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A proof of the 4-variable Catalan polynomial of the
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Mike Zabrocki

This paper is dedicated to the memory of Jeffery Remmel (1948–2017)

In The Delta Conjecture [HRW15], Haglund, Remmel and Wil-
son introduced a four variable q, t, z, w-Catalan polynomial, so
named because the specialization of this polynomial at the values
(q, t, z, w) = (1, 1, 0, 0) is equal to the Catalan number 1

n+1

(
2n
n

)
. We

prove the compositional version of this conjecture (which implies
the non-compositional version) that states that the coefficient of
sr,1n−r in the expression Δh�

∇Cα is equal to a weighted sum over
decorated Dyck paths.

1. Introduction

In the search for a representation theoretical interpretation for Macdon-
ald symmetric functions, Haiman defined the module of diagonal harmonics
[Hai94] as a quotient of the polynomial ring in two sets of n variables. For
a given integer n, the diagonal harmonics are a bi-graded Sn-module with
dimension (n+1)n−1. Garsia and Haiman [GarHai96] took a (at the time con-
jectured) formula for the bi-graded Frobenius characteristic of the diagonal
harmonics and defined for each n a rational function in two parameters q and
t which is equal to the bi-graded multiplicity of the alternating representa-
tion in the module. This expression is known as the q, t-Catalan polynomial
[GarHai96] since at q = t = 1 it specializes to the Catalan number 1

n+1

(
2n
n

)
.

In 2000, Garsia and Haglund [Hag03, GarHag02] announced a proof that
the q, t-Catalan was a polynomial in q and t with non-negative integer co-
efficients and provided a combinatorial interpretation for the expression in
terms of Dyck paths.

Important progress was made in the development of that proof through
the introduction of the notation of two linear symmetric function opera-
tors ∇ and Δf that have Macdonald symmetric functions as eigen-functions
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[BG99, BGHT99]. The expression ∇(en) was conjectured to be equal to the

Frobenius image of the character of the module of diagonal harmonics and

the q, t-Catalan polynomial is the coefficient of en in this expression. The

operators∇ and Δf gave notation to extend the types of symmetric function

expressions which were conjectured to be Schur positive for representation

theoretic reasons to expressions which are conjectured to be Schur positive

because of computer experimentation.

Haglund conjectured [Hag03] and shortly after Garsia and Haglund

[GarHag02] proved a combinatorial interpretation for the q, t-Catalan poly-

nomial. They showed that there were two statistics on Dyck paths (called

area and bounce) such that the rational expression for the q, t-Catalan

is equal to the sum over all Dyck paths D with weight qarea(D)tbounce(D).

Around this same period, Haiman [Hai02] proved the conjecture that ∇(en)

was equal to the Frobenius image of the graded character of the diagonal

harmonics. Haiman also guessed at a second statistic (dinv, short for diago-

nal inversions) such that the q, t-Catalan is equal to the sum over all Dyck

paths with weight qdinv(D)tarea(D) and Haglund later showed with a bijection

why the two combinatorial expressions are equivalent.

With the conjectures on the q, t-Catalan polynomial resolved, Haglund,

Haiman, Loehr, Remmel and Ulyanov [HHLRU05] extended the combina-

torial interpretations for the coefficient of en in ∇(en) to other coefficients.

They conjectured the coefficient of any monomial symmetric function in

terms of labelled Dyck paths (also known as parking functions) and this

became known as the Shuffle Conjecture. The Shuffle Conjecture takes its

name because the coefficient of a monomial is equal to the number of la-

belled Dyck paths whose reading word is a shuffle of segments of length the

parts of the partition.

Researchers also considered coefficients of ∇ and Δf acting on other

symmetric functions and extended the combinatorial interpretations to co-

efficients in these expressions (e.g. [EHKK03, Hag04, CL06, LW07, LW08]

and for a survey of results in this area up to 2008 see [Hag08]).

In particular, a refinement of the Shuffle Conjecture was proposed by

Haglund, Morse and the author [HMZ12] that gave a symmetric function

expression for the labelled Dyck paths which touch the diagonal at a given

composition. Some progress on this Compositional Shuffle Conjecture was

made [GXZ10, Hic10, DGZ13, Hic14, GXZ14a, GXZ14b] before it was finally

proven by Carlsson and Mellit [CM15]. By the time that Carlsson and Mellit

had announced their proof, there was already a rational slope version of the

compositional shuffle conjecture [BGLX16]. The arms race of conjecture vs.
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proof in this area did not stay out of balance for long and a proof of this
result was announced in 2016 by Mellit [Mel16].

Haglund, Remmel and Wilson [HRW15] recently announced a conjecture
for some combinatorial expressions involving Δf and ∇ in a sequence of
conjectures that generalize the Shuffle Conjecture from labelled Dyck paths
to decorated labelled Dyck paths and called this the Delta Conjecture. There
does not currently exist a compositional version of this conjecture which
might be helpful if progress is to be made on proving it.

They noticed however that the coefficients of a Schur function indexed
by a hook in the expression Δh�

∇en had similar behavior to the q, t-Catalan
[GarHai96, GarHag02] and q, t-Schröder [EHKK03, Hag04] and they pro-
posed a four parameter expression Cn(q, t, w, z) and a combinatorial inter-
pretation for this expression in terms of decorated Dyck paths. In fact they
proposed two combinatorial interpretations and one of them is compatible
with the compositional refinement proposed by Haglund, Morse and the
author [HMZ12]. It is this conjecture that we shall prove here.

Although this is not precisely how the combinatorial interpretation was
formulated in [HRW15], we will present it here in terms of decorated Schröder
paths. Schröder paths were used as a combinatorial description for the co-
efficients of Schur function indexed by a hook in the expression ∇(en) in
[EHKK03, Hag04]. In this paper we will give a combinatorial description
for the coefficient of a Schur function indexed by a hook in the expression
Δh�

∇(en−�) as Schröder paths with � vertical segments decorated with a ◦
symbol.

In fact, a Schröder path is simply a Dyck path with some of the peaks in
the Dyck path changed to NE-diagonal steps. In all of the Schröder paths
we will also insist that the right most peak in the highest diagonal not have
a NE-diagonal step.1

A Schröder path is a generalization of a Dyck path that is a lattice
path in the n× n square that start in the South-West corner and go to the
North-East corner allowing for steps North, East and diagonal steps which
are North-East such that the path stays above the South-West/North-East
diagonal. A ◦-decorated Schröder path is a Schröder path in which some

1In an early version of [HRW15], the combinatorial interpretation was stated in
terms of ◦-decorated Dyck paths where there is a difference in the decorations on
the peaks and double rises. The latest version does not express the combinatorial
interpretation for the coefficients in terms of decorated Dyck paths at all, but it is
a useful construction in relating the right and left hand side of Theorem 11. Here
we use Schröder paths to distinguish the ◦-decorations on the peaks (which are
diagonal edges here) from those on the double rises.
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of the vertical steps which are not peaks are decorated with a ◦. We will
show that the coefficient of sk+1,1n−k−�−1 in Δh�

∇en−� is a q, t enumeration
of the ◦-decorated Schröder paths of length n with k diagonal North-East
steps and � vertical segments decorated with ◦. In particular we will show
that 〈Δh�

∇(en−�), en−�〉 is a positive polynomial in q, t that enumerates ◦-
decorated Dyck paths.

Figure 1: An example of a ◦-decorated Schröder path. In this exam-
ple, rise◦(D) = 5 because there are five ◦-decorated vertical segments
and diag(D) = 3 because there are three NE-diagonal steps. The usual
touch composition is (4, 3, 1, 8), but the rise-touch composition is equal to
(2, 3, 1, 5) because two vertical segments are ◦-decorated in the first touch
segment and three vertical segments are ◦-decorated in the last touch seg-
ment.

