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Combinatorics in ZFC limbo

S. Gill Williamson

In their paper, Large-scale regularities of lattice embeddings of
posets, Remmel and Williamson study posets and their incompa-
rability graphs on Nk. Properties (1) through (3) of their main
result, Theorem 1.5, are proved using Ramsey theory. The proof of
Theorem 1.5 (4), however, uses Friedman’s Jump Free Theorem, a
powerful ZFC independent extension of Ramsey theory. Attempts
to prove Theorem 1.5 (4) within the ZFC axioms have thus far
failed. This leaves the main result of the Remmel-Williamson paper
in what we informally call “ZFC limbo.” In this paper we explore
other results of this type. In particular, Theorem 6.2 of this paper,
which we prove to be independent of ZFC, directly implies our very
similar Theorem 6.3 for which we have no ZFC proof. On the basis
of the close structural similarity between these two theorems, we
conjecture that Theorem 6.3 is also independent of ZFC. However,
Theorem 6.3 also follows directly from “subset sum is solvable in
polynomial time.” Of course, if our conjecture is true, “subset sum
is solvable in polynomial time” cannot be proved in ZFC.

1. Introduction

Basic references are Friedman [Fri97], Applications of large cardinals to graph
theory, and the expository article, Lattice exit models, Williamson [Wil17a].
In Sections 2 and 4 we develop background material and intuition related
to certain recursively constructed families of functions on finite subsets of
Nk, N the nonnegative integers. In Section 5, we extend a technique of
Friedman [Fri97], Theorem 3.4 plus Theorem 4.4 through Theorem 4.15,
for creating new independent combinatorial results related to his ZFC inde-
pendent jump free theorem. In Section 6 we use these results to relate the
classical subset sum problem to the techniques developed in Section 5.

2. Elementary background

Let N be the set of nonnegative integers and k ≥ 2. For z = (n1, . . . , nk) ∈
Nk, max{ni | i = 1, . . . , k} will be denoted by max(z). Define min(z) simi-
larly.
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Definition 1 (Downward directed graph). Let G = (Nk,Θ) (vertex set
Nk, edge set Θ) be a directed graph. If every (x, y) of Θ satisfies max(x) >
max(y) then we call G a downward directed lattice graph. For z ∈ Nk, let
Gz = {x : (z, x) ∈ Θ} denote the vertices of G adjacent to z. All lattice
graphs that we consider will be downward directed.

Definition 2 (Vertex induced subgraph GD). For D ⊂ Nk let GD =
(D,ΘD) be the subgraph of G with vertex set D and edge set ΘD = {(x, y) |
(x, y) ∈ Θ, x, y ∈ D}. We call GD the subgraph of G induced by D.

Definition 3 (Cubes and Cartesian powers in Nk). The set E1 ×
· · · × Ek, where Ei ⊂ N , |Ei| = p, i = 1, . . . , k, are k-cubes of length p. If
Ei = E, i = 1, . . . , k, then this cube is Ek = ×kE, the kth Cartesian power
of E.

Definition 4 (Equivalent ordered k-tuples). Two k-tuples in Nk, x =
(n1, . . . , nk) and y = (m1, . . . ,mk), are order equivalent tuples (x ot y) if
{(i, j) | ni < nj} = {(i, j) | mi < mj} and {(i, j) | ni = nj} = {(i, j) | mi =
mj}.

Note that ot is an equivalence relation on Nk. The standard SDR (sys-
tem of distinct representatives) for the ot equivalence relation is gotten by
replacing x = (n1, . . . , nk) by r(x) = (rSx

(n1), . . . , rSx
(nk)) where rSx

(nj)
is the rank of nj in Sx = {n1, . . . , nk} (e.g, x = (3, 8, 5, 3, 8), Sx = {x} =
{3, 8, 5, 3, 8} = {3, 5, 8}, r(x) = (0, 2, 1, 0, 2)). The number of equivalence
classes is

∑k
j=1 σ(k, j) < kk, k ≥ 2, where σ(k, j) is the number of surjec-

tions from a k set to a j set. We use “x ot y” and “x, y of order type ot” to
mean x and y belong to the same order type equivalence class.

3. Basic definitions and theorems

We present some basic definitions due to Friedman [Fri97], [Fri98].

