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Independence posets
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∗
and Nathan Williams

†

Let G be an acyclic directed graph. For each vertex g ∈ G, we
define an involution on the independent sets of G. We call these
involutions flips, and use them to define a new partial order on
independent sets of G.

Trim lattices generalize distributive lattices by removing the
graded hypothesis: a graded trim lattice is a distributive lattice,
and every distributive lattice is trim. Our independence posets are
a further generalization of distributive lattices, eliminating also
the lattice requirement: an independence poset that is a lattice is
always a trim lattice, and every trim lattice is the independence
poset for a unique (up to isomorphism) acyclic directed graph G.
We characterize when an independence poset is a lattice with a
graph-theoretic condition on G.

We generalize the definition of rowmotion from distributive lat-
tices to independence posets, and we show it can be computed in
three different ways. We also relate our constructions to torsion
classes, semibricks, and 2-simpleminded collections arising in the
representation theory of certain finite-dimensional directed alge-
bras.

1. Introduction

In this paper, we always take G to be a finite acylic directed graph. The
transitive closure of G defines a poset, which we refer to as G-order. Our
convention is that g1 ≥ g2 in G-order if and only if there is a directed path
in G from g1 to g2; when we compare vertices of G, we will always mean a
comparison in G-order. We write � for an isomorphism of posets.

1.1. Independent sets and tight orthogonal pairs

Recall that an independent set A ⊆ G is a set of pairwise non-adjacent
vertices of G. As we now explain, the orientation provided by G allows us to
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complete an independent set to a pair of independent sets, either of which

determines the other.

Definition 1.1. A pair (D, U) of independent sets of G is called orthogonal

if there is no edge in G from an element of D to an element of U. An

orthogonal pair of independent sets (D, U) is called tight if whenever any

element of D is increased (removed and replaced by a larger element with

respect to G-order) or any element of U is decreased, or a new element is

added to either D or U, then the result is no longer an orthogonal pair of

independent sets. We abbreviate tight orthogonal pair by top, and we write

top(G) for the set of all tops of G.

Some examples are given in Figure 1.

Figure 1: Eight pairs of independent sets (D, U) for two different orientations
of a path graph. The blue (dark gray) vertices correspond to the elements
of D, while the orange (light gray) vertices correspond to U.

An independent set can be completed to a tight orthogonal pair in ex-

actly two ways (see Algorithms 1 and 2, and Figure 4).

Theorem 1.2. Let I be an independent set of a directed acyclic graph G.

Then there exists a unique (I, U) ∈ top(G) and a unique (D,I) ∈ top(G).

1.2. Flips and the independence poset

Fix � a linear extension of G-order and �′ a reverse linear extension of G-

order. Note that by our conventions, a linear extension is a linear order such

that if there is an edge g1 → g2, then g2 precedes g1 in the linear extension.

Definition 1.3. The flip of (D, U) ∈ top(G) at an element g ∈ G is the

tight orthogonal pair flipg(D, U) defined as follows (see Figure 2 for an

example): if g �∈ D and g �∈ U, the flip does nothing. Otherwise, preserve

all elements of D that are not less than g and all elements of U that are

not greater than g (and delete all other elements); after switching the set

to which g belongs, then greedily complete D and U to a tight orthogonal

pair in the orders �′ and �, respectively.
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Figure 2: A flip on a top (D, U) in the 7× 7 grid oriented from top left to
bottom right. As in Figure 1, the blue vertices correspond to the elements
of D, while the orange vertices correspond to the elements of U. Flipping at
the vertex g changes its color, and divides the grid into 5 connected regions
(delineated by the dotted lines): the blue vertices not less than g (i.e., not
in the bottom right) and the orange vertices not greater than g (i.e., not in
the top left) are preserved by the flip. The orange vertices in the top left
are filled in greedily from bottom right to top left; the blue vertices in the
bottom right are filled in greedily from top left to bottom right.

Pseudocode for Definition 1.3 is given in Algorithm 3. Proposition 3.1
proves that the algorithm produces a tight orthogonal pair, while Lemma 3.2

proves that flips are involutions.

Definition 1.4. We define the independence poset on top(G) as the reflexive
and transitive closure of the relations (D, U)�(D′, U′) if there is some g ∈ U

such that flipg(D, U) = (D′, U′). (Lemma 3.3 proves that this really does

define a poset, and that these relations are exactly its covers.)

We denote this poset by top(G). By construction, top(G) is connected
and has a minimum and a maximum element. Figure 3 gives some exam-
ples of independence posets on various orientations of a path of length four,

while Figure 6 realizes the Tamari lattice on 14 elements as an independence
poset. As we summarize below, trim lattices are special cases of indepen-
dence posets, and so the class of independence posets includes all distribu-

tive lattices, Tamari lattices, Cambrian lattices, Fuss-Cambrian lattices, and
torsion pairs of tilted finite type hereditary Artin algebras.
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Figure 3: Independence posets for four orientations of a path of length 4.
Each poset has eight elements (the tops drawn in blue and orange as in Fig-
ures 1 and 2), corresponding to the eight independent sets in the underlying
undirected graph. The top left poset is not a lattice, the bottom left poset
is a distributive lattice, and both posets on the right are trim lattices.

Theorem 1.5. Fix a linear extension � of G-order. Flipping only in in-

creasing order of � gives a tree structure on the independent sets of G.
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1.3. Independence lattices are trim

A trim lattice is an extremal left-modular lattice [Tho06]. Trim lattices were
introduced to serve as analogues of distributive lattices without the graded
hypothesis: a graded trim lattice is a distributive lattice, and every distribu-
tive lattice is trim.

Our independence posets further generalize distributive lattices by re-
moving the lattice requirement: an independence poset that is a lattice is
always a trim lattice, and every trim lattice can be realized as an indepen-
dence poset for a unique (up to isomorphism) acyclic directed graph G. In
other words, the common intersection of lattices and independence posets
are exactly the trim lattices.

Theorem 1.6. If top(G) is a lattice, then it is a trim lattice.

Following Markowsky [Mar75, Mar92, TW17], a maximal orthogonal
pair (or mop) in an acyclic directed graph G is a pair of sets (X,Y ) such
that no edges run from X to Y , and such that X and Y are both maxi-
mal with respect to this condition. Markowsky’s generalization of Birkhoff’s
fundamental theorem of finite distributive lattices states that any extremal
lattice has a representation L(G) as the lattice of maximal orthogonal pairs
of a unique (up to isomorphism) acyclic directed graph G.

Theorem 1.7. If L(G) is trim, then L(G) � top(G).

Moreover, if top(G) is a lattice, then top(G) � L(G). We provide explicit
bijections between tops and mops in Section 4.4. The common lattice of tops
and mops offer different advantages. Cover relations x�y ∈ top(G) are easy
to compute using tops (by flips), but harder to see using mops. Similarly,
relations x < y ∈ L(G) are easy to compute using mops (by inclusion), but
harder to see using tops.

Theorem 4.11 characterizes when top(G) is a lattice—or, equivalently,
when L(G) is trim—in terms of graph-theoretic properties of G. We discuss
some properties of independence posets that are not lattices in Section 4.6.

1.4. Toggles

By Theorem 1.2, the number of elements of top(G) is equal to the number
of independent sets in the undirected graph G. For g a minimal or maxi-
mal element of G, there is a natural toggle operation togg (similar to quiver
mutation) that reverses every edge incident to g; this operation induces a
bijection between top(G) and top(togg(G)) whose effect essentially inter-
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changes the relative order of a decomposition of top(G) into two intervals
using the element g.

By limiting ourselves to only toggling at maximal elements (or at min-
imal elements) and only keeping track of the sets U (or D), this bijection
can be computed cleanly at the level of independent sets (see Equation (3)
and Theorem 5.1). Some examples of toggles on an orientation of the path
of length three are given in Figure 8. See also [SW12, Str16].

