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Fixed-point-free involutions and Schur P -positivity

Zachary Hamaker, Eric Marberg, and Brendan Pawlowski
∗

The orbits of the symplectic group acting on the type A flag variety
are indexed by the fixed-point-free involutions in a finite symmet-
ric group. The cohomology classes of the closures of these orbits
have polynomial representatives ŜFPF

z akin to Schubert polynomi-
als. We show that the fixed-point-free involution Stanley symmetric
functions F̂ FPF

z , which are stable limits of the polynomials ŜFPF
z ,

are Schur P -positive. To do so, we construct an analogue of the
Lascoux-Schützenberger tree, an algebraic recurrence that com-
putes Schubert polynomials. As a byproduct of our proof, we ob-
tain a Pfaffian formula of geometric interest for ŜFPF

z when z is a
fixed-point-free version of a Grassmannian permutation. We also
classify the fixed-point-free involution Stanley symmetric functions
that are single Schur P -functions, and show that the decomposi-
tion of F̂ FPF

z into Schur P -functions is unitriangular with respect to
dominance order on strict partitions. These results and proofs mir-
ror previous work by the authors related to the orthogonal group
action on the type A flag variety.

1. Introduction

Fix a positive integer n and let B ⊂ GLn(C) be the Borel subgroup of
lower triangular matrices in the general linear group. The orbits Ωw of the
opposite Borel subgroup of upper triangular matrices acting on the flag
variety Fl(n) = GLn(C)/B are indexed by permutations w ∈ Sn and their
closures Xw give Fl(n) a CW-complex structure. The cohomology ring of
Fl(n) has a presentation in terms of the Schubert polynomials Sw introduced
by Lascoux and Schützenberger [15]. For the precise definition of Sw, see
Section 2.2.

Schubert polynomials are of continued interest to both algebraic geome-
ters and combinatorialists. Computing the positive structure coefficients cwuv
in the expansion SuSv =

∑
cwuvSw remains a prominent open problem in

algebraic combinatorics. Among other interesting formulas, there is a gen-
erating function-type description of Sw in terms of the reduced words for w
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[3], and a determinantal formula for Sw when w is vexillary (2143-avoiding)

or fully commutative (321-avoiding). When w is dominant (132-avoiding),

Sw is a monomial.

Assume n is even and consider the symplectic group Spn(C) acting on

Fl(n). There are again finitely many orbits, now indexed by the fixed-point-

free involutions in Sn [22]. For a fixed-point-free involution z ∈ Sn, the

cohomology class of the corresponding orbit closure Yz is represented by the

fixed-point-free involution Schubert polynomial ŜFPF
z introduced in [30] and

described precisely by Definition 2.4. In [8], we gave a generating function-

type description of ŜFPF
z in terms of reduced words and derived a simple

product formula for ŜFPF
z when z is a dominant fixed-point-free involution.

In this paper, we continue to study ŜFPF
z and related combinatorics. Some

of this combinatorics also appears in representation theory when studying

the quasi-parabolic Iwahori-Hecke algebra modules defined by Rains and

Vazirani [21].

The groups On(C) and GLp(C) × GLq(C) (with p + q = n) also act on

Fl(n) with finitely many orbits. This paper is a continuation of the authors’

previous work on the On(C) case [11]. The GLp(C)×GLq(C) case has not yet

been as thoroughly investigated, though there has been some recent progress

in [4]; see also [5, 31].

The symmetric group Sn of permutations of [n] = {1, 2, . . . , n} is a

Coxeter group generated by the simple transpositions si = (i, i + 1) for

1 ≤ i ≤ n − 1. For u ∈ Sm and v ∈ Sn, we write u × v for the permutation

in Sm+n that maps i �→ u(i) for i ∈ [m] and m + i �→ m + v(i) for i ∈ [n].

The Stanley symmetric function of w ∈ Sn is then the stable limit

Fw
def
= lim

m→∞
S1m×w

where 1m denotes the identity element of Sm. This is a well-defined homoge-

neous symmetric function; see Section 2.2. These functions were introduced

by Stanley to enumerate reduced words [26]. Edelman and Greene showed

bijectively that Stanley symmetric functions are Schur positive using an

insertion algorithm [7].

A permutation is Grassmannian if it has exactly one descent. If w ∈
Sn is Grassmannian then Sw is a Schur polynomial and Fw is a Schur

function [19, Proposition 2.6.8]. One can show algebraically that Fw is Schur

positive by using the Lascoux-Schützenberger tree [15], an iterated recurrence

for Schubert polynomials based on certain specializations of Monk’s rule.

The Lascoux-Schützenberger tree decomposes Sw into a sum of Schubert
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polynomials indexed by Grassmannian permutations and other terms whose
stable limits vanish.

Let FPFn be the set of fixed-point-free involutions in S2n. Define Θn =
(1, 2)(3, 4) . . . (2n−1, 2n) ∈ FPFn. The fixed-point-free involution Stanley
symmetric function of z ∈ FPFn is the limit

F̂ FPF
z

def
= lim

n→∞
ŜFPF

Θn×z

which is a well-defined homogeneous symmetric function; see Section 2.3.
We introduced these functions in [8] to study the enumeration of certain
analogues of reduced words.

The odd power-sum functions p1, p3, p5, . . . generate a subalgebra Γ of
the usual algebra of symmetric functions Λ. This subalgebra has a distin-
guished basis {Pλ} indexed by strict integer partitions, whose elements Pλ

are the so-called Schur P-functions. See Section 2.4 for the precise definition.
In [8] we conjectured the following statement, which is proved at the end of
Section 5:

Theorem 1.1. Each F̂ FPF
z is Schur P -positive, i.e., F̂ FPF

z ∈ N-span{Pλ :
λ is a strict partition}.

The first step in our proof of this result to identify the “fixed-point-free”
analogue of a Grassmannian permutation and then prove that F̂ FPF

z is a
Schur P -function when z is an involution of this type. The precise definition
of an FPF-Grassmannian involution is sightly unintuitive; for the details, see
Definition 4.14. We can easily describe which Schur P -function corresponds
to an FPF-Grassmannian involution, however.

The (FPF-involution) code of z ∈ FPFn is the sequence ĉFPF(z) =
(c1, c2, . . . , c2n) in which ci is the number of positive integers j with j <
i < z(j) and j < z(i). Define the shape of z ∈ FPFn to be the parti-
tion ν(z) given by the transpose of the partition that sorts ĉFPF(z). For
example, if z = 2n · · · 321 = (1, 2n)(2, 2n − 1) · · · (n, n + 1) ∈ FPFn, then
ĉFPF(z) = (0, 1, 2, . . . , n−1, n−1, . . . , 2, 1, 0) and ν(z) = (2n−2, 2n−4, . . . , 2).
The following is proved as Theorem 4.19.

Theorem 1.2. If z ∈ FPFn is FPF-Grassmannian, then ν(z) is strict and
F̂ FPF
z = Pν(z).

The second step in our proof of Theorem 1.1 is to define an analogue
of the Lascoux-Schützenberger tree for fixed-point-free involutions. We do
this using the transition equations that we introduced in [10]. We show
that repeated applications of these transition equations always result in a



68 Zachary Hamaker et al.

sum of ŜFPF
z ’s where z is FPF-Grassmannian, along with other terms whose

stable limits vanish. The desired Schur P -positivity property follows from

Theorem 1.2 on taking limits.

This proof can be recast as an algorithm to explicitly compute any F̂ FPF
z .

By choosing an appropriate involution, one can use this algorithm to expand

any product PλPμ as a positive linear combination of Schur P -functions. In

this way, we obtain a new Littlewood-Richardson rule for Schur P -functions

from our results (see Corollary 5.24).

It remains an open problem to find a bijective proof of Theorem 1.2.

Since the FPF-transition equations have a bijective interpretation [10], a

bijective proof of Theorem 1.2 would, in principle, lead to a bijective proof

of Theorem 1.1. A more direct way of proving Theorem 1.1 bijectively would

be to find an insertion algorithm for fixed-point-free involution words (see

Section 2.3).

A permutation w ∈ Sn is vexillary if Fw is a single Schur function. Anal-

ogously, we say that z ∈ FPFn is FPF-vexillary if F̂ FPF
z is a single Schur P -

function. FPF-Grassmannian involutions are FPF-vexillary by Theorem 1.2.

Stanley showed that w ∈ Sn is vexillary if and only if w avoids the pattern

2143. A similar result holds for involutions; see Theorem 7.8 for the full

statement.

Theorem 1.3. There is a pattern avoidance condition characterizing FPF-

vexillary involutions.

The dominance order on partitions is the partial order ≤ with λ ≤ μ

if
∑m

i=1 λi ≤
∑m

i=1 μi for all m ∈ N. In Section 6, we show that the Schur

P -expansion of F̂ FPF
z is unitriangular with respect to dominance order, in

the following sense:

Theorem 1.4. If z ∈ FPFn then ν(z) is strict and F̂ FPF
z ∈ Pν +N-span{Pλ :

λ < ν(z)}.

We mention a quick application of these results. The explicit version

of Theorem 1.3 implies that the reverse permutation 2n · · · 321 ∈ FPFn is

FPF-vexillary. By Theorem 1.4, we therefore have F̂ FPF
2n···321 = Pν(2n···321) =

P(2n−2,2n−4,...,2). In prior work, we proved that F̂ FPF
2n···321 = (sδn)

2 where sλ is

the Schur function of a partition λ and δn = (n− 1, . . . , 3, 2, 1) [8, Theorem

1.4]. Combining these formulas shows that P(2n−2,2n−4,...,2) = (sδn)
2, which

is a special case of [6, Theorem V.3].

Assume z ∈ FPFn is FPF-Grassmannian. The symmetric function F̂ FPF
z =

Pν(z) can then be expressed as the Pfaffian of a matrix whose entries are
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Schur P -functions indexed by partitions with at most two parts. This for-
mula is essentially Schur’s original definition of Pλ in [24]. In general, the
polynomial ŜFPF

z is not equal to Pν(z) specialized to finitely many variables.

However, ŜFPF
z has a similar Pfaffian formula which we sketch as follows.

There is an FPF-Grassmannian involution z of shape (n−φ1, n−φ2, . . . ,
n − φr) associated to each sequence of integers 1 ≤ φ1 < φ2 < · · · < φr ≤
n, and we define ŜFPF[φ1, φ2, . . . , φr;n] = ŜFPF

z to be the FPF-involution
Schubert polynomial of this element. For the precise definition, see (30).
The following is restated as Theorem 8.8 and illustrated in a concrete case
by Example 8.9.

Theorem 1.5. Suppose 1 ≤ φ1 < φ2 < · · · < φr ≤ n are integers. Let
m be whichever of r or r + 1 is even. Define M to be the m × m skew-
symmetric matrix with Mij = −Mji = ŜFPF[φi, φj ;n] whenever i < j,

where ŜFPF[φi, φr+1;n]
def
= ŜFPF[φi;n]. Then ŜFPF[φ1, φ2, . . . , φr;n] = pfM.

Combining this identity with our Lascoux-Schützenberger tree for fixed-
point-free involutions gives an algorithm for expanding any ŜFPF

z as a sum of
Pfaffians. One piece is missing to make this algorithm effective as a means
of computing ŜFPF

z : it remains an open problem to find a simple formula for
the terms ŜFPF[φi, φj ;n] appearing in the matrix M in Theorem 1.5. This is
unexpectedly nontrivial.

There is a determinantal formula for Sw which holds when w ∈ Sn is
a vexillary permutation. Analogously, there should exist a Pfaffian formula
for ŜFPF

z applicable when z is any FPF-vexillary involution. Such a for-
mula would generalize Theorem 1.5 since FPF-Grassmannian involutions are
FPF-vexillary. There is also a determinantal formula for Sw when w is fully
commutative. This formula should have an analogue for the polynomials
ŜFPF

z ; however, we do not yet know what the appropriate “fixed-point-free”
analogue of a fully commutative permutation should be.

Knutson, Lam, and Speyer have given a geometric interpretation of the
Stanley symmetric function Fw as the representative for the class of a graph
Schubert variety in the Grassmannian Gr(n, 2n) [14]. It would be interest-
ing to find a geometric interpretation of Theorem 1.1 in this vein. Schur
P -functions are cohomology representatives for Schubert varieties in the or-
thogonal Grassmannian. We believe there is a way to adapt the construction
of Knutson, Lam, and Speyer to give a subvariety of the orthogonal Grass-
mannian whose class is represented by F̂ FPF

z , resulting in a geometric proof
of Theorem 1.1. A similar approach should also relate On(C)-orbit closures
to the geometry of the Lagrangian Grassmannian.
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2. Preliminaries

Let P ⊂ N ⊂ Z denote the respective sets of positive, nonnegative, and all

integers. For n ∈ P, let [n]
def
= {1, 2, . . . , n}. The support of a map w : X →

X is the set supp(w)
def
= {i ∈ X : w(i) �= i}. Define SZ as the group of

permutations of Z with finite support, and let S∞ ⊂ SZ be the subgroup of
permutations with support contained in P. We view Sn as the subgroup of
permutations in S∞ fixing all integers outside [n].

Throughout, we let si
def
= (i, i + 1) ∈ SZ for i ∈ Z. Let R(w) be the set

of reduced words for w ∈ SZ, i.e., the sequences (si1 , si2 , . . . , sip) of simple
transpositions of shortest possible length such that w = si1si2 . . . sip . Write
�(w) for the common length of each word in R(w). When w : Z → Z is any
bijection, we let DesR(w) (respectively, DesL(w)) denote the set of simple
transpositions si for i ∈ Z with w(i) > w(i + 1) (respectively w−1(i) >
w−1(i + 1)). If w ∈ SZ then DesL(w) and DesR(w) are the usual right and
left descent sets of w, consisting of the simple transpositions s such that
�(sw) < �(w) and �(ws) < �(w), respectively.

2.1. Divided difference operators

We recall a few properties of divided difference operators. Our main refer-

ences are [13, 19]. Let L def
= Z

[
x1, x2, . . . , x

−1
1 , x−1

2 , . . .
]
be the ring of Lau-

rent polynomials over Z in a countable set of commuting indeterminates,

and let P def
= Z[x1, x2, . . . ] be the subring of polynomials in L. The group

S∞ acts on L by permuting variables, and one defines

(1) ∂if
def
= (f − sif)/(xi − xi+1) for i ∈ P and f ∈ L.