Definition 5 (regressive value). Let X ⊆ Nk and f : X → Y ⊆ N .
An integer n is a regressive value of f on X if there exist x such that
f(x) = n < min(x).

Definition 6 (field of a function and reflexive functions). For A ⊆ Nk

define field(A) to be the set of all coordinates of elements of A. A function
f is reflexive in Nk if domain(f) ⊆ Nk and range(f) ⊆ field(domain(f)).

Definition 7 (the set of functions T (k)). T (k) denotes all reflexive func-
tions with finite domain: |domain(f)| < ∞.
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Figure 1: Basic jump free condition 8.

Definition 8 (full and jump free). Let Q ⊂ T (k).

1. full: Q is a full family of functions on Nk if for every finite subset

D ⊂ Nk there is at least one function f in Q whose domain is D.

2. jump free: For D ⊂ Nk and x ∈ D define Dx = {z | z ∈ D, max(z) <

max(x)}. Suppose that for all fA and fB in Q, where fA has domain

A and fB has domain B, the conditions x ∈ A ∩ B, Ax ⊆ Bx, and

fA(y) = fB(y) for all y ∈ Ax imply that fA(x) ≥ fB(x). Then Q will

be called a jump free family of functions on Nk (see figure 1).

Definition 9 (Regressively regular over E). Let k ≥ 2, D ⊂ Nk, D

finite, f : D → N . We say f is regressively regular over E, Ek ⊂ D, if

for each order type equivalence class ot of k-tuples of Ek either (1) or (2)

occurs:

1. constant less than min E: For all x, y ∈ Ek of order type ot,

f(x) = f(y) < min(E)

2. greater than min: For all x ∈ Ek of order type ot f(x) ≥ min(x).

Theorem 3.1 (Jump free theorem ([Fri97], [Fri98])). Let p, k ≥ 2 and

S ⊆ T (k) be a full and jump free family. Then some f ∈ S has at most kk

regressive values on some Ek ⊆ domain(f), |E| = p. In fact, some f ∈ S is

regressively regular over some E of cardinality p.

Intuitively, referring to Figure 1, suppose that the region Ax is to be

searched for the smallest of some quantity and the result recorded at x. Next,

the search region is expanded to a superset Bx with the search results for Ax

still valid (i.e., fA(y) = fB(y) for all y ∈ Ax). Then, clearly fA(x) ≥ fB(x).
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Figure 2: t̂D regressively regular over E = {2, 4, 6, 8}.

This expansion property of search algorithms occurs, perhaps somewhat

disguised, in many examples.

We use ZFC for the axioms of set theory, Zermelo-Frankel plus the

axiom of choice. The jump free theorem can be proved in ZFC + (∀n)(∃
n-subtle cardinal) but not in (∃ n-subtle cardinal) for any fixed n (assum-

ing this theory is consistent). A proof is in Section 2 of [Fri97], “Applica-

tions of Large Cardinals to Graph Theory,” October 23, 1997, No. 11 of

Downloadable Manuscripts.

We next discuss a class of geometrically natural problems that give rise

to applications of the jump free theorem. Using standard terminology, we

use (x1, . . . , xs) to denote a directed path of length s in GD. If z ∈ D, (z)

denotes a path of length one. A path (x1, . . . , xs) is terminal if Gxs

D = ∅.

Definition 10 (t̂D terminal path label function). For finite D ⊂ Nk,

let GD = (D,ΘD). Let TD(z) be the set of all last vertices of terminal paths

(x1, x2, . . . , xt) where z = x1. Define t̂D (domain D, range field(D)) by

t̂D(z) = max(z) if (z) terminal, else

t̂D(z) = min({min(x) | x ∈ TD(z)})

We call t̂D the terminal path label function.

https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts/
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The choice t̂D(z) = max(z) if (z) terminal is used instead of the more
natural t̂D(z) = min(z) to make possible the following application of the
jump free theorem (due to Friedman [Fri97]).

Lemma 11 ({t̂D} full, reflexive, jump free). Take

S = {t̂D | D ⊂ Nk, |D| < ∞}.

Then S is full, reflexive, and jump free.