1.5. Rowmotion

Since both components of a top are independent sets, and each independent
set can be completed to a top in two ways, it is natural to define rowmotion
by sending one completion to the other:

(1) row(D, U) := the unique (D′, U′) ∈ top(G) with D= U′.

It turns out that there are two other equally natural (but slower) ways to
compute rowmotion. The distinction between these two slower methods was
not apparent when rowmotion had been studied at the level of distributive
lattices [Fon93, CF95, SW12], but our generalized setting of independence
posets reveals their differences: one method computes rowmotion as a com-
position of flips within a fixed independence poset (rowmotion in slow mo-
tion), while the second relies on a sequence of toggles and the corresponding
bijections between independence posets for different orientations of the same
underlying undirected graph (rowmotion by deformotion).

Theorem 1.8. Let G be a directed acyclic graph. Then rowmotion can be
computed in slow motion and by deformotion—that is,

row =
∏
g∈�

flipg =
∏
g∈�′

togg

for any linear extension � and reverse linear extension �′ of G-order.

1.6. Representation theory

We conclude with some applications to representation theory. Let k be a
field, and A a finite-dimensional k-algebra such that the module category
modA has no cycles. Define a directed graph G with vertices indexed by
the indecomposable A-modules and an arrow from M to N if and only if
Hom(M,N) �= 0. By our assumption that there are no cycles in modA, the
graph G is acyclic—but not all acyclic directed graphs G arise in this way.
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A torsion class in modA is a full additive subcategory of modA closed
under extensions and quotients. A module is called a brick if its endomor-
phism ring is a division algebra. A collection of bricks is called a semibrick
if there are no morphisms between two non-isomorphic bricks in the collec-
tion. Finally, 2-simple-minded collections (defined in Section 7.4) are certain
collections of objects in the derived category of A in bijection with torsion
classes [Asa16].

Theorem 1.9. If A is representation finite and modA has no cycles, then
maximal orthogonal pairs correspond to torsion pairs, independent sets cor-
respond to semibricks, and tight orthogonal pairs correspond to 2-simple-
minded collections.

1.7. Organization of the paper

In Section 2 we complete independent sets to tight orthogonal pairs with Al-
gorithms 1 and 2, proving Theorem 1.2. In Section 3.1, we define flips
with Algorithm 3, and prove they are well-defined in Proposition 3.1. We
study independence posets in Section 3.2, and present a useful recursion on
tops in Section 3.3. We relate independence posets to trim lattices in Sec-
tion 4, relating tight orthogonal pairs to maximal orthogonal pairs and prov-
ing Theorems 1.6 and 1.7. In Section 5, we define toggles on independence
posets; we then study rowmotion in Section 6, proving Theorem 1.8. We
conclude with connections to representation theory in Section 7.

2. Tight orthogonal pairs

Definition 2.1. Let g ∈ G and define Gg to be the directed graph obtained
by deleting the vertex g from G (along with all edges to g), and G◦

g the
directed graph obtained by deleting all vertices and edges adjacent to g in
G (along with g itself).

Theorem 1.2. Let I be an independent set of an acyclic directed graph G.
Then there exists a unique (I, U) ∈ top(G) and a unique (D,I) ∈ top(G).

Proof. Let I be an independent set. We show that Algorithm 1 produces
an element (D,I) ∈ top(G) (this algorithm is illustrated in Figure 4). By
construction, the output of Algorithm 1 is an orthogonal pair of independent
sets. We claim it is tight.

Suppose the output is not tight. Then at least one of the following holds:

• there is some element g ∈ G that could be added to D to still have an
orthogonal pair of independent sets,
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Input: An acyclic directed graph G and an independent set I.
Output: An element (D,I) ∈ top(G).
set: D= {}
for k in �′ do

if

⎧⎨
⎩

k �∈ I

i → k �∈ G for i ∈ D

k → i �∈ G for i ∈ I

⎫⎬
⎭ then add k to D

end
return (D,I)

Algorithm 1: The greedy construction of the unique (D,I) ∈ top(G)
using any reverse linear extension �′ of G-order, given an independent
set I. See Figure 4 for an example.

Input: An acyclic directed graph G and an independent set I.
Output: An element (I, U) ∈ top(G).
set: U= {}
for k in � do

if

⎧⎨
⎩

k �∈ I

i → k �∈ G for i ∈ I

k → i �∈ G for i ∈ U

⎫⎬
⎭ then add k to U

end
return (I, U)

Algorithm 2: The greedy construction of the unique (I, U) ∈ top(G)
using any linear extension � of G-order, given an independent set I.
See Figure 4 for an example.

• there is some element g′ ∈ D that could be increased to g ∈ G with
respect to G-order,

• there is some element g ∈ G that could be added into I, or
• there is some element g′ ∈ I that could be decreased to g ∈ G.

Take a maximal g among all such elements. One verifies that Algorithm 1
would have added it in, which is a contradiction. Similar reasoning shows
that Algorithm 2 produces an element (I, U) ∈ top(G).

We now show by induction on |G| that given I, the tight orthogonal pair
(D,I) is unique. The base case for |G| = 1 is trivial. We now suppose (D,I)
and (D′,I) are two different tight orthogonal pairs. Let g be minimal in G.

If g �∈ I, the restriction of (D,I) and (D′,I) to Gg are tight orthogonal
pairs of Gg; by induction, they must coincide except possibly at g. But since
D �= D′ then either D⊂ D′ or D′ ⊂ D, which contradicts tightness.
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Figure 4: The progression (a) 	→ (b) 	→ (c) is an illustration of Algorithm 1,
which greedily adds elements to the independent set (a) in a reverse linear
extension of G-order (from the top left to the bottom right). The progression
(d) 	→ (e) 	→ (f) illustrates Algorithm 2, which greedily adds elements to
the independent set (d) in a linear extension of G-order (from the bottom
right to the top left). Rowmotion, defined by Equation (1), sends the tight
orthogonal pair (f) on the bottom to the tight orthogonal pair (c).

Otherwise, g ∈ I. The restriction of (D,I) and (D′,I) to G◦
g are now

tight orthogonal pairs of G◦
g and coincide. But by definition, there can be no

elements of either D or D′ adjacent to g and so (D,I) and (D′,I) coincide.
The argument that the tight orthogonal pair (I, U) produced by Algo-

rithm 2 is unique is similar, instead letting g be maximal in G.

3. Flips and independence posets

3.1. Flips on tight orthogonal pairs

We will define a poset structure on the tight orthogonal pairs of G by spec-
ifying the cover relations. To this end, Definition 1.3 and Algorithm 3 de-
fine a flip of a tight orthogonal pair (D, U) at an element g ∈ G, written
flipg(D, U); the flip moves up in the poset if g ∈ U and moves down in the
poset if g ∈ D (and does nothing otherwise). Figure 2 illustrates a flip on a
tight orthogonal pair in an orientation of [7] × [7]. We first prove that the
image of a flip is again a tight orthogonal pair.

Proposition 3.1. Let g be an element of an acyclic directed graph G. Then
flipg(D, U) ∈ top(G).

Proof. The statement follows from the restriction of Theorem 1.2 to the
elements of G not less than g and to the elements not greater than g.
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Input: (D, U) ∈ top(G) and g ∈ G.
Output: (D′, U′) ∈ top(G).
set: D′ = {k : k ∈ D and k �≤ g} and U′ = {k : k ∈ U and k �≥ g}
if g �∈ U and g �∈ D then return (D, U) else if g ∈ U then
D′ = D′ ∪ {g} else if g ∈ D then U′ = U′ ∪ {g} for k in �′ do

if

⎧⎨
⎩

k �≥ g, k �∈ U

k → i �∈ G for i ∈ U

i → k �∈ G for i ∈ D

⎫⎬
⎭ then add k to D′

end
for k in � do

if

⎧⎨
⎩

k �≤ g, k �∈ D

i → k �∈ G for i ∈ D

k → i �∈ G for i ∈ U

⎫⎬
⎭ then add k to U′

end
return (D′, U′)

Algorithm 3: The definition of a flip of (D, U) ∈ top(G) at an ele-
ment g ∈ G, written flipg(D, U). As usual, � is a linear extension of
G-order, while �′ is a reverse linear extension.