The divided difference operator ∂i defines a map L → L that restricts to a
map P → P . It is clear by definition that ∂if = 0 if and only if sif = f .
If f ∈ L is homogeneous and ∂if �= 0 then ∂if is homogeneous of degree
deg(f)− 1. If f, g ∈ L then ∂i(fg) = (∂if)g + (sif)∂ig, and if ∂if = 0, then
∂i(fg) = f∂ig.

For i ∈ P the isobaric divided difference operator πi : L → L is defined
by

(2) πi(f)
def
= ∂i(xif) = f + xi+1∂if for f ∈ L.

Observe that πif = f if and only if sif = f , in which case πi(fg) = fπi(g)
for g ∈ L. If f ∈ L is homogeneous with πif �= 0, then πif is homogeneous
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of the same degree. The operators ∂i and πi both satisfy the braid relations
for S∞, so we may define ∂w = ∂i1∂i2 · · · ∂ik and πw = πi1πi2 · · ·πik for any
(si1 , si2 , . . . , sik) ∈ R(w). Moreover, one has ∂2

i = 0 and π2
i = πi for all i ∈ P.

2.2. Schubert polynomials and Stanley symmetric functions

Fix n ∈ P and let wn
def
= n · · · 321 ∈ Sn and xδn

def
= xn−1

1 xn−2
2 · · ·x1n−1. The

Schubert polynomial (see [13, 19]) of w ∈ Sn is the polynomial

Sw
def
= ∂w−1wn

xδn ∈ P .

This formula for Sw is independent of the choice of n such that w ∈ Sn, and
we consider the Schubert polynomials to be a family indexed by S∞. Since
∂2
i = 0, it follows that

(3) S1 = 1 and ∂iSw =

{
Swsi if si ∈ DesR(w)

0 if si /∈ DesR(w)
for each i ∈ P.

Conversely, one can show that {Sw}w∈S∞ is the unique family of homoge-
neous polynomials indexed by S∞ satisfying (3); see [13, Theorem 2.3] or
the introduction of [2]. Each Sw has degree �(w), and the polynomials Sw

for w ∈ S∞ form a Z-basis for P [19, Proposition 2.5.4].
There is a useful formula for Sw as a sort of generating function over

reduced words due to Billey, Jockusch, and Stanley [3]. Fix w ∈ Sn, and
for each a = (sa1

, sa2
, . . . , sak

) ∈ R(w), let C(a) be the set of sequences of
positive integers I = (i1, i2 . . . , ik) satisfying

(4) i1 ≤ i2 ≤ · · · ≤ ik and ij < ij+1 whenever aj < aj+1.

We write I ≤ a to indicate that ij ≤ aj for all j and define xI = xi1xi2 · · ·xik .
The Schubert polynomial corresponding to w ∈ Sn is then [3, Theorem 1.1]

(5) Sw =
∑

a∈R(w)

∑
I∈C(a)
I≤a

xI .

For example, since R(312) = {(s2, s1)} and R(1342) = {(s2, s3)}, it holds
that

S312 = x21 and S1342 = x1x2 + x1x3 + x2x3.

As expected, one has ∂1S312 = ∂3S1342 = S132 = x1 + x2.
Write Λ for the usual subring of bounded degree symmetric functions

in the ring of formal power series Z[[x1, x2, . . . ]]. A sequence of power series



72 Zachary Hamaker et al.

f1, f2, . . . has a limit limn→∞ fn ∈ Z[[x1, x2, . . . ]] if the coefficient sequence
of each fixed monomial is eventually constant. For any map w : Z → Z and
N ∈ Z, let w � N : Z → Z be the map i �→ w(i−N) +N .

Definition 2.1. If w ∈ SZ then the limit

Fw
def
= lim

N→∞
Sw�N =

∑
a∈R(w)

∑
I∈C(a)

xI ∈ Z[[x1, x2, . . . ]]

is the Stanley symmetric function of w.

The second equality in this definition follows from (5). Stanley intro-
duced these power series and proved that they are symmetric in [26]. (The
indexing conventions of [26] differ from ours by the transformation of indices
w �→ w−1.) The symmetric function Fw is homogeneous of degree �(w), and
the coefficient of any square-free monomial in Fw is |R(w)|. For example,

F321 =
∑

i<j<k

2xixjxk +
∑
i<j

(x2ixj + xix
2
j )

and |R(321)| = |{(s1, s2, s1), (s2, s1, s2)}| = [x1x2x3]F321 = 2.
Definition 2.1 makes it clear that Fw = Fw�N for any N ∈ Z, but does

not tell us how to efficiently compute these symmetric functions. It is well-
known result of Edelman and Greene [7] that each Fw is Schur positive; for
a brief account of one way to compute the corresponding Schur expansion,
see [11, §4.2]. We require one other definition of Fw.

Lemma 2.2 (Macdonald [17]). If w ∈ S∞ then Fw = limn→∞ πwn
Sw.

Proof. This is reproved in [8, §3]: the claim follows from [8, Proposition 3.37
and Theorem 3.39].

2.3. FPF-involution Schubert polynomials

For n ∈ P, let FPFn be the set of permutations z ∈ Sn with z = z−1 and
z(i) �= i for all i ∈ [n]. Let FPF∞ and FPFZ be the S∞- and SZ-conjugacy
classes of the permutation Θ : Z → Z given by

(6) Θ : i �→ i− (−1)i.

We refer to elements of FPFn, FPF∞, and FPFZ as fixed-point-free (FPF)
involutions. Note that FPFn is empty if n is odd. For z ∈ FPFZ andN ∈ Z, we
see z � N ∈ FPFZ if and only if N is even. While technically FPFn �⊂ FPF∞,
there is a natural inclusion
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(7) ι : FPFn ↪→ FPF∞

given by the map that sends z ∈ FPFn to the permutation of Z whose
restrictions to [n] and to Z \ [n] coincide respectively with those of z and
Θ. In symbols, we have ι(z) = z · Θ · s1 · s3 · s5 · · · sn−1. We obtain Θn =
(1, 2)(3, 4) . . . (2n−1, 2n) by restricting Θ to [2n].

We identify elements of FPFn, FPF∞, or FPFZ with the complete match-
ings on [n], P, or Z with distinct vertices connected by an edge whenever
they form a nontrivial cycle. We depict such matchings with the vertices
on a horizontal axis, ordered from left to right, and edges shown as convex
curves in the upper half plane. For example,

(1, 6)(2, 7)(3, 4)(5, 8) ∈ FPF8 is represented as . . . . . . . .

We will omit the numbers labeling the vertices in these matchings if they
remain clear from context.

For each z ∈ FPFZ, define

(8)
Inv(z) = {(i, j) ∈ Z× Z : i < j, z(i) > z(j)},

CycZ(z) = {(i, j) ∈ Z× Z : i < j = z(i)},

so that DesR(z) = {si : (i, i+ 1) ∈ Inv(z)}. In turn let

CycP(z) = CycZ(z) ∩ (P× P).

The set

(9) InvFPF(z)
def
= Inv(z)− CycZ(z)

is finite with an even number of elements, and is empty if and only if z = Θ.
We let �̂FPF(z) =

1
2 |InvFPF(z)| and

(10) DesFPFR (z) = {si ∈ DesR(z) : (i, i+ 1) /∈ CycZ(z)}.

These definitions are related by the following proposition.

Proposition 2.3. If z ∈ FPFZ then

�̂FPF(szs) =

⎧⎪⎨
⎪⎩
�̂FPF(z)− 1 if s ∈ DesFPFR (z)

�̂FPF(z) if s ∈ DesR(z)−DesFPFR (z)

�̂FPF(z) + 1 if s ∈ {si : i ∈ Z} −DesR(z).
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Proof. If s ∈ DesR(z)−DesFPFR (z), we have szs = z. When si ∈ DesFPFR (z), we

see z(i) > z(i+1) �= i so InvFPF(z) = InvFPF(szs)∪{(i, i+1), (z(i+1), z(i))}.
Then �̂FPF(z) = �̂FPF(szs)+1. Finally, if s /∈ DesR(z), we see szs satisfies the

previous case so �̂FPF(z) = �̂FPF(szs)− 1.

Define AFPF(z) for z ∈ FPFZ as the set of permutations w ∈ SZ of

minimal length with z = w−1Θw. This set is nonempty and finite, and its

elements all have length �̂FPF(z). We define

(11) R̂FPF(z) =
⊔

w∈AFPF(z)

R(w)

to be the set of (reduced) fixed-point-free involution words for z.

Definition 2.4. The FPF-involution Schubert polynomial of z ∈ FPF∞ is

ŜFPF
z

def
=

∑
w∈AFPF(z)

Sw.

For z ∈ FPFn, we set AFPF(z) = AFPF(ι(z)) and ŜFPF
z = ŜFPF

ι(z).

Example 2.5. We have ι(4321)= s1s2Θs2s1= s3s2Θs2s3 and AFPF(4321)=

{312, 1342}, so ŜFPF
4321 = S312 +S1342 = x21 + x1x2 + x1x3 + x2x3.

The polynomials ŜFPF
z have the following characterization via divided

differences.

Theorem 2.6 ([8, Corollary 3.13]). The FPF-involution Schubert poly-

nomials {ŜFPF
z }z∈FPF∞ are the unique family of homogeneous polynomials

indexed by FPF∞ such that ŜFPF
Θ = 1 and such that if i ∈ P and s = si then

(12) ∂iŜ
FPF
z =

{
ŜFPF

szs if s ∈ DesR(z) and (i, i+ 1) /∈ CycZ(z)

0 otherwise.

Wyser and Yong first considered these polynomials in [30], where they

were denoted Υz;(GLn,Spn)
. They showed, when n is even, that the FPF-

involution Schubert polynomials indexed by FPFn are cohomology represen-

tatives for the Spn(C)-orbit closures in the flag variety Fl(n) = GLn(C)/B,

with B ⊂ GLn(C) denoting the Borel subgroup of lower triangular matrices.

The symmetric functions F̂ FPF
z are related to the polynomials ŜFPF

z by the

following identity.
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Definition 2.7. The FPF-involution Stanley symmetric function of z ∈
FPFZ is the power series

F̂ FPF
z

def
=

∑
w∈AFPF(z)

Fw = lim
N→∞

ŜFPF
z�2N ∈ Λ.

Lemma 2.8. If z ∈ FPF∞ then F̂ FPF
z = limn→∞ πwn

ŜFPF
z .

Proof. This is immediate from Lemma 2.2.

2.4. Schur P -functions

Our main results will relate F̂ FPF
z to the Schur P -functions in Λ, which were

introduced in work of Schur [24] and have since arisen in a variety of other
contexts (see, e.g., [2, 12, 20]). Good references for these symmetric functions
include [28, §6] and [18, §III.8]. For integers 0 ≤ m ≤ n, let

(13) Gm,n
def
=
∏
i∈[m]

∏
j∈[n−i]

(
1 + x−1

i xi+j

)
∈ L.

For a partition λ = (λ1, λ2, . . . ), let �(λ) denote the largest index i ∈ P

with λi �= 0. The partition λ is strict if λi �= λi+1 for all i < �(λ). Define
xλ = xλ1

1 xλ2

2 · · ·xλ�

� where � = �(λ).

Definition 2.9. Let λ be a strict partition with � = �(λ) parts. The power
series

Pλ
def
= lim

n→∞
πwn

(
xλG�,n

)
∈ Λ

is then a well-defined, homogeneous symmetric function of degree
∑

i λi,
which one calls the Schur P -function of λ.

We present this slightly unusual definition of Pλ for its compatibility
with Definition 2.1. The symmetric functions Pλ may be described more con-
cretely as generating functions for certain shifted tableaux [18, Ex. (8.16′),
§III.8]. The equivalence of the two definitions is explained in [18, Example
1, §III.8].

Whereas the Schur functions form a Z-basis for Λ, the Schur P -functions
form a Z-basis for the subring Γ = Q[p1, p3, p5, . . . ]∩Λ generated by the odd-
indexed power sum symmetric functions [28, Corollary 6.2(b)]. Sagan [23]
and Worley [29] showed independently that each Schur P -function Pλ is
itself Schur positive. For more information about the positivity properties
of the symmetric functions, see the discussion of [18, Eq. (8.17), §III.8] in
Macdonald’s book.
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3. Transition formulas

The Bruhat order < on SZ is the weakest partial order with w < wt when
w ∈ SZ and t ∈ SZ is a transposition such that �(w) < �(wt). We define the
Bruhat order < on FPFZ as the weakest partial order with z < tzt when
z ∈ FPFZ and t ∈ SZ is a transposition such that �̂FPF(z) < �̂FPF(tzt). Rains
and Vazirani’s results in [21] imply the following theorem from [10].

Theorem 3.1 ([10, Theorem 4.6]). Let n ∈ 2P. The following properties
hold:

(a) (FPFZ, <) is a graded poset with rank function �̂FPF.
(b) If y, z ∈ FPFn then y ≤ z holds in (SZ, <) if and only if ι(y) ≤ ι(z)

holds in (FPFZ, <).
(c) Fix y, z ∈ FPFZ and w ∈ AFPF(z). Then y ≤ z if and only if some

v ∈ AFPF(y) has v ≤ w.

Both ι(FPFn) and FPF∞ are lower ideals in (FPFZ, <). We write y�FPFz
for y, z ∈ FPFZ if {w ∈ FPFZ : y ≤ w < z} = {y}. If y, z ∈ FPFn for some
n ∈ 2P and ι(y)�FPF ι(z), then we write y�FPF z. For example, the set FPF4
is totally ordered by < and we have

FPF4 = {(1, 2)(3, 4)�FPF (1, 3)(2, 4)�FPF (1, 4)(2, 3)}.

