# Two classes of modular $p$-Stanley sequences 

Mehtaab Sawhney and Jonathan Tidor

Consider a set $A$ with no $p$-term arithmetic progressions for $p$ prime. The $p$-Stanley sequence of a set $A$ is generated by greedily adding successive integers that do not create a $p$-term arithmetic progression. For $p>3$ prime, we give two distinct constructions for $p$-Stanley sequences which have a regular structure and satisfy certain conditions in order to be modular $p$-Stanley sequences, a set of particularly nice sequences defined by Moy and Rolnick which always have a regular structure.

Odlyzko and Stanley conjectured that the 3-Stanley sequence generated by $\{0, n\}$ only has a regular structure if $n=3^{k}$ or $n=$ $2 \cdot 3^{k}$. For $p>3$ we find a substantially larger class of integers $n$ such that the $p$-Stanley sequence generated from $\{0, n\}$ is a modular $p$ Stanley sequence and numerical evidence given by Moy and Rolnick suggests that these are the only $n$ for which the $p$-Stanley sequence generated by $\{0, n\}$ is a modular $p$-Stanley sequence. Our second class is a generalization of a construction of Rolnick for $p=3$ and is thematically similar to the analogous construction by Rolnick.

## 1. Introduction

For an odd prime $p$, a set is called $p$-free if it contains no $p$-term arithmetic progression. Szekeres conjectured that for $p$ an odd prime, the maximum number of elements in a $p$-free subset of $\{0,1, \ldots, n-1\}$ grows as $n^{\log _{p-1} p}$ [2]. This conjecture however has been disproved. In particular, Elkin [1] proves the best known lower bound for 3 -free sets of $O\left(n^{1-o(1)}\right)$ while the best proven upper bound is $O\left(n(\log \log n)^{5} / \log n\right)$ due to recent work of Sanders [12].

The inspiration for Szekeres's conjecture however is of interest. In particular, Szekeres's conjecture is based on the sequence constructed by starting with 0 and greedily adding each subsequent integer that does not create a $p$-term arithmetic progression. The sequence produced is exactly the nonnegative integers that have no digit of $p-1$ in their base $p$ expansion. In 1978, Odlyzko and Stanley generalized this construction to arbitrary sets [9].
arXiv: 1506.07941

Definition 1.1. Let $A:=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set of nonnegative integers that contains 0 with no nontrivial p-term arithmetic progressions. Furthermore take $0=a_{1}<a_{2}<\cdots<a_{n}$ and for each integer $k \geq n$, let $a_{k+1}$ be the least integer greater than $a_{k}$ such that $\left\{a_{1}, \ldots, a_{k}, a_{k+1}\right\}$ has no $p$ term arithmetic progressions. The $p$-Stanley sequence $S_{p}(A)$, also written as $S_{p}\left(a_{1}, \ldots, a_{n}\right)$, is the sequence $a_{1}, \ldots, a_{n}, a_{n+1}, \ldots$

In the language of Stanley sequences the previous example is precisely $S_{p}(0)$. Odlyzko and Stanley noticed that for some sets $A$, the Stanley sequence $S_{3}(A)$ displays a regular pattern in terms of the ternary representations of its terms and these sequences grow as $n^{\log _{2} 3}$. In particular, they explicitly computed $S_{3}\left(0,3^{k}\right)$ and $S_{3}\left(0,2 \cdot 3^{k}\right)$ and showed that these sequences satisfy the above properties. However, for other values of $m$, the sequence $S_{3}(0, m)$ seems to grow chaotically and at the rate $n^{2} / \log n$. In particular, Lindhurst [5] computed $S_{3}(0,4)$ for large values and observes that it appears to follow this second growth rate.

Odlyzko and Stanley provided a heuristic argument why a randomly chosen sequence should grow at the rate $n^{2} / \log n$ and conjectured that these two behaviors are the only possible ones. Further work on the growth of chaotic $p$-Stanley sequences for $p>3$ can be found in [4]. This leads to the following conjecture, which is explicitly stated for $p=3$ in [9].

Conjecture 1.1 (Based on [9], [4]). A p-Stanley sequence $a_{1}, a_{2}, \ldots$ with $p$ an odd prime satisfies either:
Type 1: $a_{n}=\Theta\left(n^{\log _{(p-1)} p}\right)$
Type 2: $a_{n}=\Theta\left(n^{(p-1) /(p-2)} /(\log n)^{1 /(p-2)}\right)$.
To date however there has been no 3-Stanley sequence, or more generally p-Stanley sequence, that has been proven to have Type 2 growth. Despite this, there has been significant interest in studying the structure of Type 1 3-Stanley sequences ([7], [11], [10]). The most relevant class of Type 1 3 -Stanley sequences stems from the work of Moy and Rolnick [7], extending work of Rolnick [10], which gave the following class of Type 1 sequences.

Definition 1.2. Consider a set $A \subseteq\{0, \ldots, N-1\}$ with $0 \in A$ such that there is no nontrivial 3 -term arithmetic progression $\bmod N$ among the elements of $A$. (Trivial arithmetic progressions refer to progressions with all elements equal.) $A$ set $A$ is said to be modular if for every integer $x$, there exists $y \geq z$ in $A$ such that $2 y-z \equiv x \bmod N$. Note that the second condition is equivalent to $x, y$, and $z$ being an arithmetic progression mod $N$. Furthermore we say that $S_{3}(A)$ is a modular Stanley sequence if $A$ satisfies these conditions.