Lemma 3.2. Let g be an element of an acyclic directed graph G. Then

flip2g(D, U) = (D, U).

If h is incomparable with g in G-order, then flipg ◦ fliph = fliph ◦ flipg.

Proof. For the first statement, a flip preserves the elements of D that are
not less than g, and the elements of U that are not greater than g. Since
g has now returned to its original set after flipping twice, the restriction
of Theorem 1.2 to the elements of G not greater than g show that the
preserved elements of U force the recovery of the elements of D less than
g, and similarly that the preserved elements of D force the recovery of the
elements of U greater than g. (And all other elements of D and U weren’t
affected by the flip). The second statement is immediate due to the order in
which vertices are added to D and U.

3.2. Independence posets

For G an acyclic directed graph, the independence relations on top(G) are
the reflexive and transitive closure of the relations (D, U) < (D′, U′) if there
is some g ∈ U such that flipg(D, U) = (D′, U′).
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Lemma 3.3. Independence relations are antisymmetric, and hence define
an independence poset, denoted top(G). Flips and cover relations of top(G)
coincide.

Proof. Note that the relation is antisymmetric: any upwards flip from (D, U)
at g introduces the new element g into D, and the only way to remove it by
a subsequent upwards flip is to flip at an element higher than g, which then
introduces a new element not in D. No such sequence of flips can therefore
terminate at (D, U), and so the relation is antisymmetric.

By the definition of top(G), every cover relation of G is induced by a flip.
Suppose now that there is some (D, U) ∈ top(G), and some g in U, so that
(D′, U′) = flipg(D, U) > (D, U). What has to be checked is that there is no
longer sequence of upward flips which also interpolates between (D, U) and
(D′, U′). Any upwards flip from (D, U) at h not below g would introduce
the new element h into D, which is not in D′; the only way to remove it by
a subsequent upwards flip is to flip at an element higher than h, which then
introduces a new element not in D′ into D. No such sequence of flips can
therefore terminate at (D′, U′). Dually, any upwards flip at h not below g
removes an element from U which is contained in U′, and the only way to
restore it is to flip at a still lower element, which removes a different element
of U′ from U. Similarly, therefore, no such sequence of upwards flips can
therefore terminate at (D′, U′).

By Definition 1.4, the maximum element of top(G) is the unique tight
orthogonal pair 1̂ of the form (D, ∅), and its minimum element 0̂ is of the
form (∅, U). In particular, we see that top(G) is connected. Figure 8 gives
several examples of independence posets on various orientations of a path
of length 3.

A chain in a poset is a sequence of elements x0 < x1 < · · · < xr, of
length r. The poset top(G) has a maximal chain of length |G| obtained by
starting at 0̂ and flipping the elements of G in the order of a linear extension
of G-order.

Lemma 3.4. For G an acyclic directed graph with g1, . . . , g|G| a linear ex-
tension of G-order, the sequence

0̂� flipg1(0̂)� (flipg2 ◦ flipg1)(0̂)� . . .� (flipg|G| ◦ · · · ◦ flipg1)(0̂) = 1̂

is a maximal chain in top(G).

Proof. Write (Di, Ui) for the ith element of the sequence. By Lemma 3.3,
this sequence is unrefinable. By induction, after the ith step all elements of
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Ui lie above {g1, . . . , gi} and all elements of Di are contained in {g1, . . . , gi}.
Furthermore, since each Ui is computed greedily in linear extension order,
gi+1 ∈ Ui. The sequence must end with 1̂, because the only way for all
elements of U|G| to lie above {g1, . . . , g|G|} is for U|G| to be empty.

Lemma 3.5. Fix a linear extension � of G-order. For any element (D, U) ∈
top(G), there is a unique chain

0̂� flipg1(0̂)� (flipg2 ◦ flipg1)(0̂)� . . .� (flipgk ◦ · · · ◦ flipg1)(0̂) = (D, U)

such that g1 <� g2 <� · · · <� gk.

Proof. Starting with (D, U), flip elements h out of D in reverse linear ex-
tension order. This does not add elements larger than h into D. The process
must therefore terminate with 0̂. Uniqueness follows from the fact that if we
ever flip a lower element of D than prescribed above, we will never be able
to remove from D the elements that we skipped over (without violating the
constraint on the order of the flips).

Theorem 1.5. Fix a linear extension � of G-order. Flipping only in in-
creasing order of � gives a tree structure on the independent sets of G.

Proof. Lemma 3.5 shows that by only permitting flips in the order of some
fixed linear extension � of G-order, we obtain a spanning tree of top(G).

This tree structure is illustrated in Figure 6 for the Tamari lattice on 14
elements.

Proposition 3.6. For G a directed acyclic graph, let G∗ be the graph ob-
tained by reversing all the edges in G. Then

top(G) � top(G∗)∗

(D, U) 	→ (U, D),

where top(G∗)∗ is the poset dual of top(G∗).

Proof. Immediate.

3.3. Tight orthogonal pair recursion

For any g ∈ G, since {g} is an independent set of G, by Theorem 1.2 there is
a unique tight orthogonal pair mg of the form (D, {g}), and a unique tight
orthogonal pair jg of the form ({g}, U). Write

(2) topg(G) := [0̂,mg] and topg(G) := [jg, 1̂].
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We say that g ∈ G is extremal if it is a minimal or maximal element of
G-order.

Lemma 3.7. Let G be an acyclic directed graph. If g is an extremal element
of G, then top(G) = topg(G) � topg(G). Furthermore,

• If g is minimal, (D, U) ∈ topg(G) if and only if g ∈ U, and
• If g is maximal, (D, U) ∈ topg(G) if and only if g ∈ D.

In particular, if x ∈ topg(G) and y ∈ topg(G), then x �≤ y.

Proof. Suppose g is a minimal element of G and let (D, U) ∈ top(G).
If g ∈ U, then by successively flipping in any order all elements not

equal to g that only cause us to move up in top(G), we must end with the
element mg and so (D, U) ∈ topg(G). For certainly g ∈ U since it started
out in U and flipping at elements of G not equal to g does not remove g
from U, since g is minimal. And g is the only element of U, or we would
have flipped more elements out.

If (D, U) ∈ topg(G), then there is a sequence of flips that take us up-
wards to mg. This sequence cannot remove g (since it could never be re-
placed), and so g ∈ U.

If g ∈ D, or if g �∈ D∪ U, then we wish to successively flip in any order
all elements not equal to g that only cause us to move down in top(G). We
claim that this must end with the element jg so that (D, U) ∈ topg(G).
Since the poset is finite, the process ends. Let (D′, U′) be the end of this flip
sequence. Then we claim g ∈ D′ at this point. Note that D′ cannot contain
any element h ∈ G adjacent to g (or we would have flipped h out), so that
g can be added to D′—unless g ∈ U′. But g cannot be in U′, since it was
not in U, and only toggling at g could add it in.

The dual argument applies when g is maximal.

Lemma 3.8. For any element g ∈ G, if g ∈ D then (D, U) ∈ topg(G); and
if g ∈ U then (D, U) ∈ topg(G).

Proof. If g ∈ D, then we construct a path downwards in top(G) from (D, U)
to jg. First, flip out all elements greater than g in reverse linear extension
order. This does not cause g to enter into U (since all elements in U less than
h are fixed by flips). Since g can be added to D at the end of this sequence
of flips, it is indeed in D (though it may not have stayed in it all the time
during the sequence). Now flip out all the remaining elements of D other
than g. None of the remaining elements is above g, so this will neither remove
g nor introduce elements in D above g. The process necessarily terminates
with jg. Again, the statement for U follows dually.
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Lemma 3.9. Let G be a directed acyclic graph.

