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Exploring a Delta Schur Conjecture

Adriano Garsia
∗
, Jeffrey Liese, Jeffrey B. Remmel,

and Meesue Yoo
†

In [8], Haglund, Remmel, Wilson state a conjecture which predicts
a purely combinatorial way of obtaining the symmetric function
Δeken. It is called the Delta Conjecture. It was recently proved in
[1] that the Delta Conjecture is true when either q = 0 or t = 0.
In this paper we complete a work initiated by Remmel whose ini-
tial aim was to explore the symmetric function Δsνen by the same
methods developed in [1]. Our first need here is a method for con-
structing a symmetric function that may be viewed as a “combi-
natorial side” for the symmetric function Δsνen for t = 0. Based
on what was discovered in [1] we conjectured such a construction
mechanism. We prove here that in the case that ν = (m − k, 1k)
with 1 ≤ m < n the equality of the two sides can be established by
the same methods used in [1]. While this work was in progress, we
learned that Rhoades and Shimozono had previously constructed
also such a “combinatorial side”. Very recently, Jim Haglund was
able to prove that their conjecture follows from the results in [1].
We show here that an appropriate modification of the Haglund ar-
guments proves that the polynomial Δsνen as well as the Rhoades-
Shimozono “combinatorial side” have a plethystic evaluation with
hook Schur function expansion.

1. Introduction

Our manipulations rely heavily on plethystic notation and the terminology
used in [1]. In [8], the reader can find detailed explanations for all of the
notations used in this paper.

Recall that Dyck paths in the n×n lattice square Rn are paths from (0, 0)
to (n, n) proceeding by north and east unit steps, always remaining weakly
above the main diagonal of Rn. These paths are usually represented by
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their area sequence (a1, a2, . . . , an), where ai counts the number of complete
cells between the north step in the ith row and the diagonal. Notice that
the x-coordinate of the north step in the ith row is simply the difference
ui = i− 1− ai.

A parking function PF supported by the Dyck path D ∈ Rn is obtained
by labeling the north steps of D with 1, 2, . . . , n (usually referred as “cars”),
where the labels increase along the north segments of D. Parking functions
can be represented as two line arrays

PF =

(
c1 c2 · · · cn
a1 a2 · · · an

)

with cars ci and area numbers ai listed from bottom to top. We also set

area(PF ) =

n∑
i=1

ai,

dinv(PF ) =
∑

1≤i<j≤n

(
χ(ci < cj & ai = aj) + χ(ci > cj & ai = aj + 1)

)
.

Moreover, the word w(PF ) is the permutation obtained by reading the cars
in the two line array by decreasing area numbers and from right to left.

This given, the Haglund factor of a Dyck path D is obtained by setting

HD(z; t) =

n∏
i=2

(
1 +

z

tai

)χ(ui−1=ui).

The LLT polynomial constructed from the Dyck path D is obtained by
setting

LLTD(X; q, t) =
∑

D(PF )=D

tarea(PF )qdinv(PF )s
p
(
ides(w(PF )

)[X]

where the sum is over parking functions supported by D and the last factor
is the Schur function indexed by the composition giving the descent set of
the inverse of w(PF ).

The special version of the Delta Conjecture of [8] we refer to here is the
equality

(1) Δ′
ek−1

en =
∑

D∈Rn

LLTD(X; q, t) HD(z; t)
∣∣∣
zn−k
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where Δ′
F is the eigen-operator of the modified Macdonald polynomial de-

fined by setting for any symmetric function F

Δ′
F H̃μ[X; q, t] = F

[
Bμ(q, t)− 1

]
H̃μ[X; q, t] (for all μ).

As mentioned previously, it was proved in [1] that the equality in (1) is valid
when both sides are evaluated at q = 0. Since the left hand side is easily
shown to be symmetric in q and t, then it must also remain valid when both
sides are evaluated at t = 0.