Proof. Full and reflexive is immediate. By the downward condition, t̂D =
max(z) if and only if (z) is terminal (i.e., Gz

D = ∅). Let t̂A and t̂B satisfy
the conditions of fA and fB in definition 8 (2). Note that by definition,
x /∈ Ax or Bx. If (x) is terminal in A then t̂A(x) = max(x) ≥ t̂B(x) by the
downward condition on G. Else, let (x, . . . , y) be a terminal path in GA.
Then t̂B(y) = t̂A(y) = max(y) implies (x, . . . , y) is a terminal path in GB.
Thus, t̂A(x) ≥ t̂B(x) as was to be shown.

Theorem 3.2 (Jump free theorem for t̂D). Let S= {t̂D | D⊂Nk, |D| <
∞} and let p, k ≥ 2. Then some f ∈ S has at most kk regressive values on
some Ek ⊆ domain(f), |E| = p. In fact, some f ∈ S is regressively regular
over some E of cardinality p.

Proof. Follows from Lemma 11 and the jump free Theorem 3.1.

Figure 2 shows an example of t̂D regressively regular over a set E =
{2, 4, 6, 8}, where D ⊂ N2, |D| = 28. Theorem 3.2 is one of the most struc-
turally simple combinatorial results in ZFC limbo. 1 It is the result used to
prove the main theorem in [RW99].

We discuss more complex generalizations in the next section.

4. More general recursive constructions

Definition 12 (Partial selection). A function F with domain a subset of
X and range a subset of Y will be called a partial function from X to Y
(denoted by F : X → Y ). If z ∈ X but z is not in the domain of F , we say F
is not defined at z. Let r ≥ 1. A partial function F : Nk × (Nk ×N)r → N
is partial selection function [Fri97] if when F [x, (y1, n1), (y2, n2), . . . (yr, nr)]
is defined F [x, (y1, n1), (y2, n2), . . . (yr, nr)] = ni for some 1 ≤ i ≤ r.

1Harvey Friedman (personal communication) has conjectured that Theorem 3.2
is itself independent of ZFC, but “. . . it would take 50 years to prove it.”
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Definition 13 (max constant sets Da). Let Nk ⊃ D, D finite. Let

Da = {x | x ∈ D, max(x) = a}. Let m0 < m1 < · · · < mq be the integers n

such that Dn 
= ∅.

Definition 14 (Committee model ŝD [Fri97], [Wil17a]). Let r ≥ 1,

k ≥ 2, G = (Nk,Θ), GD = (D,ΘD), D finite, Gz
D = {x | (z, x) ∈ ΘD}. Let

F : Nk × (Nk ×N)r → N be a partial selection function. If Gz
D = ∅ define

ΦD
z = ∅. Thus, ΦD

z = ∅ if z ∈ Dm0
. We define ΦD

z and ŝD(z) (domain D,

range field(D)) recursively (on the mt, t = 0, . . . , q) as follows. Let

ΦD
z = {F [z, (y1, n1), (y2, n2), . . . , (yr, nr)], yi ∈ Gz

D}

be the set of defined values of F where ni = ŝD(yi) if ΦD
yi


= ∅ and ni =

min(yi) if Φ
D
yi

= ∅. If ΦD
z 
= ∅, define ŝD(z) to be the minimum over ΦD

z .

If ΦD
z = ∅, define ŝD(z) = max(z).

NOTE: An easy induction on max(z) shows ŝD(z) ≤ max(z) with equal-

ity if and only if ΦD
z = ∅. We give a proof and introduce some terminology.

Lemma 15 (ŝD(z) structure). ŝD(z) ≤ max(z) with ŝD(z) = max(z) if

and only if ΦD
z = ∅.

Proof. We use induction on max(z) to construct both ŝD(z) and ΦD
z . Let

Da = {x | x ∈ D, max(x) = a}. Let m0 < m1 < · · · < mq be the integers

n such that Dn 
= ∅. If z ∈ Dm0
then the set of adjacent vertices Gz

D = ∅.

Thus, ΦD
z = ∅ and ŝD(z) = max(z), z ∈ Dm0

. The result holds for z ∈ Dm0
.

In general, assume that for t < j, z ∈ Dmt
, ŝD(z) ≤ max(z) with ŝD(z) =

max(z) if and only if ΦD
z = ∅. Consider z ∈ Dmj

. If (1) ΦD
z = ∅ then

ŝD(z) = max(z). If (2) ΦD
z 
= ∅ let n = F [z, (y1, n1), (y2, n2), . . . , (yr, nr)] ∈

ΦD
z , yi ∈ Gz

D thus yi ∈ Dt, t < j.

