < min(B′)−1, which implies that merging
B and B′ would create a crossing, a contradiction.

By Lemma 3.3 we must have Q′ = krew(P ′). Let C ′ ∈ Q′ and suppose
max(C ′) = max(C) for some C ∈ Q. Since the merge operation preserves
all vertical run lengths except two, each of which is a P -rise, we know that
the rank of C must be preserved. On the other hand, the merge operation
removes some lasers from D, so some elements which were originally in C
will no longer fire lasers, forcing them to be in their own block of rank 0 in
Q′.

For example, consider once again the 10,7-Dyck path from Figure 6,
along with its associated noncrossing partitions P and Q. Suppose we would
like to merge the blocks B = {1, 2} and B′ = {3, 6} in P . Doing so gives the
partition P ′ = {{1, 2, 3, 6}, {4, 5}} which is indeed noncrossing, so (P ′, Q′) ∈
NC(a, b). We have Q′ = krew(P ′). Since 6 was the maximal element of the
Q block {2, 6} with rank 1, the rankQ′({6}) = 1. Since 2 was not a maximal
element of a block in Q, its rank is now 0. All other blocks and ranks are
preserved.
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Next let’s examine how we need to modifyD to obtainD′, where π(D′) =
(P ′, Q′). We remove the vertical run of length 2 = rank({3, 6}) above 2 and
adding north steps to the vertical run atop 0 = min({1, 2}) − 1. The new
path D′, along with P ′ and Q′, each with rank labels shown, are shown
below in Figure 7.

Figure 7: The Dyck path D′, along with P ′ and Q′.

We now discuss the problem of determining whether an arbitrary labeled
pair of noncrossing partitions is in fact a member of NC(a, b). First, we will
define a partial order 
 on the blocks of any pair (P,Q) of noncrossing
partitions by

B′ 
 B if

⎧⎪⎨
⎪⎩
B,B′ ∈ P and [min(B′),max(B′)] ⊂ [min(B),max(B)]

B′ ∈ Q,B ∈ P, and max(B′) ∈ [min(B),max(B)]

B′ = B,B ∈ Q

This partial order will tell us when we can absorb the rank of a block of
Q into the rank of a block of P to obtain a new element of NC(a, b).

Lemma 4.5. Let (P,Q) ∈ NC(a, b), B ∈ P , B′ ∈ Q, and suppose B′ is
covered by B under 
. Define a pair (P ′, Q′) as follows: P ′ is obtained from
P by simply increasing the rank of B by rank(B′). Q′ = krew(P ′) and B′ is
assigned rank 0. Then (P ′, Q′) ∈ NC(a, b).

Proof. LetD denote the Dyck path such that π(D) = (P,Q). The Dyck path
operation which performs the desired merge moves the Q-rise from above
max(B′) to the P -rise above min(B)−1. This clearly increases the rank of B
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by rank(B′). Furthermore, the east step hit by �(p) for all p ∈ B′ is preceded
by a Q-rise of length 0, so the block rank becomes 0. To see that all other
blocks and ranks are fixed by this process it is enough to consider how the
lasers are affected. The laser �(p) is translated vertically by rank(B′) units
if and only if min(B) ≤ p ≤ max(B′). However, the portion of D which lies
between these labels is also translated vertically by rank(B′), so no changes
can take place unless �(p) hits D east of max(B′).

Without loss of generality, assume p is the largest label such that �(p) hits
east of max(B′), and suppose that �(max(B′)) and �(p) fail to hit the same
east step. Then there must exist a label q which lies between �(max(B′))
and �(p). Let C be the block of P containg q. Then

min(B) ≤ p < min(C) ≤ max(B′) ≤ max(C) ≤ max(B).

where the last inequality follows since P is noncrossing. Thus, B′ ≺ C ≺
B, contradicting the fact that B covers B′. Thus, we may assume that
�(max(B′)) and �(p) hit the same east step. We know that �(max(B′)) hits
the east step immediately following the label max(B′), so �(p) must as well.
In the modified Dyck path, this step is translated down so the lasers will so
the points where they make contact with the east step will shift west. Since
the westernmost laser which hits this east step is �(max(B′)), no laser will
hit further west than the point labeled max(B′). Thus, �(p) will still hit the
same east step it originally did. Thus, the block structure is preserved and
B′ now has rank 0.

Figure 8: The path and partitions obtained from the merge.

For example, consider again the 10,7-Dyck path from Figure 6. Suppose
we wish to merge the Q-block {3, 5} of rank 1 with the P -block {3, 6} of
rank 2. The Dyck path operation removes the Q-rise of length 1 from above
5 and places it into the vertical run above 2. On the level of partitions, we
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obtain P ′ by increasing the rank of {3, 6} by 1. We obtain Q′ by changing
the rank of {3, 5} to 0. Figure 8 shows the resulting path and partitions P ′

and Q′.
Unlike in the case where a < b, ranks are no longer uniquely determined

by the partition structure. However, slope considerations do limit which
ranks can possibly be assigned to a given block.

Definition 4.6. Let a and b be coprime positive integers and (P,Q) ∈
NC(a, b). We say that a block B of P satiesfies the rank condition if

(max(B)−min(B) + 1)
a

b
≤

∑
B′�B

rank(B′) ≤ (max(B)−min(B) + 1)
a

b
+

a

b
.

Note that here we use rank to indicate the label of the block B′ rather
than anything having to do with vertical run lengths. This way, it makes
sense to ask whether any block B ∈ P for a labeled pair (P,Q) satisfies the
rank condition. Such an inequality must hold for (P,Q) ∈ NC(a, b). The
argument is essentially identical to that given in Proposition 3.8 of [6] when
one considers the fact that Q block ranks also contribute vertical runs. When
a < b the lower and upper bounds necessarily agree and uniquely determine
the rank of each block, which is why labels on the partition were unnecessary
in that case.

The following theorem characterizes precisely when a pair (P,Q) belongs
to NC(a, b). This is a generalization of Theorem 3.15 in [6], which provides
such a characterization when a < b.

Theorem 4.7. Let (P,Q) be a pair of labeled mutually noncrossing parti-
tions and a and b be fixed, coprime positive integers. Then (P,Q) ∈ NC(a, b)
if and only if the following conditions hold:

1.
∑

B∈P rank(B) +
∑

B′∈Q rank(B′) = a
2. We have rank(B) < a/b for all B ∈ Q
3. Q = krew(P )
4. The rank condition holds for all blocks in rotm(P,Q) for 1 ≤ m ≤ b−1.

Proof. First suppose that (P,Q) ∈ NC(a, b). Then there exists a Dyck path
D such that π(D) = (P,Q) and the vertical sequence of D comes from the
ranks of blocks in P and Q, so they must sum to a. The second condition
follows immediately from slope considerations. By Lemma 3.3, the Kreweras
complement uniquely determines Q. Finally, Proposition 4.3 implies that
condition (4) must hold.

Now suppose that we’re given a pair (P,Q) which satisfies each of the
conditions (1) − (4). In the case where a < b, Proposition 4.7 reduces to
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Proposition 3.5 of [6], so we will only consider the case a > b here. Although
we previously defined rank sequences only for (P,Q) ∈ NC(a, b), it makes
sense to think of them for any labeled pair of noncrossing partitions. Let
D(P,Q) = Np1ENmax(p2,q1)E · · ·Nmax(pb−1,qb−2)EN qb−1E. By condition (1),
D(P,Q) will actually have height a so it is indeed an a, b-lattice path. By
Lemma 3.2 we can immediately read off from krew(P ) what the laser set of
D must be in order to have π(D) = (P,Q).