The main result in [1] is the equality of the symmetric functions on the
right hand sides of the following two equations

(2)
∑
λ�n

LHSk,λsλ′ [x(1− q)] =
∑
μ�n

q−n(μ)Pμ[X; 1/q]
[�(μ)− 1

k − 1

]
q
(q; q)�(μ),

and

(3)
∑
λ�n

RHSk,λsλ′ [X(1− q)] = q−k(k−1)(q; q)k
∑
μ�n

�(μ)=k

qn(μ)Pμ[X; q],

(these are labeled (24) and (25) in that paper), where

LHSk,λ = q−(
k

2)〈Δ′
ek−1

en, sλ〉
∣∣∣
t=0

,

RHSk,λ =
∑

D∈Rn

〈
LLTD(X; q, t), sλ

〉
HD(z; t)

∣∣∣
zn−k

∣∣∣
t=0

,

and Pμ[X; q], Qμ[X; q] are the Hall-Littlewood polynomials with Cauchy
Kernel ∑

μ�n
Pμ[X; q]Qμ[Y ; q] = hn

[
XY (1− q)

]
.

The present work was started by Jeff Remmel who sadly passed away
before its completion. Remmel proposed the possibility of extending the
Delta Conjecture when the symmetric function side “Δ′

eken” is replaced by
“Δ′

sνen”, with ν an arbitrary partition. Remmel asked the first author to
obtain computer data to see if there was any similarity to the data that
was obtained in the classical case. One of the most surprising features of
the classical case is the discovery that the polynomial in (3) contains only
hook Schur functions in its Schur expansion. It is precisely this experimental
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discovery that made the proof of the equality of the polynomials in (2) and
(3) substantially less challenging.

This given, we began an exploration of the Schur expansion of the poly-
nomial

(4) LHSν,n[X; q] =
∑
λ�n

〈
Δ′

sνen , sλ
〉∣∣∣

t=0
sλ′ [X(1− q)].

To our surprise, this polynomial also yielded Schur expansions containing
only hook Schur functions.

A crucial feature of [1] was the discovery of a new method for proving
the equality of two symmetric functions. More precisely, the equality of the
functions in (2) and (3) as well as their hook Schur function expansion was
obtained simply by showing that both could be expressed as linear combi-
nations of the following shifted Cauchy kernel, using the same coefficients
ci(q) ∑

μ�n
Pμ[X; q]Qμ[

1−qi

1−q ; q] = hn
[
X(1− qi)

]
(for 1 ≤ i ≤ n).

The data obtained, in the present case, suggested that all these desired
features are present only when ν is restricted to be a hook partition (m −
k, 1k) with m < n. This discovery prompted us to study the symmetric
function

(5) LHSk,m,n[X, q] = ω
(
Δ′

sm−k,1k
en

∣∣∣
t=0

)
[X(1− q)].

Following the basic steps carried out in [1] we prove here that (5) is equiva-
lent to the identity

LHSk,m,n[X, q] =

qm+(k+1

2 )
∑
μ�n

q−n(μ)(q; q)�(μ)

[m− 1

k

]
q

[m+ �(μ)− (k + 2)

m

]
q
Pμ[X; q−1].

(6)

To mimic the methods used in the classical case, we now need to produce
a “combinatorial side”. A simple comparison of the right hand sides of (2)
and (3) shows that, in the case of the Delta Conjecture, the symmetric func-
tion produced by the “combinatorial side” could be obtained by expanding
the symmetric function side in terms of the basis {Pμ[X; q]}μ.
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This led to the decision to declare the symmetric function obtained by
expanding the polynomial in (4) in terms of the basis {Pμ[X; q]}μ as the
“combinatorial side” of (4). This decision led us to conjecture the following
“combinatorial side” of (5).

RHSk,m,n[X; q] =

qm
m+1∑
j=2+k

q(
k+2

2 )−(k+2)j+1
[j − 2

k

]
q

[m− 1

j − 2

]
q
(q; q)j

∑
μ�n;�(μ)=j

qn(μ)Pμ[X; q].
(7)

In this paper, we first prove that

(8) LHSk,m,n[X; q] = RHSk,m,n[X; q].

Jeff Remmel succeeded in formulating many of the conjectures needed
to prove (8) by precisely following the methods developed in [1]. In the
second section we will outline the proof of (8) and walk through the steps
used by Jeff Remmel to formulate his conjectures needed to complete this
proof. In the third section, we present the technical details carried out by the
remaining authors to prove Remmel’s conjectures and ultimately prove (8).

After this project was completed, we learned that Brendon Rhoades and
Mark Shimozono had already constructed, for any partition ν, a symmetric
function to be viewed as the “combinatorial side” and conjectured it to be
equal to the polynomial

(9) LHS ν,n[X, q] = ω
(
Δ′

sνen

∣∣∣
t=0

)
[X].