• If g is minimal and (D, U) ∈ topg(G), then flipg(D, U) = (D ∪
{g}, U′) for some U′.

• If g is maximal and (D, U) ∈ topg(G), then flipg(D, U) = (D′, U∪
{g}) for some D′.

Proof. This follows from the definition of flip; when g is minimal, all of D

is preserved since every element of D is not less than g. Similarly, when g

is maximal, all of U is preserved, since every element of U is not greater

than g.

Theorem 3.10. Let g be an extremal element of an acyclic directed graph

G. Then

(D, U) 	→ (D, U\ {g}} is a bijection

{
topg(G) � top(G◦

g) if g minimal

topg(G) � top(Gg) if g maximal

(D, U) 	→ (D\ {g}, U} is a bijection

{
topg(G) � top(Gg) if g minimal

topg(G) � top(G◦
g) if g maximal

Proof. We only prove the results for g minimal, the case for g maximal

being analogous. We first show topg(G) � top(G◦
g); by Lemma 3.7, (D, U) ∈

topg(G) if and only if g ∈ U. But since (D, U) is a tight orthogonal pair,

no element of D or of U can be adjacent to g, from which we conclude the

result by definition of G◦
g. We now show topg(G) � top(Gg); since top(G) =

topg(G)� topg(G), by Lemma 3.7 elements of topg(G) consist of those tight

orthogonal pairs of G with either g ∈ D or g �∈ U∪D. Each tight orthogonal

pair of Gg can be uniquely extended to such a tight orthogonal pair.

4. Trim lattices and maximal orthogonal pairs

4.1. Extremal lattices

An extremal lattice is a lattice whose longest chain is of length equal to

the number of its join irreducible elements and to the number of its meet

irreducible elements. As motivation for our main result of this section, we

have the following easy statement (we will refine it in Theorem 1.6).

Lemma 4.1. If top(G) is a lattice, then it is an extremal lattice.
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Proof. Note that a lattice with a chain of length n (i.e. with n+1 elements)
must have at least n join-irreducible elements and at least n meet-irreducible
elements (since each element of the chain is the join of the join-irreducibles
beneath it and the meet of the meet-irreducibles above it). Suppose top(G)
is a lattice; since it only has |G| join and |G| meet irreducible elements, and
since it has a chain of length |G| by Lemma 3.4, it is extremal.

In [TW17], we represented extremal lattices in the following way, fol-
lowing a construction of Markowsky [Mar92]. Any acyclic directed graph
G gives rise to an extremal lattice L(G), as follows: for X,Y ⊆ G with
X ∩ Y = ∅, we say (X,Y ) is an orthogonal pair if there is no edge from any
i ∈ X to any k ∈ Y , and we say it is a maximal orthogonal pair if X and
Y are maximal with that property. Clearly, to each Y ⊆ G, there is at most
one X such that (X,Y ) is a maximal orthogonal pair (and dually). Then
the extremal lattice L(G) is equivalently given by either of

(X,Y ) ≤ (X ′, Y ′) if and only if X ⊆ X ′, or

(X,Y ) ≤ (X ′, Y ′) if and only if Y ′ ⊆ Y.

Furthermore, the join is computed by intersecting the second terms, while
meet is given by the intersection of the first terms. If x is an element of an ex-
tremal lattice L(G) with corresponding maximal orthogonal pair (X,Y ), we
write xJ = X and xM = Y—that is, xJ corresponds to the join-irreducible
elements below x, while xM corresponds to the meet-irreducible elements
above x. Two examples are given in Figure 5.

Conversely, we can associate an acyclic directed grath G(L) to any ex-
tremal lattice called its Galois graph with the property that L(G(L)) � L.
We refer to [TW17] for further details, including Markowsky’s generaliza-
tion of Birkhoff’s fundamental theorem of distributive lattices to extremal
lattices.

4.2. Trim lattices

An element x of a lattice L is called left modular if for any y ≤ z we have
the equality

(y ∨ x) ∧ z = y ∨ (x ∧ z).

A lattice is called left modular if it has a maximal chain of left modular
elements.

A trim lattice is an extremal left-modular lattice. We have already shown
that if an independence poset is a lattice, then it is extremal. Our goal is to
prove that it is actually trim.
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Figure 5: On the left is the extremal lattice of maximal orthogonal sets of
a directed path of length 4, ordered by inclusion of first component; the
sets xJ are indicated by a blue border, while the sets xM are drawn with a
yellow border. Because it is not trim, this extremal lattice is not isomorphic
to the top left example in Figure 3 (which is not even a lattice). On the right
is the (trim) extremal lattice for a second orientation, which does coincide
with the top right example in Figure 3 by Theorem 4.9; maximal orthogonal
pairs are indicated by the color of the border, while tight orthogonal pairs
are indicated by the color of the filling.

We say that a relation y < z in an extremal lattice L(G) is overlapping
if

yM ∩ zJ �= ∅.
Theorem 4.2 ([TW17, Theorem 3.4]). An extremal lattice L(G) is trim if
and only if every relation is overlapping if and only if every cover relation
is overlapping.

If a cover relation is overlapping, then it overlaps in a unique element.
We may define the downward and upward labels of y ∈ L(G) as

D(y) := {the unique element of xM ∩ yJ : all x such that x� y} and
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U(y) := {the unique element of yM ∩ zJ : all z such that y � z}.

In a trim lattice L(G), there is a unique meet-irreducible element mg

with U(mg) = {g}, and a unique join-irreducible element jg with D(jg) =
{g}. We proved the following recursive properties of trim lattices in [TW17],
which are exactly analogous to Lemma 3.7 and Theorem 3.10 and will allow
us to relate maximal orthogonal pairs and tight orthogonal pairs.

Theorem 4.3 ([TW17, Lemma 3.10, Proposition 3.11, Proposition 3.12]).
Let g be minimal in an acyclic directed graph G, and write Lg(G) := [0̂,mg]
and Lg(G) := [jg, 1̂]. Then

1. L(G) = Lg(G) �Lg(G),
2. Lg(G) � L(Gg),
3. Lg(G) � L(G◦

g), and
4. an element x ∈ Lg(G) if and only if g ∈ U(x).

We recall that the downward and upward labels actually associate two
independent sets to each element of L.

Theorem 4.4 ([TW17, Corollary 5.6]). For L a trim lattice, D and U are
both bijections from L to the set of independent sets of G(L).

We will improve this in Section 4.4—taking both the downward and
upward labels together give a tight orthogonal pair.

4.3. Trim lattices to independence posets

The next subsections relate trim lattices and independence posets, simul-
taneously generalizing the bijections between order ideals and antichains,
and between Coxeter-sortable elements in a finite Coxeter group and the
corresponding noncrossing partitions.

We show that top(G) � L(G) under certain conditions on top(G) or on
L(G). If L(G) is a lattice, then top(G) � L(G) (Theorem 1.7). Similarly, if
top(G) is a lattice, then also top(G) � L(G) (Corollary 4.7). We also show
that if top(G) is a lattice, then it is a trim lattice (Theorem 1.6).

Theorem 1.7. If L(G) is trim, then L(G) � top(G).