For example, consider the pair P = {{1, 3}, {2}} with ranks 5 and 1
respectively, and Q = {{1, 2}, {3}} with ranks 1 and 0 respectively. The pair
(P,Q) is not in NC(7, 4). It satisfies conditions (1) - (3), and each block of
P satisfies the rank condition. By Lemma 3.2, L(D) = {(1, 2), (2, 2)}. Now
let’s examine the rank sequences of (P,Q). We have SQ = (5, 1, 0) and
SQ = (0, 1, 0). Thus, the Dyck path which would have to give rise to (P,Q)
(if such a Dyck path exists) must look like D(P,Q) = NNNNNENENEE,
shown in Figure 9.

Figure 9: The candidate Dyck path for the pair (P,Q).

We immediately see that the laser set is {(1, 1), (2, 2)}. However, if we
extend �(1) further, along the dashed line shown in Figure 9, we see that it
was certainly set up to hit in the appropriate spot, if only another part of D
had not gotten in the way. More generally, this is true of any laser fired from
the bottom of a P -rise since each block of P satisfies the rank condition.
Moreover, this is the only thing which can go wrong since a laser fired from
the bottom of a Q-rise will always hit the next east step by condition (2).

This is a special feature of the case a > b. Namely, the interval[⌈
m
a

b

⌉
,
⌊
(m+ 1)

a

b

⌋]
is nonempty for any m ∈ [b − 1], so the rank condition is just another way
of saying that the laser which cuts out a block can and will hit on the
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appropriate east step. However, the proof we give here for a > b differs from
the one given in [6] of Proposition 3.5 since knowing p and which east step
�(p) hits no longer uniquely determines the height difference of p and that
east step.

Let i and k be such that (i, k−1) should be a laser according to krew(P ),
but such that it fails to be a laser in D = D(P,Q) because it first hits a
horizontal segment ofD whose easternmost endpoint is labeled j. To simplify
things, we can repeatedly apply Lemmas 4.4 and 4.5 to (P,Q) to obtain a
pair (P ′, Q′) which has the same problem when we consider D′ = D(P ′,Q′).
Since NC(a, b) is closed under the merge operations of these lemmas, it
will suffice to derive a contradiction for D′ coming from (P ′, Q′) of the form
shown in Figure 10. In particular, D′ will contain exactly three vertical runs:
the initial vertical run above the origin of length A, the vertical run atop i
of length B, and the vertical run atop j of length C.

Figure 10: A simplified candidate Dyck path D′.

Since each laser is of slope a
b , we must have

(j − i)a/b > B. (∗)

Furthermore, �(j) must hit D′ on the east step between the labels k − 1
and k. To see this, observe that if �(j) hit west of k − 1 then there would
be no interference with �(i). If �(j) hit east of k then we would have one
block containing j and k + 1, and another block containing i and k, which
would imply a crossing. There are now two cases to consider: either j is at
the bottom of a P -rise or a Q-rise.

First, suppose j is at the bottom of a P -rise. Then we have P ′ =
{B1, B2, B3} where B1 = [1, i]∪[k, b−1], B2 = [i+1, j] and B3 = [j+1, k−1],
and Q′ consists of only trivial blocks of rank 0. By condition (4), every rota-
tion of (P ′, Q′) satisfies the rank condition for each rotation block of P ′, so



Rational noncrossing partitions for all coprime pairs 385

we may as well assume P ′ is rotated so that B1 = [k−i, b−1], B2 = [1, j−i],
and B3 = [j+1− i, k−1− i]. Since B2 satisfies the rank condition, we must
have that (j−i)a/b ≤ rank(B2) = B. However, by (∗) we have (j−i)a/b > B,
a contradiction.

Now suppose j is at the bottom of a Q-rise. Then we have k = j + 1
and P ′ = {B1, B2} where B1 = [1, i] ∪ [j + 1, b− 1] and B2 = [i+ 1, j]. The
partition Q′ consists of a single nontrivial block B′ = {i, j} of rank C. As
before, it will suffice to consider rotations of (P ′, Q′), so we may now assume
that B1 = [j + 1 − i, b− 1], B2 = [1, j − i] and B′ = {j − i, b − 1}. Since it
is no longer the case that B′ 
 B2 and B2 satisfies the rank condition, we
must have (j − i)a/b ≤ rank(B2) = B. However, this contradicts (∗) which
guarantees B < (j− i)a/b. In either case, we conclude that if (P,Q) satisfies
conditions (1) through (4) then (P,Q) ∈ NC(a, b).

4.3. Reflection

It was shown in [6] that NC(a, b) is closed under the reflection operator,
given by the permutation

rfn =

(
1 2 · · · b− 2 b− 1

b− 1 b− 2 · · · 2 1

)
.

When a > b we achieve closure under reflection provided that we choose the
appropriate reflection operator on Q. Define rfn′ as follows:

rfn′ =

(
1 2 · · · b− 2 b− 1

b− 2 b− 3 · · · 1 b− 1

)

To simplify notation, define a rotation operator rfn′′ by

rfn′′(B) =

{
rfn(B) if B ∈ P

rfn′(B) if B ∈ Q

Proposition 4.8. Let a and b be coprime. If (P,Q) ∈ NC(a, b) then
(rfn(P ), rfn′(Q)) ∈ NC(a, b), where block labels are preserved.

Proof. Since (P,Q) ∈ NC(a, b) it must satisfy conditions (1)− (4) in Theo-
rem 4.7. Since ranks are preserved, we have∑
B∈rfn(P )

rank(B) +
∑

B′∈rfn′(Q)

rank(B′) =
∑
B∈P

rank(B) +
∑
B′∈Q

rank(B′) = a
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and rank(B) < a/b for all B ∈ Q. By the way we have defined rfn′, we have
that rfn′(Q) = krew(rfn(P )). Lastly, for any B ∈ P there exists m such
that B′ 
 B in (P,Q) if and only if rotm(rfn′′(B′)) 
 rotm(rfn(B)) in
(rfn(P ), rfn′(Q)). Thus, every block of rfn(P ) satisfies the rank condition.
By Theorem 4.7, we have that (rfn(P ), rfn′(Q)) ∈ NC(a, b).

Corollary 4.9. Let a and b be coprime. The set NC(a, b) of a, b noncrossing
partitions is closed under the dihedral action 〈rot, rfn′′〉.

5. d-modified rank sequences

We now set out to count the number of (P,Q) ∈ NC(a, b) which are invariant
under d-fold rotation, which will ultimately allow us to prove an instance
of the cyclic sieving phenomenon. To do this, we generalize the notion of
d-modified rank sequences to our pairs (P,Q). Along the way, we generalize
the good, very good, and noble sequences defined in [6]. We will conclude by
showing that these d-modified rank sequences are in bijective correspondence
with those (P,Q) which are invariant under d-fold rotation. This will reduce
our problem to counting these sequences.

Let d|n and P be a noncrossing partition of [n] which is invariant under
rotd. Given a block B of P , we say B is a central block if rotd(B) = B.
Clearly P can contain at most one central block. We say B is a wrapping
block if B is not central and [min(B),max(B)] contains every block in the
〈rotd〉-orbit of B. The 〈rotd〉-orbit of a block can contain at most one
wrapping block.