Let z ∈ FPFZ. Cycles (a, b), (i, j) ∈ CycZ(z) with a < i are crossing
if a < i < b < j and nesting if a < i < j < b. One can check that
�̂FPF(z) = 2n + c where n and c are the respective numbers of unordered
pairs of nesting and crossing cycles of z. If E ⊂ Z has size n ∈ P then we
write φE and ψE for the unique order-preserving bijections [n] → E and
E → [n], and define

(14) [z]E
def
= ψz(E) ◦ z ◦ φE ∈ Sn.

The operation z �→ [z]E is usually called standardization or flattening.

Proposition 3.2 ([1, Corollary 2.3]). Let y ∈ FPFZ. Fix integers i < j and
let A = {i, j, y(i), y(j)} and z = (i, j)y(i, j). Then �̂FPF(z) = �̂FPF(y) + 1 if
and only if the following conditions hold:

(a) One has y(i) < y(j) but no e ∈ Z exists with i < e < j and y(i) <
y(e) < y(j).

(b) Either [y]A=(1, 2)(3, 4)�FPF[z]A=(1, 3)(2, 4) or [y]A=(1, 3)(2, 4)�FPF

[z]A = (1, 4)(2, 3).
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Remark 3.3. If condition (a) holds then (i, j) /∈ CycZ(y) so necessarily
|A| = 4. Condition (b) asserts that [y]A �FPF [z]A, which occurs if and only
if [y]A and [z]A coincide with

. . . . �FPF . . . . or . . . . �FPF . . . . .

In the first case [(i, j)]A ∈ {(1, 4), (2, 3)}, and in the second [(i, j)]A ∈
{(1, 2), (3, 4)}.

Define �̂FPF(y, z) = �̂FPF(z)− �̂FPF(y). Given y ∈ FPFZ and r ∈ Z, let

(15)
Ψ̂+(y, r)

def
=
{
z ∈ FPFZ : �̂FPF(y, z) = 1, z = (r, j)y(r, j) for j > r

}
,

Ψ̂−(y, r)
def
=
{
z ∈ FPFZ : �̂FPF(y, z) = 1, z = (i, r)y(i, r) for i < r

}
.

These sets are both nonempty, and if z belongs to either of them then y�FPF

z. We can now state the transition formula for FPF-involution Schubert
polynomials.

Theorem 3.4 ([10, Theorem 4.17]). If y ∈ FPF∞ and (p, q) ∈ CycP(y) then

(xp + xq)Ŝ
FPF
y =

∑
z∈Ψ̂+(y,q)

ŜFPF
z −

∑
z∈Ψ̂−(y,p)

ŜFPF
z

where we set ŜFPF
z = 0 for all z ∈ FPFZ − FPF∞.

Example 3.5. Set Ψ̂±(y, r) = Ψ̂±(ι(y), r) if y ∈ FPFn. For

y = (1, 2)(3, 7)(4, 5)(6, 8) ∈ FPF8

we have

Ψ̂+(y, 7) = {(7, 8)y(7, 8)} = {(1, 2)(3, 8)(4, 5)(6, 7)}
Ψ̂−(y, 3) = {(2, 3)y(2, 3)} = {(1, 3)(2, 7)(4, 5)(6, 8)}

so (x3 + x7)Ŝ
FPF
(1,2)(3,7)(4,5)(6,8) = ŜFPF

(1,2)(3,8)(4,5)(6,7) − ŜFPF
(1,3)(2,7)(4,5)(6,8).

Taking limits and invoking Definition 2.7 gives the following identity.

Theorem 3.6. If y ∈ FPFZ and (p, q) ∈ CycZ(y) then∑
z∈Ψ̂−(y,p)

F̂ FPF
z =

∑
z∈Ψ̂+(y,q)

F̂ FPF
z .
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Proof. We have Ψ̂±(y � 2N, r + 2N) = {w � 2N : w ∈ Ψ̂±(y, r)} for y ∈
FPFZ and r,N ∈ Z, so it follows that

∑
z∈Ψ̂+(y,q) F̂

FPF
z −

∑
z∈Ψ̂−(y,p) F̂

FPF
z =

limN→∞(xp+2N + xq+2N )ŜFPF
y�2N = 0.

4. FPF-Grassmannian involutions

In this section we identify a class of “Grassmannian” elements of FPFZ for
which F̂ FPF

z is a Schur P -function. The (Rothe) diagram of a permutation
w ∈ S∞ is the set

(16) D(w)
def
= {(i, j) ∈ P× P : i < w−1(j) and j < w(i)}.

Equivalently, D(w) = {(i, w(j)) : (i, j) ∈ Inv(w)} where

Inv(w)
def
= {(i, j) ∈ Z× Z : i < j and w(i) > w(j)}.

Following [8, Section 3.2], the (FPF-involution) diagram of z ∈ FPF∞ is the
set

(17) D̂FPF(z)
def
= {(i, j) ∈ P× P : j < i < z(j) and j < z(i)}.

One can check that D̂FPF(z) = {(i, z(j)) : (i, j) ∈ InvFPF(z), z(j) < i}.
The code of w ∈ S∞ is the sequence c(w) = (c1, c2, c3, . . . ) where ci is

the number of integers j > i with w(i) > w(j). The ith term of c(w) is
the number of positions in the ith row of D(w). As in the introduction, the
(FPF-involution) code of z ∈ FPF∞ is the sequence ĉFPF(z) = (c1, c2, . . . ) in
which ci is the number of positions in the ith row of D̂FPF(z), and the shape
of z is the partition ν(z) whose transpose is the partition that sorts ĉFPF(z).
For z ∈ FPFn when n ∈ 2P, we define

D̂FPF(z)
def
= D̂FPF(ι(z)) and ĉFPF(z)

def
= ĉFPF(ι(z)).

Then D̂FPF(z) is the subset of positions in D(z) strictly below the diagonal.

The shifted shape of a strict partition μ is the set {(i, i + j − 1) ∈
P × P : 1 ≤ j ≤ μi}. An involution z in FPFn or FPF∞ is FPF-dominant
if {(i − 1, j) : (i, j) ∈ D̂FPF(z)} is the transpose of the shifted shape of a
strict partition (which is necessarily ν(z)). (We shift up since D̂FPF(z) has
no positions in row i = 1.) By contrast, a permutation is dominant if it is
merely 132-avoiding.
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Example 4.1. While y = (1, 8)(2, 4)(3, 5)(6, 7) is FPF-dominant, z =

(1, 3)(2, 7)(4, 8)(5, 6) is not. The corresponding diagrams are

D̂FPF(y) =

· · · · · · · ×
◦ · · × · · · ·
◦ ◦ · · × · · ·
◦ × · · · · · ·
◦ · × · · · · ·
◦ · · · · · × ·
◦ · · · · × · ·
× · · · · · · ·

and

D̂FPF(z) =

· · × · · · · ·
◦ · · · · · × ·
× · · · · · · ·
· ◦ · · · · · ×
· ◦ · ◦ · × · ·
· ◦ · ◦ × · · ·
· × · · · · · ·
· · · × · · · ·

where cells with ◦ are in D̂FPF, × indicates a non-zero entry in the permu-

tation matrix and · indicates a cell not in the diagram. Observe that D̂FPF

consists of the positions below the diagonal that are not weakly below any

× and not weakly right of any ×. The relevant codes are

ĉFPF(y) = (0, 1, 2, 1, 1, 1, 1, 0) and ĉFPF(z) = (0, 1, 0, 1, 2, 2, 0, 0),

and ν(y) = (6, 1) is the transpose of (2, 1, 1, 1, 1, 1). The involution y is not

dominant (i.e. 132-avoiding) since in one-line notation y = 84523761. One

can show that the only elements of FPFn for n ∈ P that are dominant in

the classical sense are those of the form (1, n+1)(2, n+2) · · · (n, 2n). These
involutions are all FPF-dominant.

The following generalizes [8, Theorem 1.3], which applies only when

z ∈ FPFn is dominant.

Theorem 4.2. If z ∈ FPF∞ is FPF-dominant then ŜFPF
z =

∏
(i,j)∈D̂FPF(z)

(xi+

xj).



80 Zachary Hamaker et al.

Proof. For z′ ∈ FPFn we defined ŜFPF
z′ = ŜFPF

ι(z′), so we may as well assume

z ∈ FPFn for some n. Since z = wn is dominant, by [8, Theorem 1.3] we
have

ŜFPF
wn

=
∏

1≤i<j≤n
i+j≤n

(xi + xj).

Now assume z �= wn, and induct downward on �̂FPF(z). Let j ∈ [n] be
minimal such that z(j) < n − j + 1. The choice of j implies z(j) + 1 /∈
{z(1), z(2), . . . , z(j)}, so z(z(j) + 1) /∈ [j]. Setting s = sz(j), this shows

s /∈ DesR(z) and hence �̂FPF(szs) = �̂FPF(z) + 1 by Proposition 2.3. Given
that z < zs < szs, it is not hard to check that

(18) D(szs) = D(z) � {(z(j), j), (j, z(j))}.

If z(j) < j, then the minimality of j implies j = z(z(j)) = n − z(j) + 1,
a contradiction; hence z(j) > j, so (18) implies D̂FPF(szs) = D̂FPF(z) �
{(z(j), j)}. For example, if our involution is z = (1, 8)(2, 7)(3, 5)(4, 6), then
j = 3 and the diagrams of z and szs are

D̂FPF(z) =

· · · · · · · ×
◦ · · · · · × ·
◦ ◦ · · × · · ·
◦ ◦ ◦ · · × · ·
◦ ◦ × · · · · ·
◦ ◦ · × · · · ·
◦ × · · · · · ·
× · · · · · · ·

and

D̂FPF(szs) =

· · · · · · · ×
◦ · · · · · × ·
◦ ◦ · · · × · ·
◦ ◦ ◦ · × · · ·
◦ ◦ ◦ × · · · ·
◦ ◦ × · · · · ·
◦ × · · · · · ·
× · · · · · · ·

On the left, × is a point of the form (i, z(i)) and ◦ indicates an element of
D̂FPF(z), i.e., a point above and left of a × and below the main diagonal.
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The picture on the right follows the same conventions with z replaced by
szs.

Let λ = ν(z) be the shape of z. Since z(j) > j and z(i) = n− i + 1 for
i < j, drawing a picture makes clear that λj = z(j)− j − 1 and λi = n− 2i
for i < j. The previous paragraph therefore shows that szs is FPF-dominant
with shape ν(szs) = (λ1, · · · , λj−1, λj + 1, λj+1, . . .). By induction,

ŜFPF
szs =

∏
(a,b)∈D̂FPF(szs)

(xa + xb) = (xz(j) + xj)
∏

(a,b)∈D̂FPF(z)

(xa + xb).

We claim that
∏

(a,b)∈D̂FPF(z)
(xa + xb) is symmetric in the variables xz(j) and

xz(j)+1. First, z(j) > j forces column z(j) of D̂FPF(z) to be empty, so any
variable xz(j) or xz(j)+1 in the product comes from a factor xa + xb with

(a, b) = (z(j), b) ∈ D̂FPF(z). The inner corners of λ (the cells rightmost in
their row and bottommost in their column) appear in columns n − 1, n −
2, . . . , n− j+1, z(j)− 1, . . . from right to left. Thus, since z(j)− 1 < z(j) <
z(j)+1 ≤ n−j+1, columns z(j) and z(j)+1 of λ have the same length—in
the figure above, these two columns appear (transposed) as rows 5 and 6 of
D̂FPF(z). This implies that (z(j), b) ∈ D̂FPF(z) if and only if (z(j) + 1, b) ∈
D̂FPF(z), which proves the claim. Now

ŜFPF
z = ∂z(j)Ŝ

FPF
szs = ∂z(j)

⎡
⎣(xz(j) + xj)

∏
(a,b)∈D̂FPF(z)

(xa + xb)

⎤
⎦

= ∂z(j)(xz(j) + xj)
∏

(a,b)∈D̂FPF(z)

(xa + xb)

=
∏

(a,b)∈D̂FPF(z)

(xa + xb).

The lexicographic order on S∞ is the total order induced by identifying
w ∈ S∞ with its one-line representation w(1)w(2)w(3) · · · . For z in FPFn
or FPF∞, we let βmin(z) denote the lexicographically minimal element of
AFPF(z). The next lemma follows from [9, Theorem 6.22].

Lemma 4.3. Suppose z ∈ FPF∞ and CycP(z) = {(ai, bi) : i ∈ P} where
a1 < a2 < · · · . The lexicographically minimal element βmin(z) ∈ AFPF(z) is
the inverse of the permutation whose one-line representation is
a1b1a2b2a3b3 · · · .

The same statement with “a1b1a2b2 · · · ” replaced by “a1b1a2b2 · · · anbn”
holds if z ∈ FPF2n.
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Example 4.4. If z = (1, 4)(2, 3) ∈ FPF4 then a1b1a2b2 = 1423 and βmin(z)=
1423−1 = 1342.

Typically D̂FPF(z) �= D(βmin(z)), but the analogous statement holds for
codes.

Lemma 4.5 ([8, Lemma 3.8]). If z ∈ FPF∞ then ĉFPF(z) = c(βmin(z)).

A pair (i, j) ∈ Z × Z is an FPF-visible inversion of z ∈ FPFZ if i < j
and z(j) < min{i, z(i)}. These are precisely the involutions corresponding
to the cells of D̂FPF(z).

Lemma 4.6. The set of FPF-visible inversions of z ∈ FPF∞ is Inv(βmin(z)).

Proof. Suppose (i, j) ∈ Z× Z is an FPF-visible inversion of z ∈ F∞. Either
z(j) < i < z(i) or z(j) < z(i) < i, and in both cases j appears before i
in the one-line representation of βmin(z)

−1 so (i, j) ∈ Inv(βmin(z)). Since
|Inv(βmin(z))| = �̂FPF(z) = |D̂FPF(z)|, this completes our proof.

If (i, i + 1) is an FPF-visible inversion of z ∈ FPFZ, then i ∈ Z is an
FPF-visible descent. Let

(19) DesFPFV (z)
def
= {si : i ∈ Z is an FPF-visible descent of z} ⊂ DesFPFR (z).

Since si ∈ DesR(w) for w ∈ SZ if and only if (i, i+1) ∈ Inv(w), the following
is immediate.