Even more importantly, Jim Haglund communicated to us that he was
able to prove the Rhoades-Shimozono conjectures using solely the results
in [1]. We show here that an appropriate modification of Haglund’s argu-
ment proves that the polynomial in (9) plethystically evaluated at X(1− q)
expands only in terms of hook Schur functions for all ν. This confirms our
original experimental findings about the polynomial in (4).

These truly surprising circumstances demanded at least two additional
investigations. The first was to determine whether or not there was any
relation between our method of predicting a “combinatorial side” and the
Rhoades-Shimozono conjectures. The second was to find a symmetric func-
tion reason explaining Haglund’s result. In the final section of the paper,
we present our comments about these two problems. Here we will add a few
words.
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For the first problem the evidence we gathered confirms that in this case

our combinatorial side predicts the Rhoades-Shimozono combinatorial side.

To be precise, we show that the symmetric function

LHSν,n[X, q] = ω
(
Δ′

sν en

∣∣∣
t=0

)
[X(1− q)]

expands in terms of the {Pμ[X, q−1]}μ basis as

(10) LHSν,n[X, q] = q|ν|
∑
μ�n

sν
[1−q�(μ)−1

1−q

]
q−n(μ)(q; q)�(μ)Pμ(X, q−1).

Expanding the polynomial in (10) in terms of the basis {Pμ[X, q]}μ yielded

our conjectured “combinatorial side” to be the symmetric function

RHSν,n[X, q] =

q|ν|
|ν|∑

k=�(ν)

(q; q)k
∑

|ρ|=|ν|,, �(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

×

× qn(ρ)q−k(k+1)(q; q)k+1

∑
μ�n ; �(μ)=k+1

qn(μ)Pμ[X; q].

It turns out that this is precisely the Rhoades-Shimozono “combinatorial

side” plethystically evaluated at X(1− q).

2. Jeff Remmel’s conjectures in the hook case

In this section, we will outline the steps followed by Remmel to formulate

the conjectures necessary to establish the equality in (8), that is,

LHSk,m,n[X; q] = RHSk,m,n[X; q]

with the polynomial in (6):

LHSk,m,n[X, q] =

qm+(k+1

2 )
∑
μ�n

q−n(μ)(q; q)�(μ)

[m− 1

k

]
q

[m+ �(μ)− (k + 2)

m

]
q
Pμ[X; q−1]
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as the “symmetric function side”, and the polynomial in (7):

RHSk,m,n[X; q] =

qm
m+1∑
j=2+k

q(
k+2

2 )−(k+2)j+1
[j − 2

k

]
q

[m− 1

j − 2

]
q
(q; q)j

∑
μ�n;�(μ)=j

qn(μ)Pμ[X; q]

as the “combinatorial side”.

To follow the classical case, Remmel used the identity

(11)
hn[X(1− qi)]

1− qi
=

∑
μ�n

qn(μ)Pμ[X; q]

�(μ)∏
j=2

(1− qi−j+1)

and then tried to solve for the ck,mi (q) in the equations

RHSk,m,n[X; q] =

n∑
i=1

ck,mi (q)
∑
μ�n

qn(μ)Pμ[X; q]

�(μ)∏
r=2

(1− qi−r+1),

which may be best rewritten as

(12) RHSk,m,n[X; q] =
∑
μ�n

qn(μ)Pμ[X; q]

n∑
i=1

ck,mi (q)

�(μ)∏
r=2

(1− qi−r+1).

Likewise (7) may also be rewritten as

RHSk,m,n[X; q] =∑
μ�n

qn(μ)Pμ[X; q]qmq(
k+2

2 )−(k+2)�(μ)+1
[�(μ)− 2

k

]
q

[ m− 1

�(μ)− 2

]
q
(q; q)j .

(13)

Since {Pμ[X; q]}μ is a basis, the equality of (12) and (13) can be true if and

only if we have

(14)
n∑

i=1

ck,mi (q)

j∏
r=2

(1− qi−r+1) = qm+(k+2

2 )−(k+2)j+1
[j − 2

k

]
q

[m− 1

j − 2

]
q
(q; q)j .