For the remainder of this section, fix positive coprime integers a and b,
and an integer 1 ≤ d < b− 1 such that d|(b− 1). Let NCd(a, b) denote the
set of (P,Q) ∈ NC(a, b) which are invariant under rotd. Given (P,Q) ∈
NCd(a, b), we define the d-modified P and Q rank sequences as follows:

Sd
P := (p1, . . . , pd) and Sd

Q := (q1, . . . , qd)

where

pi :=

⎧⎪⎨
⎪⎩
rankP (B) if i = min(B) for a noncentral, nonwrapping block

B ∈ P

0 otherwise

qi :=

⎧⎪⎨
⎪⎩
rankQ(B) if b− 1− d+ i = max(B) for a noncentral,

nonwrapping block B ∈ Q

0 otherwise.
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It might seem surprising that in the definition of qi we consider the
largest d elements of [b − 1] rather than the smallest d elements, as we
did for pi. The reason comes from the fact that Q ranks are defined in
terms of maximal block elements rather than minimal ones. In particular,
{b − d, b − d + 1, . . . , b − 1} is guaranteed to contain at least one maximal
element of a nonwrapping Q block in a 〈rotd〉-orbit, whereas {1, 2, . . . , d}
might not.

For example, consider the pair (P,Q) in NC3(10, 7) given in Figure 6.
We have S3

P = (3, 0, 0) since 1 is the minimal element of {1, 2} which has
rank 3, 2 is not the minimal element of a block of P , and 3 is the minimal
element of a central block of P . We also have S3

Q = (0, 1, 0) since 4 is in a
trivial Q block, 5 is the maximal element of a Q block of rank 1, and 6 is the
maximal element of a wrapping block of Q. Had we instead only recorded Q
ranks of 1, 2, and 3, we would have recorded (0, 0, 0) and lost all information
about the structure of Q.

Lemma 5.1. Let (P,Q) ∈ NCd(a, b) and Sd
P and Sd

Q be the d-modified P
and Q rank sequences of (P,Q). Then we have

Sd
P (rot(P,Q)) = rot(Sd

P (P,Q))

and

Sd
Q(rot(P,Q)) = rot(Sd

Q(P,Q)).

Proof. The first equality follows by applying the same argument as in the
proof of Lemma 4.2 in [6] to the d-modified P rank sequences and using
Proposition 4.3. We present here the proof of the second equality. Let

Sd
Q(rot(P,Q)) = (q′1, q

′
2, . . . , q

′
d)

be the d-modified Q rank sequence of rot(P,Q) and 1 ≤ i ≤ d. We will
show that q′i = qi−1 where subscripts are interpreted modulo d.

Case 1: 2 ≤ i ≤ d. If qi−1 > 0 then i − 1 = max(B) for some non-
central, non-wrapping block B ∈ Q. Thus i = max(rot(B)) and rot(B) is
non-central and non-wrapping so q′i = qi−1. Next suppose qi−1 = 0. If i− 1
was not the maximal element of a block of Q then i is not the maximal
element of rot(Q), so q′i = 0. If i−1 = max(B) for a wrapping block B then
rot(B) is wrapping and i = max(rot(B)), so q′i = 0. If i− 1 = max(B) for
a central block B then rot(B) is central and i = max(rot(B)) so q′i is 0.

Case 2: i = 1. Suppose b − 1 = max(B) for some non-central, non-
wrapping block B. By rotational symmetry, rotb−1−d(B) is a non-central,
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non-wrapping block of Q with max b − 1 − d and rank qd. Thus, b − d is
the max of a rotated block in rot(Q), so we have q′1 = qd. Now suppose
b − 1 ∈ B where B is central. Then 1 ∈ rot(B) which is also central, so
q′1 = qd = 0. Lastly, suppose B is central. If b − 1 is the only element of B
in {b− d, b− d+ 1, . . . , b− 1} then 1 is not the maximal element of rot(B)
so by rotational symmetry, b − d is not the maximal element of a Q block
and we have q′1 = 0. On the other hand, if b − 1 is not the only element of
B in {b− d, b− d+1, . . . , b− 1} then rot(B) is still wrapping so q′1 = 0.

Define the set of good sequence pairs to be the set of nonnegative integer
sequence pairs of length d, (Sd

P , S
d
Q) = ((p1, . . . , pd), (q1, . . . , qd)), such that

the following hold:

• pi = 0 or pi > a/b for each i ∈ [d]
• qi < a/b
•
∑d

i=1 pi + qi ≤ ad/(b− 1), and
• there does not exist i ∈ [d] such that both pi+1 and qi are nonzero,
where subscripts are interpreted modulo d.

When a < b, Sd
Q is always a sequence of all 0’s and the sequences Sd

P are
exactly the good sequences defined in [6]. Our goal is to show that the set
of rotd-invariant pairs of noncrossing partitions in NC(a, b) are in bijective
correspondence with the set of good sequence pairs. The next few pages will
consist of a series of somewhat technical lemmas and propositions that will
build up to a proof of this bijection.

We say (P,Q) ∈ NCd(a, b) is noble if the following conditions hold:

1. neither P nor Q contains any wrapping blocks
2. if P contains a central block B then 1 ∈ B
3. if Q contains a central block B then b− 1 ∈ Q.

Observe that since P and Q are mutually noncrossing, there can be at
most one central block in total.

Lemma 5.2. Suppose (P,Q) ∈ NCd(a, b) and that Q contains a central
block B. Then either b−1 ∈ B or P contains a wrapping block, but not both.

Proof. Let (P,Q) ∈ NCd(a, b). First we will show that at least one of the
two things must happen. Suppose toward a contradiction that Q contains
a central block B such that b − 1 /∈ B and that P contains no wrapping
blocks. Let D be the Dyck path such that π(D) = (P,Q). Figure 11 shows a
simplified version of whatD might look like. Then f = max(B)+d−(b−1) ∈
B and �(f) must hit the east step immediately following max(B) in D. Since
f fires a laser and is not the maximal element of a Q block, the vertical
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run above f (boldened in Figure 11) consists of at least a/b north steps.
This implies that f + 1 is the minimal element of a block of P . By d-fold
symmetry, this means that max(B)+ 1 is the minimal element of a block of
P . In particular, max(B) + 1 ≤ b− 1 and the block containing max(B) + 1
cannot be wrapping. Thus, max(B)+1 is immediately preceded by a vertical
run (the bold vertical run above max(B) in Figure 11 of length greater than
a/b. On the other hand, max(B) is the maximal element of a Q block so it
must be the bottom of a vertical run of length less than a/b, a contradiction.

Figure 11:

Now suppose that b−1 ∈ B and P contains a wrapping block A. Since P
and Q are mutually noncrossing we must have that b− 1 ∈ A, and no other
element of {b − d, . . . , b − 1} is in A. By d-fold symmetry, b − 1 − d is the
minimal element of the P block A′ = rot−d(A), and also in B. Since A is
wrapping, it necessarily contains some element of {1, . . . , d}, which implies
that A′ contains a second smallest element k of {b− d, . . . , b− 1}. However,
k �= b− 1 since P and Q are mutually noncrossing. Since b− d− 1 is in B,
�(b− d− 1) hits the east step immediately following b− 1. This necessarily
separates the label k from the label b − d − 1, contradicting the fact that
they are in the same block of P .

Lemma 5.3. Suppose (P,Q) ∈ NCd(a, b) and P contains a central block
containing 1. Then Q can contain no wrapping blocks.