Lemma 4.7. If z ∈ FPF∞ then DesFPFV (z) = DesR(βmin(z)).

The essential set of a subset D ⊂ P × P is the set Ess(D) of positions
(i, j) ∈ D such that (i+1, j) /∈ D and (i, j+1) /∈ D. The following is similar
to [11, Lemma 4.14].

Lemma 4.8. For z ∈ FPF∞, the ith row of Ess(D̂FPF(z)) is nonempty if and
only if si ∈ DesFPFV (z).

Proof. If si ∈ DesFPFV (z) then (i, z(i+ 1)) ∈ D̂FPF(z) but all positions of the
form (i+1, j) ∈ D̂FPF(z) have j < z(i+1), so the ith row of Ess(D̂FPF(z)) is
nonempty. Conversely, if the ith row of this set is nonempty, then there is
some (i, j) ∈ D̂FPF(z) with (i + 1, j) /∈ D̂FPF(z). This holds only if j = z(k)
for some k > i with z(i) > z(k) and i > z(k) ≥ z(i + 1), in which case
si ∈ DesFPFV (z).

A permutation w ∈ S∞ is n-Grassmannian if DesR(w) = {sn}.

Proposition 4.9. For z ∈ FPF∞ and n ∈ P, the following are equivalent:
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(a) DesFPFV (z) = {sn}.
(b) ĉFPF(z) has the form (0, c2, . . . , cn, 0, 0, . . . ) where c2 ≤ · · · ≤ cn �= 0.

(c) Ess(D̂FPF(z)) is nonempty and contained in {(n, j) : j ∈ P}.
(d) The lexicographically minimal atom βmin(z) ∈ AFPF(z) is n-Grass-

mannian.

Proof. We have (a) ⇔ (d) by Lemma 4.7 and (a) ⇔ (c) by Lemma 4.8. Fi-

nally, Lemma 4.5 implies that (b) ⇔ (d) since w ∈ S∞ is n-Grassmannian if

and only if the first n terms of c(w) are weakly increasing and the remaining

entries are 0.

The preceding conditions suggest a natural concept of a “Grassmannian”

fixed-point-free involution, but this definition turns out to be slightly too

restrictive. Define InvolZ
def
= {w ∈ SZ : w = w−1}. Consider the maps arc :

InvolZ → FPFZ and dearc : FPFZ → InvolZ given as follows.

Definition 4.10. For y ∈ InvolZ, letm be any even integer withm < i for all

i ∈ supp(y), write φ for the order-preserving bijection Z → Z \ supp(y) with
φ(0) = m, and define arc(y) as the unique element of FPFZ with arc(y)(i) =
y(i) for i ∈ supp(y) and arc(y) ◦ φ = φ ◦Θ.

We use the symbol arc to denote this map since arc(y) is formed by “arc-

ifying” the matching that represents y, i.e., by adding in edges to pair up

all isolated vertices.

We have arc(y) = ι(y) for y ∈ FPFn. The involution arc(z) is formed

from z by turning every pair of adjacent fixed points into a cycle; there are

two ways of doing this, and we choose the way that makes (2i − 1, 2i) into

a cycle for all sufficiently large i ∈ Z. For example, the value of

arc

(
. . . . . . . . .
1 2 3 4 5 6 7 8 9

)

is

. . . . . . . . . . . . . . . . . . . .
1 2 3 4 5 6 7 8 9

Definition 4.11. For z ∈ FPFZ, define dearc(z) ∈ InvolZ as the involution

whose nontrivial cycles are precisely the pairs (p, q) ∈ CycZ(z) for which

there exists (a, b) ∈ CycZ(z) with p < b < q.

We use the symbol dearc to denote this map since dearc(z) is formed by

removing all “trivial” arcs from the matching that represents z.
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The permutation dearc(z) is the involution that restricts to the same

map as z on its support, and whose fixed points are the integers i ∈ Z such

that max{i, z(i)} < z(j) for all j ∈ Z with min{i, z(i)} < j < max{i, z(i)}.
For example, the value of

dearc

(
. . . . . . . . . . . . . . . . . . . .

1 2 3 4 5 6 7 8 9 10

)

is

. . . . . . . . . .
1 2 3 4 5 6 7 8 9 10

We see in these examples that dearc and arc restrict to maps FPF∞ → Invol∞
and Invol∞ → FPF∞.

Proposition 4.12. Let z ∈ FPFZ. Then dearc(z) = 1 if and only if z = Θ.

Proof. If z �= Θ and i is the largest integer such that i < z(i) �= i+ 1, then

necessarily z(i+1) < z(i), so (i, z(i)) is a nontrivial cycle of dearc(z), which
is therefore not the identity.

Proposition 4.13. The composition arc◦dearc is the identity map FPFZ →
FPFZ.

Proof. Fix z ∈ Invol∞. Let C be the set of cycles (p, q) ∈ CycZ(z) such that

p and q are fixed points in dearc(z). By definition, if (p, q) and (p′, q′) are

distinct elements of C then p < q < p′ < q′ or p′ < q′ < p < q. The claim

that arc ◦ dearc(z) = z is a straightforward consequence of this fact.

An involution y ∈ InvolZ is I-Grassmannian if y = 1 or y = (φ1, n +

1)(φ2, n+2) · · · (φr, n+ r) for some integers r ∈ P and φ1 < φ2 < · · · < φr ≤
n. See [11, Proposition-Definition 4.16] for several equivalent characteriza-

tions of such involutions.

Definition 4.14. An involution z ∈ FPFZ is FPF-Grassmannian if

dearc(z) ∈ InvolZ is I-Grassmannian.

Define an element of FPFn to be FPF-Grassmannian if its image under

ι : FPFn → FPF∞ ⊂ FPFZ is FPF-Grassmannian.

Remark 4.15. The sequence (gFPFn )n≥1 = (1, 3, 12, 41, 124, 350, 952,

2540, . . . ) with gFPFn the number of FPF-Grassmannian elements of ι(FPFn) ⊂
FPFZ seems unrelated to any sequence in [25].
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Suppose z ∈ FPFZ − {Θ} is FPF-Grassmannian, so that

dearc(z) = (φ1, n+ 1)(φ2, n+ 2) · · · (φr, n+ r) ∈ Invol∞

for integers r ∈ P and φ1 < φ2 < · · · < φr ≤ n. Recall from the introduction
that ν(z) is the transpose of the partition given by sorting ĉFPF(z).

Lemma 4.16. In the notation just given, it holds that

ν(z) = (n− φ1, n− φ2, . . . , n− φr).

Proof. The definitions of D̂FPF(y), ĉFPF(y) and ν(y) make sense even when
y ∈ InvolZ. Let y = dearc(z). It is easy to check that the only nonempty
columns of D̂FPF(y) are φ1, φ2, . . . , φr and that the φith column is {(φi +
1, φi), (φi+2, φi), . . . , (n, φi)}. Therefore ν(y) = (n−φ1, n−φ2, . . . , n−φr),
since sorting ĉFPF(y) gives the transpose of this partition.

Fix positive integers i < k and suppose (i, k) is a cycle in z that is not
a cycle in y, so that y(i) = i and y(k) = k. Suppose i < j < k. From the
definition of dearc, it follows that (j, i) ∈ D̂FPF(z) \ D̂FPF(y) and j = φl for
some l ∈ [r]. Therefore, we have (k, j) ∈ D̂FPF(y) \ D̂FPF(z), so

D̂FPF(z) ∩ [i, k]2 = {(p, j) ∈ P× P : i ≤ j < p < k}
and

D̂FPF(y) ∩ [i, k]2 = {(p, j) ∈ P× P : i < j < p ≤ k}.

If p is an integer with i ≤ p ≤ k then

{q < i : (p, q) ∈ D̂FPF(z)} = {q < i : (p, q) ∈ D̂FPF(y)} = {l : φl < i}.
With ĉFPF(z) = (c1(z), c2(z), . . . ) and ĉFPF(y) = (c1(y), c2(y), . . . ), we deduce
that cj(z) = cj+1(y) for i ≤ j < k and ck(z) = ci(y). When j is not between
the endpoints of some cycle (i, k) in z but not y, we have cj(y) = cj(z).
Therefore ĉFPF(z) and ĉFPF(y) are the same multisets, so ν(z) = ν(y).

Example 4.17. Consider z = (1, 4)(2, 6)(3, 7)(5, 8) and y = dearc(z) =
(2, 6)(3, 7)(5, 8). Then

D̂FPF(z) =

· · · × · · · ·
◦ · · · · × · ·
◦ ◦ · · · · × ·
× · · · · · · ·
· ◦ ◦ · · · · ×
· × · · · · · ·
· · × · · · · ·
· · · · × · · ·
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and

D̂FPF(y) =

× · · · · · · ·
· · · · · × · ·
· ◦ · · · · × ·
· ◦ ◦ × · · · ·
· ◦ ◦ · · · · ×
· × · · · · · ·
· · × · · · · ·
· · · · × · · ·

.

The positions marked × in the respective diagrams are those of the form

(i, y(i)) or (i, z(i)). We have ĉFPF(z) = (0, 1, 2, 0, 2, 0, 0) while ĉFPF(y) =

(0, 0, 1, 2, 2, 0, 0). In addition, we observe that c1(z) = c2(y), c2(z) = c3(y),

and c3(z) = c4(y), as predicted in the argument for Lemma 4.16.

Given integers a, b ∈ P with a < b, define ∂b,a = ∂b−1∂b−2 · · · ∂a and

πb,a = πb−1πb−2 · · ·πa. For a, b ∈ P with a ≥ b, set ∂b,a = πb,a = id.

Lemma 4.18. Maintain the preceding setup, but assume z is an FPF-

Grassmannian element of FPF∞ − {Θ} so that 1 ≤ φ1 < φ2 < · · · < φr ≤ n.

Then ŜFPF
z = πφ1,1πφ2,2 · · ·πφr,r

(
xν(z)Gr,n

)
.

Proof. The proof depends on the following claim, which is proved as [11,

Lemma 2.2]:

Claim. If a ≤ b and f ∈ L are such that ∂if = 0 for a < i < b, then

πb,af = ∂b,a
(
xb−a
a f

)
.

If c1 < c2 < · · · < ck are the fixed points in [n] of dearc(z), then k is

even and we have (c1, c2), (c3, c4), . . . , (ck−1, ck) ∈ CycZ(z). Hence if φi = i

for all i ∈ [r] then z is FPF-dominant and

D̂FPF(z) = {(i+ j, i) : i ∈ [r] and j ∈ [n− i]}.

In this case the lemma reduces to the formula ŜFPF
z = xn−1

1 xn−2
2 · · ·xn−r

r Gr,n

which follows from Theorem 4.2.

Alternatively, suppose there exists i ∈ [r] such that i < φi. Assume i is

minimal with this property. Then ŜFPF
z = ∂φi,iŜ

FPF
v for the FPF-Grassman-

nian involution v ∈ FPF∞ with dearc(v) = (1, n + 1)(2, n + 2) · · · (i, n +

i)(φi+1, n+ i+ 1)(φi+2, n+ i+ 2) · · · (φr, n+ r). By induction, it holds that

ŜFPF
v = πφi+1,i+1πφi+2,i+2 · · ·πφr,r

(
xν(v)Gr,n

)
.
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Since xν(v) = xφi−i
i xν(z) and since multiplication by xi commutes with πj

when i < j, it follows from the claim that

ŜFPF
z = ∂φi,iŜ

FPF
v

= ∂φi,i(x
φi−i
i πφi+1,i+1πφi+2,i+2 · · ·πφr,r(x

ν(z)Gr,n))

= πφi,iπφi+1,i+1πφi+2,i+2 · · ·πφr,r(x
ν(z)Gr,n).

The last expression is πφ1,1 · · ·πφr,r(x
ν(z)Gr,n) since we assume πφ1,1 = · · · =

πφi−1,i−1 = id.

Theorem 4.19. If z ∈ FPFZ is FPF-Grassmannian, then F̂ FPF
z = Pν(z).

Proof. Since F̂ FPF
z = F̂ FPF

z�N for N ∈ 2Z, we may assume that z ∈ FPF∞
and that dearc(z) is I-Grassmannian. Since πwn

πi = πwn
for i ∈ [n − 1],

Lemma 4.18 implies that if ν(z) has r parts and n ≥ r then πwn
ŜFPF

z =

πwn

(
xν(z)Gr,n

)
. Now take the limit as n → ∞ and apply Lemma 2.8.

Let us clarify the difference between FPF-Grassmannian involutions and

elements of FPFZ with at most one FPF-visible descent. Define Invol∞
def
=

S∞ ∩ InvolZ and for each y ∈ Invol∞ let

(20) DesV (y)
def
= {i ∈ Z : z(i+ 1) ≤ min{i, z(i)}.

Elements of DesV (y) are visible descents of y.

Lemma 4.20. Let z ∈ FPF∞ and E = {i ∈ P : |z(i) − i| �= 1}. Suppose
y ∈ Invol∞ is the involution with y(i) = z(i) if i ∈ E and y(i) = i otherwise.

Then z = arc(y) and DesFPFV (z) = DesV (y).

Proof. It is evident that z = arc(y). Suppose si ∈ DesV (y). Since y(i+1) �= i

for all i ∈ P by definition, we must have y(i+1) < min{i, y(i)}, so i+1 ∈ E,

and therefore either i ∈ E or z(i) = i − 1. It follows in either case that

z(i+1) < min{i, z(i)} so si ∈ DesFPFV (z). Conversely, suppose si ∈ DesFPFV (z)

so that i+1 ∈ E. If i ∈ E then si ∈ DesV (y) holds immediately, and if i /∈ E

then z(i+ 1) < z(i) = i− 1, in which case y(i+ 1) = z(i+ 1) < i = y(i) so

si ∈ DesV (y).

In our previous work, we showed that y ∈ InvolZ is I-Grassmannian if

and only if |DesV (y)| ≤ 1 [11, Proposition-Definition 4.16]. Using this fact,

we deduce the following:
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Proposition 4.21. An involution z ∈ FPFZ has |DesFPFV (z)| ≤ 1 if and only
if z is FPF-Grassmannian and ν(z) is a strict partition whose consecutive
parts each differ by odd numbers.