Several papers have been dedicated to understanding various properties of these modular sequences; namely the character, repeat factor, and scaling factor of these sequences. See [10], [7] for definitions of these properties and [11], [6], [8] for further work on understanding these properties. Furthermore Moy and Rolnick [7] conjecture that all 3-Stanley sequences with Type 1 growth are pseudomodular, a suitable generalization of modular sequences. In contrast, for general $p$-Stanley sequences, there is no such conjectured form for Type 1 sequences. However there is a natural analog of modular Stanley sequences, modular $p$-Stanley sequences. In particular one modifies the given definition to have no $p$-term arithmetic progressions and defines an analog of the second condition. This is defined more precisely in the next section.

In this paper we present two classes of modular $p$-Stanley sequences, one of which hints a difference between 3-Stanley sequences and $p$-Stanley sequences for larger primes $p$ whereas the other appears to suggest a degree of similarity. The first demonstrates that for $p>3$, there exists a large class of integers $n$ for which $S_{p}(0, n)$ has Type 1 growth and in fact is a modular sequence. In particular for $p \geq 5$, if $2 \cdot p^{k-1}<n<p^{k}$ and $p^{k}-n$ has no $p-1$ in its base $p$ expansion, then $S_{p}(0, n)$ has Type 1 growth. This is notable as there exist $n \neq i \cdot p^{k}$ for $1 \leq i \leq p-1$ such that $S_{p}(0, n)$ exhibits Type 1 growth, unlike the case $p=3$ where Stanley and Odlyzko [9] conjecture that only $S_{3}\left(0,3^{k}\right)$ and $S_{3}\left(0,2 \cdot 3^{k}\right)$ have Type 1 growth among sequences of the form $S_{3}(0, n)$. Numerical evidence given by Moy and Rolnick [7] suggests that these are the only possible integer $n$ and thus appears to give a conjectural answer to a question raised by Moy and Rolnick [7] of classifying integers $n$ such that $S_{p}(0, n)$ is modular.

The second class is a generalization of Theorem 1.2 by Rolnick [10]. These constructions are notable as they are among the first explicit constructions for large classes of modular $p$-sequences, with the only other large class of constructions present in the literature being that of basic sequences given by Moy and Rolnick [7].

In Section 2 we provide some definitions and basic results on modular $p$-Stanley sequences that are used within this paper. In Section 3 we demonstrate the first class of modular $p$-Stanley sequences, and in Section 4 we demonstrate the second class of modular $p$-Stanley sequences. Section 5 contains some ideas for future work in these directions.

## 2. Definitions

This section provides the definitions and basic results on modular p-Stanley sequences necessary to prove our results. For further exposition, see [7].

Definition 2.1. $A$ set $A$ p-covers $x$ if there exist $x_{1}, x_{2}, \ldots, x_{p-1} \in A$ such that $x_{1}<x_{2}<\cdots<x_{p-1}<x$ is an arithmetic progression.
Proposition 2.1. The $p$-Stanley sequence $S_{p}(A)$ is the unique sequence that starts with $A$, is $p$-free, and p-covers all $x \notin S_{p}(A)$ with $x>\max (A)$.
Proof. Since $x>\max (A)$ there are two cases. If $x$ is in $S_{p}(A)$, its addition to the sequence preserves that the sequence is $p$-free. If $x$ is not in $S_{p}(A)$, it follows that the addition of $x$ would have created a $p$-term arithmetic progression with largest term $x$ and with the remaining terms in $S_{p}(A)$.
Definition 2.2. $A$ set $A \subseteq\{0,1, \ldots, N-1\}$ is said to $p$-cover $x \bmod N$ if there exist $x_{1}, x_{2}, \ldots, x_{p-1} \in A$ such that $x_{1}<x_{2}<\cdots<x_{p-1}$ and $x$ form an arithmetic progression $\bmod N$. Restricting $0 \leq x<N$ and given the size restrictions for $A$ this is equivalent to $x_{1}<x_{2}<\cdots<x_{p-1}<x$ or $x_{1}<x_{2}<\cdots<x_{p-1}<x+N$ forming an arithmetic progression.
Definition 2.3. $A$ set $A \subseteq\{0,1, \ldots, N-1\}$ is a modular $p$-free set $\bmod N$ if $A$ contains 0 , is $p$-free $\bmod N$, and $p$-covers all $x$ with $0 \leq x<N$ and $x \notin A$. A p-Stanley sequence is a modular p-Stanley sequence if it has the form $S_{p}(A)$ for a modular $p$-free set $A$.

We will refer to " $p$-covering" and "modular $p$-free" simply as "covering" and "modular" when $p$ is obvious. We write $A+B$ for $\{a+b \mid a \in A, b \in B\}$ and $c \cdot A$ for $\{c \cdot a \mid a \in A\}$. The following is the main theorem on modular $p$ Stanley sequences proved in [7]. It implies that a modular Stanley sequence grows asymptotically as $S_{p}(0)$.
Theorem 2.1 (Theorem 6.5 in [7]). If $A$ is a modular $p$-free set mod $N$, then $S_{p}(A)=A+N \cdot S_{p}(0)$. Note that $S_{p}(0)$ consists of all nonnegative integers with no $p-1$ in their base $p$ expansions.
Corollary 2.1 (Corollary 6.6 in [7]). Any modular p-Stanley sequence exhibits Type 1 growth.