Proof. Let (P,Q) ∈ NCd(a, b) where P contains a wrapping block with
1, and suppose toward a contradiction that Q contains a wrapping block
B. Since P and Q are mutually noncrossing we must have 1 ∈ B, but no
other element of {2, . . . , d} is in B. Let D be the Dyck path such that
π(D) = (P,Q). There are two cases to consider:
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Case 1: max(B) < b− 1
D must contain a vertical run of length less than a/b above max(B),

which implies that max(B)+1 is not the minimal element of a block of P . By
d-fold symmetry, this implies that max(B)+d−(b−1)+1 is not the minimal
element of a P block. Let B′ = rotd(B). Then f = max(B) + d− (b− 1) is
a nonmaximal element of B′ so f fires a laser in D and is at the bottom of
a vertical run of length at least a/b. This implies f +1 is a minimal element
of a block of P , a contradiction.

Case 2: max(B) = b− 1
Since b − 1 and 1 are in the same block of Q, by d-fold symmetry we

must have that d and d+ 1 are in the same block of Q. Thus d fires a laser
in D and is at the bottom of a vertical run of length at least a/b. However,
that would imply that d+ 1 is the minimal element of a block of P , but by
symmetry d + 1 is in the central block of P whose minimal element is 1, a
contradiction.

Proposition 5.4. Every rot-orbit in NCd(a, b) contains at least one noble
partition.

Proof. If P contains a central block, rotate it so that it contains 1. Since
P itself is noncrossing, there are no wrapping blocks in P . By Lemma 5.3,
there can be no wrapping Q blocks. If Q contains a central block, rotate
it so that it contains b − 1. As before, since Q is noncrossing, it cannot
contain any wrapping blocks. By Lemma 5.2, there can be no wrapping P
blocks. Now assume that there is no central block, and suppose that either
P or Q contains a wrapping block B. Rotate (P,Q) until the first time B
is no longer wrapping. The result of this rotation cannot introduce any new
wrapping blocks, so we have decreased the total number of wrapping blocks
by at least 1. Continue in this way until no wrapping blocks in either P or
Q remain.

Let (Sd
P , S

d
Q) be a good sequence pair. Let s =

∑d
i=1 pi + qi and c =

a− s(b− 1)/d. We call (Sd
P , S

d
Q) very good if c = 0, if p1 = 0 and c > a/b, or

if qd = 0 and 0 < c < a/b. Define a map

L : {very good sequences} → {lattice paths from (0,0) to (b, a)}

as follows. If (Sd
P , S

d
Q) is a very good sequence pair, let L(Sd

P , S
d
Q) be deter-

mined as follows.
Case 1: If c = 0,
If p1 = 0, set

L(Sd
P , S

d
Q) = (Nmax(p2,q1)E · · ·Nmax(pd,qd−1)EN qdE)(b−1)/dE.
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If qd = 0, set

L(Sd
P , S

d
Q) = (Np1ENmax(p2,q1)E · · ·Nmax(pd,qd−1)E)(b−1)/dE.

Case 2: If c > a/b, set

L(Sd
P , S

d
Q) = N cE(Nmax(p2,q1)E · · ·Nmax(pd,qd−1)EN qdE)(b−1)/d

Case 3: If 0 < c < a/b, set

L(Sd
P , S

d
Q) = (Np1ENmax(p2,q1)E · · ·Nmax(pd,qd−1)E)(b−1)/dN cE

We define a very good sequence pair (Sd
P , S

d
Q) to be noble if L(Sd

P , S
d
Q)

is an a, b-Dyck path.

Lemma 5.5. Every good sequence pair is rot-conjugate to at least one noble
sequence.

Proof. Let (Sd
P , S

d
Q) be a good sequence pair and Sd

P,Q = (s1, . . . , sd) be such
that si = max(pi, qi−1) where we interpret q0 as qd. It will be convenient to
also have a map γ which reverses this as follows:

γ(s1, . . . , sd) = (Sd
P , S

d
Q)

where pi = si if si > a/b and 0 otherwise, and qi = si+1 if si+1 < a/b and 0
otherwise, interpreting sd+1 as s1.

Case 1: c = a.
In this case s1, . . . , sd is the zero sequence (0, 0, . . . , 0) and L(Sd

P , S
d
Q) is

the valid Dyck path NaEb.
Case 2: a/b < c < a.
Let L be the lattice path which starts at the origin and ends at (2d, 2(s1+

· · ·+ sd)) given by

L = N s1EN s2E · · ·N sdEN s1EN s2E · · ·N sdE.

Label the lattice points P on L with integers w(P ) as follows: Label the
origin 0. If P and P ′ are consecutive lattice points, set w(P ′) = w(P )− a if
P ′ is connected to P by an E-step, and w(P ′) = w(P )+ b if P ′ is connected
to P with an N -step.

By coprimality, there exists a unique lattice point on L of minimal
weight, P0. Observe that by minimality, and the fact that (s1, . . . , sd) is
not the zero sequence, P0 must be immediately followed by a vertical run
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N si for some 1 ≤ i ≤ d. Note: If P0 is the terminal point of L then we

interpert the vertical run to be N s1 .

If i = 1, then the entire path stays above the line y = a
bx and it is

clear that L(Sd
P , S

d
Q) is a valid Dyck path. Now suppose i > 1 and let

S = (si−1, si, . . . , sd, s1, . . . , si−2). The vertical run N si−1 over the point A0,
immediately preceding P0, must have height at most a/b. Otherwise, A0

would have smaller weight, contradicting minimality. Thus γ(S) is a very

good sequence pair, so that L(γ(S)) makes sense. We claim that L(γ(S)) is
in fact a valid Dyck path so that γ(S) is a noble sequence pair. Consider

the segmentation L(γ(S)) = L1 · · ·L(b−1)/dE where Li contains d E steps.

Since each segment is progressively further east, it will suffice to show that
the final segment stays west of the line y = a

bx. Since (Sd
P , S

d
Q) is a good

sequence pair, the copy of P0 in Lq stays west of the line y = a
bx. Since P0 is

minimal, no other point to the east of P0 can cross the line y = a
bx. Finally,

since the vertical run immediately preceding P0 has height at most a/b, we

conclude that all of Lq stays west of the line a
bx.

Case 3: 0 ≤ c < a/b.

Define L as in Case 2, letting P0 denote the lattice point of minimal

weight. P0 is beneath a vertical run N si where si > a/b since otherwise
the point immediately following P0 would be of smaller weight. Let S =

(si, si+1, . . . , sd, s1, . . . , si−1). Since si > a/b, γ(S) is a very good sequence

pair so L(γ(S)) makes sense. We claim that L(γ(S)) is a a valid Dyck path.
To see this, consider the segmentation L(γ(S)) = L1 · · ·L(b−1)/dN

cE. Since

c < a/b, the point labeled b−1 stays west of the line y = a
bx. Each segment Li

is progressively further east, so it will again suffice to show that Lq remains

west of the line y = a
bx. Since (Sd

P , S
d
Q) is a good sequence pair, the copy of

P0 in Lq stays west of the line y = a
bx, and since P0 is minimal, no other

point east of P0 can cross the line y = a
bx.

For example, consider the good sequence pair S3
P = (0, 3, 0) and S3

Q =

(0, 1, 1). Then we have S3
P,Q = (1, 3, 1). The path on the left in Figure 12

shows the corresponding 11,7 lattice path L with weight labels. The point

of minimal weight is labeled -4. This appears at the bottom of a vertical run

of length 3 > 11/7. Thus, S = (3, 1, 1). The path L(γ(S)) is shown on the
right in Figure 12. The slashes indicate the segmentation into L1 and L2.