A careful examination of computer data led Jeff Remmel to conjecture
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that the solution of the equations in (14) are the coefficients
(15)

ck,ms (q) = (−1)m+1−sq(
m+1−s

2 )−(k+1)m+(k+1

2 )
[m− 1

k

]
q

[ k + 2

m+ 1− s

]
q
(1− qs).

It turns out that the proof of the Remmel conjecture is an easy conse-
quence of the nature of the equations in (14). This gives the validity of (14)

with the ck,mi (q) given by (15). This also proves the identity

n∑
i=1

ck,mi (q)
hn

[
X(1− qi)

]
1− qi

= RHSk,m,n[X; q]

for all 1 ≤ k ≤ m− 1 and m < n. This given, to prove (8) we only need to
show that for all 1 ≤ k ≤ m− 1 and m < n, we also have

n∑
i=1

ck,mi (q)
hn

[
X(1− qi)

]
1− qi

= LHSk,m,n[X; q].

However here, as in the classical case, rather than the expression in (11)
Remmel was forced to use the equivalent expression

hn[X(1− qi)]

1− qi
=

∑
μ�n

q−n(μ)Pμ[X; 1/q]

�(μ)∏
j=2

(1− qi+j−1).

This given, his next goal was to prove the identity

∑
μ�n

q−n(μ)Pμ[X; 1/q]

n∑
i=1

ck,mi (q)

�(μ)∏
j=2

(1− qi+j−1)

=
∑
μ�n

q−n(μ)Pμ[X; q−1]qm−k−1+(k+2

2 )×

×
[m− 1

k

]
q

[m+ �(μ)− (k + 2)

m

]
q
(q; q)�(μ).

Since {Pμ[X; q−1]}μ is a symmetric function basis, equating the coefficients
of Pμ[X; q−1] on both sides reduced us to verifying the following q-identity
for all 1 ≤ � ≤ n
(16)

n∑
i=1

ck,mi (q)

�∏
j=2

(1− qi+j−1) = qm+(k+1

2 )
[m− 1

k

]
q

[m+ �− (k + 2)

m

]
q
(q; q)�.
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Actually, in order to prove (8), we need only show that by means of the
Remmel’s coefficients defined in (15), both of his conjectures (14) and (16)
hold. The following section contains all the details needed to carry this out.

3. Technical details

In this section, we provide the technical details that are needed to prove the
Remmel conjectures. We begin with a particular q-binomial identity.

Proposition 3.1. Given nonnegative integers m, k, � with k+2 ≤ � ≤ m+1,

min(k+2,m+1−�)∑
i=0

(−1)iq(
i

2)
[
k + 2

i

]
q

[
m+ 1− i

�

]
q

= q(k+2)(m+1−�)

[
m− k − 1

�− 2− k

]
q

.

Proof. We will show that the proposition is a consequence of a well known
hypergeometric series identity. First, we put it in standard form. Let

tj = (−1)jq(
j

2)
[
k + 2

j

]
q

[
m+ 1− j

�

]
q

.

Then, the ratio of consecutive terms in the summation is tj+1

tj
which after

some simplification can be shown to be equal to −qk−�+2(1−q−2−kqj)(1−q�−m−1qj)
(1−qj+1)(1−q−m−1qj) .

Thus we can write the summation appearing on the left hand side of the
proposition as a hypergeometric series,

(17)

[
m+ 1

�

]
q
2Φ1

(
q−2−k, q�−m−1

q−m−1

∣∣∣∣q; qk−�+2

)
.

The q-Vandermonde hypergeometric series identity asserts that

2Φ1

(
A, q−n

C

∣∣∣∣q; C

Aq−n

)
=

(CA ; q)n

(C, q)n
.

Applying this to (17) yields

(18)

[
m+ 1

�

]
q

(qk−m+1; q)m−�+1

(q−m−1; q)m−�+1
.

Using the identity

(19) (q−n; q)m = qm(m−2n−1)/2(−1)m(qn−m+1; q)m,
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equation (18) can be simplified to

q(k+2)(m+1−�)

[
m+ 1

�

]
q

(q�−k−1; q)m−�+1

(q�+1; q)m−�+1
,

which can easily be manipulated to become the right hand side of the propo-

sition.