## 3. First class of $\boldsymbol{p}$-Stanley sequences

We use the notation $t_{i}(x)$ to refer to the digit corresponding to $p^{i}$ in the base $p$ expansion of $x$. We initially define a pair of sets which are critical for this section.
Definition 3.1. Let $A_{p}^{k}$ be the set of positive integers $n$ such that $2 \cdot p^{k-1}<$ $n \leq p^{k}$ with $p^{k}-n \in S_{p}(0)$. This is equivalent to $t_{i}\left(p^{k}-n\right) \neq p-1$ for all $i$ and additionally $t_{k-1}\left(p^{k}-n\right) \neq p-2$. Let $A_{p}=\bigcup_{k=0}^{\infty} A_{p}^{k}$.

For example the set $A_{5}$ begins $\{1,3,4,5,12,13,14,15,17,18 \ldots\}$.
Notation 3.1. Let $S_{p}^{k}=\left\{x \mid x \in S_{p}(0), x<p^{k}\right\}$. Note by Lemma 6.4 in [7], $S_{p}^{k}$ is $p$-free $\bmod p^{k}$ and covers $\left\{0,1, \ldots, p^{k}-1\right\} \backslash S_{p}^{k}$.

In a manner closely related to the proof of Lemma 6.4 in [7], we define a key procedure for the proof of Theorem 3.4.

Definition 3.2. For $0 \leq x<p^{k}$ define the canonical covering of $x$ to be the sequence $x_{1}, x_{1}, \ldots, x_{p-1}$ where $x_{j}=\sum_{i} t_{i}^{(j)} p^{i}$ and $t_{i}^{(j)}=t_{i}(x)$ if $t_{i}(x) \neq p-1$ and $t_{i}^{(j)}=j-1$ if $t_{i}(x)=p-1$.

Note that the canonical covering is contained in $S_{p}^{k}$ and, as suggested by its name, $p$-covers $x$. Using these definitions it possible to prove our first result on modular $p$-Stanley sequences.

Theorem 3.1. For $p>3$ a prime and $n \in A_{p}, S_{p}(0, n)$ is a modular $p$ Stanley sequence.
Proof. Suppose that $k$ is such that $p^{k-2}<n \leq p^{k-1}$, and let $A=\{0\} \cup$ $\left(n+S_{p}^{k}\right) \backslash\left\{p^{k-1}(p-1)\right\}$. Note that $\max (A)<p^{k}$. Therefore it suffices to demonstrate $S_{p}(0, n)=S_{p}(A)$ and that $A$ is modular $\bmod p^{k}$.

To demonstrate that $S_{p}(0, n)=S_{p}(A)$, it suffices by Proposition 2.1 to prove that $A$ is $p$-free and covers all $n<x<p^{k}$ with $x \notin A$. To demonstrate that $A$ is modular $\bmod p^{k}$, it suffices to prove that $A$ is $p$-free $\bmod p^{k}$ and covers all $0 \leq x<p^{k} \bmod p^{k}$ with $x \notin A$. Thus it is sufficient to show the slightly stronger statement that $A$ is $p$-free $\bmod p^{k}$ and covers all $n<x<$ $p^{k}+n$ with $x \notin A$ and $x \neq p^{k}$. Let $A^{\prime}=-n+A=\{-n\} \cup S_{p}^{k} \backslash\left\{p^{k-1}(p-1)-n\right\}$. We demonstrate that $A^{\prime}$ has no arithmetic progressions $\bmod p^{k}$ which will give us the first of our two desired results.

Since $S_{p}^{k}$ is $p$-free $\bmod p^{k}$, any arithmetic progression in $A^{\prime}$ must contain $-n$. Suppose there is an arithmetic progression $\left\{a_{i}\right\} \bmod p^{k}$ and define $b_{i} \equiv a_{i} \bmod p^{k-1}$ with $0 \leq b_{i}<p^{k-1}$. It follows that $\left\{b_{i}\right\}$ is an arithmetic progression $\bmod p^{k-1}$. By the definition of $A_{p}$, we know that $p^{k-1}-n \in S_{p}^{k}$, so the progression $\left\{b_{i}\right\}$ is in fact an arithmetic progression $\bmod p^{k-1}$ in $S_{p}^{k-1}$. Thus the progression $\left\{b_{i}\right\}$ must be the constant arithmetic progression. It follows that $a_{0} \equiv a_{1} \equiv \cdots \equiv a_{p-1} \equiv-n\left(\bmod p^{k-1}\right)$ and therefore the only possible arithmetic progression $\bmod p^{k}$ in $A^{\prime}$ is $i \cdot p^{k-1}-n$ for $0 \leq i<p$. However, since $(p-1) p^{k-1}-n \notin A^{\prime}$, it follows that $A^{\prime}$ is $p$-free $\bmod p^{k}$.

To prove the second result we demonstrate that $A^{\prime}$ covers $0<x<p^{k}$ with $x \notin A^{\prime}$ and $x \neq p^{k}-n$. If $x=p^{k-1}(p-1)-n$, then $x$ is covered by $\left\{i p^{k-1}-n\right\}$ for $0 \leq i<p-1$. Otherwise, $x \notin S_{p}^{k}$. Since $x$ is covered by
its canonical covering in $S_{p}^{k}$, the only cases we have to consider are those in which the canonical covering of $x$ contains $p^{k-1}(p-1)-n$.

Let $m=p^{k-1}(p-1)-n$, since $n \in A_{p}$, we know that $t_{k-1}(m)=p-2$, $t_{k-2}(m)<p-2$, and $t_{i}(m) \neq p-1$ for all $i$. Any $0<x<p^{k}$ whose canonical covering contains $m$ can be written in the form

$$
x_{S}=\sum_{\substack{i=0 \\ i \notin S}}^{k-1} t_{i}(m) p^{i}+\sum_{i \in S}(p-1) p^{i}
$$

where $S \subseteq\{0,1, \ldots, k-1\}$ is a set of digits such that $t_{i}(m)$ is the same for all $i \in S$. We earlier assumed that $x \neq m$ and $x \neq p^{k}-n=p^{k-1}+m$. This implies that $S \neq \emptyset,\{k-1\}$.