First, if ΦD
yi
= ∅. then ni = min(yi) < max(z).

Second, if ΦD
yi


= ∅ then, by the induction hypothesis, ni = ŝD(yi) <

max(yi) < max(z). Thus, ŝD(z) ≤ max(z) with ŝD(z) = max(z) if and only

if ΦD
z = ∅.

The following result is due to Friedman [Fri97].

Theorem 4.1 (Large scale regularities for ŝD ([Fri97]). Let r ≥ 1,

p, k ≥ 2. S = {ŝD | D ⊂ Nk, |D| < ∞}. Then some f ∈ S has at most kk

regressive values over some Ek ⊆ domain(f), |E| = p. In fact, some f ∈ S

is regressively regular over some E of cardinality p.
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Figure 3: An example of ŝD.

Proof. Recall 3.1. Let S = {ŝD | D ⊂ Nk, |D| < ∞}. S is obviously
full and reflexive. We show S is jump free. We show for all ŝA and ŝB
in S, the conditions x ∈ A ∩ B, Ax ⊆ Bx, and ŝA(y) = ŝB(y) for all
y ∈ Ax imply that ŝA(x) ≥ ŝB(x) (i.e., S is jump free). If ΦA

x = ∅ then
ŝA(x) = max(x) ≥ ŝB(x). Assume ΦA

x 
= ∅.
Let n = F [x, (y1, n1), (y2, n2), . . . (yr, nr)] ∈ ΦA

x (note that yi ∈ Gx
A ⊆

Gx
B) where ni = ŝA(yi) if ŝA(yi) < max(yi) (i.e., Φ

A
yi

= ∅) and ni = min(yi)

if ŝA(yi) = max(yi) (i.e., Φ
A
yi
= ∅). But ŝA(yi) = ŝB(yi), i = 1, . . . , r, implies

n ∈ ΦB
x and thus ΦA

x ⊆ ΦB
x and ŝA(x) = min(ΦA

x ) ≥ min(ΦB
x ) = ŝB(x).

Next we give an example of ŝD.
As an example of computing ŝD, consider figure 3. The computation is

recursive on the max norm (and doesn’t illustrate all of the subtleties). The
values of the terminal vertices where ΦA

x = ∅ are shown in parentheses,
left to right: (2), (3), (4), (5), (6), (7), (8), (8), (9). These numbers are
max((a, b)) for each terminal vertex (a, b). Partial selection functions are of
the form F : N2 × (N2 × N)r → N (r = 2, 3 here). In particular we have
F [x, ((3, 5), 2), ((6, 8), 4), ((8, 7), 7)] = 4, F [x, ((6, 8), 4), ((8, 7), 7)] = 7, and
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F [x, ((6, 8), 4), ((11, 7), 3)] = 3. Intuitively, we think of these as (ordered)
committees reporting values to the boss, x = (7, 11). The first committee,
C1, consists of subordinates, (3, 5), (6, 8), (8, 7) reporting respectively 2, 4, 7.
The committee decides to report 4 (indicated by C1 4 in figure 3). The
recursive construction starts with terminal vertices reporting their minimal
coordinates. But, the value reported by each committee is not, in general,
the actual minimum of the reports of the individual members. Nevertheless,
the boss, x = (7, 11), always takes the minimum of the values reported
by the committees. In this case the values reported by the committees are
4, 7, 3 the boss takes 3 (i.e., ŝD(x) = 3 for the boss, x = (7, 11)). Note that
a function like F ((7, 11), ((6, 8), 4), ((8, 7), 7) where r = 2, can be padded to
the case r = 3 (e.g., F ((7, 11), ((6, 8), 4), ((8, 7), 7), ((8, 7), 7))).

Observe in figure 3 that the values in parentheses, (2), (3), (4), (5), (6),
(7), (8), (8), (9), don’t figure into the recursive construction of ŝD. They
immediately pass their minimum values on to the computation: 2, 1, 1, 5,
4, 4, 7, 3, 2. We discuss some generalizations.

5. Combinatorial generalizations

In this section we present some results that are based on results of Fried-
man [Fri97] (specifically, Theorem 4.4 and the ideas of Theorem 4.1 and
the earlier Theorem 3.3). Friedman removes any mention of the graph G
and works with an equivalent streamlined version. We stick with the graph
model in this discussion.