The identity given in Proposition (3.1) gives rise to the following corol-

lary under the substitution m → m− 1 + �.

Corollary 3.2.

min(k+2,m)∑
i=0

(−1)iq(
i

2)
[
k + 2

i

]
q

[
m+ �− i

�

]
q

= q(k+2)m

[
m+ �− (k + 2)

�− (k + 2)

]
q

.

What follows next is a proposition which completely verifies Remmel’s

conjectures. Namely, that given the coefficients defined in (15), both (14)

and (16) hold.

Proposition 3.3. Given nonnegative integers k,m, n, � with k + 2 ≤ � ≤
m+ 1 ≤ n,

1.

n∑
i=1

ck,mi

�∏
j=2

(1− qi−j+1) = qm+(k+2

2 )−(k+2)�+1

[
�− 2

k

]
q

[
m− 1

�− 2

]
q

(q; q)�

2.

n∑
i=1

ck,mi

�∏
j=2

(1− qi+j−1) = qm+(k+1

2 )
[
m− 1

k

]
q

[
m+ �− (k + 2)

m

]
q

(q; q)�

Proof. First, it is worth noting that by our definitions ck,mi = 0 when either

i > m + 1 or i < m − k − 1. To prove part 1, notice that when i < � the

product contains a 0 term. Thus,

n∑
i=1

ck,mi

�∏
j=2

(1− qi−j+1)

=

m+1∑
i=max(m−k−1,�)

ck,mi

�∏
j=2

(1− qi−j+1)

=
∑

ck,mi

(1− q) · · · (1− qi−1)

(1− q) · · · (1− qi−�)
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=
∑

ck,mi

[
i

�

]
q

(q; q)�
1− qi

=
∑

(−1)m+1−iq(
m+1−i

2 )−(k+1)m+(k+1

2 )
[
m− 1

k

]
q

[
k + 2

m+ 1− i

]
q

[
i

�

]
q

(q; q)�

=
∑

(−1)iq(
i

2)−(k+1)m+(k+1

2 )
[
m− 1

k

]
q

[
k + 2

i

]
q

[
m+ 1− i

�

]
q

(q; q)�

= q(
k+1

2 )−m(k+1)

[
m− 1

k

]
q

∑
(−1)iq(

i

2)
[
k + 2

i

]
q

[
m+ 1− i

�

]
q

(q; q)�.

Then using Proposition 3.1,

= q(
k+1

2 )−m(k+1)

[
m− 1

k

]
q

q(k+2)(m+1−�)

[
m− k − 1

�− 2− k

]
q

(q; q)�

= qm+(k+2

2 )−(k+2)�+1

[
�− 2

k

]
q

[
m− 1

�− 2

]
q

(q; q)�.

This completes the proof of part 1. To prove part 2,

n∑
i=1

ck,mi

�∏
j=2

(1− qi+j−1)

=

m+1∑
i=max(m−k−1,1)

ck,mi

�∏
j=2

(1− qi+j−1)

=

min(k+2,m)∑
i=0

ck,mm+1−i

�∏
j=2

(1− qm+j−i)

= q(
k+1

2 )−(k+1)m

[
m− 1

k

]
q

∑
(−1)iq(

i

2)
[
k + 2

i

]
q

�∏
j=1

(1− qm+j−i)

= q(
k+1

2 )−(k+1)m

[
m− 1

k

]
q

∑
(−1)iq(

i

2)
[
k + 2

i

]
q

[
m+ �− i

�

]
q

(q; q)�

= q(
k+1

2 )−(k+1)m

[
m− 1

k

]
q

q(k+2)m

[
m+ �− (k + 2)

�− (k + 2)

]
q

(q; q)�

= qm+(k+1

2 )
[
m− 1

k

]
q

[
m+ �− (k + 2)

m

]
q

(q; q)�

The next to last step is justified by Corollary 3.2.
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4. Additional investigations

To begin the investigation of whether our “combinatorial side” was related
to that of Rhoades-Shimozono, we first expanded the symmetric function

ω
(
Δ′

sνen

∣∣∣
t=0

)
[X(1 − q)] in terms of the basis {Pμ(X, q−1)}μ. This is done

in the following theorem.