For the remainder of the proof fix an integer $a$ and an $S \subseteq\{0,1, \ldots, k-1\}$ such that $a=t_{i}(m)$ for all $i \in S$ and $S \neq \emptyset,\{k-1\}$. Let $j$ be $\max (S \backslash\{k-1\})$ and let $b=t_{j+1}(m)$.

We know that $t_{k-1}(m)=p-2$ and $t_{k-2}(m)<p-2$, which implies that $\{k-2, k-1\} \nsubseteq S$. Thus this implies that if $j=k-2$, then $k-1 \notin S$.

We know that $0 \leq a, b<p-1$, and we now consider four cases.
Case 1: $a=0$.
Let $\Delta=\sum_{i \in S} p^{i}$. Then $\left\{p^{k-1}(p-1)-n+i \cdot \Delta\right\}$ for $0 \leq i<p-1$ is the canonical covering of $x_{S}$ as we are preserving all digits not equals to $p-1$ in $x_{S}$ and using $\{0, \ldots, p-2\}$ where $x_{S}$ has a digit $p-1$. However $\left\{i \cdot p^{k-1}-n+i \cdot \Delta\right\}$ for $0 \leq i<p-1$ also covers $x_{S}$.

We need to check that all of these terms are in $A^{\prime}$. Since $p^{k-1}(p-1)-$ $n+i \Delta \in S_{p}^{k}$ with first digit $p-2$, then $i \cdot p^{k-1}-n+i \cdot \Delta$ is identical except the first digit ranges from 0 through $p-2$ for $0<i<p-1$ while for $i=0$ it follows as $i \cdot p^{k-1}-n+i \cdot \Delta=-n \in A^{\prime}$.

Case 2: $0<a<p-1$ and $0 \leq b<(p-3) / 2$.
Let $j^{\prime}>j$ be the smallest integer such that $t_{j^{\prime}}(m) \geq(p-1) / 2$. Note $j^{\prime}$ exists since $t_{k-1}(m)=p-2 \geq(p-1) / 2$. In this case take

$$
\begin{aligned}
\Delta & =\sum_{i=j}^{j^{\prime}-1} p^{i}(p-1) / 2+\sum_{i \in S \backslash\left\{j, j+1, \ldots, j^{\prime}\right\}} p^{i}, \\
& =\left(p^{j^{\prime}}-p^{j}\right) / 2+\sum_{i \in S \backslash\left\{j, j+1, \ldots, j^{\prime}\right\}} p^{i}
\end{aligned}
$$

and consider the arithmetic progression $\left\{x_{S}-i \cdot \Delta\right\}$ for $0<i \leq p-1$. We claim this set is contained in $A^{\prime}$.

We can compute the digits of each of these numbers. Write the digit expansion of $x_{S}-i \cdot \Delta$ as $x_{S}-i \cdot \Delta=\sum_{l} t_{l}^{(i)} p^{l}$. For $l \notin\left\{j, j+1, \ldots, j^{\prime}\right\}$, then $t_{l}^{(i)}$ matches the canonical covering. In particular, $t_{l}^{(i)}=t_{l}(m)$ if $i \notin S$ and otherwise $t_{l}^{(i)}=p-1-i$.

Using explicit computation it is possible to determine the remaining digits. First note that $t_{j^{\prime}}^{(i)}=t_{j^{\prime}}-\lceil i / 2\rceil$. For $j+1<l<j^{\prime}$, we have $t_{l}^{(i)}=t_{l}(m)$ for $i$ even and $t_{l}^{(i)}=t_{l}(m)+(p-1) / 2$ for $i$ odd. Furthermore, $t_{j+1}^{(i)}=t_{l}(m)+1$ for $i>0$ even and $t_{j+1}^{(i)}=t_{j+1}(m)+1+(p-1) / 2$ for $i$ odd. Finally, $t_{j}^{(i)}=i / 2-1$ for $i>0$ even and $t_{j}^{(i)}=(p-1) / 2+(i-1) / 2$ for $i$ odd.

Now we check that all of these terms are in $A^{\prime}$. The $j$ th digit cycles through each value when $0 \leq i \leq p-1$, and since it equals $p-1$ when $i=0$, it never equals $p-1$ in the range $0<i \leq p-1$ that we are using to cover $x_{S}$. Since $t_{j^{\prime}}(m) \geq(p-1) / 2, t_{j^{\prime}}^{(i)}$ never goes below 0 , and $t_{j^{\prime}}^{(i)}<t_{j^{\prime}}(m)$. Therefore we have $t_{j^{\prime}}^{(i)}<p-1$ for $i>0$. Furthermore since $t_{l}(m)<(p-1) / 2$ for $j<l<j^{\prime}$, neither of the two values that this digit takes is $p-1$. Furthermore the $(j+1)$ st digit only takes on 3 values, none of which is $p-1$ since $t_{j+1}(m)=b<(p-3) / 2$. Finally, $t_{j+1}^{(i)} \neq t_{j+1}(m)$ for $i>0$. Since $t_{j+1}(m)$ never takes on its original value again, none of the terms in this sequence are $m$.