For a given ◦-decorated Schröder path P , the number of ◦-decorations
on the path will be denoted rise◦(P ) and the number of diagonal NE steps
will be denoted diag(P ). The positions where the Schröder path touches
the diagonal divides the path into segments and determines a composition,
touch(P ) = (α1, α2, . . . , α�(α)) where αi is the length of the ith segment. We
will also consider the rise-touch composition touch◦(P ) = (β1, β2, . . . , β�(α))

where βi is equal to αi minus the number of ◦-decorations in the ith segment.
There are two additional statistics on these paths area◦(P ) and dinv◦(P )
which we will explain in detail in Section 3.

Namely we will show the following theorem (this is Theorem 11; note:
we leave the definition of the statistics dinv◦ and area◦ to Section 3):
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Theorem 1. For non-negative integers n, k, � and a composition α of size
n− �,

(1)
〈
Δh�

∇Cα, sk+1,1|α|−k−1

〉
=

∑
P∈Sch◦

n

diag(P )=k,rise◦(P )=�
touch◦(P )=α

qdinv◦(P )tarea◦(P )

where the sum is over all ◦-decorated Schröder paths with k NE-diagonal
steps and � ◦-decorated rises and rise-touch composition equal to α.

The symmetric function Cα which appears in this theorem is composi-
tional form of a Hall-Littlewood symmetric function which was introduced
in [HMZ12]. The definition appears in section 2.4. By Proposition 5.2 of
[HMZ12], en =

∑
α|=nCα and hence we have given a combinatorial interpre-

tation for 〈Δh�
∇en−�, sk+1,1n−�−k−1〉.

Note that the resolution of this conjecture does not prove all of the
conjectures made in Section 7 of [HRW15] because there was a second com-
binatorial interpretation stated for the coefficient

〈
Δh�

∇en−�, sk+1,1n−k−1

〉
that does not seem to be compatible with the compositional version and our
techniques depend strongly on compatibility with the compositional con-
struction.

2. Symmetric functions

The results related to Macdonald symmetric functions that we will use here
almost all come from a series of early papers on the subject [Mac88, G92,
GarHai95, GarHai96, BG99, BGHT99, GHT99, GarHag02]. These results
have proven to be very prescient in the utility of the identities, notation
and techniques developed. We will be able to prove our symmetric function
recurrence by using the groundwork paved in these references. The book
by J. Haglund [Hag08] collects many of the identities that we will use in a
review of the literature and hence will provide a useful reference for their use.
The only additional ingredient that we will use are the creation operators
and symmetric functions introduced in [HMZ12] which play an important
role in developing recurrences for the coefficients in which we are interested.

2.1. Symmetric function notation

The main reference we will use for symmetric functions is [Mac95]. The stan-
dard bases of the symmetric functions that will appear in our calculations
the complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases.
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The ring of symmetric functions can be thought of as the polynomial
ring in the power sum generators p1, p2, p3, . . .. As we are working with
Macdonald symmetric functions involving two parameters q and t we will
consider this polynomial ring over the field Q(q, t).

We will make extensive use of plethystic notation in our calculations and
arbitrary alphabets. This is a notational addition that introduces union and
difference of alphabets. Alphabets will be represented as sums of monomials
X = x1+x2+x3 . . . and then the expression f [X] represents the symmetric
function f as an element of Λ with pk replaced by xk1+xk2+xk3+· · · . We have
the identities that pk[X + Y ] = pk[X] + pk[Y ], pk[X − Y ] = pk[X]− pk[Y ],
and on the elementary and homogeneous bases we also have the alphabet
addition formulae which say

(2) en[X + Y ] =

n∑
k=0

ek[X]en−k[Y ] and hn[X + Y ] =

n∑
k=0

hk[X]hn−k[Y ] .

The notation ε is a common tool to express a second sort of negative sign
when working with symmetric functions with alphabets where pk[εX] =
(−1)kpk[X]. This is different from the negative of the alphabet expressed as
pk[−X] = −pk[X]. In general f [−εX] = (ωf)[X] where ω is the fundamental
algebraic involution which sends ek to hk, sλ to sλ′ and pk to (−1)k−1pk.

There is a special element Ω in the completion of the symmetric functions
that we will be using. It is defined as Ω =

∑
n≥0 hn. It has the property for

arbitrary alphabets X and Y , Ω[X+Y ] = Ω[X]Ω[Y ]. In addition, it has the
property that for any two dual basis {aλ}λ and {bλ}λ with respect to the
standard scalar product 〈sλ, sμ〉 = χ(λ = μ), we have

(3) Ω[XY ] =
∑
λ

aλ[X]bλ[Y ] .

2.2. Macdonald symmetric function toolkit and q, t notation

Macdonald symmetric functions that are used here are a transformation of
the bases presented in [Mac95]. They are the symmetric functions that are
the Frobenius image of the Garsia-Haiman modules [GarHai93] indexed by
a partition. The symmetric functions

(4) H̃μ[X; q, t] =
∑
λ�|μ|

Kλμ(q, 1/t)t
n(μ)sλ[X]
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where Kλμ(q, t) are the Macdonald q, t-Kostka coefficients and n(μ) =∑
i≥1(i − 1)μi. The basis elements {H̃μ}μ are orthogonal with respect to

the scalar product

(5) 〈pλ, pμ〉∗ = χ(λ = μ)(−1)|λ|+�(λ)

�(λ)∏
i=1

(1− qλi)(1− tλi)

and are sometimes defined by this property.

Figure 2: arm, leg, co-arm and co-leg of a cell of the diagram.

If we identify the partition μ with the collection of cells {(i, j) : 1 ≤
i ≤ μi, 1 ≤ j ≤ �(μ)}, then for each cell c ∈ μ we refer to the the arm, leg,
co-arm and co-leg (denoted respectively as aμ(c), �μ(c), a

′
μ(c), �

′
μ(c)) as the

number of cells in the segments labeled in Figure 2. The typical shorthand
for the polynomial expressions in q and t are

Bμ =
∑
c∈μ

qa
′
μ(c)t�

′
μ(c), Tμ =

∏
c∈μ

qa
′
μ(c)t�

′
μ(c)

and

wμ =
∏
c∈μ

(qaμ(c) − t�μ(c)+1)(t�μ(c) − qaμ(c)+1) .

Also set M = (1− q)(1− t) and Dμ = MBμ − 1.
The following linear operators were introduced in [BG99, BGHT99]

which are at the basis of the conjectures relating symmetric function co-
efficients and q, t-combinatorics in this area. Define

(6) ∇(H̃μ) = TμH̃μ and Δf (H̃μ) = f [Bμ]H̃μ .
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Note that if n = |μ|, then en[Bμ] = Tμ, hence for a symmetric function f of

homogeneous degree n, Δen(f) = ∇(f), so the operators Δf are seen as a

more general operator than ∇.

Following other references and introduce the shorthand notation f∗[X] =

f
[
X
M

]
. This notation can then be used to relate the ∗-scalar product with

the usual scalar product 〈f, g〉 where the Schur functions are orthonormal

since 〈f, g〉 = 〈f, ωg∗〉∗. It is known that
〈
H̃λ, H̃μ

〉
∗
= χ(λ = μ)wλ, then

follows that

(7) Ω

[
−εXY

M

]
=

∑
n≥0

e∗n[XY ] =
∑
μ�n

H̃μ[X]H̃μ[Y ]

wμ
.

We will use one of the forms of Macdonald-Koornwinder reciprocity in

our calculations (see [Mac95] p. 332 or [GHT99]),

(8)
H̃μ[1 + uDλ]∏

c∈μ(1− ut�′(c)qa′(c))
=

H̃λ[1 + uDμ]∏
c∈λ(1− ut�′(c)qa′(c))

.

The form of this identity that we are most interested here is found by setting

u = 1/u, clearing the denominators, and letting u → 0 to obtain

(9) H̃μ[Dν ] = (−1)|μ|+|ν|H̃ν [Dμ]
Tμ

Tν
.