We extend Friedman’s results slightly by introducing a class of functions
{ρD | Nk ⊃ D finite , ρD : D → N, min(x) ≤ ρD(x), x ∈ D}. These “min
dominant” functions allow us to relax the reflexive condition and will be of
use for certain combinatorial applications.

Definition 16 (hρD for GD). Let r ≥ 1, k ≥ 2, G = (Nk,Θ), GD =
(D,ΘD), D finite, Gz

D = {x | (z, x) ∈ ΘD}. Let F : Nk × (Nk × N)r → N
be a partial selection function. An initial min dominant family of functions
is specified as follows where D ranges over all finite subsets of Nk:

R = {ρD | Nk ⊃ D finite , ρD : D → N, min(x) ≤ ρD(x), x ∈ D}.

We define ΦρD
z , hρD recursively on max(z). If Gz

D = ∅ define ΦρD
z = ∅.

Thus, ΦρD
z = ∅, z ∈ Dm0

. We define ΦρD
z and hρD(z) recursively (on the

mt, t = 1, . . . q of definition 13) as follows. Let

ΦρD
z = {F [z, (y1, n1), (y2, n2), . . . , (yr, nr)], yi ∈ Gz

D}



Combinatorics in ZFC limbo 587

be the set of defined values of F where ni = hρD(yi) if ΦρD
yi 
= ∅ and

ni = min(yi) if Φ
ρD
yi = ∅. If ΦρD

z = ∅, define hρD(z) = ρD(z). If Φ
ρD
z 
= ∅,

define hρD(z) to be the minimum over ΦρD
z .

Note that ρD need not be reflexive on D.
Recall definition 14 and the recursive construction of ŝD and ΦD

z .

Lemma 17 (Compare ŝD, h
ρD). For all z ∈ D, either (1) ΦD

z = ΦρD
z = ∅

and hρD(z) = ρD(z), ŝD(z) = max(z) or (2) ΦD
z = ΦρD

z 
= ∅ and hρD(z) =
ŝD(z).

Proof. Let Da = {x | x ∈ D, max(x) = a}. Let m0 < m1 < · · · < mq

be the integers n such that Dn 
= ∅. If z ∈ Dm0
then Gz

D = ∅. Thus,
ΦD
z = ΦρD

z = ∅ and hρD(z) = ρD(z), ŝD(z) = max(z), z ∈ Dm0
.

Assume, for all z ∈ Dmt
, 0 ≤ t < j, either ΦD

z = ΦρD
z = ∅ and hρD(z) =

ρD(z), ŝD(z) = max(z) or ΦD
z = ΦρD

z 
= ∅ and hρD(z) = ŝD(z).
Let z ∈ Dmj

. If ΦD
z = ΦρD

z = ∅, then hρD(z) = ρD(z) and ŝD(z) =
max(z). Otherwise, either ΦD

z 
= ∅ or ΦρD
z 
= ∅. Assume WLOG that ΦρD

z 
=
∅. Let

ΦρD
z = {F [z, (y1, n1), (y2, n2), . . . , (yr, nr)], yi ∈ Gz

D}.
Choose n = F [z, (y1, n1), (y2, n2), . . . , (yr, nr)] ∈ ΦρD

z . Thus yi ∈ Dmt
for

some t < j. By the induction hypothesis, either (1) ΦD
yi

= ΦρD
yi = ∅,

hρD(yi) = ρD(yi) and ŝD(yi) = max(yi), in which case ni = min(yi), or
(2) ΦD

yi
= ΦρD

yi 
= ∅ and hρD(yi) = ŝD(yi) = ni. In either case, n ∈ ΦD
z and

thus ΦρD
z ⊆ ΦD

z In the same manner we conclude that ΦD
z ⊆ ΦρD

z . Thus, in
fact, ΦD

z = ΦρD
z 
= ∅ and hρD(z) = ŝD(z). This completes the proof of the

first part of this lemma.

Next, we consider regressive regularity.

Lemma 18 (Compare regressive regularity ŝD, h
ρD). Let E be of car-

dinality p ≥ 2. Then ŝD is regressively regular over E iff hρD regressively
regular over E.