Case 3: $0<a<p-1$ and $(p-3) / 2 \leq b<p-1$ and $(a, b, p) \neq(2,1,5)$.
We claim we can find $1 \leq d \leq b+1$ such that $d \not \equiv p-a-1$ given the conditions in this case. If $p>5$ it is not hard to check ${ }^{1}$ that $\operatorname{lcm}(1,2, \ldots,(p-$ 1)/2) $\geq p-1$, so a number in this range must not divide $p-a-1<p-1$. If $p=5$, we can use $d=2$ unless $a=2$ (and therefore $p-a-1=2$ ). Furthermore if $p=5, a=2, b \geq 2$, we can use $d=3$.

Let

$$
\Delta=d \cdot p^{j}+\sum_{i \in S \backslash\{j\}} p^{i}
$$

We claim that the arithmetic progression $\left\{x_{S}-i \cdot \Delta\right\}$ for $0<i \leq p-1$ is contained in $A^{\prime}$.

None of the digits of $x_{S}-i \cdot \Delta$ is equal to $p-1$ except for possibly the $j$ th and $(j+1)$ st digits. The $j$ th digit decreases by $d(\bmod p)$ so it only takes on the value $p-1$ when $i=0$. Moreover, subtracting $\Delta$, the $j$ th digit

[^0]forces the $(j+1)$ st to decrement exactly $d-1$ times (due to a "borrow"). Since $p-1>b \geq(p-3) / 2 \geq d-1$, the $(j+1)$ st digit never takes on the value $p-1$ and never itself "borrows" from the $(j+2)$ nd digit.

Thus it suffices to check that no term is equal to $p^{k-1}(p-1)-n$. This must occur before the $(j+1)$ st digit has changed its value from $t_{j+1}(m)$. In this range, the $j$ th digit has value $t_{j}\left(x_{S}\right)-i \cdot d=(p-1)-i \cdot d$. However if $(p-1)-i \cdot d=a$, then $d \mid p-a-1$, a contradiction. Thus this arithmetic progression is contained in $A^{\prime}$, as desired.

Case 4: $a=2, b=1$, and $p=5$.
This special case is similar to Case 2. Note that for $j<j^{\prime}<k$, it is not the case that $j^{\prime} \in S$. In particular the only possibility is $j^{\prime}=k-1$, but $\{j, k-1\} \subseteq S$ implies that $t_{j}(m)=t_{k-1}(m)$ and $t_{j}(m)=a=2$ whereas $t_{k-1}(m)=p-2=3$. Furthermore note that $j+1 \neq k-1$ since $t_{k-1}(m)=3 \neq 1=t_{j+1}(m)$. Now if $t_{j+2}(m) \geq 1$, letting

$$
\Delta=5^{j+1}+3 \cdot 5^{j}+\sum_{i \in S \backslash\{j\}} 5^{i}
$$

it is easy to check that $\left\{x_{S}-i \cdot \Delta\right\}$ for $0<i \leq 4$ is in $A^{\prime}$.
Otherwise, $t_{j+2}(m)=0$. Let $j^{\prime}>j+2$ be the smallest integer such that $t_{j^{\prime}}(m) \geq 2$. This exists for the same reason as in Case 2. Now let

$$
\begin{aligned}
\Delta & =\left(\sum_{i=j+2}^{j^{\prime}-1} 2 \cdot 5^{i}\right)+5^{j+1}+3 \cdot 5^{j}+\sum_{i \in S \backslash\left\{j, j+1, \ldots, j^{\prime}\right\}} 5^{i} \\
& =\left(5^{j^{\prime}}-5^{j+2}\right) / 2+5^{j+1}+3 \cdot 5^{j}+\sum_{i \in S \backslash\left\{j, j+1, \ldots, j^{\prime}\right\}} 5^{i}
\end{aligned}
$$

We cover $x_{S}$ by $\left\{x_{S}-i \cdot \Delta\right\}$ for $0<i \leq 4$. By exactly the same reasoning as in Case 2, this covering is in $A^{\prime}$.

We conjecture, but cannot currently prove, that these are the only integers $n$ such that $S_{5}(0, n)$ exhibits Type 1 growth. Computational evidence provided by Moy and Rolnick [7] suggests that the integers less than 100 such that $S_{5}(0 ; n)$ are well-behaved and in particular modular are as follows:

$$
\begin{aligned}
& 1,3,4,5,12,13,14,15,17,18,19,20,22,23,24,25,37,39,40,42,43,44,45 \\
& \quad 47,57,58,59,60,62,63,64,65,67,68,69,70,72,73,74,75,82,83,84,85 \\
& \quad 87,88,89,90,92,93,94,95,97,98,99
\end{aligned}
$$

See Problem 6.7 in [7] for more detail. This matches exactly the integers which Theorem 3.4 would suggest, giving some support for this conjecture.

## 4. Second construction of $\boldsymbol{p}$-Stanley sequences

This section presents a generalization of Theorem 1.2 given by Rolnick [11] with a proof that is similar in spirit to that of Theorem 1.2. For this section, fix an odd prime $p$, and recall that $t_{i}(x)$ refers to the $i$ th digit of $x$ in base $p$.

Definition 4.1. We say a (positive) integer $x$ dominates an integer $y$ if $t_{i}(x) \geq t_{i}(y)$ for all integers $i$.

Note that the set $S_{p}^{k}$ defined in Section 3 is exactly the set of integers dominated by $\sum_{i=0}^{k-1}(p-2) p^{i}$.
Theorem 4.1. Let $T \subseteq S_{p}^{k}$ be a nonempty set that is downward-closed under the domination ordering. Namely if $x \in T$ and $y$ is dominated by $x$, then $y \in T$. Then $S_{p}\left(T \cup\left\{p^{k}\right\}\right)$ and $S_{p}\left(T \cup\left\{(p-1) p^{k}\right\}\right)$ are modular $p$-Stanley sequences.