Proof. We argue by induction on |G|. Let g be minimal in G. By Theo-
rem 4.3, since L(G) is trim, L(G) = Lg(G) � Lg(G). Similarly, top(G) =
topg(G)� topg(G) by Theorem 3.10. By induction, we conclude the isomor-
phism on each of G◦

g and Gg: Lg(G) � L(G◦
g) � top(G◦

g) � topg(G) and
Lg(G) � L(Gg) � top(Gg) � topg(G). Moreover, this induction respects
the labelling of cover relations by the overlapping element (for the mops)
and the element flipped (for the tops).
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We have only to show now that the cover relations between Lg(G) and
Lg(G) are the same as those for topg(G) and topg(G). But each element
in Lg(G) and topg(G) has an edge up by Theorem 4.3 (4) and Lemma 3.9
(labelled by g). The element x ∈ Lg(G) is paired with the unique element
x′ ∈ Lg(G) satisfying D(x′) = D(x) ∪ {g} by [TW17, Lemma 3.15]. It is
evident from the definition of flip that the same rule describes how to pair
elements in topg(G) with elements of topg(G).

We now analyze what can be deduced from the fact that top(G) is a
lattice. To begin with, we show that, if it is a lattice, it is necessarily trim.

Theorem 1.6. If top(G) is a lattice then it is a trim lattice.

Proof. Suppose that top(G) is a lattice. By Lemma 4.1, it is therefore an
extremal lattice. We wish to show that every cover relation is overlapping, so
that top(G) is trim by Theorem 4.2. Consider the representation of top(G)
as maximal orthogonal sets, which gives the correspondence (D, U) with
(X,Y ), where X is the set of join-irreducible elements below (D, U) and
Y is the set of meet-irreducible elements above (D, U). By Lemma 3.8, we
therefore have that D ⊆ X and U ⊆ Y . But if g ∈ U and flipg(D, U) =
(D′, U′) is a cover with corresponding maximal orthogonal sets (X,Y ) �
(X ′, Y ′), then D′ ∩ U = {g} ⊆ X ′ ∩ Y and hence the cover relation is
overlapping.

The following lemma describes a situation in which it is possible to start
from an orthogonal pair of independent sets and produce a tight orthogonal
pair by adding elements to the two sets. It is needed for the proof of the
next theorem.

Lemma 4.5. Let (D′, U′) be an orthogonal pair of independent sets, and
suppose that no element of D′ is below an element of U′ in G-order. Then
there exists a tight orthogonal pair of independent sets (D, U) such that
D⊇ D′ and U⊇ U′.

Proof. In a linear extension � of G-order, greedily add any element to U′

which can be added, subject to the condition that the set remain orthogonal
to D′. Let U be the resulting set. Define D to be the independent set given
by Algorithm 2 such that (D, U) is tight orthogonal.

All that is necessary to show is that D contains D′. Suppose that, as we
are constructing D using Algorithm 2, that there is some element x of D′

which we do not add. The reason we do not add it must be because there
is some y → x such that we do add y to D. This element y necessarily has
no edge to any element of U. Since, by the hypothesis on the relative order
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of D′ and U′, there is also no edge from any element of U′ to y, we would
in fact have added y into U, which is a contradiction. Therefore D contains
D′ as desired.

Note that without the assumption on the relative order of D′ and U′, the
conclusion of this lemma is false, as demonstrated by the case of the linearly
oriented path 1 2 3 4 on four vertices: there is no tight orthogonal
pair with D⊇ {2} and U⊇ {4} (see the top left of Figure 3).

Assuming that top(G) is a lattice, and thus trim by Theorem 1.6, it is
of the form L(H) for some H. We show that in this case G � H.

Theorem 4.6. If top(G) � L(H), then G � H.

Proof. The join-irreducibles and meet-irreducibles of the extremal lattice
L(H) are canonically identified, by [TW17, Proposition 2.7], and are also
identified with the vertices of H. The vertices of G are likewise canonically
identified with the join-irreducibles and the meet-irreducibles of top(G);
and the identification of the join-irreducibles and meet-irreducibles defined
in this way is the same as the identification coming from L(H). The vertices
of G and of H are therefore naturally identified.

Recall from [TW17] that the spine of an extremal lattice L(H) is the
collection of elements lying on maximal-length chains; the spine is a dis-
tributive sublattice, isomorphic to the distributive lattice J(P ) where P is
the poset corresponding to H-order. In top(G) the maximal chains of the
spine correspond to sequences of flips in which every vertex is flipped once.
By Lemma 3.4 this can certainly be done in any linear extension of G-order;
in principle, other orders could also be possible. This shows that G-order is
at least as strong as H-order.

If g1 → g2 is an edge of H, then g1 is above g2 in H-order, so g1 is above
g2 in G-order, and in particular, g1 is not below g2 in G-order. Suppose,
seeking a contradiction, that there were no edge g1 → g2 in G. In this case
({g1}, {g2}) is an orthogonal pair, and, by Lemma 4.5, there is a top (D, U)
with g1 ∈ D and g2 ∈ U, so jg1 ≤ mg2 , contradicting the fact that there is
an edge g1 → g2 in H.

It follows that the edges of H are a subset of the edges of G. Since L(H)
is trim, by Theorem 1.7, L(H) � top(H). If the edges of H were a strict
subset of the edges of G, G would have more independent subsets than H,
so top(G) would have more vertices than L(H), which is a contradiction.
Thus G � H.

Theorem 1.6 and Theorem 4.6 together imply an isomorphism of tops
and mops when top(G) is a lattice.
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Corollary 4.7. If top(G) is a lattice, then top(G) � L(G).

Proof. Since top(G) is a lattice, it is a trim lattice, and hence is L(H) for
some directed acyclic graph H. But now H � G by Theorem 4.6.

4.4. Bijections

Theorem 4.8. Let L(G) be a trim lattice and x ∈ L(G). Then φ(x) =
(D(x),U(x)) is a tight orthogonal pair.

Proof. For g ∈ G, write jg ∈ L(G) for the unique join irreducible with
D(jg) = {g} and mg ∈ L(G) for the unique meet irreducible element
with U(mg) = {g}. Given a collection of join-irreducible elements J =
{jg1 , . . . , jgr} and meet-irreducible elementsM = {mg′

1
, . . . ,mg′

s
}, then there

is no edge from an element of the set {g1, . . . , gr} to an element of the set
{g′1, . . . , g′s} if and only if every element of J is below every element of M if
and only if the join of J is below the meet of M .

By Theorem 4.4, every x ∈ L(G) is associated to a pair of independent
sets (D(x),U(x)). By [TW17, Proposition 4.1],∨

g∈D(x)

jg = x =
∧

g∈U(x)

mg.

By the previous paragraph, there are no edges from any element of D(x) to
any element of U(x), so the pair (D(x),U(x)) is orthogonal.

We now argue that (D(x),U(x)) is tight. If we increased any element of
D(x) while staying independent, this new set would correspond to D(x′) of
some x′ ∈ L(G) (by Theorem 4.4). This x′ would be strictly greater than
x—in particular, it would no longer be below every mg for g ∈ U(x), and so
(D(x),U(x)) would no longer be orthogonal.

Theorem 4.9. If L(G) is trim—or, equivalently, if top(G) is a lattice—
then φ is an isomorphism L(G) � top(G).

Proof. We show φ is an isomorphism by induction on |G|: to this end, let g be
minimal in G. Recall that L(G) = Lg(G)�Lg(G) and top(G) = topg(G)�
topg(G). Since Lg(G) � L(G◦

g) and topg(G) � top(G◦
g) and x ∈ Lg(G) if

and only if g ∈ U(x) and (D, U) ∈ topg(G) if and only if g ∈ U, we conclude
that φ is an isomorphism from Lg(G) � topg(G). Similarly, we conclude
that φ is an isomorphism from Lg(G) � topg(G), since Lg(G) � L(Gg)
and topg(G) = top(Gg).

We have only to show now that the cover relations between Lg(G) and
Lg(G) are the same as those for topg(G) and topg(G). But this now follows
from the same argument as in Theorem 1.7.
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The recurrence used in Theorem 4.9 can be used to show that φ has the
following alternative description. Given (X,Y ) ∈ L(G), construct (D, U) ∈
top(G) as follows: D is obtained from X by greedily choosing elements
from X in a reverse linear extension order of G-order so that D remains an
independent set; U is obtained from Y by greedily choosing elements from
Y in a linear extension order so that U remains an independent set.