Proof. We may assume that z ∈ FPF∞ − {Θ}. If z is FPF-Grassmannian
and the consecutive parts of ν(z) differ by odd numbers then one can check
that |DesFPFV (z)| ≤ 1. Conversely, define y ∈ Invol∞ as in Lemma 4.20 so
that z = arc(y). We have DesFPFV (z) = DesV (y) = {sn} if and only if y =
(φ1, n + 1)(φ2, n + 2) · · · (φr, n + r) for integers r ∈ P and 0 = φ0 < φ1 <
φ2 < · · · < φr ≤ n. If y has this form then each φi − φi−1 is necessarily
odd, and dearc(z) = y or dearc(z) = (φ2, n + 2)(φ3, n + 3) · · · (φr, n + r),
so z is FPF-Grassmannian and the consecutive parts of ν(z) differ by odd
numbers.

Remark 4.22. Using the previous result, one can show that the number
kn of elements of FPFn with at most one FPF-visible descent satisfies the
recurrence k2n = 2k2n−2 + 2n − 3 for n ≥ 2. The corresponding sequence
(k2n)n≥1 = (1, 3, 9, 23, 53, 115, 241, 495, . . . ) is [25, A183155].

5. Schur P -positivity

In this section we describe a recurrence for expanding F̂ FPF
z into FPF-

Grassmannian summands, and use this to deduce that each F̂ FPF
z is Schur

P -positive. Our strategy is similar to the one used in [11, §4.2], though with
some added technical complications.

Order the set Z × Z lexicographically. Recall that (i, j) ∈ Z × Z is an
FPF-visible inversion of z ∈ FPFZ if i < j and z(j) < min{i, z(i)}, and that
i ∈ Z is an FPF-visible descent of z if (i, i+ 1) is an FPF-visible inversion.
By Lemma 4.7, every z ∈ FPFZ − {Θ} has an FPF-visible descent.

Lemma 5.1. Let z ∈ FPFZ−{Θ} and suppose j ∈ Z is the smallest integer
such that z(j) < j − 1. Then j − 1 is the minimal FPF-visible descent of z.

Proof. By hypothesis, either z(j) < j−2 = z(j−1) or z(j) < j−1 < z(j−1),
so j−1 is an FPF-visible descent of z. If k−1 is another FPF-visible descent
of z, then z(k) < k − 1 so j ≤ k.

Lemma 5.2. Suppose z ∈ FPFZ − {Θ}. Let (q, r) ∈ Z × Z be the lexico-
graphically maximal FPF-visible inversion of z. Suppose m is the largest
even integer such that z(m) �= m− 1. Then:

(a) The number q is the maximal FPF-visible descent of z.
(b) The number r is the maximal integer with z(r) < min{q, z(q)}.
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(c) It holds that z(q + 1) < z(q + 2) < · · · < z(m) ≤ q.
(d) Either z(q) < q < r ≤ m or q < z(q) = r + 1 = m.

Proof. Since (q + 1, r) is not an FPF-visible inversion of z, we must have
min{q+1, z(q+1)} ≤ z(r) < min{q, z(q)}. These inequalities can only hold
if z(q + 1) < q + 1, so q is an FPF-visible descent of z. Since (i, i + 1)
is not an FPF-visible inversion of z for any i > q, we conclude that q is
the maximal FPF-visible descent of z. This prove part (a). Parts (b) and
(c) follow similarly from the assumption that (q, r) is the lexicographically
maximal FPF-visible inversion.

If z(q) < q, then z(q) < r ≤ m since (q, r) is an FPF-visible inversion.
Assume q < z(q). To prove (d), it remains to show that z(q) = r+1 = m. It
cannot hold that r < z(q)−1, since then either (q, r+1) or (r+1, z(q)) would
be an FPF-visible inversion of z, contradicting the maximality of (q, r). It
also cannot hold that z(q) < r, as then (z(q), r) would be an FPF-visible
inversion of z. Hence r = z(q) − 1. If j > z(q), then since z(i) < q for all
q < i < z(q) and since (z(q), j) cannot be an FPF-visible inversion of z,
we must have z(j) > z(q). From this observation and the fact that z has
no FPF-visible descents greater than q, we deduce that z(j) = Θ(j) for all
j > z(q), which implies that z(q) = m as required.

Definition 5.3. Let ηFPF : FPFZ − {Θ} → FPFZ be the map ηFPF : z �→
(q, r)z(q, r) where (q, r) is the maximal FPF-visible inversion of z.

Remark 5.4. Suppose z ∈ FPFZ − {Θ} has maximal FPF-visible inversion
(q, r). Let p = z(r) and y = ηFPF(z) = (q, r)z(q, r) and write m for the
largest even integer such that z(m) �= m−1. The two cases of Lemma 5.2 (d)
correspond to the following pictures:

(a) If z(q) < q < r ≤ m then y and z may be represented as

z = . . . . . . . . . . . • . . . • . . . . . . . • . . . . . • . . . . . . . . . . .

p q r m

y = . . . . . . . . . . . • . . . • . . . . . . . • . . . . . • . . . . . . . . . . .

p q r m

We have z(q + 1) < z(q + 2) < · · · < z(r) < z(q), and if r < m then
z(q) < z(r + 1) < z(r + 2) < · · · < z(m) < q.
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(b) If q < z(q) = r + 1 = m then y and z may be represented as

z = . . . . . . . . . . . • . . . • . . . . . • • . . . . . . .

p q r m

y = . . . . . . . . . . . • . . . • . . . . . • • . . . . . . .

p q r m

Here, we have z(q + 1) < z(q + 2) < · · · < z(r) = p < q, so z(i) < q
whenever p < i < q.

Recall the definition of βmin(z) from Lemma 4.3.

Proposition 5.5. If (q, r) is the maximal FPF-visible inversion of z ∈
FPF∞ − {Θ} and w = βmin(z) is the minimal element of AFPF(z), then
w(q, r) = βmin(ηFPF(z)) is the minimal atom of ηFPF(z).

Proof. Let CycP(z) = {(ai, bi) : i ∈ P} and CycP(ηFPF(z)) = {(ci, di) : i ∈ P}
where a1 < a2 < . . . and c1 < c2 < . . . . By Lemma 4.3, it suffices to show
that interchanging q and r in the word a1b1a2b2 · · · gives c1d1c2d2 · · · , which
is straightforward from Remark 5.4.

Recall the definition of the sets Ψ̂+(y, r) and Ψ̂−(y, r) from (15).

Lemma 5.6. If z ∈ FPFZ − {Θ} has maximal FPF-visible inversion (q, r)
then Ψ̂+(ηFPF(z), q) = {z}.
Proof. This holds by Proposition 3.2, Remark 5.4, and the definitions of
ηFPF(z) and Ψ̂+(y, q).

For z ∈ FPFZ let

(21) T̂FPF
1 (z)

def
=

{
∅ if z is FPF-Grassmannian

Ψ̂−(y, p) otherwise

where in the second case, we define y = ηFPF(z) and p = y(q) where q is the
maximal FPF-visible descent of z.

Definition 5.7. The FPF-involution Lascoux-Schützenberger tree T̂FPF(z)
of z ∈ FPFZ is the tree with root z, in which the children of any vertex
v ∈ FPFZ are the elements of T̂FPF

1 (v).
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Remark 5.8. As the name suggests, our definition is inspired by the clas-

sical construction of the Lascoux-Schützenberger tree for ordinary Stanley

symmetric functions; see [15, 16] or [11, §4.2].

For z ∈ FPFn we define T̂FPF(z) = T̂FPF(ι(z)). A given involution is

allowed to correspond to more than one vertex in T̂FPF(z). All vertices v in

T̂FPF(z) satisfy �̂FPF(v) = �̂FPF(z) by construction, so if z �= Θ then Θ is not

a vertex in T̂FPF(z). An example tree T̂FPF(z) is shown in Figure 1.

Figure 1: The tree T̂FPF(z) for z = (1, 2)(3, 7)(4, 6)(5, 10)(8, 11)(9, 12) ∈
FPF12 ↪→ FPFZ. We draw all vertices as elements of FPF12 ⊂ Invol12 for
convenience. The maximal FPF-visible inversion of each vertex is marked
with •, and the minimal FPF-visible descent is marked with ◦ (when
this is not also maximal). By Theorem 4.19 and Corollary 5.9, we have
F̂ FPF
z = P(5,2) + P(4,3) + P(4,2,1).

Corollary 5.9. Suppose z ∈ FPFZ is a fixed-point-free involution that is

not FPF-Grassmannian, whose maximal FPF-visible descent is q ∈ Z. The

following identities then hold:

(a) ŜFPF
z = (xp+xq)Ŝ

FPF
y +

∑
v∈T̂FPF

1 (z) Ŝ
FPF
v where y = ηFPF(z) and p = y(q).

(b) F̂ FPF
z =

∑
v∈T̂FPF

1 (z) F̂
FPF
v .

Proof. The result follows from Theorems 3.4 and 3.6 and Lemma 5.6.
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We would like to show that the intervals between the minimal and max-
imal FPF-visible descents of the vertices in T̂FPF(z) form a descending chain
as one moves down the tree. This fails, however: a child in the tree may have
strictly smaller FPF-visible descents than its parent. A similar property does
hold if we instead consider the visible descents of the image of z ∈ FPFZ

under the map dearc : FPFZ → InvolZ from Definition 4.11. Recall that a
visible descent for y ∈ InvolZ is an integer i ∈ Z with z(i+1) ≤ min{i, z(i)}.
The following is [11, Lemma 4.24].

Lemma 5.10 (See [11]). Let z ∈ InvolZ − {1} and suppose j ∈ Z is the
smallest integer such that z(j) < j. Then j−1 is the minimal visible descent
of z.

Lemma 5.11. Let z ∈ FPFZ−{Θ} and suppose (i, j) ∈ CycZ(z) is the cycle
with j minimal such that i < b < j for some (a, b) ∈ CycZ(z). Then j − 1 is
the minimal visible descent of dearc(z).

Proof. The claim follows by the preceding lemma since j is minimal such
that dearc(z)(j) < j.

Lemma 5.12. Let z ∈ FPFZ. A number i ∈ Z is a visible descent of dearc(z)
if and only if one of the following conditions holds:

(a) z(i+ 1) < z(i) < i.
(b) z(i) < z(i+ 1) < i and {t ∈ Z : z(i) < t < i} ⊂ {z(t) : i < t}.
(c) z(i+1) < i < z(i) and {t ∈ Z : z(i+1) < t < i+1} �⊂ {z(t) : i+1 < t}.

Proof. It is straightforward to check that i ∈ Z is a visible descent of dearc(z)
if and only if either (a) z(i+ 1) < z(i) < i; (b) z(i) < z(i+ 1) < i and i is a
fixed point of dearc(z); or (c) z(i+1) < i < z(i) and i+1 is not a fixed point
of dearc(z). The given conditions are equivalent to these statements.

Corollary 5.13. Let y, z ∈ FPFZ and i, j ∈ Z with i < j. Suppose y(t) =
z(t) for all integers t > i. Then j is a visible descent of dearc(y) if and only
if j is a visible descent of dearc(z).

Proof. By Lemma 5.12, whether or not j is a visible descent of dearc(z)
depends only on the action of z on integers greater than or equal to j.

Corollary 5.14. Let z ∈ FPFZ and suppose i is a visible descent of dearc(z).
Then either i or i − 1 is an FPF-visible descent of z. Therefore, if j is the
maximal FPF-visible descent of z, then i ≤ j + 1.

Proof. It follows from Lemma 5.12 that i is an FPF-visible descent of z
unless z(i) < z(i + 1) < i and {t ∈ Z : z(i) < t < i} ⊂ {z(t) : i < t}, in
which case i− 1 is an FPF-visible descent of z.
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The following statement is the first of two key technical lemmas in this
section.

Lemma 5.15. Let y ∈ FPFZ − {Θ} and (p, q) ∈ CycZ(y), and suppose
z = (n, p)y(n, p) ∈ Ψ̂−(y, p).

(a) If i ∈ Z\{n, y(n), p, q} is such that dearc(y)(i) = i, then dearc(z)(i) = i.
(b) If j and k are the minimal visible descents of dearc(y) and dearc(z)

and j ≤ q − 1, then j ≤ k.

Remark 5.16. Part (b) is false if j ≥ q: consider y = (6, 7)Θ(6, 7) and
(n, p, q) = (2, 3, 4). There is no analogous inequality governing the minimal
FPF-visible descents of y and z.

Proof. Since y �FPF z = (n, p)y(n, p) ∈ Ψ̂−(y, p), it follows from Proposi-
tion 3.2 that either y(n) < n < p < q, in which case n < p < z(p) < q = z(n)
and y and z correspond to the diagrams

(22) y = . . . • . . . • . . . • . . . • . . .

n p q

and

z = . . . • . . . • . . . • . . . • . . .

n p q

or n < p < y(n) < q, in which case n < p < z(p) < q = z(n) and we instead
have

(23) y = . . . • . . . • . . . • . . . • . . .

n p q

and

z = . . . • . . . • . . . • . . . • . . .

n p q

Let A = {n, y(n), p, q} = {n, p, z(p), q} and note that y(i) = z(i) for all
i ∈ Z \ A. Suppose (a, b) ∈ CycZ(y) is such that b /∈ A and b < y(i) for all
a < i < b, so that a and b are both fixed points of dearc(y). Then (a, b) is
also a cycle of z, and to prove part (a) it suffices to check that b < z(i) for all
i ∈ A with a < i < b. This holds if i ∈ {n, y(n)} since then y(i) < z(i), and
we cannot have a < q < b since y(q) < q. Suppose a < p < b; it remains to
show that b < z(p). Since b < y(i) for all a < i < b by hypothesis, it follows
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that if y and z are as in (22) then n < a < p < b < q, and that if y are z
are as in (23) then a < p < b < y(n). The first of these cases cannot occur
in view of Proposition 3.2(a), since y�FPF z. In the second case y(n) = z(p)
so b < z(p) as needed.