Theorem 4.1.
(20)

ω
(
Δ′

sνen

∣∣∣
t=0

)
[X(1− q)] = q|ν|

∑
μ�n

sν
[1−q�(μ)−1

1−q

]
q−n(μ)(q; q)�(μ)Pμ(X, q−1).

Proof. We begin with the following expansion of en (Lemma 2.1 in [1]),

en(X) =
∑
μ�n

(1− q)(1− t)H̃μ(X; q, t)Π′
μ(q, t)Bμ(q, t)

wμ(q, t)
.

Recognizing that the left hand side does not contain the indeterminates q
and t, we can interchange them and obtain

en(X) =
∑
μ�n

(1− q)(1− t)H̃μ(X; t, q)Π′
μ(t, q)Bμ(t, q)

wμ(t, q)
.

Then using the definition of Δ′, and setting t = 0, we have

(21) Δ′
sνen

∣∣∣
t=0

=
∑
μ�n

(1− q)sν
[
Bμ(0, q)− 1

]
H̃μ(X; 0, q)Π′

μ(0, q)Bμ(0, q)

wμ(0, q)
.

In [1], it was noted that

Bμ(0, q) = 1 + q + · · ·+ q�(μ)−1 =
1− q�(μ)

1− q
,

Π′
μ(0, q) = (q; q)�(μ)−1,

wμ(0, q) =
∏
c∈μ

ql(c) ·
∏
c∈μ

a(c)=0

(1− ql(c)+1) ·
∏
c∈μ

a(c)>0

(−ql(c)+1)

= (−1)n−�(μ)q2n(μ)+n−
∑

i (
mi(μ)+1

2 )
∏
i

(q; q)mi(μ),
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where (q; q)m = (1− q) · · · (1− qm). Substituting these into (21) and simpli-

fying gives

Δ′
sνen

∣∣∣
t=0

=∑
μ�n

(−1)n−�(μ)sν
[
q + q2 + · · ·+ q�(μ)−1

]
×

× q−2n(μ)−n+
∑

i (
mi(μ)+1

2 )
[ �(μ)

m(μ)

]
q
H̃μ(X; 0, q).

Replacing X by X(1− q) and factoring a q out of the plethystic evaluation,

the right hand side becomes

q|ν|
∑
μ�n

(−1)n−�(μ)sν

[1− q�(μ)−1

1− q

]
×

×q−2n(μ)−n+
∑

i (
mi(μ)+1

2 )
[ �(μ)

m(μ)

]
q
H̃μ [X(1− q); 0, q] ,

and then expanding H̃μ [X(1− q); 0, q] yields

q|ν|
∑
μ�n

(−1)n−�(μ)sν

[1− q�(μ)−1

1− q

]
×

q−2n(μ)−n+
∑

i (
mi(μ)+1

2 )
[ �(μ)

m(μ)

]
q

∑
λ�n

sλ [X(1− q)] K̃λ,μ(q).

But, as sλ [X(1− q)] = (−q)nsλ′ [X(1− 1/q)] and K̃λ,μ(q) = qn(μ)Kλ,μ(q
−1),

we can now apply ω and eventually arrive at

q|ν|
∑
μ�n

(−1)�(μ)sν

[1− q�(μ)−1

1− q

]
q−n(μ)+

∑
i (

mi(μ)+1

2 )
[ �(μ)

m(μ)

]
q
×

×
∑
λ�n

sλ
[
X(1− q−1)

]
Kλ,μ(q

−1).

We will next need two facts stated in [1]:

(22) Qμ(X, q) =
∑
λ�n

sλ [X(1− q)]Kλ,μ(q)
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and

(23) Pμ(X, q−1) =
(−1)�(μ)q

∑
i (

mi(μ)+1

2 )∏
(q; q)mi(μ)

Qμ(X, q−1),

where μ is a partition of n. Applying (22) at q−1 gives

q|ν|
∑
μ�n

(−1)�(μ)sν

[1− q�(μ)−1

1− q

]
q−n(μ)+

∑
i (

mi(μ)+1

2 ) (q; q)�(μ)∏�(μ)
i=1 (q; q)mi(μ)

Qμ(X, q−1),

and then applying (23) we prove the theorem, namely,

ω
(
Δ′

sνen

∣∣∣
t=0

)
[X(1− q)] = q|ν|

∑
μ�n

sν
[1−q�(μ)−1

1−q

]
q−n(μ)(q; q)�(μ)Pμ(X, q−1).