Note that for $p=3$ this is Theorem 1.2 in Rolnick [10].
Proof. In both cases, we give an explicit description of the Stanley $p$-sequences and prove that this is the correct sequence.

We claim that $x \in S_{p}\left(T \cup\left\{p^{k}\right\}\right)$ if and only if the following three conditions hold

- $t_{i}(x) \neq p-1$ for $i \neq k$,
- $t_{k}(x)=0$ implies that $\sum_{i=0}^{k-1} t_{i}(x) p^{i} \in T$,
- $t_{k}(x)=p-1$ implies that $\sum_{i=0}^{k-1} t_{i}(x) p^{i} \notin T$.

For convenience let $L$ be the set of integers satisfying the above relations. Note that $L \cap\left\{0,1, \ldots, p^{k}\right\}=T \cup\left\{p^{k}\right\}$. It suffices by Proposition 2.2 to demonstrate that $L$ does not contain any $p$-term arithmetic progressions and that every integer not in $L$ and greater than $p^{k}$ is covered by a $p$-term arithmetic progression in $L$.

To show that $L$ is $p$-free we proceed by contradiction. Suppose that $x_{1}<\cdots<x_{p}$ form an arithmetic progression. Let $i$ be the smallest integer such that $t_{i}\left(x_{1}\right), \ldots, t_{i}\left(x_{p}\right)$ are not all equal. Since $p$ is prime and the first $i$ digits of $x_{1}, \ldots, x_{p}$ are the same, this implies that $\left\{t_{i}\left(x_{1}\right), \ldots, t_{i}\left(x_{p}\right)\right\}=$ $\{0, \ldots, p-1\}$. Since $t_{i}(x) \neq p-1$ for $i \neq k$, we conclude that $i=k$.

Now there are some $j, j^{\prime}$ such that $t_{k}\left(x_{j}\right)=0$ and $t_{k}\left(x_{j^{\prime}}\right)=p-1$. By the definition of $L$, this implies that $\sum_{i=0}^{k-1} t_{i}\left(x_{j}\right) p^{i} \in T$ and $\sum_{i=0}^{k-1} t_{i}\left(x_{j^{\prime}}\right) p^{i} \notin T$. However, since $t_{i}\left(x_{j}\right)=t_{i}\left(x_{j^{\prime}}\right)$ for $i<k$, this is a contradiction.

It remains to show that every integer $x>p^{k}$ is covered by a $p$-term arithmetic progression. In order to do so we explicitly construct a $p$-term
arithmetic progression $x_{1} \leq x_{2} \leq \cdots \leq x_{p-1} \leq x$ with the $x_{i}$ in $L$. If we have equality anywhere in this chain then $x$ in $L$; otherwise $x_{1}<x_{2}<\cdots<$ $x_{p-1}<x$ as desired. For $0 \leq i \leq k-1$ if $t_{i}(x)=\ell<p-1$, then set $t_{i}\left(x_{j}\right)=\ell$ for $1 \leq j \leq p-1$. If instead $t_{i}(x)=p-1$, set $t_{i}\left(x_{j}\right)=j-1$ for $1 \leq j \leq p-1$. Note that this is exactly the canonical covering from earlier. Now we subdivide into several possible cases.

Case 1: $t_{k}(x) \neq 0, p-1$
Set $t_{k}\left(x_{i}\right)=\ell$. For the remaining digits, use the canonical covering as before.

Case 2: $t_{k}(x)=p-1$
We have two cases. If the last $k$ digits of $x_{1}$ are in $T$, then set $t_{k}\left(x_{j}\right)=$ $j-1$. Otherwise set $t_{k}\left(x_{j}\right)=p-1$. In either case, use the canonical covering for the remaining digits.

Case 3: $t_{k}(x)=0$
If the last $k$ digits of $x_{p-1}$ are in $T$, set $t_{k}\left(x_{j}\right)=0$ and use the canonical covering for the remaining digits. Otherwise, set $t_{k}\left(x_{j}\right)=j$ and perform the canonical covering for $x-p^{k+1}$ for the remaining higher digits. (Note that since $x>p^{k}$ and $t_{k}(x)=0$ it follows that $x \geq p^{k+1}$.)

It is routine to verify in each case that the $x_{j}$ constructed are in $L$, completing the proof that $S_{p}\left(T \cup\left\{p^{k}\right\}\right)=L$. To show that this is a modular Stanley sequence, let $L^{*}=\left\{x \mid x \in L, x<p^{k+1}\right\}$. We claim that $L^{*}$ is a modular set. The proof of this fact is nearly identical to the above analysis. Consider just the digits $t_{i}(x)$ for $0 \leq i \leq k$.

Next we prove that $S\left(T \cup\left\{(p-1) p^{k}\right\}\right)$ is a modular $p$-Stanley sequence. This proof is similar to the above argument though slightly more involved. We claim that $x \in S\left(T \cup\left\{(p-1) p^{k}\right\}\right)$ if and only if the following four conditions hold

- $t_{i}(x) \neq p-1$ for $i \neq k, k+1$,
- $t_{k}(x) \neq p-2$,
- $t_{k+1}(x)=0$ implies that $t_{k}(x)=0$ and $\sum_{i=0}^{k-1} t_{i}(x) p^{i} \in T$ or $t_{k}(x)=$ $p-1$,
- $t_{k+1}(x)=p-1$ implies that $t_{k}(x) \neq p-2, p-1$, and if $t_{k}(x)=0$, then $\sum_{i=0}^{k-1} t_{i}(x) p^{i} \notin T$.