To prove part (b), note that Θ /∈ {y, z} so neither dearc(y) nor dearc(z)
is the identity. Let j and k be the minimal visible descents of dearc(y) and
dearc(z) and assume j ≤ q−1. Write Sy for the set of integers i ∈ Z\A such
that dearc(y)(i) < i, and let Ty = Sy \A and Uy = Sy∩A. Define Sz, Tz, and
Uz similarly. Lemma 5.10 implies that j ≤ k if and only if minSy ≤ minSz.
Since j ≤ q − 1 we have minSy ≤ q. It follows from part (a) that Tz ⊂ Ty,
so minTy ≤ minTz.

There are two cases to consider. First suppose y(n) < n < p < q and
z(p) < n < p < q = z(n). It is then evident from (22) that {q} ⊂ Uz ⊂ {p, q}.
Since minSy ≤ q by hypothesis, to prove that minSy ≤ minSz it suffices to
show that if p ∈ Uz then minSy < p. Since y�FPFz, neither y nor z can have
any cycles (a, b) with y(n) < a < p and n < b < p. It follows that if p ∈ Uz

then y and z share a cycle (a, b) with either (i) a < b and y(n) < b < n, or
(ii) a < y(n) < n < b < p. If (i) occurs then n ∈ Uy while if (ii) occurs then
minTy < p, so minSy < p as desired.

Suppose instead that n < p < y(n) < q and n < p < z(p) < q = z(n).
In view of (23), we then have {q} ⊂ Uz ⊂ {y(n), q}. As minSy ≤ q, to
prove that minSy ≤ minSz it now suffices to show that if y(n) ∈ Uz then
y(n) ∈ Uy. This implication is clear from (23), since if y(n) = z(p) ∈ Uz

then y and z must share a cycle (a, b) with a < b and p < b < y(n).

Lemma 5.17. Let y ∈ FPFZ − {Θ} and (p, q) ∈ CycZ(y) and suppose
z = (q, r)y(q, r) ∈ Ψ̂+(y, q). The involution dearc(y) has a visible descent
less than q − 1 if and only if dearc(z) does, and in this case the minimal
visible descents of dearc(y) and dearc(z) are equal.

Proof. Let Cw for w ∈ FPFZ be the set of cycles (a, b) ∈ CycZ(w) with b < q.
By Lemma 5.11, the set Cw determines whether or not dearc(w) has a visible
descent less than q−1 and, when this occurs, the value of dearc(w)’s smallest
visible descent. Since q < r we have Cy = Cz, so the result follows.

Our second key technical lemma is the following.

Lemma 5.18. Suppose z ∈ FPFZ is not FPF-Grassmannian, so that
ηFPF(z) �= Θ. Let (q, r) be the maximal FPF-visible inversion of z and define
y = ηFPF(z) = (q, r)z(q, r).

(a) The maximal visible descent of dearc(z) is q or q + 1.
(b) The maximal visible descent of dearc(y) is at most q.
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(c) The minimal visible descent of dearc(y) is equal to that of dearc(z),
and is at most q − 1.

Proof. Adopt the notation of Remark 5.4. To prove the first two parts, let j
and k be the maximal visible descents of dearc(y) and dearc(z), respectively.
In case (a) of Remark 5.4, it follows by inspection that j ≤ q = k, with
equality unless r = q+1 and there exists at least one cycle (a, b) ∈ CycZ(z)
such that p < b < q. In case (b) of Remark 5.4, one of the following occurs:

• If p = q − 1 = r − 2, then j < q − 1 < k = q + 1.
• If p = q − 1 < r − 2, then j = q and k ∈ {q, q + 1}.
• If p < q − 1, then j = k = q.

We conclude that j ≤ q and k ∈ {q, q + 1} as required.

Let j and k now be the minimal visible descents of dearc(y) and dearc(z),
respectively. Part (c) is immediate from Lemmas 5.6 and 5.17 if j < q − 1
or k < q − 1, so assume that j and k are both at least q − 1. Suppose
z(q) < q < r ≤ m so that we are in case (a) of Remark 5.4, when q is the
maximal visible descent of dearc(z). Since z is not FPF-Grassmannian, we
must have k = q − 1, so by Lemma 5.11 there exists (a, b) ∈ CycZ(z) with
z(q) < b < q. Since y(q) = p < z(q), it follows that j ≤ q − 1; as the reverse
inequality holds by hypothesis, we get j = k = q − 1 as desired.

Suppose instead that we are in case (b) of Remark 5.4. Since q < z(q),
it cannot hold that q − 1 is a visible descent of dearc(z), so we must have
k ≥ q. As z is not FPF-Grassmannian, it follows from part (a) that k = q
and that q+1 is the maximal visible descent of dearc(z). This is impossible,
however, since we can only have k = q if there exists (a, b) ∈ CycZ(z) with
z(q + 1) < b < q + 1, while q + 1 can only be a visible descent of dearc(z) if
no such cycle exists.

Lemma 5.19. Suppose z ∈ FPFZ is not FPF-Grassmannian and v ∈
T̂FPF
1 (z). Let i and j be the minimal and maximal visible descents of dearc(z).

If d is a visible descent of dearc(v), then i ≤ d ≤ j.

Proof. Let (q, r) be the maximal FPF-visible descent of z, set y =
(q, r)z(q, r) = ηFPF(z) and p = y(q) = z(r), and let n < p < q be the
unique integer such that v = (n, p)y(n, p). Since y�FPF v, it must hold that
y(n) < q, so v(t) = y(t) for all t > q. The maximal visible descent of dearc(y)
is at most q ≤ j by Lemma 5.18, so the same is true of the maximal visible
descent of dearc(v) by Corollary 5.13. On the other hand, the minimal visi-
ble descent of dearc(y) is i ≤ q − 1 by Lemma 5.18, so by Lemma 5.15 the
minimal visible descent of dearc(v) is at least i.
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For z ∈ FPFZ, let T̂
FPF
0 (z)

def
= {z} and T̂FPF

n (z)
def
=
⋃

v∈T̂FPF
n−1(z)

T̂FPF
1 (v).

Lemma 5.20. Suppose z ∈ FPFZ and v ∈ T̂FPF
1 (z). Let (q, r) be the maximal

FPF-visible inversion of z, and let (q1, r1) be any FPF-visible inversion of
v. Then q1 < q or r1 < r. Hence, if n ≥ r− q then the maximal FPF-visible
descent of every element of T̂FPF

n (z) is strictly less than q.

Proof. It is considerably easier to track the FPF-visible inversions of z and
v than the visible inversions of dearc(z) and dearc(v), and this result follows
essentially by inspecting Remark 5.4. In more detail, let y = ηFPF(z) =
(q, r)z(q, r) and p = z(r) = y(q). Since y �FPF v = (n, p)y(n, p) for some
n < p, we must have v(i) = y(i) for all i > q, and so it is apparent from
Remark 5.4 that q1 ≤ q. If q1 = q, then necessarily v(q) < p < v(i) for all
i ≥ r, and it follows that r1 < r.

Theorem 5.21. The FPF-involution Lascoux-Schützenberger tree T̂FPF(z)
is finite for z ∈ FPFZ, and F̂ FPF

z =
∑

v F̂
FPF
v where the sum is over the finite

set of leaf vertices v in T̂FPF(z).

Proof. By induction, Corollary 5.14, and Lemmas 5.19 and 5.20, we deduce
that for a sufficiently large n either T̂FPF

n (z) = ∅ or all elements of T̂FPF
n (z)

are FPF-Grassmannian, whence T̂FPF
n+1(z) = ∅. The tree T̂FPF(z) is therefore

finite, so the identity F̂ FPF
z =

∑
v F̂

FPF
v holds by Corollary 5.9.

Corollary 5.22. If z ∈ FPFZ then

F̂ FPF
z ∈ N-span

{
F̂ FPF
y : y ∈ FPFZ is FPF-Grassmannian

}
and this symmetric function is consequently Schur P -positive.

This leads immediately to a proof of Theorem 1.1 from the introduction.

Proof of Theorem 1.1. Since F̂ FPF
z is a Schur P -function if z ∈ FPFZ is FPF-

Grassmannian by Theorem 4.19, Corollary 5.22 implies that every F̂ FPF
z is

Schur P -positive.

We close this section by applying Theorem 1.1 to compute the product
of two Schur P-functions. Given u ∈ Sm and v ∈ Sn, write u × v ∈ Sm+n

for the permutation mapping i �→ u(i) for i ∈ [m] and m + i �→ m + v(i)
for i ∈ [n]. It is well known that Fu×v = FuFv; for instance, this follows by
applying stabilization to [15, Proposition 1.2]. An analogous result holds for
FPF-involutions.

Proposition 5.23. Let y ∈ FPFm and z ∈ FPFn. Then F̂ FPF
y×z = F̂ FPF

y F̂ FPF
z .
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Proof. Since AFPF(y× z) = {u× v : (u, v) ∈ AFPF(y)×AFPF(z)}, this follows
from Definition 2.7.

As a corollary, we obtain a new rule for multiplying Schur-P functions.

Corollary 5.24. Suppose ρ and μ are strict partitions. Let y and z be
FPF-Grassmannian involutions with ν(y) = ρ and ν(z) = μ. Then PρPμ =∑

λC
λ
ρμPλ where Cλ

ρμ is the number of FPF-Grassmannian involutions with

shape λ appearing as leaves in T̂FPF(y × z).

Proof. The result follows immediately from Proposition 5.23 and Theo-
rem 5.21.

Remark 5.25. A similar rule can be constructed for both Schur-P and
Schur-Q functions using the results in [11, §4.2].

6. Triangularity

We can show that the expansion of F̂ FPF
z into Schur P -functions is unitrian-

gular with respect to the dominance order ≤ on (strict) partitions. As in the
introduction, define ν(z) for z ∈ FPF∞ to be the transpose of the partition
given by sorting ĉFPF(z), and let ν(z) = ν(ι(z)) for z ∈ FPFn.

Example 6.1. Let y = (1, 8)(2, 4)(3, 5)(6, 7) and z = (1, 3)(2, 7)(4, 8)(5, 6)
be as in as Example 4.1. Then sorting ĉFPF(y) gives (2, 1, 1, 1, 1, 1, 0, 0) so the
shape of y is ν(y) = (6, 1). Similarly, sorting ĉFPF(z) gives (2, 2, 1, 1, 0, 0, 0, 0)
so the shape of z is ν(z) = (4, 2).

This construction is consistent with our earlier definition of ν(z) when
z ∈ FPF∞ is FPF-Grassmannian. Define <AFPF

on S∞ as the transitive rela-
tion generated by setting v <AFPF

w when the one-line representation of v−1

can be transformed to that of w−1 by replacing a consecutive subsequence
starting at an odd index of the form adbc with a < b < c < d by bcad, or
equivalently when it holds for an odd number i ∈ P that

(24) siv > v > si+1v > si+2si+1v = sisi+1w < si+1w < w < siw.

For example,

235164 = (412635)−1 <AFPF
(413526)−1 = 253146,

but (12534)−1 �<AFPF
(13425)−1. Recall the definition of βmin(z) from

Lemma 4.3. In earlier work, we showed [9, Theorem 6.22] that <AFPF
is
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a partial order and that AFPF(z) = {w ∈ S∞ : βmin(z) ≤AFPF
w} for all

z ∈ FPF∞.
Write λT for the transpose of a partition λ. Then λ ≤ μ if and only if

μT ≤ λT [18, Eq. (1.11), §I.1]. The shape of w ∈ S∞ is the partition λ(w)
given by sorting c(w).

Lemma 6.2. Let z ∈ FPF∞. If v, w ∈ AFPF(z) and v <AFPF
w, then λ(v) <

λ(w).

Proof. Suppose v, w ∈ AFPF(z) are such that siv > v > si+1v > si+2si+1v =
sisi+1w < si+1w < w < siw for an odd number i ∈ P, so that v <AFPF

w.
Define a = w−1(i + 2), b = w−1(i), c = w−1(i + 1), and d = w−1(i + 3) so
that a < b < c < d. The diagram D(v−1) is then given by permuting rows i,
i+1, i+2, and i+3 of D(w−1)∪{(i+3, b), (i+3, c)}−{(i, a), (i+1, a)}, and
so λ(v) is given by sorting λ(w) − 2ej + ek + el for some indices j < k < l
with λ(w)j − 2 ≥ λ(w)k ≥ λ(w)l. One checks in this case that λ(v) < λ(w),
as desired.

Theorem 6.3. Let z ∈ FPF∞ and ν = ν(z). Then νT ≤ ν. If νT = ν then
F̂ FPF
z = sν and otherwise F̂ FPF

z ∈ sνT + sν + N-span
{
sλ : νT < λ < ν

}
.

Proof. It follows from [26, Theorem 4.1] that if w ∈ S∞ then λ(w) ≤
λ(w−1)T , and if equality holds then Fw = sλ(w) while otherwise Fw ∈
sλ(w) + sλ(w−1)T + N-span{sν : λ(w) < ν < λ(w−1)T }. Lemma 4.5 implies

that ν(z)T = λ(βmin(z)), so by Lemma 6.2 we have F̂ FPF
z =

∑
w∈AFPF(z)

Fw ∈
sν(z)T + N-span{sμ : ν(z)T < μ}. The result follows since F̂ FPF

z is Schur P -
positive and each Pμ is fixed by the linear map ω : Λ → Λ with ω(sμ) = sμT

for partitions μ [18, Example 3(a), §III.8].

We may finally prove Theorem 1.4 from the introduction.

Proof of Theorem 1.4. One has Pλ ∈ sλ +N-span{sν : ν < λ} for any strict
partition λ [18, Eq. (8.17)(ii), §III.8]. Since F̂ FPF

z is Schur P -positive, the
result follows by Theorem 6.3.

Strangely, we do not know of an easy way to show directly that ν(z) is
a strict partition.

7. FPF-vexillary involutions

Define an element z of FPFn or FPFZ to be FPF-vexillary if F̂ FPF
z = Pμ for

a strict partition μ. In this section, we derive a pattern avoidance condition
classifying such involutions.
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Remark 7.1. All FPF-Grassmannian involutions, as well as all elements
of FPFn for n ∈ {2, 4, 6}, are FPF-vexillary. The sequence (vFPF2n )n≥1 =
(1, 3, 15, 92, 617, 4354, . . . ), with vFPFn counting the FPF-vexillary elements
of FPFn, again seems unrelated to any existing entry in [25].