The final vertical run is N c = N1, and the result is a valid Dyck path.

Lemma 5.6. Suppose that (Sd
P , S

d
Q) is a noble sequence pair. Then π :=

π(L(Sd
P , S

d
Q)) ∈ NCd(a, b) is noble and the d-modified P and Q rank se-

quences of π are Sd
P and Sd

Q.
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Figure 12:

Proof. Define Sd
P,Q = (s1, . . . , sd) as in the proof of Lemma 5.5 and let

c = a− q(s1 + · · ·+ sd). The argument splits into cases:

Case 1: c > a/b.

Let L := L(Sd
P , S

d
Q) = L1L2 · · ·LqE where L1 = N cEN s2E · · ·N sdE

and Li = N s1E · · ·N sdE for 2 ≤ i ≤ q. Since (Sd
P , S

d
Q) is very good and

c > a/b we must have that the first entry of Sd
P is 0. Fix any index 1 ≤ i ≤ d

such that si > 0 and any other index 1 ≤ j ≤ q − 1. Both segments Lj and

Lj+1 of L(s) contain a copy of the nonempty vertical run N si . First suppose

si > a/b and let P0 and P1 denote the points at the bottom of these vertical

runs. We have that �(P0) and �(P1) are rigid translations of one another, so

the P block visible from the copy of N si in Lj+1 is the image of the block

visible from the copy of N si in Lj under the operator rotd. Now suppose

si < a/b and let E0 and E1 denote the east steps immediately following the

vertical runs in Lj and Lj+1. The collection of lasers which hit E1 are a

rigid translation of the lasers which hit E0, which implies that the Q block

determined by the lasers hitting E1 is the image of the Q block which results

from lasers hitting E0 in Lj under the operator rotd.

Since the first entry of Sd
P is 0 none of these blocks contain 1, so the

set of blocks not containing 1 is stable under rotd, which implies that the

block containing 1 must be central, π is invariant under rotd, and π has
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no wrapping blocks. Thus, π is noble and the d-modified P and Q rank
sequences of π are Sd

P and Sd
Q.

Case 2: 0 ≤ c < a/b.
As before, consider the segmentation L(Sd

P , S
d
Q) = L1 · · ·LqN

cE where

Li = N s1E · · ·N sdE. Since (Sd
P , S

d
Q) is very good and 0 < c < a/b we must

have that the last entry of Sd
Q is 0. In this case, with the extra east step at

the end of the path, lasers fired from the points at the bottom of consecutive
copies of the vertical run N si in Lj and Lj+1 are either

1. translates of each other or
2. they both hit L on its terminal east step.

As described in case 1, rotd invariance is guaranteed for all P and Q blocks
determined by (1) and the fact that every such laser pair satisfies (1) or (2)
implies there can be no wrapping blocks. If c = 0 then there is no central
block so we conclude π is noble. If 0 < c < a/b then all points P such that
�(P ) hits L on its terminal east step are in a central Q block containing
b − 1 so π is noble in this case as well, and the d-modified P and Q rank
sequences of π are Sd

P and Sd
Q.

Lemma 5.7. Suppose that (P,Q) ∈ NCd(a, b). Then (P,Q) is noble if and
only if (Sd

P , S
d
Q) is noble.

Proof. First suppose (P,Q) is noble. Let Sd
P,Q = (s1, . . . , sd), c = a− b−1

d (s1+
· · ·+sd), SP = (p1, . . . , pb−1), and SQ = (q1, . . . , qb−1). Since (P,Q) contains
no wrapping blocks,

R(P,Q) =

{
(s1, s2, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd, c) if c < a/b

(c, s2, . . . , sd, s1, . . . , sd, . . . , s1, . . . , sd, s1) if c > a/b.

If c = 0 then (Sd
P , S

d
Q) is automatically very good. If 0 < c < a/b then the

nobility of (P,Q) implies b − 1 is contained in the central block of (P,Q).
Thus qd = 0 so (Sd

P , S
d
Q) is very good. On the other hand, if c > a/b then the

nobility of (P,Q) implies that 1 is in the central block so that p1 = 0 and
(Sd

P , S
d
Q) is very good. In both cases, the vertical runs of L(Sd

P , S
d
Q) agree

with the rank sequence R(P,Q), so (Sd
P , S

d
Q) is noble.

Now suppose that (P,Q) is not noble. The argument in the proof of
Lemma 4.8 in [6] tells us that P contains no wrapping blocks, and if it has a
central block then it must contain 1. If P contains a central block with 1 then
by Lemma 5.3 Q cannot contain a wrapping block. Thus, we may assume P
contains no central or wrapping blocks, which means p1 �= 0. Since (SP , SQ)
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is noble this means that L := L(Sd
P,Q) takes the form L1L2 · · ·LqN

cE where

Li = (Np1ENmax(p2,q1)E · · ·Nmax(pd,qd−1)E. Suppose Q contains a wrapping
block B. Let f = min(B) and g = max(B). Since B is wrapping, we have
1 ≤ f ≤ d and b − d ≤ g ≤ b − 1. Let B′ denote the inverse d-fold rotation
of B. Then max(B′) = b− d+ f so that the f th entry of Sd

Q is rank(B). Let
g′ be the copy of g contained in L1 and f ′ denote the copy of f contained
in L2. Then �(g′) hits the east step immediately following the vertical run
above f ′. Let P0 be the first point of L2. Since g′ ≤ d ≤ P0 and �(g′) hits
an east step in L2, this implies that �(P0) hits an east step in L2 as well.
However, L1 is a copy of L2, so if we fire a laser from the initial point of L1,
the origin, then it must hit an east step of L1, contradicting the fact that L
stays above the line y = a

bx.
Finally, suppose Q contains a central block which does not contain b −

1. By Lemma 5.2, this implies that P contains a wrapping block so that
(Sd

P , S
d
Q) is not noble, a contradiction.

Theorem 5.8. The map Sd : NCd(a, b) → {good sequence pairs (Sd
P , S

d
Q)}

is a bijection which commutes with the action of rotation.

Proof. By Lemma 5.1, Sd commutes with rotation. Now suppose (Sd
P , S

d
Q)

is a good sequence pair. By Lemma 5.5, it is conjugate to a noble sequence
pair (Sd

P ′ , Sd
Q′). By Lemma 5.6, there exists (P ′, Q′) ∈ NCd(a, b) such that

(P ′, Q′) is noble and Sd(P ′, Q′) = (Sd
P ′ , Sd

Q′). As described in the proof of
Lemma 5.7, this completely determines the rank sequence, and hence the
vertical run sequence, of (P ′, Q′), which uniquely determines the partition.
Therefore (P ′, Q′) is unique. Since Sd commutes with rotation, there must
be a unique rotated partition pair which is the inverse image of (Sd

P , S
d
Q),

proving that Sd is a bijection.

Now we can enumerate the good sequence pairs. To do this, begin by
combining the pairs of sequences into a single sequence (s0, s1, . . . , sd) of
length d+ 1 as follows:

si =

{
max(pi+1, qi) if 1 ≤ i ≤ d− 1

max(p1, qd) if i = d

This transformation is a bijection onto the set of nonnegative integer
sequences of length d whose entries sum to at most ad/(b − 1), which are
counted by (

�ad/(b− 1)	+ d

d

)
.
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Corollary 5.9. Let a and b be coprime positive integers and d|(b− 1). The
number of (P,Q) ∈ NC(a, b) which are invariant under rotd is given by(

�ad/(b− 1)	+ d

d

)
.