Corollary 4.2. The identity (6), namely,

LHSk,m,n[X, q] =

qm+(k+1

2 )
∑
μ�n

[m− 1

k

]
q

[m+ �(μ)− (k + 2)

m

]
q
q−n(μ)(q; q)�(μ)Pμ[X; q−1],

is none other but a specialization of Theorem 4.1, at ν = (m− k, 1k).

Proof. Recall that the definition of the left hand side of (6) is

LHSk,m,n[X, q] = ω
(
Δ′

sm−k,1k
en

∣∣∣
t=0

)
[X(1− q)]

Now the Macdonald formula for the plethystic evaluation of sλ at 1 + q +

· · ·+ qn−1 is

sλ[1 + q + · · ·+ qn−1] = qn(λ)
[ n
λ′

]
q

where [n
λ

]
q

=
∏
x∈λ

1− qn−c(x)

1− qh(x)
.

With c(x) and h(x) the content and the hook of cell x ∈ λ. See the diagram

below for an example of the content and hook for a partition which is a hook

shape.
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-4
-3
-2
-1
0 1 2 3

m-k-1

k

c(x)

1
2
3
4
8 3 2 1

m-k-1

m

h(x)

Now for λ = (m−k, 1k) we have n(λ) =
(
k+1
2

)
and λ′ = (k+1, 1m−k−1).

We thus obtain

sm−k,1k [1 + q + · · ·+ q�−2]

=q(
k+1

2 ) (1− q�−1+0) · · · (1− q�−1+m−k−1)(1− q�−1−1) · · · (1− q�−1−k)

(q; q)k(1− qm)(q; q)m−k−1

= q(
k+1

2 ) (q�−k−1, q)m
(q; q)k(1− qm)(q; q)m−k−1

.

See the illustration above where the statistics c(x) and h(x) are computed
for the hook partition (m− k, 1k)

Notice next that we have

[m− 1

k

]
q

[m+ �(μ)− (k + 2)

m

]
q

=
1

(q; q)k(q; q)m−1−k

(q; q)m+�(μ)−(k+2)

(1− qm)(q; q)�(μ)−(k+2)

=
(q�−k−1, q)m

(q; q)k(1− qm)(q; q)m−1−k
.

To prove that for ν = (m − k, 1k) (20) reduces to (6), we need only verify
the equality

qmsm−k,1k

[1−q�−1

1−q

]
= qm+(k+1

2 )
[m− 1

k

]
q

[m+ �− (k + 2)

m

]
q
.

However, the above calculations show exactly that.

Theorem 4.1 provides an expansion of the symmetric function side in
terms of the {Pμ(X, q−1)} basis. We now seek an appropriate “combinatorial
side” by expanding the same symmetric function in terms of the {Pμ(X, q)}
basis. In order to do this, we will use a special evaluation given in the
following theorem.
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Theorem 4.3.

(24) sν

[
1−qj−1

1−q

]
=

|ν|∑
k=�(ν)

∑
|ρ|=|ν|
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

qn(ρ)
(q; q)j−1

(q; q)j−1−k
.

Proof. Recall that from [11], we get the identity

sν [X] =
∑
ρ�|ν|

Kν,ρ(q)Pρ[X, q],

which can be also written as

sν [X] =
∑
ρ�|ν|

Kν,ρ(q)
Qρ[X, q]∏m

i=1(q; q)mi(ρ)

and X→X/(1− q) gives

sν
[

X
1−q

]
=

∑
ρ�|ν|

Hρ[X; q]
Kν,ρ(q)∏m

i=1(q; q)mi(ρ)
.

Now the replacement X→1− qj−1 yields

sν
[1−qj−1

1−q

]
=

∑
ρ�|ν|

Hρ[1− qj−1; q]
Kν,ρ(q)∏m

i=1(q; q)mi(ρ)
.

This can be rewritten in the form

(25) sν
[1−qj−1

1−q

]
=

|ν|∑
k=1

∑
|ρ|=|ν|
�(ρ)=k

Hρ[1− qj−1; q]
Kν,ρ(q)∏m

i=1(q; q)mi(ρ)
.

Now, the Macdonald reciprocity in the Hall-Littlehood case yields

Hρ[1− u; q] = qn(ρ)
�(ρ)∏
s=1

(1− u/qs−1).