In this section, we require the following variant of (14). For z ∈ FPFZ,
define

(25) [[z]]E
def
= ι([z]E) ∈ FPF∞

for each finite set E ⊂ Z with z(E) = E.

Lemma 7.2. If z ∈ FPFZ is FPF-Grassmannian and E ⊂ Z is a finite
set with z(E) = E, then the fixed-point-free involution [[z]]E is also FPF-
Grassmannian.

Proof. Suppose z ∈ FPFZ is FPF-Grassmannian and E ⊂ Z is finite and
z-invariant. We may assume that z ∈ FPF∞ and E ⊂ P. Fix a set F =
{1, 2, . . . , 2n} where n ∈ P is large enough that E ⊂ F and [[z]]F = z. Note
that for any z-invariant setD ⊂ E we have [[z]]D = [[z′]]D′ for z′ = [[z]]E and
D′ = ψE(D). Inductively applying this property, we see that it suffices to
show that [[z]]E is FPF-Grassmannian when E = F \ {a, b} with {a, b} ⊂ F
a nontrivial cycle of z. In this special case, it is a straightforward exercise
to check that dearc([[z]]E) is either [dearc(z)]E or the involution formed by
replacing the leftmost cycle of [dearc(z)]E by two fixed points. In either
case it is easy to see that dearc([[z]]E) is I-Grassmannian, so [[z]]E is FPF-
Grassmannian as needed.

We fix the following notation in Lemmas 7.3, 7.5, and 7.6. Let z ∈
FPFZ − {Θ} and write (q, r) ∈ Z× Z for the maximal FPF-visible inversion
of z. Set y = ηFPF(z) = (q, r)z(q, r) ∈ FPFZ and define p = y(q) < q so that
T̂FPF
1 (z) = Ψ̂−(y, p) if z is not FPF-Grassmannian.

Lemma 7.3. Let E ⊂ Z be a finite set with {q, r} ⊂ E and z(E) = E. Then
(ψE(q), ψE(r)) is the maximal FPF-visible inversion of [[z]]E . Moreover, it
holds that [[ηFPF(z)]]E = ηFPF([[z]]E).

Proof. The first assertion holds since the set of FPF-visible inversions of z
contained in E × E and the set of all FPF-visible inversions of [[z]]E are in
bijection via the order-preserving map ψE × ψE . The second claim follows
from the definition of ηFPF since {q, r, z(q), z(r)} ⊂ E.

Define

(26) LFPF(z)
def
= {i ∈ Z : i < p and (i, p)y(i, p) ∈ Ψ̂−(y, p)}.
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For any E ⊂ Z we define

(27) CFPF(z, E)
def
=
{
(i, p)y(i, p) : i ∈ E ∩ LFPF(z)

}
.

Also let CFPF(z)
def
= CFPF(z,Z), so that CFPF(z) = T̂FPF

1 (z) if z is not FPF-

Grassmannian. The following shows that CFPF(z) is always nonempty.

Lemma 7.4. If z ∈ FPFZ − {Θ} is FPF-Grassmannian, then |CFPF(z)| = 1.

Proof. Assume z ∈ FPFZ −{Θ} is FPF-Grassmannian. By Proposition 4.13

we have z = arc(g) for an I-Grassmannian involution g ∈ InvolZ. Using

this fact and the observations in Remark 5.4, one checks that CFPF(z) =

{(i, p)y(i, p)} where i is the greatest integer less than p such that y(i) <

q.

Lemma 7.5. Let E ⊂ Z be a finite set such that {q, r} ⊂ E and z(E) = E.

(a) The restriction of v �→ [[v]]E is an injective map CFPF(z, E) →
CFPF([[z]]E).

(b) If E contains LFPF(z), then the injective map in (a) is a bijection.

Proof. Part (a) is straightforward from the definition of CFPF(z) given

Lemma 7.3. We prove the contrapositive of part (b). Suppose a < b =

ψE(p) and (a, b)[[y]]E(a, b) belongs to CFPF([[z]]E) but is not in the im-

age of CFPF(z, E) under the map v �→ [[v]]E . Suppose a = ψE(i) for i ∈
E. Then (a, b)[[y]]E(a, b) = [[(i, p)y(i, p)]]E , and it follows from Proposi-

tion 3.2 that [[y]]E(a) < [[y]]E(b), so we likewise have y(i) < y(p). Since

(i, p)y(i, p) /∈ CFPF(z, E), there must exist an integer j with i < j < p and

y(i) < y(j) < y(p). Let j be maximal with this property and set k = z(j).

One can check using Proposition 3.2 that either j or k belongs to LFPF(z)

but not E, so E �⊃ LFPF(z).

We say that z ∈ FPFZ contains a bad FPF-pattern if there is a finite set

E ⊂ Z with z(E) = E and |E| ≤ 12, such that [[z]]E is not FPF-vexillary.

We refer to E as a bad FPF-pattern for z.

Lemma 7.6. If z ∈ FPFZ is such that |T̂FPF
1 (z)| ≥ 2, then z contains a bad

FPF-pattern.

Proof. If u �= v and {u, v} ⊂ T̂FPF
1 (z), then u, v, and z agree outside a set

E ⊂ Z of size 8 with z(E) = E. It follows by Lemmas 7.4 and 7.5 that E is

a bad FPF-pattern for z.
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Lemma 7.7. Suppose z ∈ FPFZ is such that T̂FPF
1 (z) = {v} is a singleton

set. Then z contains no bad FPF-patterns if and only if v contains no bad

FPF-patterns.

Proof. By definition, z and v agree outside a set A ⊂ Z of size 6 with

v(A) = z(A) = A. If z (respectively, v) contains a bad FPF-pattern that

is disjoint from A, then the other involution clearly does also. If z contains

a bad FPF-pattern B that intersects A, then E = A ∪ B has size at most

16 since |B| ≤ 12 and both A and B are z-invariant. In this case, [[z]]E
contains a bad FPF-pattern and Lemma 7.5(b) shows that CFPF([[z]]E) =

{[[v]]E}, and if [[v]]E contains a bad FPF-pattern then v does also. By similar

arguments, it follows that if v contains a bad FPF-pattern B that intersects

A, then E = A ∪B has size at most 16, [[v]]E contains a bad FPF-pattern,

CFPF([[z]]E) = {[[v]]E}, and v contains a bad FPF-pattern if [[v]]E does.

These observations show that to prove the lemma, it suffices to consider

the case when z belongs to the image of ι : FPF16 ↪→ FPFZ. Using a com-

puter, we have checked that if z is such an involution and CFPF(z) = {v} is a

singleton set, then z contains no bad FPF-patterns if and only if v contains

no bad FPF-patterns. There are 940,482 possibilities for z, a sizeable but

tractable number.

Theorem 7.8. An involution z ∈ FPFZ is FPF-vexillary if and only if [[z]]E
is FPF-vexillary for all sets E ⊂ Z with z(E) = E and |E| = 12.

Proof. Let X ⊂ FPFZ be the set that contains z ∈ FPFZ if and only if z

is FPF-Grassmannian or T̂FPF
1 (z) = {v} and v ∈ X . It follows from Corol-

lary 5.9(b) that X is the set of all FPF-vexillary involutions in FPFZ. On

the other hand, Lemmas 7.2, 7.6, and 7.7 show that X is the set of invo-

lutions z ∈ FPFZ that contain no bad FPF-patterns. Thus z ∈ FPFZ is

FPF-vexillary if and only if z has no bad FPF-patterns, which is equivalent

to the theorem statement.

Corollary 7.9. An involution z ∈ FPFZ is FPF-vexillary if and only if for
all finite sets E ⊂ Z with z(E) = E the involution [z]E is not any of the
following sixteen permutations:

(1, 3)(2, 4)(5, 8)(6, 7), (1, 5)(2, 3)(4, 7)(6, 8), (1, 6)(2, 4)(3, 8)(5, 7),

(1, 3)(2, 5)(4, 7)(6, 8), (1, 5)(2, 3)(4, 8)(6, 7), (1, 6)(2, 5)(3, 8)(4, 7),

(1, 3)(2, 5)(4, 8)(6, 7), (1, 5)(2, 4)(3, 7)(6, 8), (1, 3)(2, 4)(5, 7)(6, 9)(8, 10),

(1, 3)(2, 6)(4, 8)(5, 7), (1, 5)(2, 4)(3, 8)(6, 7), (1, 3)(2, 5)(4, 6)(7, 9)(8, 10),

(1, 4)(2, 3)(5, 7)(6, 8), (1, 6)(2, 3)(4, 8)(5, 7), (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12).

(1, 4)(2, 3)(5, 8)(6, 7),
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Proof. It follows by a computer calculation using the formulas in Theorems
4.19 and 5.21 that z ∈ ι(FPF12) ⊂ FPF∞ is not FPF-vexillary if and only
if there is a z-invariant subset E ⊂ Z such that [z]E is one of the given
involutions. The corollary follows from this fact by Theorem 7.8.

8. Pfaffian formulas

The Pfaffian of a skew-symmetric n× n matrix A is

(28) pf A
def
=

∑
z∈FPFn

(−1)�̂FPF(z)
∏

z(i)<i∈[n]
Az(i),i.

It is a classical fact that detA = (pf A)2. Since detA = 0 when A is skew-
symmetric but n is odd, the definition (28) is consistent with the fact that the
set FPFn of fixed-point-free involutions in Sn is nonempty only if n is even. If
A = (aij) is a 2× 2 skew-symmetric matrix then pf A = a12 = −a21. If A =
(aij) is a 4× 4 skew-symmetric matrix then pf A = a21a43−a31a42+a41a32.

Both ŜFPF
z and F̂ FPF

z can be expressed by certain Pfaffian formulas when
z is FPF-Grassmannian. We fix the following notation for the duration of
this section: first, let

(29) n, r ∈ P and φ ∈ Pr with 0 < φ1 < φ2 < · · · < φr < n.

Set φi = 0 for i > r. Define y = (φ1, n+1)(φ2, n+2) · · · (φr, n+ r) ∈ Invol∞
and z = arc(y). Let

(30) ŜFPF[φ1, φ2, . . . , φr;n]
def
= ŜFPF

z and F̂ FPF[φ1, φ2, . . . , φr;n]
def
= F̂ FPF

z .

In the case that r is odd, we set ŜFPF[φ1, φ2, . . . , φr, 0;n]
def
= ŜFPF

z and

F̂ FPF[φ1, φ2, . . . , φr, 0;n]
def
= F̂ FPF

z .

Proposition 8.1. In the notation just given, z ∈ FPF∞ is FPF-Grass-
mannian with shape ν(z) = (n − φ1, n − φ2, . . . , n − φr). Moreover, each
FPF-Grassmannian element of FPF∞ − {Θ} occurs as such an involution z
for a unique choice of n, r ∈ P and φ ∈ Pr as in (29).

Proof. Let X = [n] \ {φ1, φ2, . . . , φr} so that n ∈ X. If |X| is even then
dearc(z) = y. If |X| is odd and at least 3, then dearc(z) = y · (n, n+ r + 1).
If |X| = 1, finally, then φ = (1, 2, . . . , n− 1) and dearc(z) = (2, n+2)(3, n+
3) · · · (n, 2n). In each case, ν(z) = (n − φ1, n − φ2, . . . , n − φr) as desired.
The second assertion holds since an FPF-Grassmannian element of FPF∞
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is uniquely determined by its image under dearc : FPF∞ → Invol∞, which
must be I-Grassmannian with an even number of fixed points in [n] and not
equal to (i+ 1, n+ 1)(i+ 2, n+ 2) · · · (n, 2n− i) for any i ∈ [n].

Let �+(φ) be whichever of r or r+1 is even, and let [aij ]1≤i<j≤n denote
the skew-symmetric matrix with aij in position (i, j) and −aij in position
(j, i) for i < j (and zeros on the diagonal).

Corollary 8.2. In the setup of (29),

F̂ FPF[φ1, φ2, . . . , φr;n] = pf
[
F̂ FPF[φi, φj ;n]

]
1≤i<j≤�+(φ)

.

Proof. If λ is a strict partition then Pλ = pf[Pλiλj
]1≤i<j≤�+(λ) by [18, Eq.

(8.11), §III.8]. Given this fact and the preceding proposition, the result fol-
lows from Theorem 4.19.

Our goal is to prove that the identity in this corollary holds with
F̂ FPF[· · ·;n] replaced by ŜFPF[· · ·;n]. In the following lemmas, we let

(31) MFPF[φ;n] = MFPF[φ1, φ2, . . . , φr;n]
def
=
[
ŜFPF[φi, φj ;n]

]
1≤i<j≤�+(φ)

denote the �+(φ)× �+(φ) skew-symmetric matrix with ŜFPF[φi, φj ;n] is po-
sition (i, j) for i < j.

Lemma 8.3. Maintain the notation of (29), and suppose p ∈ [n− 1]. Then

∂p
(
pfMFPF[φ;n]

)
=

⎧⎪⎪⎨
⎪⎪⎩
pfMFPF[φ+ ei;n] if p = φi /∈ {φ2 − 1, . . . , φr − 1}

for some i ∈ [r]

0 otherwise

where ei = (0, . . . , 0, 1, 0, 0, . . . ) is the standard basis vector whose ith coor-
dinate is 1.

Proof. Let M = MFPF[φ;n]. If 1 ≤ i < j ≤ �+(φ) then (12) implies that
∂pMij = ∂pŜ

FPF[φi, φj ;n] is Ŝ
FPF[φi+1, φj ] if p = φi �= φj−1, ŜFPF[φi, φj+1]

if p = φj , and 0 otherwise. Thus if p /∈ {φ1, φ2, . . . , φr} then ∂p (pfM) = 0.
Suppose p = φk. Then ∂pMij = 0 unless i = k or j = k, so ∂p (pfM) = pfN
where N is the matrix formed by applying ∂p to the entries in the kth row
and kth column of M. If k < r and φk = φk+1 − 1, then columns k and
k + 1 of N are identical, so pfM = pfN = 0. If k = r or if k < r and
φk �= φk+1 − 1, then N = MFPF[φ+ ek;n].
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Lemma 8.4. Let n ≥ 2 and D = (x1 + x2)(x1 + x3) · · · (x1 + xn). Then
pfMFPF[1;n] = D, and if b ∈ P is such that 1 < b < n, then pfMFPF[1, b;n]
is divisible by D.