Corollary 5.10. Let a and b be coprime positive integers and d|(b − 1).
Let p be a nonnegative integer such that b−1

d p ≤ a. The number of (P,Q) ∈
NCd(a, b) with a central block in either P or Q and p orbits of non-central
blocks under the action of rotd is

(
d

p

)(
� ad
b−1	 − 1

p

)
.

The number of (P,Q) ∈ NCd(a, b) with no central block and p orbits of
noncentral blocks under the action of rotd is

{(
d
p

)(� ad

b−1
�−1

p−1

)
if b−1

d |a
0 if b−1

d � |a.

Corollary 5.11. Let a and b be coprime positive integers and d|(b− 1). Let
m1, . . . ,ma be nonnegative integers which satisfy b−1

d (m1+2m2+· · ·+ama) ≤
a. The number of (P,Q) ∈ NC(a, b) which are invariant under rotd and
have mi orbits of noncentral blocks of rank i under the action of rotd is(

d

m1,m2, . . . ,ma, d−m

)

where m = m1 +m2 + · · ·+ma.

6. Cyclic sieving

Let X be a finite set, C = 〈c〉 be a finite cyclic group acting on X, X(q) ∈
N[q] be a polynomial with nonnegative integer coefficents, and ζ ∈ C be a
root of unity with multiplicative order |C|. The triple (X,C,X(q)) exhibits
the cyclic sieving phenomenon if for all d ≥ 0 we have X(ζd) = |Xcd | =
|{x ∈ X|cd.x = x}|. For additional background and examples of the cyclic
sieving phenomenon in other contexts, see [10].

Theorem 6.1. Let a and b be coprime and r = (r1, r2, . . . , ra) be sequence
of nonnegative integers satisfying r1 + 2r2 + · · ·+ ara = a. Set k =

∑a
i=1 ri.
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Let X be the set of (P,Q) ∈ NC(a, b) with ri blocks of rank i, where a block

may come from either P or Q. Then the triple (X,C,X(q)) exhibits the

cyclic sieving phenomenon, where C = Zb−1 acts on X by rotation and

X(q) = Krewq(a, b, r) =
[b− 1]!q

[r1]!q · · · [ra]!q[b− k]!q

is the q-rational Kreweras number.

Proof. The proof of Theorem 5.1 in [6] shows that Krewq(a, b, r) is a poly-

nomial in q with nonnegative integer coefficients and evaluates to the multi-

nomial coefficient given in Corollary 5.11.

Theorem 6.2. Let a and b be coprime, 1 ≤ k ≤ a, and X be the set of

(P,Q) ∈ NC(a, b) with k blocks in total. The triple (X,C,X(q)) exhibits the

cyclic sieving phenomenon where C = Zb−1 acts on X by rotation and

X(q) = Narq(a, b, k) =
1

[a]q

[
a

k

]
q

[
b− 1

k − 1

]
q

is the q-rational Narayana number.

Proof. As can be read off from Theorem 5.2 in [6], the root of unity evalu-

ation agrees with the formula given in Corollary 5.10.

Theorem 6.3. Let a and b be coprime, X be the set of (P,Q) ∈ NC(a, b)

and

X(q) = Catq(a, b) =
1

[a+ b]q

[
a+ b

a, b

]
q

be the q-rational Catalan number. Then the triple (X,C,X(q)) exhibits the

cyclic sieving phenomenon, where C = Zb−1 acts by rotation.

Proof. This follows from the fact that Catq(a, b) evaluates to the expression

given in Corollary 5.9 when we let q → e2πid/(b−1).

The special case of (a, b) = (n + 1, n) was considered by Thiel in [14],

and this instance of the cyclic sieving phenomenon was proven for this case.

A simple bijection relates n + 1, n-Dyck paths (and therefore elements of

NC(n + 1, n)) to the noncrossing (1, 2)-configurations, a variant of one of

the hundreds of Catalan objects listed in Stanley’s Catalan addendum. [13].

For convenience, we reprint the relevant definitions here:
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Definition 6.4. (Thiel) Call a subset of [m] a ball if it has cardinality 1
and an arc if it has cardinality 2. Define a (1,2)-configuration on [m] as a
set of pairwise disjoint balls and arcs. Say that a (1,2)-configuration F has
a crossing if it contains arcs {i1, i2} and {j1, j2} with i1 < j1 < i2 < j2.
If F has no crossing, it is called noncrossing. Define Xn to be the set of
noncrossing (1,2)-configurations on [n− 1].

Proposition 6.5. There is a bijection τ between n + 1, n-Dyck paths and
Xn that commutes with the action of rotation.

Proof. Given an n + 1, n-Dyck path D, define τ(D) as follows: Read the
labels from 1 to n − 1. If the point labeled i does not fire a laser, leave it
unmarked in the (1, 2) configuration. Otherwise, it fires a laser which hits an
east step with left endpoint whose x-coordinate is j. If i = j, decorate i with
a dot. Otherwise, draw an arc from i to j. For the reverse map, note that
there is a unique way to fire a laser from i in such a way that it hits an east
step with left endpoint having x-coordinate j. To see that this commutes
with rotation, it will be easiest to think in terms of noncrossing partitions.
In particular, given (P,Q) ∈ NC(n+1, n) we obtain its corresponding (1, 2)
configuration as follows: For each block B of P , draw an arc from min(B)−1
to max(B). If min(B) = 1, draw an arc from n−1 to max(B). Each nontrivial
block of Q will be a singleton {i} of rank 1. Draw a ball at i. For an n+1, n-
Dyck path D, this construction bijects π(D) to τ(D). It follows that rotation
of (P,Q) simply rotates its associated (1, 2) configuration.

Hence, Theorem 6.3 specializes to Thiel’s result when (a, b) = (n +
1, n). Figure 13 shows an example of a 7,6-Dyck path and its corresponding
noncrossing (1,2) configuration.

7. Parking functions

Let W be a finite Coxeter group with root lattice Q and Coxeter number
h. In [3], Armstrong, Reiner, and Rhoades defined W -parking functions,
a generalization of the classical type A parking functions, as elements of
Q/(h+ 1)Q which carry an action of W called the standard parking space.
They went on to show the W -parking functions in fact carry an action of
W ×C where C is the cyclic subgroup of W generated by a Coxeter element.
In [11], Rhoades defines k−W -parking spaces, a Fuss analog of their work.
In [6], the author and Rhoades provide a rational extension ParkNC(a, b) of
[3] and [11] when W is the symmetric group Sa. Though rational parking
functions have been studied elsewhere in the literature [5], the action of
Sa×Zb−1 on parking functions had previously only been known in the case
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Figure 13: A 7,6-Dyck path and its corresponding noncrossing (1,2) config-
uration in X6.

a < b. Here, we generalize to all coprime a and b. We begin with basic
definitions.

For all coprime a and b, we define an a, b-noncrossing parking function
as a pair ((P,Q), f) where (P,Q) ∈ NC(a, b) and f : {B|B ∈ P or B ∈
Q} → 2[a] is a labeling of blocks of P and Q such that the following holds:

• [a] =
⊔

B∈P or B∈Q f(B)
• for all blocks B we have

|f(B)| =
{
rankP (B) if B ∈ P

rankQ(B) if B ∈ Q.