2.3. Pieri rules and summation formulae

Define coefficients h⊥1 H̃μ =
∑

ν→μ cμνH̃ν and h1H̃ν =
∑

μ←ν dμνH̃μ. It was

proven in [GarHai95] (Corollary 1.1) that they are related by the identity,

(10) dγτ = Mcγτ
wτ

wγ
.

The following identity has been used frequently in work on the Shuffle

Conjecture but a full proof did not appear until recently in [GHXZ16]. For

s ≥ 0,

(11) es−1

[
Dγ

]
= (−1)s−1

∑
ν←γ

dνγ

(
Tν

Tγ

)s

+ χ(s = 0)
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where we have denoted χ(true) = 1 and χ(false) = 0 so that the term
χ(s = 0) only appears in the case that s = 0. The other sum of Pieri
coefficients for Macdonald polynomials was proven in a q, t hook walk by
Garsia and Haiman [GarHai95] for s ≥ 0,

(12) hs+1[Dγ ] = Mtsqs
∑
τ→γ

cγτ

(
Tγ

Tτ

)s

− χ(s = 0) .

In order to prove the combinatorial formula for the q, t-Catalan polyno-
mial, Garsia and Haglund introduced a generalization of the Pieri coefficients
and proved a summation formula which we will use here. They defined co-
efficients dfμν and cf⊥μν where ν ⊆ μ as

(13) fH̃ν =
∑
μ

dfμνH̃μ and f⊥H̃μ =
∑
ν

cf⊥μν H̃ν .

These coefficients are related by

(14) cf⊥μν wν = dωf
∗

μν wμ .

The summation formula from [GarHag02] (see pp. 698-701) we will use here
is

(15)
∑
ν⊆μ

m−d≤|ν|≤m

cg⊥μν = ∇−1

(
(ωg)

[
X − ε

M

]) ∣∣∣
X→Dμ

where μ � m and g is a symmetric function of degree less than or equal to d.

2.4. Symmetric functions indexed by compositions and creation
operators

The work of Haglund, Morse and the author [HMZ12] extended the Shuffle
Conjecture to a compositional refinement. The Compositional Shuffle Con-
jecture implies the original Shuffle Conjecture, and it was this version of the
conjecture that was proven in [CM15].

The compositional refinement came by defining for each composition
α symmetric functions Bα[X; q] and Cα[X; q]. These symmetric functions
have the property that the combinatorial expression in terms of labeled
Dyck paths for ∇Bα[X; q] is in terms of paths which touch in at least in the
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positions specified by the composition α and ∇Cα[X; q] which touches the
diagonal in exactly the positions specified by the composition α.

Both of these symmetric functions are defined in terms of creation op-
erators. For any symmetric function P [X] define

BmP [X] = P

[
X + ε

(1− q)

u

]
Ω[−εuX]

∣∣∣
um

(16)

and

CmP [X] = (−q)P

[
X + ε

(1− q)

u

]
Ω

[
εuX

q

] ∣∣∣
um

.(17)

Then for any composition α = (α1, α2, . . . , α�(α)), set Cα = Cα[X; q] =
Cα1

Cα2
. . .Cα�(α)

(1). We can define the symmetric functions Bα in a similar
manner, but for our purposes, we only need ([HMZ12] equation (5.11) and
(5.12)) the Cα symmetric functions and the fact that for m ≥ 0,

(18) Bm(Cα) = q�(α)
∑
β|=m

Cα,β .

We will denote B∗
m and C∗

m operators which are dual to Bm and Cm

with respect to the ∗-scalar product (that is 〈Bmf, g〉∗ = 〈f,B∗
mg〉∗). Since

〈e∗n[XY ], f [X]〉∗ = f [Y ], then for any symmetric function f [X],

〈
BX
me∗n[XY ], f [Y ]

〉
∗ = Bmf [X] =

〈
e∗n[XY ],BY

mf [Y ]
〉
∗ =

〈
B∗Y
m e∗n[XY ], f [Y ]

〉
∗

where we have denoted BX
m to be the Bm operator acting on the X vari-

ables and B∗Y
m to be the ∗-dual operator acting on the Y variables. We

conclude that the following two expressions be verified by calculating that
BX
me∗n[XY ] = B∗Y

m e∗n[XY ] (and similarly CX
me∗n[XY ] = C∗Y

m e∗n[XY ]). These
operators are expressed by the formulae,

(19) B∗
mP [X] = P

[
X +

M

u

]
Ω

[
−uX

1− t

] ∣∣∣
u−m

and

C∗
mP [X] = (−q)P

[
X − M

qu

]
Ω

[
−uX

1− t

] ∣∣∣
u−m

.(20)
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3. The combinatorial recurrence

In [HRW15] there are two combinatorial interpretations stated in Conjec-
ture 7.1 for the symmetric function expression

〈
Δh�

∇en−�, sk+1,1n−�−k−1

〉
and only one of these two seems to be compatible with the coefficient in the
expression

〈
Δh�

∇Cα, sk+1,1n−�−k−1

〉
(where α is a composition and k, � ≥ 0)

in terms of decorated Dyck paths.
What we will do in the beginning of this section is to introduce the def-

initions necessary to state the combinatorial interpretation. In Section 3.1
we state and prove a recurrence on the generating function for the com-
binatorial objects. Then in Section 4 we will show a symmetric function
identity that demonstrates the coefficients also satisfy the same recurrence.
This will imply by an inductive argument (because for small values of the
indices we can verify that the combinatorial values agree with the symmetric
function coefficients) that the symmetric function coefficients agree with the
combinatorial generating function.

The basic element of the recursive construction given to us by the sym-
metric function recurrence is a rotation of the first part around to the end
of the Dyck path while deleting the first up step and the first right step
that touches the diagonal. This combinatorial recurrence and the effect on
the area and dinv statistics first appears in [Hic10]. Assuming that we know
the size of the piece that is being rotated around, the process is reversible.
This is exactly the same sort of recursive construction that appeared in
the proofs of certain coefficients of the Compositional Shuffle Conjecture
[GXZ10, GXZ14a, GXZ14b].

Vertical edges in a Dyck path come in two types, a peak is a vertical edge
followed by a horizontal edge, a double rise is a a vertical edge followed by a
second vertical edge. A Schröder path is a Dyck path with some of the peaks
changed to NE-diagonal edges. The Schröder paths we will work with will
have the restriction that the rightmost peak in the highest diagonal cannot
be a NE-diagonal edge. A decorated Schröder path will be a Schröder path
with some of the vertical edges which are not peaks decorated with a ◦.
Since a ◦-decorated Schröder path is just a Dyck path with some of the
vertical edges either decorated or diagonal, we will explain the recurrence
on the Dyck path and assume that the decorations travel with the edges in
the recurrence. In this way we will identify a decorated Schröder path with
its underlying Dyck path and we will partly do this by calling the path P
and the underlying Dyck path D.

Dyck paths may be encoded by the area sequence (a1(D), a2(D), . . . ,
an(D)) where ai(D) is the number of full cells in the the ith row which
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Figure 3: Example of cyclic rotation. The Dyck path on the left first touches
the diagonal after 7 vertical/horizontal steps and has area(D) = 17. The
Dyck path on the right has the beginning segment from the left path moved
to the end with a vertical and horizontal segment removed. The resulting
path has area 11 = 17− (7− 1).

are above the diagonal but below the Dyck path. The area sequence of the
Dyck paths are characterized by the property that a1(D) = 0 and 0 ≤
ai+1(D) ≤ ai(D) + 1 for 1 ≤ i < n. The area statistic on Dyck paths is
area(D) =

∑n
i=1 ai(D).