Proof. For z ∈ D we have shown (Lemma 17) there are two cases:

(1) ΦD
z = ΦρD

z = ∅, hρD(z) = ρD(z) and ŝD(z) = max(z)

or

(2) ΦD
z = ΦρD

z 
= ∅ and hρD(z) = ŝD(z).

First we show for all x, y ∈ Ek of order type ot, ŝD(x) = ŝD(y) <
min(E) if and only if hρD(x) = hρD(y) < min(E). Case (1) above is ruled
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out because hρD(z) = ρD(z) ≥ min(z) ≥ min(E) and ŝD(z) = max(z) ≥
min(E). Thus we have case (2) ΦD

z = ΦρD
z 
= ∅ and hρD(z) = ŝD(z) for

z = x, y. Thus, ŝD(x) = ŝD(y) < min(E) if and only if hρD(x) = hρD(y) <
min(E).

Second suppose for all x ∈ Ek of order type ot, hρD(x) ≥ min(x). This
set of order type ot can be partitioned into two sets, {x | ΦD

x 
= ∅} and
{x | ΦD

x = ∅}. On the first set, min(x) ≤ hρD(x) = ŝD(x) and on the
second set hρD(x) = ρD(x) ≥ min(x) and ŝD(x) = max(x) ≥ min(x). Thus,
ŝD(x) ≥ min(x). The same argument works if we assume for x ∈ Ek of order
type ot ŝD(x) ≥ min(x). Thus, for x ∈ Ek of order type ot, hρD(x) ≥ min(x)
if and only if ŝD(x) ≥ min(x).

Theorem 5.1 (Regressive regularity hρD). Let G = (Nk,Θ), r ≥ 1,
p, k ≥ 2. Let S = {hρD | D ⊂ Nk, |D| < ∞}. Then some f ∈ S has at most
kk regressive values on some Ek ⊆ domain(f) = D, |E| = p. In fact, some
f ∈ S is regressively regular over some E of cardinality p.

Proof. Follows from Theorem 4.1 and Lemma 17, 18. We claim that the set
S = {hρD | D ⊂ Nk, |D| < ∞} is a full family of functions such that for
any p ≥ 2 there is a function hρD which is regressively regular over some E,
|E| = p. Lemmas 17, 18 show that to find such an E for hρD we can invoke
Theorem 4.1 and find such an E for ŝD.

Remark: Independence of the families of Theorem 5.1. From The-
orem 5.1 the regressive regularity of the families of functions {hρD | D ⊂
Nk, |D| < ∞} is in ZFC limbo as the only proof we have at this point is
using the ZFC independent jump free theorem. However, Friedman [Fri97],
has liberated these families en masse. In particular, it has been shown by
Friedman [Fri97], Theorem 4.4 through Theorem 4.15 that a special case of
Theorem 5.1 (ρD = min) requires the same large cardinals to prove as the
jump free theorem. Thus, Theorem 5.1 provides a family of ZFC indepen-
dent theorems parameterized by a choice of an initial min dominant family
of functions:

R = {ρD | Nk ⊃ D finite , ρD : D → N, min(x) ≤ ρD(x), x ∈ D}.

6. Using the ρD and the subset sum problem

Definition 19 (D capped by Ek ⊂ D). For k ≥ 2, Ek ⊆ D ⊂ Nk, let
max(D) be the maximum over max(z), z ∈ D. Let setmax(D) = {z | z ∈
D,max(z) = max(D)}. If setmax(D) = setmax(Ek), we say that D is capped
by Ek ⊆ D with the cap defined to be setmax(Ek).
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Note that if D is capped by Ek ⊆ D then D determines Ek uniquely in
the obvious way. An example is shown in figure 2.

The following theorem is analogous to Theorem 5.1.

Theorem 6.1 (Regressively regular hρD , capped version). Let G =
(Nk,Θ), r ≥ 1, p, k ≥ 2. Let S = {hρD | D ⊂ Nk, |D| < ∞}. Then some
f ∈ S has at most kk regressive values on some Ek ⊆ domain(f) = D,
|E| = p. In fact, some f ∈ S is regressively regular over some such E,
Ek ⊆ D = domain(f), D capped by Ek.