Again let $L$ be the set defined by these four conditions. We show that $L$ is $p$-free and $p$-covers the part of its complement greater than $(p-1) p^{k}$.

For the sake of contradiction, suppose that $x_{1}<x_{2}<\cdots<x_{p}$ form an arithmetic progression with $x_{i} \in L$. Using the same idea as above we see that $t_{i}\left(x_{1}\right)=\cdots=t_{i}\left(x_{p}\right)$ for $0 \leq i \leq k-1$. Since $t_{k}(x) \neq p-2$, it follows that $t_{k}\left(x_{1}\right)=\cdots=t_{k}\left(x_{p}\right)$. Now if $\left\{t_{k+1}\left(x_{1}\right), \ldots, t_{k+1}\left(x_{p}\right)\right\}=\{0, \ldots, p-1\}$,
then there exist $j, j^{\prime}$ such that $t_{k+1}\left(x_{j}\right)=0$ and $t_{k+1}\left(x_{j^{\prime}}\right)=p-1$. Then we see that $\sum_{i=0}^{p-1} t_{i}\left(x_{j}\right) p^{i} \in T$ and $\sum_{i=0}^{p-1} t_{i}\left(x_{j^{\prime}}\right) p^{i} \notin T$. Thus we conclude that $t_{k+1}\left(x_{1}\right)=\cdots=t_{k+1}\left(x_{p}\right)$, and by the same reasoning we see that $x_{1}=\ldots=x_{p}$, a contradiction.

It remains to show that every integer $x>(p-1) p^{k}$ is covered by a $p$-term arithmetic progression. In order to do so, we explicitly construct a $p$-term arithmetic progression, $x_{1} \leq x_{2} \leq \cdots \leq x_{p-1} \leq x$ with $x_{i} \in L$. If we have equality anywhere in this chain then $x \in L$. Otherwise, $x_{1}<x_{2}<\cdots<x_{p-1}$ as desired. For $0 \leq i \leq k-1$, if $t_{i}(x)=\ell<p-1$, then set $t_{i}\left(x_{j}\right)=\ell$ for $1 \leq j \leq p-1$. Otherwise $t_{i}(x)=p-1$, and we set $t_{i}\left(x_{j}\right)=j-1$ for $1 \leq j \leq p-1$. We will define this procedure as earlier to be the canonical covering. Now we subdivide into several possible cases and note that several of these cases degenerate when $p=3$.

Case 1: $t_{k+1}(x)=1, \ldots, p-2$ and $t_{k}(x) \neq p-2$
Set $t_{k+1}(x)=t_{k+1}\left(x_{j}\right)$ and $t_{k}(x)=t_{k}\left(x_{j}\right)$ for $1 \leq j \leq p-1$. For the remaining digits, use the canonical covering.

Case 2: Either $t_{k+1}(x)=p-1$ and $t_{k}(x)=1, \ldots, p-3$ or $t_{k+1}(x)=0$ and $t_{k}(x)=p-1$

Set $t_{k+1}(x)=t_{k+1}\left(x_{j}\right)$ and $t_{k}(x)=t_{k}\left(x_{j}\right)$ for $1 \leq j \leq p-1$. For the remaining digits, use the canonical covering as before.

Case 3: $t_{k+1}(x)=p-1$ and $t_{k}(x)=p-1$
Set $t_{k+1}\left(x_{j}\right)=j-1$ and $t_{k}\left(x_{j}\right)=j-1$ for $1 \leq j \leq p-1$. For the remaining digits, use the canonical covering as before.

Case 4: $t_{k+1}(x)=1, \ldots, p-1$ and $t_{k}(x)=p-2$
Set $t_{k+1}\left(x_{j}\right)=t_{k+1}(x)$ and $t_{k+1}\left(x_{j}\right)=j-2$ for $2 \leq j \leq p-1$ while $t_{k+1}\left(x_{1}\right)=t_{k+1}(x)-1$ and $t_{k}\left(x_{1}\right)=p-1$. For the remaining digits, use the canonical covering as before.

Case 5: $t_{k+1}(x)=0$ and $t_{k}(x)=1, \ldots, p-3$
Set $t_{k+1}\left(x_{j}\right)=j$ and $t_{k}\left(x_{j}\right)=t_{k}(x)$ for $1 \leq j \leq p-1$. For the remaining digits, use the canonical covering $x-p^{k+2}$.

Case 6: $t_{k+1}(x)=0$ and $t_{k}(x)=p-2$
Set $t_{k+1}\left(x_{j}\right)=j$ and $t_{k}\left(x_{j}\right)=j-2$ for $2 \leq j \leq p-1$. Also put $t_{k+1}\left(x_{1}\right)=0$ and $t_{k}\left(x_{j}\right)=p-1$. For the remaining digits, use the canonical covering $x-p^{k+2}$.

Case 7: $t_{k+1}(x)=t_{k}(x)=0$
Consider $x_{p-1}$ before setting $t_{k+1}\left(x_{p-1}\right)$ and $t_{k}\left(x_{p-1}\right)$. If $x_{p-1} \in L$, then set $t_{k+1}\left(x_{j}\right)=t_{k}\left(x_{j}\right)=0$ for $1 \leq j \leq p-1$ and for the remaining digits, use the canonical covering $x$. Otherwise, set $t_{k+1}\left(x_{j}\right)=j$ and $t_{k}\left(x_{j}\right)=0$ for
$1 \leq j \leq p-1$ and use the canonical covering $x-p^{k+2}$ for the remaining digits.