The diagonal inversion statistic on Dyck paths is the number of pairs
(i, j) with i < j such that either ai(D) = aj(D) or ai(D) = aj(D) + 1
(the diagonal inversions of the Dyck path). Order the rows from largest area
value to smallest and from right to left. The ith row in this order has area
ak(D) for some k and let bi(D) be the number of diagonal inversions of the
form (k, j) with ak(D) = aj(D) or (j, k) with aj(D) = ak(D)+1. The bi(D)
represents the number of diagonal inversions between the ith vertical step in
this order and all those that come before. Set dinv(D) =

∑n
i=1 bi(D).

Example 2. To ensure that that the definitions are clear to this point we
list the sequences for the Dyck paths pictured in Figure 3. The a-sequence
is

(0, 1, 2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 2),

and the b-sequence is

(0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 6, 6, 4, 2) .
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The a and b sequences of the right Dyck path have a clear relationship to the

left Dyck path. The statistics for the right path have the a-sequence given

by

(0, 1, 1, 2, 1, 0, 1, 2, 0, 1, 1, 0, 0, 1),

and the b-sequence is

(0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 6, 6, 4)

found by deleting the last entry.

The combinatorial interpretation of the symmetric function coefficients

are in terms of decorated Schröder paths. The set of ◦-decorated Schröder

paths are Dyck paths where each peak except the rightmost one in the

highest diagonal can be replaced with a NE-diagonal step and each vertical

segment that is not a peak can be labeled with a ◦ or not. Denote the set of

◦-decorated Schröder paths in an n×n square by Sch◦
n and the set of Dyck

paths of the same size by Dn. The cardinality of Sch◦
n is equal to 2n−1

n+1

(
2n
n

)
.

This enumeration follows because for each Dyck path in Dn there are 2n−1

corresponding Schröder paths since each of the n − 1 vertical edges of the

Dyck path (not the rightmost highest peak) has two choices as being either

labeled/diagonal or not labeled/diagonal.

A ◦-decorated rise on a ◦-decorated Schröder path is a row where the

first vertical segment of two consecutive vertical segments has a ◦-decoration
(i.e. a ◦-decorated row with ai(D) = ai+1(D)− 1). Let Rise◦(P ) be the set

of indices of the rows of the ◦-decorated rises and rise◦(P ) = |Rise◦(P )| be
the number of ◦-decorated rises. We will also set for ◦-decorated Schröder

paths, area◦(P ) = area(D) −
∑

i∈Rise◦(P ) ai+1(D) = area(D) − rise◦(D) −∑
i∈Rise◦(D) ai(D).

There is a reading order of the vertical segments of a Dyck path which

are ordered by reading them from the highest diagonal from right to left.

We will denote the set of indices of the diagonal edges in a corresponding

Schröder path P (following the reading order) by Diag◦(P ) and the number

of ◦-decorated peaks by diag◦(P ) = |Diag◦(P )|.
We note that because we restricted in our ◦-decorated Schröder paths

that the rightmost peak in the highest diagonal cannot be a NE-diagonal

edge, 1 /∈ Diag◦(P ). Also remark that rows that form a peak in a Dyck path

will have bi(D) > bi−1(D) (except where b1(D) = 0). A peak of a Dyck path

will have a diagonal inversion with all the same positions that the preceding

vertical segment had, plus one with that previous vertical segment.
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Denote a restricted diagonal inversion statistic on ◦-decorated Schröder
paths

dinv◦(P ) = dinv(D)−
∑

i∈Diag◦(P )

bi(D) .

Define the following multivariate analogues of 2n−1

n+1

(
2n
n

)
,

Cat′n(q, t, z, w) =
∑

D∈Dn

qdinv(D)tarea(D)
∏

bi(D)>bi−1(D)

(
1 + z/qbi(D)

)
(21)

×
∏

ai(D)>ai−1(D)

(1 + w/tai(D))(22)

=
∑

P∈Sch◦
n

qdinv◦(P )tarea◦(P )zdiag◦(P )wrise◦(P ) .(23)

There is a compositional refinement that we are focusing on in this paper.
For a ◦-decorated Dyck path D with rise◦(D) = �, define the rise-touch
composition of D to be the sequence of numbers of vertical steps which are
not ◦-decorated rises between the places the path touches the diagonal. This
is more simply determined by looking at the usual touch composition for the
Dyck path without the decorations and then subtracting from each part of
the composition the number of ◦-decorated rises in each segment. Where
it is necessary to abbreviate, the rise-touch composition will be denoted
touch(D). It is the case that touch(D) is a composition of n− �.

Example 3. To ensure that the combinatorial object and the definitions
that we are considering are clear, consider the Schröder path that appears
in Figure 1. The Schröder path P has an underlying Dyck path D and the
a-sequence for this path is (0, 1, 1, 2, 0, 1, 1, 0, 0, 1, 2, 2, 3, 3, 4, 2) and the b-
sequence for this path is (0, 0, 1, 2, 1, 2, 3, 1, 2, 3, 3, 4, 4, 5, 4, 3). The area(D) =
23 and the so the area◦(P ) = 23−(1+2+1+3+4) = 12. The dinv(D) = 38
and the peaks corresponding to the indices 3, 7, 9 in the reading order are
NE-diagonal edges and so dinv◦(P ) = 38− (1 + 3 + 2) = 32.

We next define a generating function for the ◦-decorated Dyck paths such
that the rise-touch composition is equal to α. Fix non-negative integers k
and � and a composition α. Then set

(24) Cat′α,k,�(q, t) =
∑

P∈Sch◦
|α|+�

diag◦(P )=k
touch◦(P )=α

qdinv◦(P )tarea◦(P )
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By definition,

(25) Cat′n(q, t, z, w) =
∑

k,�:k+�≤n−1

∑
α|=n−�

Cat′α,k,�(q, t)z
kw� .

this is because if there are � rises which are ◦-decorated, then the rise-touch

composition of the ◦-decorated Dyck path will be some composition α of

n− � and so both the left and right hand side of the equation is equal to a

weighted sum over all ◦-decorated Dyck paths of size n.

Example 4. The following 8 Schröder paths have touch◦(P ) = (2, 2). The

third path in each row has area◦(P ) = 3, the others have area◦(P ) = 2.

The first two of these paths have b-sequence (0, 1, 2, 2, 1), the second two

have a b-sequence (0, 1, 1, 1, 1). In the bottom row the first two paths have

b-sequence (0, 1, 2, 1, 1) and the last two have b-sequence (0, 0, 1, 1, 1). As a

consequence the dinv◦(P ) for the paths are 5, 4, 3, 3 for the top row and

4, 3, 2, 2 for the bottom row.

The generating function for these objects is

(26) Cat′(2,2),1,1(q, t) = q5t2 + q4t2 + q3t3 + q3t2 + q4t2 + q3t2 + q2t3 + q2t2 .

3.1. Combinatorial recurrence on Cat′
β,k,�(q, t)

We will show in this subsection that for non-negative integers k, � such that

k < |α| that Cat′α,k,�(q, t) satisfies a recurrence involving the first part of the

partition. We consider two cases, one where the first part of the composition

α is greater than 1 and a second where α1 = 1.
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Proposition 5. For a ≥ 1, and k, � ≥ 0, and a fixed composition β we have
the combinatorial recurrence,

Cat′(a+1,β),k,�(q, t) = taq�(β)
∑
γ|=a

Cat′(β,γ),k,�(q, t)(27)

+ taq�(β)
∑

γ|=a+1

Cat′(β,γ),k,�−1(q, t) .

Proof. To prove equation (27), we will divide the set of ◦-decorated Dyck
paths into two subsets: either the first vertical step of the ◦-decorated Dyck
path is decorated (Case 1) or it is not decorated (Case 2). On both sets we
will perform a cyclic rotation as described at the beginning of this section.
We will refer to the piece of the Dyck path up to the first point that it
touches the diagonal as first and the piece of the Dyck path after the first
part as rest.