Proof. From Theorem 5.1 there is an hρD ∈ S that is regressively regular
over some E, |E| = p, Ek ⊆ D. Let E = {e0, . . . , ep−1}. Let Dx = {z | z ∈
D,max(z) < max(x)}. Let D̂ = Dep−1

∪ setmax(Ek) so D̂ is capped by Ek.
Using the downward condition on GD and hence GD̂ we have the restriction

hρD |D̂ is regressively regular over E. Note that hρD |D̂ may or may not equal
the function hρD̂ ∈ S. But Lemmas 17 and 18 apply in either case. Thus the
function hρD̂ ∈ S is also regressively regular over E.

Definition 20 (t-log bounded). Let p, k ≥ 2, t ≥ 1. The function ρD is
t-log bounded over Ek ⊂ D where E = {e0, . . . , ep−1}, if the cardinality

|{ρD(x)−min(x) : 0 < ρD(x)−min(x) < e0k
k, x ∈ Ek}| ≤ t log2(p

k).

We write ρD ∈ LOG(k,E, p,D, t). The set

R = {ρD | ρD : D → N, min(x) ≤ ρD(x), x ∈ D}

is t-log bounded if ρD ∈ LOG(k,E, p,D, t) when D is capped by Ek. In this
case we write Rt for R.

Remarks on definition 20. Conventions on ρD ∈ LOG(k,E, p,D, t). Re-
calling that ρD(x) ≥ min(x) and ρD(x) can be arbitrarily large, we can
choose the cardinality |{x : ρD(x) −min(x) ≥ e0k

k}| large enough to make
ρD ∈ LOG(k,E, p,D, t). We can also choose the ρD(x) − min(x) ≥ e0k

k

distinct. We make that general assumption in what follows.

Theorem 6.2 (Regressive regularity t-log bounded case). Let G =
(Nk,Θ), r, t ≥ 1, p, k ≥ 2. Let S = {hρD | D ⊂ Nk, |D| < ∞} where the set
Rt = {ρD | ρD : D → N, min(x) ≤ ρD(x), x ∈ D} is t-log bounded. Then
some f ∈ S has at most kk regressive values on some Ek ⊆ domain(f) = D,
|E| = p. In fact, some f ∈ S is regressively regular over some such E,
Ek ⊆ D = domain(f), D capped by Ek and ρD ∈ LOG(k,E, p,D, t).
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Proof. Follows from Theorem 6.1 which states that some f ∈ S has at most
kk regressive values on some Ek ⊆ domain(f) = D, |E| = p. In fact, some
f ∈ S is regressively regular over some such E, Ek ⊆ D = domain(f), D
capped by Ek. From Definition 20, for each such capped pair D and Ek, ρD
has already been defined so that ρD ∈ LOG(k,E, p,D, t).

Theorem 6.2 is independent of ZFC as is Theorem 6.1.
Given any hρD , we have a natural partition of Ek ⊆ D into three sets

Ek
0 = {x ∈ Ek : hρD(x) < min(E)}

Ek
1 = {x ∈ Ek : min(E) ≤ hρD(x) < min(x)}

Ek
2 = {x ∈ Ek : min(x) ≤ hρD(x)}.

In Definition 21 we associate sets of integers with each of the three blocks
of this partition. This choice can be done in many ways. Our associated
sets are chosen because of their natural, generic, relationship to regressive
regularity.

We use the terminology of theorem 6.2.

Definition 21 (Qk,t
F,G(E, p,D) family of sets). Let G = (Nk,Θ), r, t ≥ 1,

p, k ≥ 2. Let S = {hρD | D ⊂ Nk, |D| < ∞} where the set Rt = {ρD | ρD :
D → N, min(x) ≤ ρD(x), x ∈ D} is t-log bounded. Let

Qk,t
F,G(E, p,D) = {∪2

i=0ΔhρDEk
i }

be the family of sets ranging over the indicated parameters and defined by

ΔhρDEk
0 = {hρD(x)−min(E) : x ∈ Ek, hρD(x) < min(E)}

ΔhρDEk
1 = {hρD(x)−min(x) : x ∈ Ek,min(E) ≤ hρD(x) < min(x)}

ΔhρDEk
2 = {ρD(x)−min(x) : x ∈ Ek,min(x) ≤ hρD(x)}

The sets of Definition 21 are constructed to be sensitive to the case where
hρD is regressively regular over E (to be used in the proof of Theorem 6.3).
Note that | ∪2

i=0 ΔhρDEk
i | ≤ pk.