Alternatively, we can view this as a labeling of the N steps of an a, b Dyck
path by the numbers 1 through a, where the labels increase as one moves
up a vertical run. We will refer to the set of all a, b-noncrossing parking
functions as ParkNC(a, b).

Proposition 7.1. ParkNC(a, b) carries an action of Sa × Zb−1 where Sa

permutes block labels and Zb−1 rotates blocks.

Proof. Rotation preserves vertical lengths, and thus ranks, by the definition
of rot and Proposition 4.2.

We would like to state a character formula for the action described in
Proposition 7.1. Let V = Ca/〈(1, . . . , 1)〉 be the reflection representation of

Sa and ζ = e
2πi

b−1 . Recall from [8] that the map φ : Sa → C by φ(w) = bdimV w
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is a character of Sa if and only if gcd(b, a) = 1. In particular, this suggests
that we should have a single formula which doesn’t depend on whether or
not a < b. Given w ∈ Sa and d ≥ 0, let multw(ζ

d) be the multiplicity of ζd

as an eigenvalue in the action of w on V . With this notation, we have the
following for the character χ:

Theorem 7.2. Let w ∈ Sa and g be a generator of Zb−1. Then we have

(1) χ(w, gd) = bmultw(ζd)

for all w ∈ Sa and d ≥ 0.

Proof. If d|(b− 1) we have

(2) multw(ζ
d) =

{
#(cycles of w)− 1 if q = 1

#(cycles of w of length divisible by q) otherwise

where q = b−1
d . To see this, first suppose q = 1. Then d = b − 1 so ζd = 1.

The vectors which are fixed by the permutation matrix of w are precisely
those which are constant on cycles of w. Deleting the all 1’s vector leaves
us with #(cycles of w)− 1 such linearly independent vectors. Now suppose
q > 1. Then the vectors which increase by a factor of 0 or ζd along cycles of
length divisible by q, and which are 0 along cycles of length not divisible by
q, are the eigenvectors with eigenvalue of ζd. Each cycle of length divisible
by q contributes one such eigenvector.

We are now ready to count the number of a, b-noncrossing parking func-
tions which are fixed under the action of (w, gd). We will handle the cases
q = 1 and q > 1 separately.

Case 1: q = 1. In this case, gd = gb−1 = 1 so we can ignore the action of
Zb−1 and just consider elements of ParkNC(a, b) which are fixed by w ∈ Sa.
To do this, we will construct an equivariant bijection f : ParkNC(a, b) → S
and show that S has the desired character.

Let Parka,b be the set of sequences (p1, . . . , pa) of positive integers whose
nondecreasing rearrangement (p′1 ≤ p′2 ≤ · · · ≤ p′a) satisfies p

′
i ≤ b

a(i−1)+1.
These are called rational slope parking functions. Our choice of S will be
Parka,b. Then Sa acts on Parka,b by

w.(p1, . . . , pa) = (pw(1), . . . , pw(a)).

In particular, w fixes precisely those parking functions which are con-
stant on cycles of w. Let cw denote the number of cycles of w and χ(w) denote
the character of the action. There are bcw sequences of length a which are
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constant on cycles of w. By the cycle lemma, exactly one cyclic rotation of
each of these will be a valid rational slope parking function, so we have

(3) χ(w) = bcw−1 = bmultw(1).

We are now left to build our equivariant bijection φ : ParkNC(a, b) → Parka,b.
Let ((P,Q), f) be an a, b-noncrossing parking function. Define φ((P,Q), f) =
(p1, . . . , pa) by

(4) pi =

{
min(B) if B ∈ P and i ∈ f(B)

max(B) + 1 if B ∈ Q and i ∈ f(B).

Equivalently, one can think of the pair ((P,Q), f) as an a, b-Dyck path where
the north steps are labeled by the numbers 1 through a and each vertical
run has increasing labels. The underlying dyck path D is such that π(D) =
(P,Q), and the labels on a particular vertical run that determine the rank
of a block B are given by f(B).

Example 7.3. Consider the labeled 9,4-Dyck path shown in Figure 14.
This corresponds to the partitions P = {{1, 2, 3}} with rank 3 and Q =
{{1}, {2}, {3}} each with rank 2, and the function f defined by f({1, 2, 3}) =
{3, 5, 6}, f({1}) = {1, 8}, f({2}) = {4, 9}, and f({3}) = {2, 7}. The asso-
ciated rational slope parking function (p1, . . . , pa) is (2, 4, 1, 3, 1, 1, 4, 2, 3).
This can be read off from ((P,Q), f) via equation 4 or by setting pi equal
to 1 greater than the x coordinate of the north step labeled by i. From this
point of view, and the fact that D must stay above the line y = a

bx, we see
that for all i, we must have i−1

p′
i−1 ≥ a

b which is equivalent to the condition

that p′i ≤ b
a(i − 1) + 1. In other words, (p1, . . . , pa) is indeed a sequence in

Parka,b.

Conversely, suppose we are given (p1, . . . , pa). Let ni denote the number
of entries of (p1, . . . , pa) which are equal to i. Then we can recover the labeled
Dyck path D by setting

D = Nn1ENn2E · · ·NnaE

and labeling the vertical run with x-coordinate i − 1 by the numbers in
{i | pi = 1} in increasing order. Since permuting labels i and j on the Dyck
path corresponds to swapping pi and pj , we conclude that φ is in fact an
equivariant bijection. Since φ preserves character formulas, equation 3 im-
plies that χ(w, gd) = bmultw(ζd) when q = 1.
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Figure 14:

Case 2: q > 1. Let rq(w) denote the number of cycles of w having length
divisible by q. We will show that

(5) |ParkNC(a, b)(w,gd)| = |{p ∈ ParkNC(a, b)|(w, gd).p = p}| = brq(w).

To do this, we will show that both sides count a certain set of functions.
First, define an action of g on [b− 1]∪ {0} by the permutation (1, 2, . . . , b−
1)(0). We say a function e : [a] → [b− 1] ∪ {0} is (w, gd)-equivariant if

(6) e(w(j)) = gde(j)

for all 1 ≤ j ≤ a. To count such functions, we first consider what happens
on cycles of w. By equation 6, if e(k) �= 0 then we have e(w(k)) = e(k) + d,
where addition is performed modulo b − 1. Thus, the values e takes on a
cycle are completely determined by the value taken on one element of that
cycle. Further, if a cycle has length not divisible by q then equation 6 forces
e(k) = 0 for any k in that cycle. Thus, the number of (w, gd)-equivariant
functions is brq(w).

For example, let (a, b) = (14, 13), q = 3, and consider

w = (5, 1, 8)(2, 3, 6, 7, 9, 10)(4, 11)(12, 13, 14),

written in cycle notation. Let e be the function defined by
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(e(1), e(2), . . . e(14)) = (9, 1, 5, 0, 5, 9, 1, 1, 5, 9, 0, 2, 6, 10).

Note, for instance, how w(5) = 1 and 9 = e(1) = 5 + 4 = e(5) + d. In this
example, e is indeed a (w, gd)-equivariant function.

Next, we count equivariant functions according to their fiber structure.
We say a set partition σ = {B1, B2, . . .} of [a] is (w, q)-admissible if the
following conditions hold:

1. σ is w-stable. ie, w(σ) = {w(B1), w(B2), . . .} = σ
2. There is at most one block Bi0 such that w(Bi0) = Bi0

3. For any block Bi which is not w-stable, the blocks

Bi, w(Bi), . . . , w
q−1(Bi)

are pairwise distinct, and we have wq(Bi) = Bi.