The circle decorations travel with the vertical edges of the path and
the vertical edge which is deleted may either be decorated or not. The se-
quence of b-values for the cyclically rotated path is exactly the same as the
b-sequence for the original path except the last entry (which corresponds
to the deleted edge) is deleted. This is because diagonal inversions within
the first piece or within the rest piece are still diagonal inversions after the
cyclic rotation and diagonal inversions between the first piece and the rest
piece will switch from being on the same diagonal to being on the diagonal
below (and vice versa).

We also remark that the rightmost peak in the highest diagonal in the
path before rotation will remain the rightmost peak in the highest diagonal
in the path after the operation. Therefore the condition that the rightmost
peak in the highest diagonal is not a NE edge is a condition which must
hold and come from the base case.

Case 1: Cyclic rotation gives a bijection between ◦-decorated Schröder paths
P with rise-touch composition (a+1, β) and diag◦(P ) = k and rise◦(P ) = �
where the first vertical step is not decorated and ◦-decorated Schröder
paths P ′ with rise-touch composition of the form (β, γ) with γ |= a and
diag◦(P

′) = k and diag◦(P
′) = �.

Say that there are r ◦-decorated rises in the first piece. Since the first
vertical step is not decorated, after deleting the first edge from a piece of a
Dyck path which touches the diagonal after a + r + 1 steps, the rise-touch
composition will be a composition γ of size a and deleting the first vertical
step has the effect of removing a cells contributing to the area (one for
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each peak or non-decorated rise row in the first piece of the Dyck path), so
area◦(D) = area◦(D′) + a. Moreover since there is one diagonal inversion of
the form (1, j) for each j > 1 with aj(D) = 0, then bn(D) = �(β) (where n
is equal to the length of D) and dinv◦(D) = dinv◦(D′) + �(β).

Example 6. Consider the first part of the Dyck path being the following
piece of length 8. The first part of the rise-touch composition of this Dyck
path will be 8 minus the number of rises which are ◦-decorated in this piece
(in this case there are 2).

We consider this example to see how the rise-touch composition and ◦-area
is affected by deleting the first vertical step and last horizontal step and
ensure that the definitions are clear to this point. Since the ◦-decorations
are in rows 2 and 6, the ◦-area contribution from this first piece is 9 and
length of the first entry of the rise-touch composition is 6. Deleting the first
vertical and last horizontal step then the rise-touch composition will have
contribution (3, 2) and the ◦-area statistic will contribute 4 = 9 − (6 − 1)
from this piece.

Case 2: Cyclic rotation also gives a bijection between ◦-decorated Schröder
paths P with rise-touch composition (a + 1, β) and diag◦(P ) = k and
rise◦(P ) = � where the first vertical step is decorated and ◦-decorated
Dyck paths P ′ with rise-touch composition (β, γ) with γ |= a + 1 and
diag◦(P

′) = k and rise◦(P ′) = � − 1. Deleting the ◦-decoration from the
first vertical step will reduce the number of ◦-decorations by one.

Say that there are r ◦-decorated rises in the first piece and the Dyck path
first touches the diagonal after a + 1 + r steps. Notice that the rise-touch
composition of the first piece of the path after deleting the first step will be
a composition γ of size a+1. Deleting the first vertical step has the effect of
removing a cells contributing to the area (one for each peak or non-decorated
rise row in the first piece of the Dyck path), so area◦(D) = area◦(D′) + a.
Moreover since there is one diagonal inversion of the form (1, j) for each
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j > 1 with aj(D) = 0, then bn(D) = �(β) and dinv◦(D) = dinv◦(D′) +
�(β).

Example 7. Consider the same first piece of the Dyck path as in Example
6 but assume now that rows 1, 2 and 6 are labelled. The first entry of the
rise-touch composition will be 5 which is the same size as the resulting
rise-touch composition of (3, 2) when we delete the first vertical and last
horizontal step.

The ◦-area of the contribution from the first piece is 8 before deleting the
first vertical and last horizontal step and it is 4 after.

The two cases are disjoint and together cover all ◦-decorated Dyck paths
and the weights agree between those on the left and right hand side, so equa-
tion (27) holds.

Next we consider the case where α = (1, β) (that is, the a = 0 case) and
we see that the recurrence is slightly different.

Proposition 8. For k, � ≥ 0, and a composition β we have the combinatorial
recurrence,

Cat′(1,β),k,�(q, t) = q�(β)Cat′β,k,�(q, t) + Cat′β,k−1,�(q, t)(28)

+ q�(β)Cat′(β,1),k,�−1(q, t) .

Proof. In the case that the first part of the rise-touch composition is 1,
there are three types of ◦-decorated Dyck paths which contribute to this
expression: the Dyck path starts with a non-decorated vertical step followed
by a horizontal step (Case 1), it begins with a ◦-decorated vertical step
followed by a horizontal step (Case 2) or it begins with some number of ◦-
decorated rises followed by a peak followed by the same number of horizontal
steps (Case 3) (in the picture below, the example representing this case
has two ◦-decorated rises, but in general there are potentially between 1
and � ◦-decorated rises and the peak can potentially be a NE-diagonal
step).
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Case 1: The ◦-decorated Schröder paths P which begin with a non-decorated

vertical step followed by a horizontal step with rise-touch composition of the

form (1, β) and diag◦(P ) = k and rise◦(P ) = � are in bijection with the ◦-
decorated Schröder paths P ′ with rise-touch composition β and diag◦(P ) =

k and rise◦(P ) = � by removing the first vertical and horizontal steps. Since

there are �(β) diagonal inversions of the form (1, j) for each j > 1 with

aj(D) = 0, then dinv◦(P ) = dinv◦(P ′) + �(β). The area doesn’t change by

deleting the first vertical and horizontal step so area◦(P ) = area◦(P ′).

Case 2: The ◦-decorated Schröder paths P with rise-touch composition of

the form (1, β) which begin with a NE-diagonal step and diag◦(P ) = k and

rise◦(P ) = � are in bijection with the ◦-decorated Schröder paths P ′ with
rise-touch composition β, diag◦(P ) = k−1 and rise◦(P ) = �. The bijection is

simply to remove the first vertical and horizontal steps (and hence one of the

decorations on the peaks). Since the first step of the path is a NE-diagonal,

it does not contribute to the ◦-dinv statistic and dinv◦(P ) = dinv◦(P ′).
Moreover the ◦-area does not change by removing the first vertical and

horizontal step so area◦(P ) = area◦(P ′).

Case 3: The ◦-decorated Schröder paths P with rise-touch composition

equal to (1, β) which begin with a sequence of ◦-decorated rises, followed

by a peak or a NE-diagonal step followed by horizontal steps to return

to the diagonal with diag◦(P ) = k and rise◦(P ) = � are in bijection with

the Dyck paths P ′ with rise-touch composition (β, 1), diag◦(P ) = k and

rise◦(P ) = �−1 by a cyclic rotation described at the beginning of this section.

We note that the ◦-area does not change with the cyclic rotation because

the first row is a ◦-decorated rise so area◦(P ) = area◦(P ′). Since there is

one diagonal inversion of the form (1, j) for each j > 1 with aj(D) = 0, then

dinv◦(P ) = dinv◦(P ′) + �(β).

The three cases are disjoint, they cover all possible ◦-decorated Dyck

paths with rise-touch composition beginning with a 1 and the weights on

the left hand side of the equation agree with those on the right hand side,

hence equation (28) holds.
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4. The symmetric function recurrence

In this section we will provide a proof of the following symmetric function

identity that agrees with the combinatorial recurrence on the generating

function for ◦-decorated Schröder paths.

Theorem 9. For k ≥ 0, and for integers d, r,m,

C∗
k+1Δhd

∇(e∗rh
∗
m) = tkB∗

kΔhd
∇(e∗rh

∗
m−1) + tkB∗

k+1Δhd−1
∇(e∗rh

∗
m)(29)

+ χ(k = 0)Δhd
∇(e∗r−1h

∗
m) .(30)

Notice that at d = 0, one of the terms is equal to 0. This case of this

identity is equivalent to the recurrence used in [GXZ10] to prove the Schröder

case of the compositional shuffle conjecture.