The inverse of the map φ is constructed in the following theorem.

Theorem 4.10. Given (D, U) ∈ top(G), set X = D, Y = U, and define

θ1: add to Y all elements of G \X with no arrow from an element of X.
θ2: add to X all elements of G \ Y with no arrow to an element of Y .

Then both θ1 ◦ θ2 and θ2 ◦ θ1 are injections top(G) ↪→ L(G). Moreover, if
top(G) is a lattice, then they coincide and are inverses to φ.

Proof. It is clear that both θ1◦θ2 and θ2◦θ1 have images in L(G): θ2◦θ1, we
cannot add anything to X, but we also cannot add anything to Y because
it was chosen to be maximal with respect to a subset of X—and similarly
for θ1 ◦ θ2.

For θ2 ◦ θ1, we first reconstruct D from X by greedily choosing elements
in X in a reverse linear extension order—Y contains those elements that
don’t have an arrow from an element of D, so as we scan through X, if we
see an element without an arrow from our reconstruction of D, we must
add it to D since otherwise it would be in Y . The set U is now determined
by Theorem 1.2. A similar argument works for θ1 ◦ θ2—we first reconstruct
U from Y by greedily choosing elements in Y in a linear extension order,
and then D is determined.

Finally, when top(G) is a lattice, these coincide with the alternative
description of φ given after Theorem 4.9.

In particular, the number of tight orthogonal pairs is always less than or
equal to the number of maximal orthogonal pairs. Theorem 4.9 is illustrated
in Figure 5.

4.5. Conditions on independence lattices

Overlapping relations in a trim lattice allow us to give a graph-theoretic
condition on G for when top(G) is a lattice.

Theorem 4.11. For G an acyclic directed graph, top(G) is a lattice if and
only if G has no partition G = X1 �X2 �X3 �X4 � Z such that

(i) all the Xi are non-empty (but Z may be empty)
(ii) every element of X3 has an edge from X4 and to X2
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(iii) every element of X2 has an edge to X1 and from X3

(iv) there are no edges from X4 to X2, from X4 to X1, or from X3 to X1

(v) every element of Z has an edge from X4 and an edge to X1.

Proof. Suppose L(G) is not trim, so that we have a cover relation (X,Y )�
(X ′, Y ′) with Y ∩X ′ = ∅. Let X4 = X, X3 = X ′ \X, X2 = Y \Y ′, X1 = Y ′,
and let Z contain the remaining elements of G. Every element of X3 has an
edge from some element of X4 (since otherwise Y should be bigger) and an
edge to some element of X2 (since otherwise X should be bigger). Similarly,
every element of X2 has an edge to some element of X1 and an edge from
some element of X3. There are no edges from X4 to X2 or to X1 (this would
contradict orthogonality of (X,Y )) or from X3 to X1 (this would contradict
orthogonality of (X ′, Y ′)). Every element of Z, however, has a edge from X4

and a edge to X1.
Conversely, suppose L(G) is trim and consider any partition of G into

five sets X4, X3, X2, X1, Z satisfying conditions (i), (ii), (iii) and (iv). We
will show that condition (v) is violated. Remove all edges from X3 to X2,
so that (X4 ∪ X3, X2 ∪ X1) is an orthogonal pair, and can be extended to
a maximal orthogonal pair (X,Y ). Adding the edges from X3 to X2 back
in, we may find maximal orthogonal pairs of the form (X \ X3, Y

′) and
(X ′, Y \X2). These pairs are comparable, and their overlap X ′∩Y ′ consists
only of vertices of G with an edge from X3, an edge to X2, and no edge from
X4 or to X1.

4.6. Independence posets that are not lattices

In this section we highlight several differences between the behavior of inde-
pendence posets that are (trim) lattices, and independence posets that are
not lattices.

Independence posets break the rigidity of the spine (the elements lying
on maximal-length chains) of a trim lattice: although linear extensions of
G-order still index certain maximal chains of top(G), there can now be other
maximal chains. In fact, the length of a maximal length chain in top(G) can
be strictly greater than |G|—that is, the same element can be flipped from
U to D multiple times in the same chain.

Example 4.12. We leave it to the reader to check that the length of the
longest chain in independence poset associated to a directed path on five
vertices is not five, but six.

Furthermore, although an independent poset that is a lattice arises
from a unique Galois graph—since an extremal lattice determines its Galois
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Figure 6: The Tamari lattice with 14 elements, realized as an independence
poset. The thick blue edges indicate the tree structure provided by the nat-
ural labelling, giving an efficient method to generate all independent sets
of the underlying graph. The filling of the vertices of the graph specify the
tight orthogonal pairs, while the color of the boundaries specify the maximal
orthogonal pair.
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Figure 7: An independence poset top(G) with the property that top(G) �
top(G)∗ but G �� G∗.

graph, up to isomorphism—Proposition 4.13 shows that uniqueness does not
hold for general independence posets.

Proposition 4.13. Nonisomorphic directed acyclic graphs can give isomor-
phic independence posets.

Proof. Let G be as in Figure 7—observe that top(G) � top(G)∗, but that
G∗ �� G. By Proposition 3.6, this gives the desired example.

As a referee observed, although trim lattices are always EL-shellable with
Möbius function taking only the values −1, 0, or 1, neither of these proper-
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ties are true for independence posets. For example, the Möbius function on
the independence poset built from a linearly ordered path with six vertices
attains a maximum value of 4; one can check that the independence poset
built from a linearly order path with four vertices is already not shellable.

5. Toggles

Fix an undirected graphG and any element g ∈ G. In [Str16, Section 3.6] and
in [JR17], a toggle of an independent set I of graph G is defined by Equa-
tion (3)

(3) togg(I) =

⎧⎪⎨
⎪⎩
I∪ {g} if g �∈ I and I∪ {g} is an independent set,

I\ {g} if g ∈ I,

I otherwise.

Toggles appear naturally in independence posets through an operation
similar to quiver mutation on the underlying directed graph G, but are
defined in our context only when g is an extremal element of G. For g an
extremal element of G, the toggle of the graph G at g is the acyclic directed
graph togg(G) obtained by reversing all edges incident to g.

We have chosen the term “toggle” for consistency with [SW12, Str16].
Although [Str16, JR17] define toggles as bijections on a fixed set of in-
dependent sets, our operation comes from changing the orientation of the
underlying directed graph G—and hence the underlying set of tops is not
fixed. We show below that we can restrict to one component of the tops to
recover their bijections on independent sets.

It is clear that tog2g(G) = G. When g is extremal, by Lemma 3.7 no
element of topg(G) lies below an element of topg(G) in top(G). The effect
of toggling at g is to reverse the roles of topg(G) and topg(G)—roughly,
transporting topg(G) above topg(G). This relationship between top(G) and
top(togg(G)) is summarized in Theorem 5.1, and is illustrated in Figure 8.

Theorem 5.1. Let g be a minimal element of an acyclic directed graph G.
Then

• (D, U) 	→ (D∪ {g}, U\ {g}) is a bijection topg(G) � topg(togg(G)),
• (D, U) 	→ (D\ {g}, U′) is a bijection topg(G) � topg(togg(G)).

Let g be a maximal element of an acyclic directed graph G. Then

• (D, U) 	→ (D′, U\ {g}) is a bijection topg(G) � topg(togg(G)),
• (D, U) 	→ (D\ {g}, U∪ {g}) is a bijection topg(G) � topg(togg(G)).
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Figure 8: Each poset is an independence poset on an orientation of a path of
length 3. Taken together, these posets represent a sequence of toggles. Each
toggle induces a bijection between top(G) and top(togg(G)), which we keep
track of by assigning letters to the elements of the posets. Toggling each
element of the directed graph underlying the independence poset at the top
left (in reverse linear extension order) recovers the same indpendence poset

on the bottom left, permuting its elements as (a, b, c, d, e)
tog321	−−−−→ (e, d, b, c, a).