Proof. Theorem 4.2 implies that pfMFPF[1;n] = D and, when n > 2, that
pfMFPF[1, 2;n] = (x2+x3) · · · (x2+xn)D. If 2 < b < n then pfMFPF[1, b;n] =
∂b−1(pfM

FPF[1, b − 1;n]) by the previous lemma. Since D is symmetric in
xb−1 and xb, the desired property holds by induction.

If i : P → N is a map with i−1(P) ⊂ [n], then let xi = x
i(1)
1 x

i(2)
2 · · ·xi(n)n .

Given a nonzero polynomial f =
∑

i:P→N
cix

i ∈ Z[x1, x2, . . . ], let j : P → N

be the lexicographically minimal index such that cj �= 0 and define lt(f) =
cjx

j . We refer to lt(f) as the least term of f . Set lt(0) = 0, so that lt(fg) =
lt(f) lt(g) for any polynomials f, g. The following is [8, Proposition 3.14].

Lemma 8.5 (See [8]). If z ∈ FPF∞ then lt(ŜFPF
z ) = xĉFPF(z) =

∏
(i,j)∈D̂FPF(z)

xi.

Let M denote the set of monomials xi = x
i(1)
1 x

i(2)
2 · · · for maps i : P → N

with i−1(P) finite. Define ≺ as the “lexicographic” order on M , that is, the
order with xi ≺ xj when there exists n ∈ P such that i(t) = j(t) for 1 ≤ t < n
and i(n) < j(n). Note that lt(ŜFPF

z ) ∈ M . Also, observe that if a, b, c, d ∈ M
and a � c and b � d, then ab � cd with equality if and only if a = c and
b = d.

Lemma 8.6. Let i, j, n ∈ P. The following identities then hold:

(a) If i < n then lt(ŜFPF[i;n]) � xi+1xi+2 · · ·xn, with equality if and only
if i is odd.

(b) If i < j < n then lt(ŜFPF[i, j;n]) � (xi+1xi+2 · · ·xn)(xj+1xj+2 · · ·xn),
with equality if and only if i is odd and j is even.

Proof. The result follows by routine calculations using Lemma 8.5. For ex-
ample, suppose i < j < n and let y = (i, n+ 1)(j, n+ 2) and z = arc(y), so
that ŜFPF[i, j;n] = ŜFPF

z . If i is even and j = i + 1, then D̂FPF(z) = {(i, i −
1), (i+1, i−1)}∪{(i+1, i), (i+3, i), . . . , (n, i)}∪{(i+3, i+1), . . . , (n, i+1)} so
lt(ŜFPF[i, j;n]) = (xixi+1xi+3 · · ·xn)(xjxj+2 · · ·xn). The other cases follow
by similar analysis.

Lemma 8.7. If n ∈ P and r ∈ [n− 1] then

ŜFPF[1, 2, . . . , r;n] = pfMFPF[1, 2, . . . , r;n].

Proof. The proof is similar to that of [11, Lemma 4.77]. Let Di = (xi +
xi+1)(xi + xi+2) · · · (xi + xn) for i ∈ [n − 1] and M = MFPF[1, 2, . . . , r;n].
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Theorem 4.2 implies that ŜFPF[1, 2, . . . , r;n] = D1D2 · · ·Dr. Lemma 8.3 im-
plies that pfM is symmetric in x1, x2, . . . , xr. Lemma 8.4 implies that every
entry in the first column of M, and therefore also pfM, is divisible by
D1. Since si(Di) is divisible by Di+1, it follows that pfM is divisible by
ŜFPF[1, 2, . . . , r;n]. To prove the lemma, it suffices to show that pfM and
ŜFPF[1, 2, . . . , r;n] have the same least term.

Let m ∈ P be whichever of r or r + 1 is even and choose z ∈ FPFm. By
Lemma 8.6,

lt

⎛
⎝ ∏

z(i)<i∈[m]

Mz(i),i

⎞
⎠ � (x2 · · ·xn)(x3 · · ·xn) · · · (xr+1 · · ·xn)

= lt(ŜFPF[1, 2, . . . , r;n]),

with equality if and only if i is odd and j is even whenever i < j = z(i).
The only element z ∈ FPFm with the latter property is the involution z =
(1, 2)(3, 4) · · · (m − 1,m) = Θm, so we deduce from (28) that lt(pfM) =
lt(ŜFPF[1, 2, . . . , r;n]) as needed.

Let ŜFPF[φ;n] = ŜFPF[φ1, φ2, . . . , φr;n]. The following is the main result
of this section.

Theorem 8.8. It holds that ŜFPF[φ;n] = pfMFPF[φ;n].

Proof. If φ = (1, 2, . . . , r) then ŜFPF[φ;n] = pfMFPF[φ;n] by the previ-
ous lemma. Otherwise, there exists a smallest i ∈ [r] such that i < φi.
If p = φi − 1 then ŜFPF[φ;n] = ∂pŜ

FPF[φ− ei;n] by (12) and pfMFPF[φ;n] =

∂p(pfM
FPF[φ− ei;n]) by Lemma 8.3. We may assume that ŜFPF[φ− ei;n] =

pfMFPF[φ− ei;n] by induction, so the result follows.

Example 8.9. For φ = (1, 2, 3) and n = 4, the theorem implies that the
polynomial ŜFPF

(1,5)(2,6)(3,7)(4,8) is equal to the Pfaffian

pf

⎛
⎜⎜⎜⎜⎝

0 ŜFPF
(1,5)(2,6)(3,4) ŜFPF

(1,5)(2,4)(3,6) ŜFPF
(1,5)(2,3)(4,6)

−ŜFPF
(1,5)(2,6)(3,4) 0 ŜFPF

(1,4)(2,5)(3,6) ŜFPF
(1,3)(2,5)(4,6)

−ŜFPF
(1,5)(3,6)(2,4) −ŜFPF

(1,4)(2,5)(3,6) 0 ŜFPF
(1,2)(3,5)(4,6)

−ŜFPF
(1,5)(2,3)(4,6) −ŜFPF

(1,3)(2,5)(4,6) −ŜFPF
(1,2)(3,5)(4,6) 0

⎞
⎟⎟⎟⎟⎠

where for z ∈ FPFn we define ŜFPF
z = ŜFPF

ι(z). By Theorem 4.2, both of these

expressions evaluate to (x1+x2)(x1+x3)(x1+x4)(x2+x3)(x2+x4)(x3+x4).
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Appendix A. Index of symbols

The tables below list our non-standard notations, with references to defini-

tions where relevant.

Symbol Meaning Reference

N The set of nonnegative integers
P The set of positive integers
[n] The set of positive integers {1, 2, . . . , n}
φE The unique order-preserving bijection [n] → E for E ⊂ Z

ψE The unique order-preserving bijection E → [n] for E ⊂ Z

SZ The group of permutations of Z with finite support
InvolZ The set {w ∈ SZ : w = w−1} of involutions in SZ

S∞ Subgroup of permutations in SZ fixing all numbers outside P

Invol∞ The set {w ∈ S∞ : w = w−1} of involutions in S∞
Sn Subgroup of permutations in S∞ fixed all numbers outside [n]

Θ The permutation of Z given by i �→ i− (−1)i (6)
Θn The permutation (1, 2)(3, 4) . . . (2n− 1, 2n) ∈ S2n

FPFn The set of fixed-point-free involutions in S2n

FPF∞ The S∞-conjugacy class of Θ §2.3
FPFZ The SZ-conjugacy class of Θ §2.3

ι The natural inclusion FPFn ↪→ FPF∞ (7)
arc A certain map InvolZ → FPFZ Def. 4.10
dearc A certain map FPFZ → InvolZ Def. 4.11
ηFPF A certain map FPFZ − {Θ} → FPFZ Def. 5.3

wn The longest permutation n · · · 321 ∈ Sn

[w]E The standardization of w to the subset E ⊂ Z (14)
[[w]]E The element ι([w]E) ∈ FPF∞ for E ⊂ Z with w(E) = E (25)
w � N The map Z → Z given by i �→ w(i−N) +N

R(w) The set of reduced words for w ∈ W §2
AFPF(z) The set of minimal length elements w ∈ SZ with z = w−1Θw

R̂FPF(z) The disjoint union R̂FPF(z) =
⊔

w∈AFPF(z)
R(w) (11)

βmin(z) The minimal atom in AFPF(z) for z ∈ FPF∞ Lem. 4.3

Cyc
Z
(z) The set {(i, j) ∈ Z× Z : i < j = z(i)} for z ∈ FPFZ (9)

Cyc
P
(z) The intersection Cyc

Z
(z) ∩ (P× P)

Inv(z) The inversion set {(i, j) ∈ Z× Z : i < j and z(i) > z(j)}
InvFPF(z) The set Inv(z)− Cyc

Z
(z) for z ∈ FPFZ (9)

�̂FPF The FPF-involution length function FPFZ → N (10)
DesFPFR (z) A modified right descent set for z ∈ FPFZ (10)
DesFPFV (z) The set of FPF-visible descents of z ∈ FPFZ (19)
DesV (z) The set of visible descents of z ∈ InvolZ (20)
Sw The Schubert polynomial of w ∈ Sn (3)

Ŝ
FPF
z The FPF-involution Schubert polynomial

∑
w∈AFPF(z)

Sw Def. 2.4
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Symbol Meaning Reference

Fw The Stanley symmetric function of w ∈ Sn Def. 2.1

F̂ FPF
z The FPF-involution symmetric function

∑
w∈AFPF(z)

Fw Def. 2.7

< The Bruhat order on SZ or FPFZ §3
�FPF The covering relation for the Bruhat order on FPFZ §3
<AFPF A certain partial order of AFPF(z) (24)

D(w) The Rothe diagram {(i, w(j)) : (i, j) ∈ Inv(w)} (16)

D̂FPF(z) The involution Rothe diagram of z ∈ FPF∞ (17)
c(w) The code of w ∈ S∞ §4
ĉFPF(z) The involution code of w ∈ FPF∞ §4

λ(w) The partition given by sorting c(w) for w ∈ S∞ §6
ν(z) The shape of w ∈ FPF∞ §6
δn The partition (n− 1, n− 2, . . . , 3, 2, 1)
λT The transpose of a partition λ

P The polynomial ring Z [x1, x2, . . . ]
L The Laurent polynomial ring Z

[
x1, x2, . . . , x

−1
1 , x−1

2 , . . .
]

∂i The ith divided difference operator (1)
πi The ith isobaric divided difference operator (2)
Gm,n A certain element of L (13)

Λ The Hopf algebra of symmetric functions over Z [27]
sλ The Schur function indexed by a partition λ [27]
Pλ The Schur P -function indexed by a strict partition λ Def. 2.9

Ψ̂±(y, r) Index sets for sums in transition formula Theorem 3.4 (15)

T̂
FPF(z) The FPF-involution Lascoux-Schützenberger tree Def. 5.7

LFPF(z) The set {i ∈ Z : i < p and (i, p)y(i, p) ∈ Ψ̂−(y, p)} (26)
C
FPF(z, E) The set

{
(i, p)y(i, p) : i ∈ E ∩ LFPF(z)

}
(27)

pf A The Pfaffian of a skew-symmetric matrix A (28)

Ŝ
FPF[φ;n] An instance of ŜFPF

z where z is FPF-Grassmannian (30)

F̂ FPF[φ;n] An instance of F̂ FPF
z where z is FPF-Grassmannian (30)

M
FPF[φ;n] A certain skew-symmetric matrix (31)

Acknowledgements

We thank Dan Bump, Michael Joyce, Vic Reiner, Alex Woo, Ben Wyser, and
Alex Yong for helpful conversations during the development of this paper.

References

[1] A. Bertiger, The orbits of the symplectic group on the flag manifold,
preprint (2014), arXiv:1411.2302. MR3193170

[2] S. Billey and M. Haiman, Schubert polynomials for the classical groups,
J. Amer. Math. Soc. 8 (1995), 443–482. MR1290232

http://www.ams.org/mathscinet-getitem?mr=3193170
http://www.ams.org/mathscinet-getitem?mr=1290232


108 Zachary Hamaker et al.

[3] S. C. Billey, W. Jockusch, and R. P. Stanley, Some Combinatorial Prop-
erties of Schubert Polynomials, J. Algebr. Combin. 2 (1993), 345–374.
MR1241505

[4] B. Burks and B. Pawlowski, Reduced words for clans, preprint (2018),
arXiv:1806.05247.

[5] M. B. Can, M. Joyce, and B. Wyser, Chains in Weak Order Posets
Associated to Involutions, J. Combin. Theory Ser. A 137 (2016), 207–
225. MR3403521

[6] E. A. DeWitt, Identities Relating Schur s-Functions and Q-Functions,
Ph.D. thesis, Department of Mathematics, University of Michigan,
2012. MR3093984

[7] P. Edelman and C. Greene, Balanced tableaux, Adv. Math. 63 (1987),
42–99. MR0871081

[8] Z. Hamaker, E. Marberg, and B. Pawlowski, Involution words: count-
ing problems and connections to Schubert calculus for symmetric orbit
closures, J. Combin. Theory Ser. A 160 (2018), 217–260. MR3846203

[9] Z. Hamaker, E. Marberg, and B. Pawlowski, Involution words II: braid
relations and atomic structures, J. Algebr. Comb. 45 (2017), 701–743.
MR3627501

[10] Z. Hamaker, E. Marberg, and B. Pawlowski, Transition formulas for
involution Schubert polynomials, Selecta Math. 24 (2018) 2991–3025.
MR3848014

[11] Z. Hamaker, E. Marberg, and B. Pawlowski, Schur P -positivity and
involution Stanley symmetric functions, IMRN (2017), rnx274.
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