We have as a consequence the following expression of coefficients which

have combinatorial meaning.

Corollary 10. For non-negative integers k, � and a and for a composi-

tion β,

〈
Δh�

∇Ca+1(Cβ), sk+1,1|β|+a−k

〉
=taq�(β)

∑
γ|=a

〈
Δh�

∇Cβ,γ , sk+1,1|β|+a−k−1

〉

+ taq�(β)
∑

γ|=a+1

〈
Δh�−1

∇Cβ,γ , sk+1,1|β|+a−k

〉
(31)

+ χ(a = 0)
〈
Δh�

∇(Cβ), sk,1|β|−k

〉
.

Proof. This identity is derived by taking the ∗-scalar product with Cβ on

both sides of the equation (29)–(30). We begin by taking the ∗-scalar product
of Cβ with the left hand side of (29). We note that since {H̃μ}μ is an

orthogonal basis with respect to the ∗-scalar product and are eigenvectors

of the operators ∇ and Δh�
, these operators are self dual with respect to the

∗-scalar product and commute with each other.

〈
Cβ,C

∗
a+1Δh�

∇(e∗rh
∗
n)

〉
∗ = 〈Δh�

∇Ca+1(Cβ), e
∗
rh

∗
n〉∗(32)

= 〈Δh�
∇Ca+1(Cβ), hren〉 .

Similarly, the scalar product with the other three terms of the right hand

side of (29)–(30) have expressions involving only Cα once equation (18) is
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applied to the expressions of the form Bm(Cβ). We conclude that

〈
Δh�

∇Ca+1(Cβ), hk+1e|β|+a−k

〉
= taq�(β)

∑
γ|=a

〈
Δh�

∇Cβ,γ , hk+1e|β|+a−k−1

〉

+ taq�(β)
∑

γ|=a+1

〈
Δh�−1

∇Cβ,γ , hk+1e|β|+a−k

〉

+ χ(a = 0)
〈
Δh�

∇(Cβ), hke|β|−k

〉
.

Equation (31) then follows because

sk+1,1|β|+a−k =

|β|+a−k∑
r=0

(−1)rhk+1+re|β|+a−k−r .

Note that in the case that k = 0 and r = 1 that sr−1,1n+1−r is 0 if n > 0
and sr−1,1n+1−r = 1 if n = 0.

Theorem 11. For non-negative integers k and � and a composition α,

(33) Cat′α,k,�(q, t) =
〈
Δh�

∇(Cα), sk+1,1|α|−k−1

〉
.

Proof. We have just established in the previous section (combining Propo-
sitions 5 and 8) that

Cat′(a+1,β),k,�(q, t) =taq�(β)
∑
γ|=a

Cat′(β,γ),k,�(q, t)(34)

+ taq�(β)
∑

γ|=a+1

Cat′(β,γ),k,�−1(q, t)(35)

+ χ(a = 0)Cat′β,k−1,�(q, t) .(36)

This combinatorial recurrence agrees with Corollary 10 in the sense that if

Cat′(β,γ),k,�(q, t) =
〈
Δh�

∇Cβ,γ , sk+1,1|β|+a−k−1

〉

and

Cat′(β,γ),k,�−1(q, t) =
〈
Δh�−1

∇Cβ,γ , sk+1,1|β|+a−k

〉
and

Cat′β,k−1,�(q, t) =
〈
Δh�

∇(Cβ), sk,1|β|−k

〉
,
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then

Cat′(a+1,β),k,�(q, t) =
〈
Δh�

∇Ca+1(Cβ), sk+1,1|β|+a−k

〉
.

The indices of the right hand side of this recurrence have the property that
either the value of � is lower or the size of the composition α is smaller.
Therefore we proceed by induction by assuming that equation (33) holds
true for compositions of smaller size and smaller values of �. Then it remains
to show that it is true for a base case.

We note that if α = (1), then

〈
Δh�

∇(C1), sk+1,1−k

〉
= 1

if and only if k = 0 and it is equal to 0 otherwise. Similarly, Cat′(1),k,�(q, t) = 1

if and only if k = 0 (and 0 otherwise) because the generating function for
◦-decorated Schröder paths has one term for the Schröder path consisting of
� ◦-decorated rises, a peak, followed by horizontal steps back to the diagonal.

In order to prove our symmetric function identity from Theorem 9 we
break the calculation into lemmas that will hopefully make a long calculation
a little easier to follow.

Lemma 12. For integers d and partitions μ and ν,

Tν

wν
hd[Bμ]H̃μ[Dν ] =

∑
a≥0

(−1)ahd−a

[
1

M

] ∑
γ⊇ν

|γ|=|ν|+a

H̃μ[Dγ ]
Tγ

wγ
ce

⊥
a
γν .(37)

Proof. First we apply equation (2) to hd[Bμ] (the alphabet addition formula)
and show that

hd[Bμ] = hd

[
MBμ − 1

M
+

1

M

]
=

∑
a≥0

ha

[
Dμ

M

]
hd−a

[
1

M

]
.(38)

To the left hand side of equation (37) we apply the reciprocity formula
(9), and then use the generalized Pieri coefficients that were introduced in
[GarHag02] from equation (13), and then reapply the reciprocity formula to
derive

Tν

wν
hd[Bμ]H̃μ[Dν ] = (−1)|μ|+|ν| Tμ

wν

∑
a≥0

ha

[
Dμ

M

]
H̃ν [Dμ]hd−a

[
1

M

]
(39)
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= (−1)|μ|+|ν| Tμ

wν

∑
a≥0

∑
γ⊇ν

|γ|=|ν|+a

dωe
∗
a

γν H̃γ [Dμ]hd−a

[
1

M

]
(40)

=
Tμ

wν

∑
a≥0

∑
γ⊇ν

|γ|=|ν|+a

(−1)a
Tγ

Tμ
H̃μ[Dγ ]hd−a

[
1

M

]
dωe

∗
a

γν .(41)

Now recall that we can convert the dfγν coefficients to cg⊥γν coefficients using
equation (14), the resulting equation is equal to the right hand side of the
equation stated in (37).

Now the coefficients cea⊥γν have the sum over ν that was also calculated
by Garsia and Haglund [GarHag02] and we need this expression that we
state in the following lemma.

Lemma 13. For a a non-negative integer and for a fixed partition γ,

∑
ν⊆γ

|ν|=|γ|−a

cea⊥γν = ea[Bγ ](42)

Proof. Of course if |γ| < a then both the left and right hand sides of this
expression are equal to 0. From the identity in equation (15) in the special
case of g = ea we have

∑
ν⊆γ

|ν|=|γ|−a

cea⊥γν = ∇−1ha

[
X − ε

M

] ∣∣∣
X→Dγ

.(43)

We know that∇−1ha
[
X
M

]
= ea

[
X
M

]
and hence we apply the alphabet addition

formulas to simplify the right hand side of the equation (43) as

∇−1ha

[
X − ε

M

] ∣∣∣
X→Dγ

=
∑
b≥0

∇−1ha−b

[
X

M

]
hb

[
−ε

M

] ∣∣∣
X→Dγ

(44)

=
∑
b≥0

ea−b

[
Dγ

M

]
eb

[
1

M

]
= ea

[
MBγ − 1

M
+

1

M

]
(45)

= ea[Bγ ] .(46)

The following result gives us an expression for a kernel which we can use
to apply the B and C operators.
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Proposition 14. For non-negative integers d, r and n

Δhd
∇(e∗rh

∗
n) =

∑
a≥0

∑
γ

(−1)r+aen+r

[
XDγ

M

]
hd−a

[
1

M

]
hn+a−|γ|

[
−1

M

]
Tγ

wγ
ea[Bγ ]

where the sum over γ is over all partitions of size smaller than or equal to
n+ a.