This coincides with rowmotion.

Proof. This follows immediately from Theorem 3.10.

For g ∈ G extremal, we also write togg for the bijection of Theorem 5.1
from top(G) → top(togg(G)), and call it a toggle. By Theorem 5.1, we have
that tog2g(D, U) = (D, U).

Thus, if we limit ourselves to toggling only at minimal elements of G
and keeping track of the first components D, then Equation (3) allows us



Independence posets 571

to compute togg on independent sets. Equation (3) also applies if we choose
only maximal elements of G and look at only the second components U

in Theorem 5.1.

6. Rowmotion on independence posets

By Theorem 1.2, any independent set I can be completed to a tight orthog-
onal pair in exactly two ways—the first as (I, U) and the second as (D,I).
Rowmotion sends the first of these to the second (see Equation (1)). The
purpose of this section is to give two additional ways to compute it: one
using flips, and one using toggles.

Definition 6.1. For G an acyclic directed graph, we say that rowmotion
on top(G) can be computed

• in slow motion if row =
∏
g∈�

flipg, and

• by deformotion if row =
∏
g∈�′

togg,

where � is any linear extension of G-order and �′ is any reverse linear exten-
sion of G-order.

Theorem 1.8(i). For G an acyclic directed graph, rowmotion on top(G)
can be computed in slow motion.

Proof. We follow the same proof as [TW17, Theorem 1.1]. Let g be minimal
in G.

Case I: (D, U) ∈ topg(G). At the first step when calculating
∏

h∈� fliph,
we walk to (D′, U′) = flipg(D, U). So D′ = D ∪ {g} by Lemma 3.9 and
(D′, U′) ∈ topg(G) by Lemma 3.7. Applying the rest of the flips to (D′, U′)
has the effect of applying

∏
h∈�
h �=g

fliph in top(Gg). (Note that the only flips

in top(G) leaving topg(G) are those of the form flipg, so they will never
be taken.) By induction, we obtain an element (D′′, U′′) ∈ top(Gg) such
that U′′ = D′ \ {g}. Passing back to topg(G) does not change U′′, and we
conclude the result.

Case II: (D, U) ∈ topg(G) and g ∈ D. At the first step when calculating∏
h∈� fliph, we walk to (D′, U′) = flipg(D, U). Since g ∈ U′, (D′, U′) ∈

topg(G) by Lemma 3.7 and D′ ∪ {g} = D by Lemma 3.9. Applying the rest
of the flips to (D′, U′) has the effect of applying

∏
h∈�
h �=g

fliph in topg(G). (Note

that the only flips in top(G) leaving topg(G) are those of the form flipg, so
they will never be taken.) By induction, we obtain an element (D′′, U′′) ∈
topg(G) such that U′′ = D′ ∪ {g}. But D′ ∪ {g} = D.
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Case III: (D, U) ∈ topg(G) and g �∈ D. By assumption, flipping at g
has no effect. As in Case I, the rest of the flips have the effect of apply-
ing

∏
h∈�
h �=g

fliph in topg(G). By induction, we obtain an element (D′, U′) ∈
topg(G) such that U′ = D.

Theorem 1.8(ii). For G an acyclic directed graph, rowmotion on top(G)
can be computed by deformotion.

Proof. Since every element of G is toggled, every edge is flipped twice, and
so

∏
g∈�′ togg(G) = G. By definition, togg takes all elements with g ∈ D

and converts them to elements with g ∈ U. Since we are toggling in �′ =
g1, . . . , g|G| order, at any step we have moved all {g1, . . . , gi} ∩ D from D to
U. Although this introduces some new elements into D, these only involve
{g1, . . . , gi} and so are never moved to U in a subsequent step. Thus, each
element has its original set D converted to its new U, which is the definition
of rowmotion given in Equation (1).

7. Representation theory

In this section, we show that the combinatorics of independence lattices
arises naturally in representation theory. In short, the torsion/torsion-free
pairs of certain acyclic finite-dimensional algebras correspond to maximal
orthogonal pairs, while their 2-term simpleminded collections recover tight
orthogonal pairs. The setting in which we work, while special from the point
of view of representation theory, includes many interesting examples, such
as all quotients of Dynkin path algebras.

7.1. Representation-finite directed algebras

Let k be a field, and A a finite-dimensional k-algebra. Suppose further that
the module category modA is directed, i.e., there is no sequence of pairwise
non-isomorphic indecomposable modules M1, . . . ,Mr for r > 1 with non-
zero morphisms fromMi toMi+1 and fromMr toM1. Under this hypothesis,
all indecomposable modules have some properties which usually only belong
to a subset of indecomposables.

A module is called a brick if its endomorphism ring is a division alge-
bra. Note that a brick is necessarily indecomposable. A module M is called
τ -rigid if

Hom(M, τM) = 0,

where τ is the Auslander-Reiten translation.
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Proposition 7.1. Let A be a finite-dimensional k-algebra such that modA
has no cycles. Then all indecomposable A-modules are τ -rigid bricks.

Proof. Suppose that M is an indecomposable module and that φ is a non-
invertible endomorphism of M . Let N be the image of φ, which is necessarily
a proper submodule of M and a proper quotient of M . This implies that
there are non-zero morphisms in both directions betweenM and N , contrary
to our assumption. Therefore all indecomposable modules are bricks.

If τM is non-zero, there is a short exact sequence

0 → τM → E → M → 0.

Thus, if Hom(M, τM) �= 0, then there is a cycle in modA. Thus, all inde-
composable objects are also τ -rigid.

We specialize further by imposing a finiteness assumption. We assume
that A is representation-finite, i.e., it has only finitely many indecomposable
representations up to isomorphism. By Proposition 7.1, we could just as well
have assumed only that the number of τ -rigid indecomposable modules is
finite.

7.2. Torsion classes

A torsion class in modA is a full additive subcategory of modA closed
under extensions and quotients. We write torsA for the torsion classes in
modA. Torsion classes naturally form a lattice, since the intersection of two
torsion classes is again a torsion class. Since A is representation-finite, there
are only finitely many different torsion classes, so torsA is a finite lattice.
We already showed in [TW17] that this lattice is trim.

There is a dual notion to torsion classes, the torsion-free classes. A
torsion-free class is a full additive subcategory closed under extensions and
submodules. There is a natural inclusion-reversing correspondence between
torsion classes and torsion-free classes: if T is a torsion class, then

F= T⊥ = {Y | Hom(X,Y ) = 0 for all X ∈ T}

is the corresponding torsion-free class. The set of indecomposable objects
of F is maximal with respect to the property of having no morphisms from
a module in T (or equivalently, from an indecomposable module in T).
The dual statement is also true: the set of indecomposable modules in T is
maximal with respect to the property of having no nonzero morphisms into a
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module in F(or equivalently, into an indecomposable module in F). Further,
every pair (T,F) which is maximal in both these respects is automatically
a torsion pair—a torsion class and its corresponding torsion-free class. See
[ASS06, Section VI.1].

In this way, we see the connection with maximal orthogonal pairs. Con-
sider the graph G whose vertices are indexed by the indecomposable A-
modules, with an arrow from M to N if and only if Hom(M,N) �= 0. By
our assumption that there are no cycles in modA, the graph G is acyclic. It
is now clear, as we observed in [TW17], that maximal orthogonal pairs of G
correspond to torsion pairs.

Theorem 7.2 ([TW17, Corollary 1.5]). If A is representation finite and
modA has no cycles, then the maximal orthogonal pairs in the trim lattice
L(G) are naturally the torsion pairs of A, ordered with respect to inclusion
of torsion classes (or reverse inclusion of torsion-free classes).