We summarize some terminology involved in the hρD . (1) N the nonneg-
ative integers. (2) Nk the nonnegative integral lattice of dimension k ≥ 2.
(3) R a collection of functions ρD, ρD(x) ≥ min(x), one for each finite
D ⊂ Nk. (4) F : Nk × (Nk ×N)r → N, r ≥ 1, partial selection functions.
(5) G = (Nk,Θ) a downward directed graph on Nk. (6) GD = (D,ΘD)
restriction of G to D. (7) hρD functions defined recursively on D ⊂ Nk. (8)
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E = {e0, . . . , ep−1} ⊂ N , |E| = p ≥ 2. (9) Ek ⊆ D, D capped by Ek. (10)
Rt a subclass of R that are t-log bounded, t ≥ 1.

Theorem 6.3 (Subset sum connection). Regard the sets in Qk,t
F,G(E, p,D)

as instances to the subset sum problem, target 0, size measured (approxi-
mately) by p = |E|, E = {e0, . . . , ep−1}. For fixed F,G, k, t consider sets of

instances {Hk,t
F,G(E, p,D) : E, p,D} where

Hk,t
F,G(E, p,D) = ∪2

i=0ΔhρDEk
i .

For each p there exists Ê and D̂, |Ê| = p, such that the subset sum problem
for

{Hk,t
F,G(Ê, p, D̂) : p = 2, 3, . . .}

is solvable in time O(pkt).

Proof. From the definition of Hk,t
F,G(E, p,D) the set Rt is t-log bounded.

From Theorem 6.2, for any p, we can choose D̂ capped by Êk such that
hρD̂ is regressively regular over Ê. For notational simplicity we set Ê =
{e0, . . . , ep−1}.

By regressive regularity, The set {x ∈ Êk : min(Ê) ≤ hρD̂(x) < min(x)}
is empty, thus ΔhρD̂Êk

1 = ∅.

For ΔhρD̂Êk
0 we have hρD̂(x) − e0 < 0. Note |hρD̂(x) − e0| < e0 and, by

regressive regularity, the cardinality |ΔhρD̂Êk
0 | < kk so

(22)
∑

Δh
ρ
D̂ Êk

0

|hρD̂(x)− e0| < e0k
k.

From t-log bounded, we have

|{ρD̂(x)−min(x) : 0 < ρD̂(x)−min(x) < e0k
k, x ∈ Êk}| ≤ t log2(p

k).

The negative terms in the instance come from

ΔhρD̂Êk
0 = {hρD̂(x)−min(Ê) : x ∈ Êk, hρD̂(x) < min(Ê)}

The cardinality |ΔhρD̂Êk
0 | < kk.

The positive terms in the instance come from

ΔhρD̂Êk
2 = {ρD̂(x)−min(x) : x ∈ Êk,min(x) ≤ hρD̂(x)}
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If 0 ∈ ΔhρD̂Êk
2 then the solution is trivial as 0 is the target. We use Equa-

tion 22 to rule out having to consider positive values of ρD(x) −min(x) ≥
e0k

k. Otherwise, from t-log bounded, we have |ΔhρD̂Êk
2 | ≤ t log2(p

k). We
can check all possible solutions by comparing the sums of less than 2k

k

sub-
sets of negative terms with less than 2t log2(p

k) subsets of positive terms. Thus
we can check all possible solutions in O(pkt) comparisons.

We have proved Theorem 6.3 for each t ≥ 1 from Theorem 6.2. Theo-
rem 6.2 is independent of ZFC for each fixed t. We know of no other proof.
Thus, Theorem 6.3 for each fixed t ≥ 1 is in ZFC limbo. If a ZFC proof could
be found that the subset sum problem is solvable in polynomial time O(nγ)
where n is the length of the instance (pk for fixed k, p ≥ 2 here), then that
result would prove Theorem 6.3 for t = γ and thus remove that case from
limbo by showing that it is provable within ZFC. We conjecture, however,
that Theorem 6.3 for each fixed t ≥ 1 is itself independent of ZFC. The basis
for this conjecture is that the subset sum problem arises from Theorem 6.2
in a very natural, generic way. Of course, if our conjecture is true, “subset
sum is solvable in polynomial time” cannot be proved in ZFC.

There are other natural possibilities for the sets of instances 21 as well
(e.g., [Wil17b]). The challenge is to find a family for which the independence
of the analog of Theorem 6.3 can be proved.
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