Proof. We begin by introducing an extra set of variables W into the ex-
pression and using the fact that e∗r [X]h∗n[X] =

〈
e∗n+r[XW ], hr[W ]en[W ]

〉
where the scalar product is taken with respect to symmetric functions in
the variables W . Then equation (7) implies

Δhd
∇(e∗rh

∗
n) =

〈
Δhd

∇e∗n+r[XW ], hr[W ]en[W ]
〉

(47)

=
∑

μ�n+r

hd[Bμ]TμH̃μ[X]

wμ

〈
H̃μ[W ], hr[W ]en[W ]

〉
.(48)

Now a special case of the Macdonald coefficients that are known (see [Mac95]

Exercise 2 p. 362) is the scalar product
〈
H̃μ[W ], hr[W ]en[W ]

〉
= en[Bμ]. To

apply our Lemma 12 we need an expression with Dμ = MBμ − 1, hence by
the alphabet addition formulae, we have

=
∑

μ�n+r

hd[Bμ]TμH̃μ[X]

wμ
en[Bμ](49)

=
∑

μ�n+r

hd[Bμ]TμH̃μ[X]

wμ
e∗n[(MBμ − 1) + 1](50)

=
∑

μ�n+r

∑
k≥0

hd[Bμ]TμH̃μ[X]

wμ
e∗k[Dμ]e

∗
n−k[1] .(51)

We can then expand the expression e∗k[Dμ] =
∑

ν�k
H̃ν [Dμ]

wν
so that we can

apply the reciprocity formula from equation (9).

=
∑

μ�n+r

∑
k≥0

∑
ν�k

hd[Bμ]TμH̃μ[X]

wμ

H̃ν [Dμ]

wν
e∗n−k[1](52)

=
∑

μ�n+r

∑
k≥0

∑
ν�k

(−1)n+r+k hd[Bμ]H̃μ[X]

wμ

TνH̃μ[Dν ]

wν
e∗n−k[1] .(53)



A proof of the 4-variable Catalan polynomial of the Delta conjecture623

At this point we can apply equation (37) and simplify the power of −1 by
the expression (−1)n+ke∗n−k[1] = h∗n−k[−1]. We also combine the sum over
k ≥ 0 and ν � k to just be a sum over all partitions ν. The sum is actually
finite because the expression h∗n−k[−1] is equal to 0 if |ν| > n. We then
interchange the sum over ν and γ then we have the following manipulation
of equation (53) to arrive at the expression stated in the theorem.

=
∑

μ�n+r

∑
ν

(−1)r
H̃μ[X]

wμ
h∗n−|ν|[−1]

∑
a≥0

(−1)ah∗d−a [1]
∑
γ⊇ν

|γ|=|ν|+a

H̃μ[Dγ ]
Tγ

wγ
cea⊥γν

=
∑

μ�n+r

∑
γ

∑
a≥0

(−1)r+a H̃μ[X]H̃μ[Dγ ]

wμ
h∗n+a−|γ|[−1]h∗d−a [1]

Tγ

wγ

∑
ν⊆γ

|ν|=|γ|−a

cea⊥γν

=
∑
γ

∑
a≥0

(−1)r+ae∗n+r[XDγ ]h
∗
n+a−|γ|[−1]h∗d−a [1]

Tγ

wγ
ea[Bγ ] .

Now we are able to apply the C and B operators to prove Theorem 9.
To simplify our calculation, it will help to have expressions for the action

of C∗
m on ec

[
XDγ

M

]
.

Lemma 15. For a non-negative integer c and integer m,

(54) C∗
mec

[
XDγ

M

]
=

∑
b≥0

q−b+1(−1)m+1ec−b

[
XDγ

M

]
hb[Dγ ]eb−m

[
X

1− t

]
.

Proof. We expand C∗
m acting on ec

[
XDγ

M

]
and find

C∗
mec

[
XDγ

M

]

= (−q)ec

[(
X − M

qu

)
Dγ

M

]
Ω

[
−uX

1− t

] ∣∣∣
u−m

=
∑
a≥0

∑
b≥0

ua−bq−b+1(−1)a+b+1ec−b

[
XDγ

M

]
hb [Dγ ] ea

[
X

1− t

] ∣∣∣
u−m

.

When we take the coefficient of u−m in the expression, then −m = a− b or
a = b−m and we obtain the expression stated in equation (54).

We also develop a full expression for B∗
m on the kernel from Proposition

14 because to prove the theorem we will expand the left hand side of (29)
and need to recognize when we have the right hand side of that equation.
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Lemma 16. For all integers m, r and a and for non negative integer d,

B∗
mΔhd

∇(e∗rh
∗
n) =

∑
a≥0

∑
b≥0

∑
τ

(−1)r+a+b+meb[Dτ ]en+r−b

[
XDτ

M

]
×

× eb−m

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|τ |[−1]

Tτ

wτ
ea[Bτ ] .

Proof. As we did in the previous lemma, we will first develop an expression

for the action of B∗
m on e∗n+r[XDγ ].

B∗
me∗n+r[XDτ ] = en+r

[(
X +

M

u

)
Dτ

M

]
Ω

[
−uX

1− t

] ∣∣∣
u−m

(55)

=
∑
a≥0

∑
b≥0

ua−beb[Dτ ]en+r−b

[
XDτ

M

]
ha

[
−X

1− t

] ∣∣∣
u−m

.(56)

Now when we take the coefficient of u−m in this expression −m = a − b,

hence a = b−m and our expression becomes

B∗
me∗n+r[XDτ ] =

∑
b≥0

(−1)b+meb[Dτ ]en+r−b

[
XDτ

M

]
eb−m

[
X

1− t

]
.(57)

Now we apply that expression to the kernel that we derived in Proposi-

tion 14.

B∗
mΔhd

∇(e∗rh
∗
n)(58)

=
∑
a≥0

∑
τ

(−1)r+aB∗
men+r

[
XDτ

M

]
h∗d−a[1]h

∗
n+a−|τ |[−1]

Tτ

wτ
ea[Bτ ](59)

=
∑
a≥0

∑
b≥0

∑
τ

(−1)r+a+b+men+r−b

[
XDτ

M

]
eb[Dτ ]×(60)

× eb−m

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|τ |[−1]

Tτ

wτ
ea[Bτ ] .(61)

We are now prepared to prove Theorem 9 by a direct calculation using

the results we have derived above.

Proof of Theorem 9. We begin by applying the operator Ck+1 to the expres-

sion in Proposition 14. Equation (54) with m → k + 1, c → n+ r says that
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it is equal to

C∗
k+1Δhd

∇(e∗rh
∗
n) =

∑
a≥0

∑
γ

∑
b≥0

q−b+1(−1)r+a+ke∗n+r−b[XDγ ]hb[Dγ ]×

× eb−k−1

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tγ

wγ
ea[Bγ ] .(62)

Now we know that since k ≥ 0, then b ≥ 1 since eb−k−1 = 0 for b = 0. In
fact, it may be helpful to make the replacement b → b + 1 in (62) and we
can apply equation (12) to hb+1[Dγ ].

=
∑
a≥0

∑
γ

∑
b≥0

q−b(−1)r+a+ke∗n+r−b−1[XDγ ]hb+1[Dγ ]×

× eb−k

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tγ

wγ
ea[Bγ ]

=
∑
a≥0

∑
γ

∑
b≥0

∑
τ→γ

(−1)r+a+kMtbcγτ

(
Tγ

Tτ

)b

e∗n+r−b−1[XDγ ]×(63)

× eb−k

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tγ

wγ
ea[Bγ ](64)

− χ(k = 0)
∑
a≥0

∑
γ

(−1)r+ae∗n+r−1[XDγ ]h
∗
d−a[1]×(65)

× h∗n+a−|γ|[−1]
Tγ

wγ
ea[Bγ ] .(66)

Notice already that equation (65)–(66) is equal to +χ(k = 0)Δhd
∇(e∗r−1h

∗
n).