7.3. Semibricks, flips, and the edge-labelling of the Hasse
diagram of the lattice of torsion classes

There is a natural labelling of each edge of the Hasse diagram of the lattice of
torsion classes of modA by an indecomposable module—if U� V is a cover
relation in the lattice of torsion classes, then its label is the unique brick
in V∩ U⊥ [Asa16, Proposition 1.17]. Comparing with our Theorem 4.2, we
conclude that the labelling of cover relations by bricks coincides with the
labelling coming from the overlapping cover relations of mops.

A collection of bricks is called a semibrick if there are no morphisms
between two non-isomorphic bricks in the collection. Asai showed that there
is a bijection between torsion classes and semibricks [Asa16, Theorem 1.3].
The semibrick s(T) corresponding to a torsion class T is the collection of
labels on edges down from T [Asa16, Lemma 1.16, Proposition 1.17]. It can
also be described as the unique semibrick such that T consists of modules
filtered by quotients of elements of s(T ) [Asa16, Lemma 1.5]. Dually, there
is a semibrick corresponding to each torsion free class: the semibrick s(T⊥)
corresponding to the torsion free class T⊥ is the collection of labels on the
edges up from T. This semibrick is the unique semibrick such that T⊥ is
filtered by submodules of the elements of s(T⊥).

An analogue of Theorem 4.9 allows us to directly compute the semibrick
corresponding to a given torsion class.

Proposition 7.3. The semibrick associated to a torsion class T can be
obtained by greedily building a semibrick by adding modules from T if possible
in any linear extension of the G-order.
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Proof. Let D= {X1, . . . , Xr} be the semibrick associated to T. As we con-
sider modules from T in some linear order compatible with G, suppose that
we have already added {X1, . . . , Xi} and we encounter some module Y which
does not have any morphisms from X1, . . . , Xi. Since Y is in T, it is filtered
by quotients of modules in D. Now Y does not have any morphisms from
the already-chosen elements of D, but Y will not admit any morphisms from
any subsequent module. Thus Y must be an element of D as well. On the
other hand, if Y admits a morphism from some module which we have al-
ready added to D, then obviously we must not add it into D, and following
our procedure, we do not. We will therefore successively add all the elements
of D by following this procedure.

Using semibricks, we can provide a representation-theoretic justification
for our definition of flips on tight orthogonal pairs in Algorithm 3.

Theorem 7.4. Let (D, U) be the tight orthogonal pair associated to the tor-
sion class T. Let X ∈ U. Let (D′, U′) be the tight orthogonal pair associated
to the torsion class T′ which covers T along an edge of the Hasse diagram
labelled by X. Then Algorithm 3 successfully reconstructs (D′, U′).

Proof. The torsion class T′ is the minimal torsion class containing X and
T. Clearly it contains all modules which are filtered by quotients of X and
elements of T, and since that category is extension closed and quotient
closed, it must be T′. In particular, we observe that when restricted to
modules that do not follow X in G-order, the two classes T′ and T coincide,
which we write as T′| �≥X = T| �≥X . Therefore, by Proposition 7.3, D| �≥X =
D′| �≥X . Now

F′ = T′⊥ = {Y ∈ F | Hom(X,Y ) = 0}.
Note that U| �≤X ⊆ F′, since if we reconstruct U using (the dual version of)
Proposition 7.3, we must add in X, and therefore we must not have added
any module which admits a map from X previously. Now, since U|�≤X is
contained in F′ ⊂ F, we see that U′| �≤X = U| �≤X .

The remaining elements of D′, i.e., those which follow X in G-order, can
then be reconstructed by Proposition 7.3. We first observe that X itself is in
D′, since it is in T′, and since X ∈ U, there are no morphisms from D′| �≤X

to X. To use Proposition 7.3 to determine the further elements of D′, we
first need to know the elements of T′|>X . These are the modules strictly
following X which do not admit a morphism into F′. We can replace F′

by U′, and then we can replace U′ by U′|>X , since modules following X
only have morphisms into other modules following X. But we have already
observed that U′|>X = U|>X .
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We therefore see that the modules of D′ which strictly follow X are
constructed greedily in G-order maintaining the properties of having no
morphisms from any of the other modules in D′, and having no morphisms
to U.

This construction of D′ is manifestly the same as the construction given
in Algorithm 3, as desired. The argument for the construction of U′ is es-
sentially dual.

7.4. 2-simple-minded collections

A simple-minded collection for A is a collection of objects X1, . . . , Xr in the
derived category of Db(A) such that:

1. Hom(Xi, Xj [m]) = 0 for m < 0,
2. End(Xi) is a division algebra and Hom(Xi, Xj) = 0 unless i = j,
3. X1, . . . , Xr generate Db(A) in the sense that the smallest thick sub-

category containing all of them is Db(A) itself,

See [KY14] for more on simple-minded collections. A 2-simple-minded col-
lection has the additional property that for each Xi, we have Hj(Xi) = 0
for j �= 0,−1. It turns out that the elements of a 2-simple-minded collection
are all contained in modA ∪modA[1], see [BY14, Remark 4.11].

Asai showed that there is a bijection from torsion classes to 2-simple-
minded collections [Asa16, Theorem 2.3], which sends T to s(T)∪s(T⊥)[1].

It follows from our bijection between torsion classes and mops, and the
labelling of the cover relations by bricks and Theorem 4.2, that tight orthog-
onal pairs are in bijection with 2-simple-minded collections.

Theorem 7.5. Let A be a representation finite k-algebra with no cycles in
modA. There is a bijection from tight orthogonal pairs to 2-simple-minded
collections, sending (D, U) to D∪ U[1].

Although Theorem 7.5 follows from our results together with those of
[Asa16], we find it instructive to give a direct proof of the following propo-
sition in order to show how the tightness condition on tops naturally arises
from 2-simple-minded collections.

Proposition 7.6. If D∪ U[1] is a 2-simple-minded collection, then (D, U)
is a tight orthogonal pair.

Proof. Let C = {X1, . . . , Xr, Y1[1], . . . , Ys[1]} be a 2-term simple minded
collection. From the condition (2), we see that D= {X1, . . . , Xr} and U=
{Y1, . . . , Ys} are independent sets. The fact that Ext−1(Xi, Yi[1]) = 0 implies
that Hom(Xi, Yj) = 0, i.e., that (D, U) is orthogonal.
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The proof of tightness is somewhat more involved. Write T for the tor-
sion class associated to D, and T⊥ for the torsion-free class associated to U.
If Z is a module in T, then it cannot be added into D because such a module
is filtered by quotients of objects from D, and thus admits a morphism from
one of them, which is forbidden. If Z is a module not in T, then it admits
a map to a non-zero object in T⊥, and thus to an object in U; this is also

forbidden.

It is also impossible to replace Xi by X ′
i which is above Xi. If X

′
i is not

in T, then this is impossible for the reason given above that we cannot add

X ′
i into D.

On the other hand, if X ′
i is T, then it is filtered by quotients of elements

of D, so it admits a morphism from some element of D, and since X ′
i is

strictly above Xi, this element cannot be Xi. Thus Xi cannot be replaced
by X ′

i in this case either.

Dual considerations explain why no element can be added to U and no
element of U can be lowered.

Putting together the previous results, we conclude the following theorem.

Theorem 1.9. If A is representation finite and modA has no cycles, then
maximal orthogonal pairs correspond to torsion pairs, independent sets cor-
respond to semibricks, and tight orthogonal pairs correspond to 2-simple-
minded collections.

Acknowledgements

We thank two diligent anonymous referees for helping us improve our expo-
sition.

References

[Asa16] Sota Asai, Semibricks, arXiv preprint arXiv:1610.05860 (2016).

[ASS06] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements
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