In particular, the replacement u→qj−1 gives (for �(ρ) = k)

Hρ[1− qj−1; q] = qn(ρ)
k∏

s=1

(1− qj−s) = qn(ρ)(1− qj−k) · · · (1− qj−1).
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Thus (25) becomes

sν
[1−qj−1

1−q

]
=

|ν|∑
k=1

∑
|ρ|=|ν|
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

qn(ρ)
(q; q)j−1

(q; q)j−1−k
.

Since the coefficient Kν,ρ(q) fails to vanish only when ν ≥ ρ in dominance,

the hypothesis �(ρ) = k forces �(ν) ≤ k. This given we can write

sν
[1−qj−1

1−q

]
=

|ν|∑
k=�(ν)

∑
|ρ|=|ν|
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

qn(ρ)
(q; q)j−1

(q; q)j−1−k
.

Now Theorem 4.1 gives that our symmetric function side has the expan-

sion

LHSν,n[X, q] = q|ν|
∑
μ�n

sν
[1−q�(μ)−1

1−q

]
q−n(μ)(q; q)�(μ)Pμ(X, q−1).

Using Theorem 4.3, this can be rewritten as

q|ν|
∑
μ�n

|ν|∑
k=�(ν)

∑
|ρ|=|ν|
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

×

× qn(ρ)
(q; q)�(μ)−1

(q; q)�(μ)−1−k
q−n(μ)(q; q)�(μ)Pμ(X, q−1),

or better,

q|ν|
|ν|∑

k=�(ν)

(q; q)k
∑
|ρ|=|ν
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

×

× qn(ρ)
∑
μ�n

[�(μ)− 1

k

]
q
q−n(μ)(q; q)�(μ)Pμ(X, q−1).

Recall that in [1], for the classical case of the Delta conjecture at t = 0,
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we proved the identity

∑
μ�n

q−n(μ)Pμ[X; q−1]
[�(μ)− 1

k

]
q
(q; q)�(μ) =

q−k(k+1)(q; q)k+1

∑
μ�n ; �(μ)=k+1

qn(μ)Pμ[X; q].

This permits us to obtain the expansion of the symmetric function side in
terms of the basis

{
Pμ[X; q]

}
μ
and use our recipe to obtain what we would

label as the “combinatorial side”. Namely,

RHSν,n[X, q] = q|ν|
|ν|∑

k=�(ν)

(q; q)k
∑
|ρ|=|ν
�(ρ)=k

Kν,ρ(q)∏m
i=1(q; q)mi(ρ)

qn(ρ)×

× q−k(k+1)(q; q)k+1

∑
μ�n ; �(μ)=k+1

qn(μ)Pμ[X; q].

Additionally, the last sum appearing in RHS ν,n[X, q] was proved to have
a hook Schur function expansion in [1]. We have thus proved the following
generalization of (8).

Theorem 4.4. It is not only true that

(26) LHS ν,n[X, q] = RHS ν,n[X, q],

but also that the Schur expansion of both sides contains only hook Schur
functions.

Remark 4.5. The right hand side of this identity is none one other than
the Rhoades-Shimozono “combinatorial side” transformed to our set up, (see
the righthand side of Theorem 1.2 in [17]).

Remark 4.6. In [1] (see Lemma 4.2) it is shown that

hn[X(1− u)] = (1− u)

n−1∑
s=0

(−u)ss(n−s,1s)[X].

It follows from this identity that any symmetric polynomial whose Schur
functions expansion contains only hook Schur functions may be expanded as
linear combination of the shifted Cauchy kernel hn(X(1− qi)]. What forced
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Remmel to restrict himself to Δsνen in the hook case of ν is that in the hook
case the needed coefficients are products of q-analogues of integers. This fa-
cilitated conjecturing their exact nature. With the wisdom of hindsight we
can now explain Haglund’s result as due to the fact that Schur function ex-
pansions of the appropriately modified polynomials Δsνen contain only hook
Schur functions in full generality. However, this circumstance is only an
artifact of the specialization at t = 0. In fact, without this specialization,
computer data reveals the dimension of the space spanned by the polynomi-
als Δsνen to be much larger than n. The data suggests that, more likely, this
dimension is the number of partitions of n.
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