Case 8: $t_{k+1}(x)=p-1$ and $t_{k}(x)=0$
Consider $x_{p-1}$ before setting $t_{k+1}\left(x_{p-1}\right)$ and $t_{k}\left(x_{p-1}\right)$. If $x_{p-1} \in L$, then set $t_{k+1}\left(x_{j}\right)=j-1$ and $t_{k}\left(x_{j}\right)=0$ for $1 \leq j \leq p-1$ and for the remaining digits, use the canonical covering $x$. Otherwise, set $t_{k+1}\left(x_{j}\right)=p-1$ and $t_{k}\left(x_{j}\right)=0$ for $1 \leq j \leq p-1$ and for the remaining digits, use the canonical covering $x$.

In each case it is routine to verify that the $x_{j}$ constructed are in $L$ and form an arithmetic progression with $x$ being the largest term. Finally, to show that this sequence is modular, let $L^{*}=\left\{x \mid x \in L, x<p^{k+2}\right\}$. We claim that $L^{*}$ is a modular set. Demonstrating that $L^{*}$ is modular is nearly identical to above analysis considering $t_{i}(x)$ for $0 \leq i \leq k+1$ and is omitted.

## 5. Conclusions

The two constructions in this paper are among the first classes of large modular $p$-Stanley sequences. These constructions raise several natural questions. The first follows naturally from the computational evidence in Section 3 and conjecturally answers a question of Moy and Rolnick [7] regarding which sets $\{0, n\}$ generate modular $p$-Stanley sequences.

Conjecture 5.1. The sequence $S_{p}(0, n)$ is a modular $p$-Stanley sequence if and only if $n \in A_{p}$.

The next question deals with $p$-Stanley sequences generated in manners similar to that the second construction.
Question 5.1. Consider a set $S \subseteq\left\{1, \ldots, p^{k}-1\right\}$ and $1 \leq i \leq p-2$. Under what conditions is $S_{p}\left(S \cup\left\{0, p^{k}, \ldots, i \cdot p^{k}\right\}\right)$ a modular $p$-Stanley sequence?

Finally, we end on another construction of $p$-Stanley sequences that appears to hold for small integers $x$ but for which an explicit characterization appears difficult. This is the natural analog of Lemma 3.5 in Rolnick [10] and appears to suggest a further connection between the domination order and $p$-Stanley sequences.

Conjecture 5.2. Consider an integer $x$ with no $p-1$ in its base $p$ expansion. If $T$ is the set of all integers dominated by $x$, then $S_{p}(T)$ is a modular $p$ Stanley sequence.

## Acknowledgments

This research was conducted at the University of Minnesota Duluth REU and was supported by NSF grant 1358695, NSF grant 1659047, and NSA grant H98230-13-1-0273. The authors wish to thank Joe Gallian for suggesting the problem and Colin Defant, Ben Gunby, Hannah Alpert, and Levent Alpoge for helpful comments on the manuscript.

## References

[1] M. Elkin. An improved construction of progression-free sets. Israel J. of Math. 184 (2011), 93-128. MR2823971
[2] P. Erdős, V. Lev, G. Rauzy, C. Sándor, and A. Sárközy. Greedy algorithm, arithmetic progressions, subset sums and divisibility. Discrete Math. 200 (1999), 119-135. MR1692285
[3] P. Erdős and P. Turán. On some sequences of integers. J. London Math. Soc. 11 (1936), 261-264. MR1574918
[4] J. L. Gerver and L. T. Ramsey. Sets of integers with no long arithmetic progressions generated by the greedy algorithm. Math. of Comp. 33 (1979), no. 148, 1353-1359. MR0537982
[5] S. Lindhurst. An investigation of several interesting sets of numbers generated by the greedy algorithm. Senior thesis, Princeton University (1990).
[6] R. A. Moy. Stanley sequences with odd character. arXiv:1707.02037 (2017).
[7] R. A. Moy and D. Rolnick. Novel structures in Stanley sequences. Discrete Math. 339 (2016), no. 2, 689-698. MR3431382
[8] R. A. Moy, M. Sawhney, and D. Stoner. Characters of independent Stanley sequences. European J. of Combin. 70 (2018), 354-363. MR3779623
[9] A. M. Odlyzko and R. P. Stanley. Some curious sequences constructed with the greedy algorithm. Bell Laboratories internal memorandum (1978).
[10] D. Rolnick. On the classification of Stanley sequences. European J. Combin. 59 (2017), 51-70. MR3546902
[11] D. Rolnick and P. S. Venkataramana. On the growth of Stanley sequences. Discrete Math. 338 (2015), no. 11, 1928-1937. MR3357778
[12] T. Sanders. On Roth's theorem on progressions. Ann. of Math. 174 (2011), 619-636. MR2811612

Mehtaab Sawhney
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139
USA
E-mail address: msawhney@mit.edu
Jonathan Tidor
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139
USA
E-mail address: jtidor@mit.edu
Received July 21, 2017


[^0]:    ${ }^{1}$ Let $\prod_{i} p_{i}^{e_{i}}$ be the prime factorization of $p-1$. If $p-1$ is not a prime power, then $p_{i}^{e_{i}} \in\{1, \ldots,(p-1) / 2\}$ for all $i$. Otherwise, since $p$ is odd, we can write $p-1=2^{k}$. Then since $k>2,2^{k-1}$ and 3 are elements in $\{1,2, \ldots,(p-1) / 2\}$ and thus the least common multiple is at least $3 \cdot 2^{k-1} \geq 2^{k}=p-1$.