Then it remains to expand equations (63)–(64). For this we use Bγ =

Bτ + Tγ

Tτ
and Dγ = Dτ + M Tγ

Tτ
. In this case ea[Bγ ] = ea[Bτ ] + ea−1[Bτ ]

Tγ

Tτ

and e∗n[XDγ ] =
∑

c≥0 e
∗
n−c[XDτ ]ec

[
X Tγ

Tτ

]
. We will also use the identity

tbeb−k

[
X
1−t

]
= tkeb−k

[
tX
1−t

]
to show that (63)–(64) is equivalent to the fol-

lowing expression:

= tk
∑
a≥0

∑
γ

∑
b≥0

∑
τ→γ

∑
c≥0

(−1)r+a+kMcγτ

(
Tγ

Tτ

)b

e∗n+r−b−1−c[XDτ ]×(67)

× ec

[
X

Tγ

Tτ

]
eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tγ

wγ
×(68)

×
(
ea[Bτ ] + ea−1[Bτ ]

Tγ

Tτ

)
.(69)
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We will regroup the Tγ/Tτ terms and break the expression into two separate

sums. We will also replace cγτ with dγτ using equation (10). Then equations

(67)–(69) are equivalent to

= tk
∑
a≥0

∑
γ

∑
b≥0

∑
τ→γ

∑
c≥0

(−1)r+a+kdγτe
∗
n+r−b−1−c[XDτ ]ec[X]×(70)

× eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tγ

wτ
ea[Bτ ]

(
Tγ

Tτ

)b+c+1

(71)

+ tk
∑
a≥0

∑
γ

∑
b≥0

∑
τ→γ

∑
c≥0

(−1)r+a+kdγτe
∗
n+r−b−1−c[XDτ ]ec[X]×(72)

× eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|γ|[−1]

Tτ

wτ
ea−1[Bτ ]

(
Tγ

Tτ

)b+c+2

.(73)

In both of these sums, we can interchange the sum over partitions γ and

then over τ → γ to a sum over partitions τ and then over γ ← τ . In

this case the sums of the form
∑

γ←τ dγτ

(
Tγ

Tτ

)n
= (−1)n−1en−1[Dτ ] (where

n ∈ {b+c+1, b+c+2}) by equation (11) since in both of the expressions we

have n > 1 so there is no χ(n = 0) term. Equations (70)–(73) are equivalent

to

= tk
∑

a,b,c≥0

∑
τ

(−1)r+a+k+b+ceb+c[Dτ ]e
∗
n+r−b−1−c[XDτ ]×(74)

× ec[X]eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea[Bτ ] .(75)

+ tk
∑

a,b,c≥0

∑
τ

(−1)r+a+k+b+c+1eb+c+1[Dτ ]e
∗
n+r−b−1−c[XDτ ]×(76)

× ec[X]eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea−1[Bτ ] .(77)

Instead of summing over b ≥ 0 and c ≥ 0, we will let v = b+ c and sum over

v ≥ 0 and 0 ≤ b ≤ v and let c = v − b. These replacements make equations

(74)–(77) equivalent to

= tk
∑
a≥0

∑
v≥0

v∑
b=0

∑
τ

(−1)r+a+k+vev[Dτ ]e
∗
n+r−v−1[XDτ ]ev−b[X]×(78)

× eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea[Bτ ] .(79)



A proof of the 4-variable Catalan polynomial of the Delta conjecture627

+ tk
∑
a≥0

∑
v≥0

v∑
b=0

∑
τ

(−1)r+a+k+v+1ev+1[Dτ ]e
∗
n+r−v−1[XDτ ]×(80)

× ev−b[X]eb−k

[
tX

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea−1[Bτ ] .(81)

Notice now that the sub expression

(82)

v∑
b=0

ev−b[X]eb−k

[
tX

1− t

]
= ev−k

[
X +

tX

1− t

]
= ev−k

[
X

1− t

]
.

By replacing this in the sum, equations (78)–(81) are equivalent to

= tk
∑
a≥0

∑
v≥0

∑
τ

(−1)r+a+k+vev[Dτ ]e
∗
n+r−v−1[XDτ ]×(83)

× ev−k

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea[Bτ ] .(84)

+ tk
∑
a≥0

∑
v≥0

∑
τ

(−1)r+a+k+v+1ev+1[Dτ ]e
∗
n+r−v−1[XDτ ]×(85)

× ev−k

[
X

1− t

]
h∗d−a[1]h

∗
n+a−|τ |−1[−1]

Tτ

wτ
ea−1[Bτ ] .(86)

We then note that equation (83)–(84) is the right hand side of the expression
derived in Lemma 16 with m → k and n → n − 1 and hence is equal to
tkB∗

kΔhd
∇(e∗rh

∗
n−1). As well we have that (85)–(86) with v → v − 1 and

a → a+ 1 is equivalent to the expression

tk
∑
a≥−1

∑
v≥1

∑
τ

(−1)r+a+k+v+1ev[Dτ ]e
∗
n+r−v[XDτ ]×(87)

× ev−k−1

[
X

1− t

]
h∗d−a−1[1]h

∗
n+a−|τ |[−1]

Tτ

wτ
ea[Bτ ](88)

and with a few exceptions of terms which are equal to 0 (i.e. a = −1 and
v = 0) this is precisely the right hand side of the expression in Lemma 16
with m → k + 1, d → d− 1 and hence is equal to tkB∗

k+1Δhd−1
∇(e∗rh

∗
n).

5. Remarks

Section 7 of [HRW15] has two conjectures that we do not resolve here. These
techniques may potentially be adapted to prove them as well, but some
additional work remains.
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The first conjecture which does not follow directly from Theorem 11 is

a symmetry property that is part of Conjecture 7.1 in [HRW15].

Conjecture 17. For non-negative integers k, � and n > k + �,

(89)
〈
Δh�

∇en−�, sk+1,1n−�−k−1

〉
=

〈
Δhk

∇en−k, s�+1,1n−�−k−1

〉
.

A proof of this result was announced recently by Michele D’Adderio and

Anna Vanden Wyngaerd [AW17].

A second conjecture is a combinatorial interpretation in terms of a second

type of decorated Dyck paths where vertical edges except for the bottom

most left one can be decorated. This second combinatorial interpretation

does not seem to be compatible with the compositional refinement as it is

currently formulated. However it is conjectured that it is compatible with

coefficients of the form
〈
Δhk

∇En−k,p, s�+1,1n−k−�−1

〉
(see Conjecture 7.2 of

[HRW15]) where

En−k,r =
∑

α|=n−k
�(α)=r

Cα .

Potentially recurrences on these coefficients that are compatible with the

interpretation with this other type of decorated Dyck path can be derived

from Corollary 10.

The Delta Conjecture is a combinatorial interpretation for the coeffi-

cients 〈Δe�en, hλ〉 for λ � n. We would guess that a different approach than

was developed for the Shuffle Conjecture may be needed because the coeffi-

cients 〈Δe�Cα, hλ〉 are not even polynomials in q and t unless � = |α| (and
this case is the Compositional Shuffle Conjecture).

It seems possible that one of the combinatorial interpretations for the

q, t, w, z-Catalan might extend to give an interpretation for 〈Δh�
∇Cα, hλ〉.

In this case, the techniques developed by Carlsson and Mellit [CM15] might

prove to be useful since those coefficients are compatible with the composi-

tional refinement. The extensions ideally are leading us in the direction of

explaining the following conjecture.

Conjecture 18. For non-negative integers � and n > k+ � and a composi-

tion α |= n− � and a partition λ � n− �,

(90)
〈
Δsμ∇Cα, sλ

〉

are polynomials in q and t with non-negative integer coefficients.
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While there has been significant recent progress on the monomial ex-
pansions of ∇(f) for various symmetric functions f , passing to the Schur
expansions is an important major hurdle.
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