Given a (w, gd)-equivariant function e, define a set partition by σ by i ∼ j
if and only if e(i) = e(j). For instance, consider the example given above.
Then we have

σ = {{4, 11}, {2, 7, 8}, {12}, {3, 5, 9}, {13}, {1, 6, 10}, {14}}.

In general, σ is w-stable because if i �= 0 and B = e−1(i) then w(B) =
e−1(i+d), and if i = 0 then w(B) = B. Furthermore, e−1(0) is the only block
which is fixed, so (2) is satisfied. Lastly, since d, 2d, . . . , (q−1)d are distinct,
this means e−1(i), w(e−1(i)), . . . , wq−1(e−1(i)) are distinct, and wq(e−1(i)) =
e−1(i) + qd = e−1(i) since arithmetic is performed modulo b− 1.

Each w-stable orbit is of size q or size 1, depending on whether its blocks
come from the inverse image of nonzero numbers or not. Given a particular
fiber structure and w, consider how many (w, gd)-equivariant functions could
give rise to such a structure. There are b − 1 choices for how to map some
element of the first orbit. In our example, given the orbit containing {2, 7, 8},
{3, 5, 9}, and {1, 6, 10}, we have b− 1 ways to assign e(2), which then forces
e(7) = e(2), e(8) = e(2), e(3) = e(2) + d, and so on. Once this choice is
made, the value of e is determined for all elements in the orbit. Since orbits
are of size q, this eliminates q possible assignments from the next orbit we
consider. In our example, this would give us b− 1− q = 9 choices for e(12)
in the orbit {12}, {13}, {14}. More generally, if we let tσ denote the number
of w-orbits in σ of size q then we have

(b− 1)(b− 1− q) · · · (b− 1− (tσ − 1)q)

(w, gd)-equivariant functions corresponding to a (w, q)-admissible set parti-
tion σ. Thus, there are
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(7)
∑

σ a (w,q)−admissible
partition

(b− 1)(b− 1− q) · · · (b− 1− (tσ − 1)q) = brq(w)

(w, gd)-equivariant functions.
To relate this back to parking functions, fix ((P,Q), f) ∈ ParkNC(a, b).

Let τ((P,Q), f) be the set partition of [a] defined by i ∼ j if and only if
i, j ∈ f(B). In Example 7.3, we recover the set partition τ((P,Q), f) =
{{3, 5, 6}, {1, 8}, {4, 9}, {2, 7}}. More generally, if ((P,Q), f) is an element
of ParkNC(a, b)(w,gd) then τ(π, f) is a (w, q)-admissible set partition. It is
w-stable because if i ∼ j, then i ∼ j after we apply gd, so w must also keep
i and j in the same block. There is at most one central block in (P,Q) so at
most one B such that w(B) = B. Finally, if ((P,Q), f) ∈ ParkNC(a, b)(w,gd)

then w behaves like rot−d on (P,Q), which proves that τ((P,Q), f) is (w, q)-
admissible.

Given a (w, q)-admissible partition σ of [a], we will count how many
((P,Q), f) ∈ ParkNC(a, b)(w,gd) are such that τ((P,Q), f) = σ. We begin
by constructing the underlying a, b-noncrossing partition pair (P,Q). If σ
has mi non-singleton w-orbits of blocks of size i, then (P,Q) must have mi

rotd-orbits of non-central blocks of rank i. By Corollary 5.11, there are(
d

m1, . . . ,ma, d− tσ

)

such (P,Q) ∈ NCd(a, b). It now only remains to define f . The rotd-orbits
of noncentral blocks of (P,Q) of rank i must be paired with nonsingleton
w-orbits of blocks of σ of size i. For each i, there are mi! ways to perform
this matching. Each orbit has size q, so there are q ways to choose which
block determines labeling of the first blocks in a noncentral rotd orbit. Thus,
the number of ((P,Q), f) ∈ ParkNC(a, b)(w,gd) such that τ((P,Q), f) = σ is
given by

qm1qm2 · · · qmam1!m2! · · ·ma!

(
d

m1,m2, . . . , d− tσ

)

= qm1qm2 · · · qma
d!

(d− tσ)!

= qtσd(d− 1)(d− 2) · · · (d− (tσ − 1))

= (b− 1)(b− 1− q) · · · (b− 1− (tσ − 1)q).

Summing over all (w, q)-admissible partitions gives equation 7, so we con-
clude that 5 holds as desired.



Rational noncrossing partitions for all coprime pairs 405

Theorem 7.2 can be used to generalize Theorem 6.3 in [6] to all coprime a
and b. In particular, we obtain a rational analog of the Generic Strong Con-
jecture of [12] in type A for any coprime pair (a, b). Following the definitions
and terminology given in [12], the following holds:

Theorem 7.4. Let R ⊂ HomC[Sa](V
∗,C[V ]b) denote the set of

Θ ∈ HomC[Sa](V
∗,C[V ]b) such that the parking locus V Θ(b) ⊂ V cut out by

the ideal

〈Θ(x1)− x1, . . . ,Θ(xa−1)− xa−1〉 ⊂ C[V ]

is reduced, where x1, . . . , xa−1 is any basis of V ∗. For any Θ ∈ R, there
exists an equivariant bijection of Sa × Zb−1-sets

V Θ(b) �Sa×Zb−1
ParkNC(a, b).

There also exists a nonempty Zariski open subset U ⊆ HomC[Sa](V
∗,C[V ]b)

such that U ⊆ R.

The proof is again a recreation of sections [12, Sections 4, 5]. The only
difference now is that we replace the reference to the proof of [11, Lemma
8.5] in the proof of [12, Lemma 4.6] with the corresponding argument in the
proof of Theorem 7.2.

8. Future work

The next step in this research is to generalize the results given here to
other reflection groups. Given a reflection group W , Reiner [9] defined a W -
noncrossing partition which reduces precisely to our notion of noncrossing
partition when W = Sa and (a, b) = (a, a+1). Explicitly, let Abs(W ) denote
the poset of W under the absolute order. We define the poset of noncrossing
partitions of W by

NC(W, c) = [1, c]

where c ∈ W is a Coxeter element. Since [1, c] ∼= [1, c′] for any choice of
Coxeter elements c and c′, we may simply write NC(W ). When W = Sa,
we have that NC(Sa) is just the usual poset of noncrossing partitions of [a],
ordered by refinement. When (a, b) = (n, kn+1) for some positive integer k,
NC(a, b) consists of noncrossing partitions with block sizes divisible by k.
Armstrong [1] studied a Fuss-Catalan version of these k-divisible noncrossing
partitions which made sense for any reflection group W by considering k-
multichains in the lattice of noncrossing partitionsNC(W ). It is then natural
to ask whether the results obtained here for rational noncrossing partitions
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may be generalized to other reflection groups. In type B, where W is the
group of signed permutations, the combinatorial model [3, Section 6] for
noncrossing partitions is the centrally symmetric partitions of ±[n], those for
which at most one block is sent to itself by n-fold rotation. Central symmetry
is a concept that makes sense even for rational noncrossing partitions, so
there is hope to extend these results to the rational case in type B. However,
it is less clear what to do for the other Weyl groups, and would be nice to
have a uniform approach for defining and working with rational noncrossing
partitions for any Weyl group.
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